

Heber Augusto Cotarelli de Andrade

Implementação de Procedimentos Numéricos para a Análise de Elementos Drenantes em Solos

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Área de Concentração: Geotecnia.

Orientador: Eurípedes do Amaral Vargas Jr

Heber Augusto Cotarelli de Andrade

Implementação de Procedimentos Numéricos para a Análise de Elementos Drenantes em Solos

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Eurípedes do Amaral Vargas Jr Orientador PUC/Rio

Tácio Mauro Pereira Campos PUC/Rio

> João Luiz Elias Campos Consultor

> > Luiz Eloy Vaz PUC/Rio

Ney Augusto Dumont Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, abril de 2003.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Heber Augusto Cotarelli de Andrade

Graduou-se em Engenharia Civil, pela Universidade Federal do Paraná - UFPR, em 2000. Durante a graduação, atuou nas áreas de geotecnia e de materiais. Desenvolveu trabalhos de iniciação científica entre 1998 até o final da graduação. Ingressou no curso de mestrado em Engenharia Civil, onde recebeu bolsa de melhor desempenho acadêmico (FAPERJ).

Ficha Catalográfica

Andrade, Heber Augusto Cotarelli de Andrade.

Implementação de Procedimentos Numéricos para a Análise de Elementos Drenantes em Solos / Heber Augusto Cotarelli de Andrade; orientador: Eurípedes Vargas do Amaral Jr. – Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2003.

v., 125f.: il.; 29,7 cm.

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

1. Engenharia civil – Teses. 2. Estabilidade de Taludes. 3. Elementos Finitos. 4. Elementos Drenantes. I. Vargas, Eurípedes do Amaral. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

A meus queridos pais, A minha querida esposa Ana Flávia, Por estarem sempre ao meu lado me incentivando.

Agradecimentos

Aos meus pais, José Eraldo e Eliana, por todo amor, carinho e ensinamento, que foram essenciais em toda minha vida.

A minha esposa, Ana Flávia, pelo grande amor, compreensão e apoio durante todos os anos de convivência.

Ao Prof. Eurípedes do Amaral Vargas Jr., pela sua orientação, estímulo, amizade e pelo conhecimento adquirido durante esses anos de trabalho.

Aos amigos do Tecgraf, da equipe da Naval, e em especial ao Ivan pela pessoa sincera e amiga.

A todo apoio técnico do Tecgraf dos amigos João Luiz, Araken, Willian, Antônio Miranda e outros que contribuíram muito no desenvolvimento da tese.

A todos meus familiares que torceram por mim em mais uma conquista na minha vida.

Aos amigos da PUC, que contribuíram de alguma forma para a realização deste trabalho, em especial os da sala 317.

A todos os professores do Departamento de Engenharia Civil da PUC-Rio.

A todos os funcionários do Departamento de Engenharia Civil da PUC-Rio.

A PUC-Rio, ao CNPq e a FAPERJ pelos auxílios financeiros à pesquisa.

A todos os meus colegas da PUC-Rio pela convivência, muito obrigado.

Resumo

Andrade, Heber Augusto Cotarelli de; Vargas, Eurípedes do Amaral. Implementação de Procedimentos Numéricos para a Análise de Elementos Drenantes em Solos. Rio de Janeiro, 2003. 125p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

Esta pesquisa visa o desenvolvimento de uma ferramenta numérica capaz de simular a inclusão de elementos drenantes em solos, sejam eles representados por drenos subhorizontais ou poços, constituindo sistemas de drenagem amplamente utilizado em estabilidade de encostas, túneis, escavações e outros.

A implementação foi gerada nos programas de fluxo SWMS_2D e SWMS_3D (Simunek e outros, 1994). A formulação proposta considera a equação de fluxo do elemento drenante e a estratégia numérica de sua inclusão na equação de fluxo do solo pelo método dos elementos finitos.

Algumas análises numéricas foram realizadas visando a validação do algoritmo. Para os poços foram analisados os casos confinados e não confinados e em regime permanente e transiente, comparando as soluções numéricas obtidas com as soluções analíticas de Theis (1935) (Freeze, 1979), para aquifero confinado, e de Neumann (1975), para aquifero não confinado.

Para os drenos subhorizontais, propõe—se aqui uma metodologia de análise, levando em consideração os parâmetros hidráulicos e geométricos de um elemento de dreno. Sua aplicação atual não requer muito rigor e este estudo vem com a proposta de ser uma ferramenta geotécnica na fase de projeto de uma obra.

Palavras-chave

Elementos Drenantes; Elementos Finitos; Estabilidade de Taludes; Análise Numérica.

Abstract

Andrade, Heber Augusto Cotarelli de; Vargas, Eurípedes do Amaral. **Implementation of Numerical Procedures for the Analysis of Draining Elements in Soils.** Rio de Janeiro, 2003. 125p. MSc. Dissertation - Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

This research aims at the development of a numerical tool capable to simulating the inclusion of draining elements in soils. These elements are represented by subhorizontais drains or wells, constituting systems geotechnical widely used in stability of slopes, tunnels and other problems.

The implementation was based in the finite elements programs of flow SWMS_2D and SWMS_3D (Simunek e outros, 1994). The proposed formulation considers the equation of flow of the draining element and the numerical strategy of its inclusion by using the method finite elements.

A few numerical analyses were carried out aiming at the validation of the proposed algorithm. For the wells, the confined and unconfined cases and in permanent and flow transient conditions have been analyzed, comparing the obtained numerical solutions with the analytical one by Theis (1935) (Freeze, 1979), for water-bearing confined, and one by Neumann (1975), for water-bearing unconfined.

For the subhorizontais drains, an analysis methodology is proposed here, taking in to consideration the hydraulical and geometric parameters of a drain element. In this case illustrative examples are presented. The implementation carried out is a simplified one but is should be adequate for the design of geotechnical structures.

Keywords

Draining Elements; Finite Elements; Stability of Slope; Numerical Analysis

Sumário

1 Introdução	20
2 Elementos Drenantes em Solos	22
2.1. Rebaixamento com Drenos Horizontais Profundos – DHP	22
2.1.1. Características Gerais	23
2.1.2. Especificação da Composição dos Drenos – DHP	25
2.1.2.1. Tubo	25
2.1.2.2. Argamassa de Cimento	25
2.1.2.3. Filtro Geossintético	25
2.1.2.4. Execução	26
2.2. Rebaixamento com Poços	26
2.2.1. Sistema com Ponteiras Filtrantes	26
2.2.2. Sistema de Poços Profundos	28
2.2.2.1. Rebaixamento com Injetores	28
2.2.2.2. Rebaixamento com Bombas de Eixo Vertical	29
2.3. Considerações Gerais	30
3 Soluções Analíticas de Fluxo em Poços Circulares	31
3.1. Aqüífero Não Confinado	31
3.1.1. Regime Permanente	31
3.1.2. Regime Transiente	35
3.2. Aqüífero Confinado	37
3.2.1. Regime Permanente	37
3.2.2. Regime Transiente	40
4 Implementação de Procedimentos Numéricos	42
4.1. Os Programas SWMS-2D e SWMS_3D	42
4.2. Equação de Fluxo em Meios Não Saturados	43
4.2.1. Determinação das Propriedades Hidráulicas dos Solos Não	
Saturados	43

4.3. Condições Iniciais e de Contorno	45
4.4. Solução Numérica da Equação de Fluxo	46
4.5. Equação de Fluxo do Elemento Drenante	50
4.5.1. Solução Numérica das Equações de Fluxo do Elemento Drenant	te52
4.5.2. Inclusão do Elemento Drenante em Malha Qualquer	55
4.5.3. Propriedades Geométricas do Elemento de Dreno	61
4.5.4. Propriedades Hidráulicas do Elemento de Dreno	66
4.5.5. Propriedades Geométricas e Hidráulicas do Elemento de Poço	69
4.6. Geração dos Modelos de Análise	72
4.6.1. Determinação da Geometria e Malha de Elementos Finitos.	72
4.6.2. Determinação das Condições Iniciais e de Contorno.	73
4.6.3. Determinação das Propriedades dos Materiais Envolvidos.	74
4.6.4. Fluxograma da Implementação	75
5 Implementações Adicionais	78
5.1. Implementação do Coeficiente de Armazenamento Específico do S	Solo [°]
5.2. Implementação de Condição de Contorno para Carga Hidrostática	
Variável	81
5.3. Leitura de dados da linha drenante	81
5.4. Leitura e Impressão de Dados	82
5.5. Gerador MeshBox3D	83
6 Resultados Obtidos	85
6.1. Elemento de Poço	85
6.1.1. Aqüífero Confinado	86
6.1.1.1. Regime Permanente	88
6.1.1.2. Regime Transiente	90
6.1.2. Aqüífero Não Confinado	95
6.1.2.1. Regime Permanente	96
6.1.2.2. Regime Transiente	97
6.2. Elemento de dreno subhorizontal	101
6.3. Resultados Bidimensionais	113
7 Conclusões	121

Lista de figuras

Figura 1-Detalhe do dreno subhorizontal profundo (Hachich e outros,1998).	23
Figura 2-Detalhe instalação de drenos subhorizontais profundos (Alonso,1999)	. 24
Figura 3-Sistema de rebaixamento por ponteiras (Hachich e outros,1998).	27
Figura 4-Sistema de rebaixamento por injetores (Hachich e outros,1998).	28
Figura 5-Detalhe de um poço com bomba submersa.	30
Figura 6-Visualização das propriedades geométricas do elemento de p	oço
(Alonso, 1999).	32
Figura 7-Curvas de rebaixamento versus tempo para um ponto no dom	ínio
(Neumann, 1975).	36
Figura 8-Visualização das propriedades geométricas do elemento de p	oço
(Alonso, 1999).	38
Figura 9-Curvas esquemáticas do modelo de van Genuchten. (a) curva que de	fine
a relação da umidade volumétrica $(heta)$ versus a carga de pressão (ψ) ;	(b)
curva que define a relação da permeabilidade não saturada (K) versus a ca	arga
de pressão (ψ) .	45
Figura 10-Fluxo através do elemento de linear.	50
Figura 11-Linha drenante interceptando um elemento bidimensional.	56
Figura 12-Visualização do cálculo das funções de interpolação no eleme	ento
bidimensional.	57
Figura 13-Linha drenante interceptando um elemento tridimensional.	59
Figura 14-Visualização do cálculo das funções de interpolação no eleme	ento
tridimensional.	59
Figura 15-Visualização das propriedades geométricas do elemento de dreno.	61
Figura 16-Variação das propriedades geométricas em seções circulares.	63
Figura 17-Representação do elemento drenante na face de percolação.	64
Figura 18-Curva característica do elemento de dreno.	68
Figura 19-Coeficiente de armazenamento do dreno (C_D)	69
Figura 20-Visualização das propriedades geométricas do elemento de poço.	69
Figura 21-Visualização das propriedades geométricas do elemento de poço.	72
Figura 22-Fluxograma da implementação das linhas drenantes.	75

Figura 23-Disposição dos subelementos tetraedros nos elementos hexaedros
(Simunek e outros, 1995).
Figura 24-Malha 3D usada para simulações do poço 86
Figura 25-Discretização do elemento de poço (Sudicky e outros, 1995).
Figura 26-Variação das equipotenciais no modelo de aquífero confinado. 87
Figura 27-Comparação dos rebaixamentos numéricos com o analítico para
$l_e = 0.5m. 88$
Figura 28-Comparação dos rebaixamentos numéricos com o analítico para
$l_e = 0.75m$. 89
Figura 29-Comparação dos rebaixamentos numéricos com o analítico para
$l_e = 1.0m. 89$
Figura 30-Comparação dos rebaixamentos numéricos com o analítico para
$l_e = 1.5m. 90$
Figura 31-Comparação da solução numérica de Theis (1935) e Papadopulos and
Cooper (1967) (Sudicky e outros 1995) solução com armazenamento 91
Figura 32-Comparação da solução numérica implementada do modelo discreto
(com e sem armazenamento e $r = 0m$) com a de Theis (1935). As curvas
com C_W se referem as com armazenamento considerado. 92
Figura 33-Comparação da solução numérica implementada do modelo discreto
(com e sem armazenamento e $r = 5m$) com a de Theis (1935).
Figura 34-Comparação da solução numérica implementada (com e sem
armazenamento e $r = 0m$) com a de Theis.(1935). Tamanho do elemento de
0.5m. 93
Figura 35-Comparação da solução numérica implementada (com e sem
armazenamento e $r = 0m$) com a de Theis (1935). Tamanho do elemento de
0.75m. 94
Figura 36-Comparação da solução numérica implementada (com e sem
armazenamento e $r = 0m$) com a de Theis (1935). Tamanho do elemento de
1 m. 94
Figura 37-Comparação da solução numérica implementada (com e sem
armazenamento e $r = 0m$) com a de Theis (1935). Tamanho do elemento de
1.5m 95

Figura 38-Comparação dos rebaixamentos numericos com o analítico	para
comprimento do elemento (l_e) de 0.1, 0.5 e 1.0 m.	97
Figura 39-Curvas comparativas dos resultados numéricos obtidos com a sol	ução
de Neumann (1975), a uma distância $r \cong 10m$ do poço.	99
Figura 40-Curvas comparativas dos resultados numéricos obtidos com a sol	ução
de Neumann (1975), a uma distância $r \cong 15m$ do poço.	100
Figura 41-Visualização do rebaixamento da superfície freática.	101
Figura 42-Visualização em corte do rebaixamento da superfície freática.	101
Figura 43-Malha tridimensional para a análise do dreno.	102
Figura 44-Isopressão da condição inicial aplicada ao modelo.	103
Figura 45-Vista geral das isopressões da condição inicial aplicada ao modelo.	104
Figura 46-Corte longitudinal – Dreno $\phi = 1''$.	104
Figura 47- Corte transversal na saída do dreno – Dreno $\phi = 1''$.	105
Figura 48-Vista Geral – visualização da superfície freática – Dreno $\phi = 1''$.	105
Figura 49-Corte longitudinal – Dreno $\phi = 1^{1/4}$.	106
Figura 50-Vista Geral – visualização da superfície freática – Dreno $\phi = 1^{1/4}$.	106
Figura 51-Corte longitudinal – Dreno $\phi = 1^{\frac{1}{2}}$.	107
Figura 52-Vista Geral – visualização da superfície freática – Dreno $\phi = 1^{\frac{1}{2}}$.	107
Figura 53-Corte longitudinal – Dreno $\phi = 1^{\frac{3}{4}}$.	108
Figura 54-Vista Geral – visualização da superfície freática – Dreno $\phi = 1^{\frac{3}{4}}$.	108
Figura 55-Corte longitudinal – Dreno $\phi = 2''$.	109
Figura 56-Vista Geral – visualização da superfície freática – Dreno $\phi = 2''$.	109
Figura 57-Vista Geral – visualização da superfície freática para modelo co	om 2
drenos subhorizontais com de $\phi = 1^{1/4}$, espaçados de 3.333m na horizo	ntal.
	110
Figura 58-Vista Geral – visualização da superfície freática para modelo co	
drenos subhorizontais com de $\phi = 1^{\frac{1}{4}}$, espaçados de 3.333m na horizon	ıtal e

de 1m na vertical.	111
Figura 59-Variação da vazão em relação ao diâmetro aplicado, sendo i ig	gual a
inclinação do dreno subhorizontal.	112
Figura 60-Poço em aqüífero não saturado e inserido em malha discreta.	114
Figura 61-Poço em aqüífero não saturado e inserido em malha qualquer (Ti	po 1).
	115
Figura 62- Poço em aquífero não saturado e inserido em malha qualquer (Ti	po 2).
	116
Figura 63-Dreno subhorizontal discreto na malha, para um tempo de simulaç	ção de
0.6 dias.	117
Figura 64-Dreno subhorizontal discreto na malha, em regime permanente.	118
Figura 65-Dreno subhorizontal em malha qualquer, para um tempo de simu	ılação
de 0.6 dias.	119
Figura 66-Dreno subhorizontal em malha qualquer, em regime permanente.	120

Lista de tabelas

Tabela 1-Parâmetros do solo não saturado de acordo com o modelo de van Genuchten, para o caso do poço não confinado (Simunek e outros, 1994) 96 Tabela 2-Valores de $W(u_A,\lambda)$ para o aqüífero não confinado (Fetter, 1994). 98 Tabela 3- Valores de $W(u_B,\lambda)$ para o aqüífero não confinado (Fetter, 1994). 98 Tabela 4-Parâmetros do solo não saturado de acordo com o modelo de van Genuchten, para o caso do dreno subhorizontal (Simunek e outros, 1994) 103

Lista de Símbolos

A_m	Área molhada [L ²]
[A]	Matriz global de condutividade da equação de fluxo [L ² T ⁻¹]
$\{B\}$	Vetor global da carga de elevação da equação de fluxo [L ³ T ⁻¹]
C	Capacidade de retenção especifica do solo [L ⁻¹]
C_D	Capacidade de retenção especifica do elemento drenante [L ⁻¹]
$C_{\scriptscriptstyle W}$	Capacidade de retenção especifica do elemento de poço [L ⁻¹]
$\{D\}$	Vetor global de vazão prescrita devido à vegetação na equação de fluxo $[L^3T^{-1}]$
D	Diâmetro do elemento drenante [L]
[F]	Matriz global de armazenamento da equação de fluxo [L³]
$[F_D]$	Matriz de armazenamento do elemento drenante [L ³]
g	Aceleração da gravidade [LT ⁻²]
h	Carga total [L]
H	Carga hidráulica na distância R [L]
h_e	Carga de elevação [L]
h_{ei}	Carga de elevação do elemento drenante i [L]
h_w	Carga hidráulica no poço [L]
I_a	Ponto de interseção a
I_b	Ponto de interseção b
$k_{\scriptscriptstyle D}$	Permeabilidade do elemento de dreno [LT ⁻¹]
$[K_D]$	Matriz de condutividade do elemento drenante [L ² T ⁻¹]
$K_{ij}^{\ A}$	Componentes do tensor de anisotropia [-]
K_r	Permeabilidade relativa [-]
K_s	Permeabilidade saturada [LT ⁻¹]
K_u	Permeabilidade radial [LT ⁻¹]
K_v	Permeabilidade vertical [LT ⁻¹]

$k_{\scriptscriptstyle W}$	Permeabilidade do elemento de poço [LT ⁻¹]
l_e	Comprimento do elemento drenante [L]
$L_{\scriptscriptstyle C}$	Espessura da camada confinante [L]
M_{w}	Massa de água no elemento drenante [L ³]
n	Parâmetro empírico do modelo de van Genuchten [-]
N	Número total de nós da malha [-]
$P_{\scriptscriptstyle m}$	Perímetro molhado [L]
{Q}	Vetor global de vazão prescrita ou variável da equação de fluxo [L ³ T ¹]
$\{Q_{\scriptscriptstyle D}\}$	Vetor de vazão prescrita no elemento drenante [L ³ T ⁻¹]
\boldsymbol{x}_{i}	Coordenada do eixo i do sistema cartesiano [L]
r	Menor distância de um ponto do domínio ao poço [L]
R	Raio cuja distância corresponde ao de rebaixamento nulo [L]
R_h	Raio hidráulico [L]
r_p	Raio do poço [L]
R_{Ω}	Resíduo da equação de fluxo dado pela solução de Galerkin [T-1]
S	Distância ao longo de l_e do elemento drenante [L]
S_{e}	Grau de saturação do solo [-]
S_v	Termo que representa a taxa de fluxo extraído pela vegetação [T ⁻¹]
S	Coeficiente de armazenamento [-]
S_s	Armazenamento específico [L ⁻¹]
S_y	Porosidade efetiva [-]
t	Tempo de análise [T]
T	Transmissibilidade do aqüífero [L ² T ⁻¹]
[T]	Matriz transformação [-]
$[T^T]$	Matriz transposta da transformação [-]
u	Relação adimensional da well function para regime permanente [-]
\overline{u}	Pressão neutra [ML ⁻¹ T ⁻²]
u_A e u_B	Relações adimensionais da well function para regime transiente [-]
V	Volume total [L ³]

$v_{\scriptscriptstyle D}$	Velocidade de fluxo no elemento drenante [LT ⁻¹]
$V_{\it med}$	Velocidade média [LT ⁻¹]
$V_{_{V}}$	Volume de vazios [L ³]
V_{w}	Volume de água no elemento drenante [L ³]
α	Parâmetro empírico do modelo de van Genuchten
β	Ângulo mostrado na figura 12 [-]
γ_w	Peso específico da água [ML ⁻¹ T ⁻²]
Γ	Domínio no contorno
Γ_e	Domínio dado pelo segmento do contorno do elemento e
Γ_D e Γ_N	Domínios dos contornos dos tipos Dirichlet e Neumann
Δq_1	Variação de vazão de entrada e saída do elemento drenante $[L^3T^{-1}]$
Δq_2	Vazão dada pela variação da massa de água do elemento no tempo $[L^3T^{-1}]$
Δt	Intervalo de tempo [T]
θ	Umidade volumétrica do solo [-]
$ heta_r$	Umidade volumétrica residual do solo [-]
$ heta_s$	Umidade volumétrica saturada do solo [-]
$ heta_{\scriptscriptstyle D}$	Umidade volumétrica do elemento drenante [-]
$ heta_{\scriptscriptstyle Di}$	Umidade volumétrica do elemento drenante i [-]
λ	Relação adimensional de Neumann [-]
μ	Viscosidade dinâmica da água [ML ⁻¹ T ⁻¹]
ρ	Massa específica da água [ML ⁻³]
$\sigma_{\scriptscriptstyle 1}$	Fluxo prescrito no contorno Γ_N [ML ⁻¹ T ⁻¹]
σ	Pressão total [ML ⁻¹ T ⁻²]
σ'	Pressão efetiva [ML ⁻¹ T ⁻²]
ϕ	Função de interpolação linear [-]
Ψ	Carga de pressão [L]
$\hat{\psi}$	Carga de pressão ponderada no domínio [L]
$\psi_{\scriptscriptstyle D}$	Carga de pressão no elemento drenante [L]
Ω	Domínio dado pela região de fluxo

- η Coeficiente de rugosidade do canal na fórmula de Manning
- $\Omega_{\scriptscriptstyle e}$ Domínio dado pela região de fluxo do elemento drenante
- ξ Porosidade do solo [-]