

Luis Eduardo Formigheri

Comportamento de um Aterro Sobre Argila Mole da Baixada Fluminense

Dissertação de Mestrado

Dissertação apresentada ao Departamento de Engenharia Civil da PUC-Rio como parte dos requisitos para obtenção do título de Mestre em Ciências de Engenharia Civil: Geotecnia.

Orientadores: Alberto S. F. J. Sayão

Denise M. S. Gerscovich

Rio de Janeiro Agosto de 2003

Luis Eduardo Formigheri

Comportamento de um Aterro Sobre Argila Mole da Baixada Fluminense

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Alberto S.F. Jardim SayãoOrientador
Departamento de Engenharia Civil – PUC-Rio

Profa. Denise Maria S. Gerscovich Co-Orientador UERJ

> Prof. José Alberto R. Ortigão UFRJ

Profa. Anna Laura L. S. Nunes COPPE/UFRJ

Prof. Ney Augusto Dumont Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 28 de Agosto de 2003

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização do autor, do orientador e da universidade.

Luis Eduardo Formigheri

Graduou-se em Engenharia Civil, pela Universidade de Passo Fundo, em janeiro de 2001. Trabalhou como engenheiro estagiário de obras em Passo Fundo. Ingressou no curso de mestrado em Engenharia Civil da PUC-Rio no ano de 2001, atuando na área de Geotecnia Experimental.

Ficha Catalográfica

Formigheri, Luis Eduardo

Comportamento de um Aterro Sobre Argila Mole da Baixada Fluminense / Luis Eduardo Formigheri; orientadores: Alberto de Sampaio Ferraz Jardim Sayão; Denise Maria Soares Gerscovich. – Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2003.

[21]., 182 f.: il.; 30,0 cm

 Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

1. Engenharia Civil – Teses. 2. Ensaios de Campo. 3. Aterro sobre Argila Mole. 5. Recalque de Aterro. 6. Estabilidade de Aterro I. Sayão, Alberto S. F. J. (Alberto de Ferraz Jardim). II. Gerscovich, Denise Maria Soares. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

Agradecimentos

A Deus.

Aos meus amados pais Luiz Carlos e Inêz, e irmãos Eliane, Luciane e Carlos Alberto, por sempre estarem ao meu lado e dividirem comigo alegrias e tristezas. Muito obrigado por acreditarem e me fazerem acreditar em meus sonhos.

À minha noiva Maristâni, a quem amo muito.

À minha segunda família, Orly Tarcísio, Eroni, Mariane e Orly Matheus, pelo apoio e compreensão durante todo este tempo.

Ao meu orientador Alberto Sayão, pela sua amizade, ensinamentos e orientação na elaboração desta dissertação.

À minha orientadora Denise Gerscovich, pela sua amizade, paciência e pela determinação em tornar tudo possível. Muito obrigado por não me fazer desistir deste sonho.

Aos meus irmãos Alexandre Saré e Laryssa Petry Ligocki, pessoas especiais que dividiram sofrimentos e alegrias durante o período de mestrado.

Aos amigos Carlos Ataliba, Ana Júlia, Frederico, Patrícia, Lucas, Luciana, Nelly, Ciro, Roberta, Luciana Nunes e Jorge, pela ajuda, companhia e por tornarem dias difíceis em dias agradáveis e felizes.

À Ana Cristina, pelos conselhos e ensinamentos e acima de tudo paciência.

Aos funcionários do departamento, em especial a Ana Roxo, por ser uma grande amiga e conselheira.

Ao Professor J.A.R. Ortigão, pela disponibilização dos dados que possibilitaram a realização deste trabalho, além da pronta atenção as minhas dúvidas.

Aos funcionários da empresa Terratek, em especial ao amigo Carlos, pela gentileza e esclarecimentos prestados.

À CAPES, pela ajuda financeira indispensável ao desenvolvimento deste trabalho.

Resumo

Formigheri, Luis Eduardo; Sayão, Alberto de Sampaio Ferraz Jardim; Gerscovich, Denise Maria Soares. **Comportamento de um aterro sobre Argila Mole da Baixada Fluminense**. Rio de Janeiro, 2003. 203p. Dissertação de Mestrado — Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O comportamento de um aterro sobre argila mole da Baixada Fluminense foi estudado. Este aterro foi executado para a implantação da Indústria Rio Polímeros, com 3 metros de espessura, assente sobre um colchão drenante. Antes da construção, a área foi coberta com uma manta de geotêxtil. Para acelerar os recalques do aterro, geodrenos foram instalados na argila mole. O aterro foi instrumentado com inclinômetros, placas de recalque e piezômetros. Durante a construção, foram observadas rupturas em áreas localizadas do aterro. Ensaios de palheta e piezocone foram realizados em diferentes etapas da obra. A resistência não drenada (Su) nos ensaios de palheta apresentaram-se dentro dos valores reportados em trabalhos anteriores. Nos ensaios de piezocone, Su apresentou um decréscimo com a profundidade. Os valores de OCR, estimados com o piezocone, situaram-se entre 1,5 e 3,0. O comportamento do aterro foi avaliado quanto a recalques e estabilidade. O método de Asaoka permitiu uma estimativa satisfatória do coeficiente de adensamento e dos recalques. Os recalques estimados pela teoria de Terzaghi foram cerca de 2,5 vezes maiores do que os registrados no campo, devido a incertezas na compressibilidade da argila mole. O método de Asaoka indicou, para drenagem puramente vertical, um valor de c_v cerca de 100 vezes maior que os valores de ensaios de laboratório e 2 vezes menor que os valores estimados para drenagem combinada e para ensaios de piezocone. A estabilidade do aterro foi avaliada em análises por equilíbrio limite. Os resultados confirmaram a existência de uma potencial instabilidade em algumas regiões do aterro.

Palavras-chave

Engenharia Civil, Ensaios de Campo, Aterro sobre Argila Mole, Recalque de Aterro, Estabilidade de Aterro.

Abstract

Formigheri, Luis Eduardo; Sayão, Alberto de Sampaio Ferraz Jardim; Gerscovich, Denise Maria Soares. **Behavior of an Embankment on a Soft Clay Deposit at Baixada Fluminense**. Rio de Janeiro, 2003. 203p. MSc Thesis – Civil Engineering Department, Pontifícia Universidade Católica do Rio de Janeiro

The behavior of an embankment on a soft clay deposit at Baixada Fluminense was studied. This embankment was constructed for implantation of Rio Polimeros Industry. The embankment layer is 3m thick and is placed over a layer of granular material. Before construction the entire area was covered with a geotextil. Geodrains were also installed to accelerate clay layer settlements. Some localized embankment failures were observed during construction. Vane and CPTU tests were performed at different construction stages. Values of undrained strength (Su), provided by vane tests, are in agreement with results reported in literature, for soft clay deposits at Baixada Fluminense. On the other hand, CPTU tests indicated a Su profile decreasing with depth. OCR values were estimated between 1.5 and 3.0. The performance of the embankment construction was evaluated with respect to its stability and settlement. The Asaoka's method allowed a suitable evaluation of both coefficient of consolidation and final settlements. However, settlements computed by Terzaghi's theory were about 2.5 times greater than monitored field values. These differences were attributed to uncertainties related to the clay layer compressibility parameters. The vertical coefficient of consolidation, computed with Asaoka's method, was 100 times greater than laboratory results and 2 times smaller than values estimated for combined consolidation and by CPTU data. The embankment stability was evaluated with limit equilibrium analyses. The results confirmed the occurrence of instability conditions at localized embankment areas.

Keywords

Civil Engineering, Field Tests, Embankment on Soft Clay, Embankment Settlement, Embankment Stability.

Sumário

1. Introdução	22
Revisão Bibliográfica	24
2.1 Aterros sobre solos moles	24
2.2 Ensaios de campo	25
2.3 Instrumentação	33
2.4 Métodos de estimativa de recalque	36
2.5 Métodos de Previsão de Recalque	36
2.5.1 Teoria de adensamento	38
2.5.2 Aceleração de Recalques	40
2.6 Interpretação de medidas de recalque	43
2.6.1 Método de Asaoka, (1978) modificado por Magnan e Deroy (1980)	43
2.6.2 Método de Orleach	45
2.7 Análises de estabilidade	47
2.7.1 Reforço de aterros com geossintéticos	49
2.8 Casos históricos de aterros sobre solos moles	50
2.8.1 Aterro experimental sobre argila mole do Rio de Janeiro	50
2.8.2 Aeroporto Internacional Salgado Filho (Porto Alegre)	53
2.8.3 Estação de Tratamento de Esgoto (ETE) Alegria	55
2.8.4 Aterro sobre argila mole Senac/Sesc-Barra	58
3. Histórico do local	62
3.1 Descrição da Obra	62
3.2 Aspectos geológicos	65
3.3 Aspectos geotécnicos	66
3.4 Ensaios de laboratório	67
3.4.1 Amostragem	67
3.4.2 Caracterização	70
3.4.3 Permeabilidade	73
3.4.4 Adensamento	73
3.4.5 Resistência	76
3.5 Ensaios de Campo	79

3.5.1 Palheta	79
3.5.2 CPTU	81
3.5.3 Permeabilidade in-situ	81
3.6 Instrumentação de campo	82
3.6.1 Piezômetros	82
3.6.2 Inclinômetros	85
3.6.3 Placas de recalque	88
4. Análise dos Ensaios de Campo	90
4.1 Ensaio de palheta	90
4.2 Ensaio de piezocone	97
4.2.1 Parâmetros geotécnicos	102
5. Análise dos deslocamentos verticais	117
5.1 Deslocamentos verticais	117
6. Análise de Estabilidade	127
6.1 Descrição das áreas L, C e O	128
6.2 Parâmetros Geotécnicos	133
6.2.1 Aterro, colchão drenante e geossintético	133
6.2.2 Argila mole	134
6.3 Análise de estabilidade das áreas L, C e O	137
7. Conclusões e Sugestões	140
8. Referências bibliográficas	143
ANEXO 1	150
Análises Químicas	151
Ensaios Triaxiais CIU e UU	152
Piezômetros Casagrande e Corda Vibrante	159
Placas de recalque	169
ANEXO 2	179

Lista de figuras

Figura 1 – Aterro sobre solos moles (Dunniclif, 1993)	24
Figura 2 - Ensaios de palheta reportados por Collet (1978)	26
Figura 3 - Resultados dos ensaios de Palheta na argila do Rio de Jane	erio
(Ortigão & Collet, 1986 apud Schnaid, 2000)	27
Figura 4 - Principais posições de instalação do elemento poroso	28
Figura 5 - Resultado típico do ensaio de dissipação de piezocone (Schna	aid,
2000)	31
Figura 6 - Esquema de inclinômetro	35
Figura 7 - Evolução dos Recalques	37
Figura 8 - Disposição dos drenos	41
Figura 9 – Geometria dos drenos	41
Figura 10 – Recalque no tempo pelo método de Asaoka (1978)	43
Figura 11 - Construção gráfica do método de Asaoka , modificado por Magna	ın e
Deroy (1980)	44
Figura 12 - Método de Orleach (Ferreira, 1991)	46
Figura 13 - Localização do aterro de Sarapuí (Ortigão 1983)	51
Figura 14 - Geometria do aterro Ortigão (1980)	51
Figura 15 - Fotos aéreas das obras no Aeroporto Internacional Salgado Filho	53
Figura 16 - Perfil esquemático do aterro AISF	54
Figura 17 - Distribuição dos drenos no AISF	54
Figura 18 - Vista em planta do aterro da ETE Alegria, Spotti (2000)	57
Figura 19 - Foto aérea do aterro Sesc/Senac, na baixada de Jacarepaguá,	RJ,
Spotti (2000)	58
Figura 20 - Esquema da seção transversal do aterro, Spotti (2000)	59
Figura 21 - Mapa da localização do aterro	62
Figura 22 - Vista aérea do aterro em dois momentos da obra	63
Figura 23- Planta baixa esquemática do aterro	64
Figura 24 – Posição dos SPT's, dos perfis e espessura da argila mole (Terra	tek,
2002)	66
Figura 25 - Perfil de SPT – AA	68
Figura 26 - Perfis de SPT - BB	69
Figura 27 – Detalhe do amostrador tipo Osterberg	70

rigura 28 - Valores dos limites de Atterberg	/ 1
Figura 29 - Variação do teor de M.O. com a profundidade	72
Figura 30- Variação de OCR, c _c e c _s com a profundidade	74
Figura 31 - Valores de Cv - subáreas Tanques e Utilitários	75
Figura 32 - Valores de Cv – subáreas Etileno e Polietileno	75
Figura 33 - Valores de Cv – subáreas Parqueamento, Depósito e Prédios	76
Figura 34 - Trajetórias p'x q - subáreas Tanques e Utilitários	77
Figura 35 - Trajetórias p' x q – subáreas Etileno e Polietileno	77
Figura 36 - Trajetórias p' x q - subáreas Parqueamento, Depósito e Prédios	77
Figura 37 – Estado de tensões na ruptura - subáreas Tanques e Utilitários	78
Figura 38 - Estado de tensões na ruptura – subáreas Etileno e Polietileno	78
Figura 39 - Estado de tensões na ruptura - Parqueamento, Depósito e Prédios	s 79
Figura 40 - Ensaio de Palheta - Variações de (Su) _{indeformado} com a profundid	lade
	80
Figura 41 - Sensibilidade da argila	80
Figura 42 - Localização dos ensaios CPTU	81
Figura 43 - Planta de localização dos piezômetros tipo Casagrande	83
Figura 44 - Planta de localização dos piezômetros tipo Corda Vibrante	84
Figura 45 - Excesso de poropressão no piezômetro CP-01 com o alteamento	o do
aterro	84
Figura 46 - Excesso de poropressão no piezômetro VWP-01 com o alteame	ento
de aterro	85
Figura 47 - Planta de localização dos inclinômetros	86
Figura 48 - Instalação do I – 10	87
Figura 49 - Leituras do inclinômetro F10	87
Figura 50 - Deslocamento vertical com o alteamento do aterro no tempo	88
Figura 51 - Planta de localização das placas de recalque	89
Figura 52 - Divisão das áreas O, C e L	90
Figura 53 – Ensaios de palheta realizados na área L	91
Figura 54 – Ensaios de palheta realizados na área C	92
Figura 55 – Ensaios de palheta na área O	92
Figura 56 – Perfil de resistência não drenada (Su) para área L	94
Figura 57 – Perfil de resistência não drenada (Su) para área C	95
Figura 58 – Perfil de resistência não drenada (Su) para área O	95
Figura 59 – Perfis de resistência não drenada (Su)	96
Figura 60 – Ensaio CPTU 01	98

Figura 61 – Ensaio CPTU 02	99
Figura 62 – Ensaio CPTU 03	100
Figura 63 – Ensaio CPTU 04	100
Figura 64 – Ensaio CPTU 05	101
Figura 65 – Ensaio CPTU 06	102
Figura 66 – Perfil de resistência não drenada (Su) do ensaio CPTU 01	107
Figura 67 – Perfil de resistência não drenada (Su) do ensaio CPTU 02	107
Figura 68 – Perfil de resistência não drenada (Su) do ensaio CPTU 03	108
Figura 69 – Perfil de resistência não drenada (Su) do ensaio CPTU 05	109
Figura 70 – Perfil de resistência não drenada (Su) do ensaio CPTU 06	110
Figura 71 – Curva de dissipação do ensaio CPTU 01 na argila mole	112
Figura 72 – Perfis de OCR para os ensaios CPTU 01, 02 e 03	115
Figura 73 – Perfis de OCR para os ensaios CPTU 05 e 06	115
Figura 74 – Recalque x tempo x alteamento para placa PR – 07.	119
Figura 75 – Método de Asaoka PR – 07.	119
Figura 76 – Comparação de recalque (área L).	120
Figura 77 - Comparação de recalque (área C).	123
Figura 78 - Comparação de recalque (área O).	123
Figura 79 – Recalque x tempo x alteamento para placa PR – 04.	124
Figura 80 - Valores de c _∨ em planta	126
Figura 81 - Localização das rupturas no aterro da industria Rio Polímeros	128
Figura 82 - Seção Transversal L1 na área L	129
Figura 83 - Seção transversal L3 na área L	129
Figura 84 - Inclinômetro F08	130
Figura 85 - Seção transversal C na área C	131
Figura 86 - Inclinômetro I-02	131
Figura 87 - Inclinômetro F03	132
Figura 88 – Seção transversal considerada para a área O	132
Figura 89 - Hipóteses (1, 2 e 3) para a área L	135
Figura 90 – Hipóteses 1, 2, 3, 4 e 5 para área C	136
Figura 91 – Hipóteses 1, 2 e 3 para área O	137
Figura 92 – Superfícies de ruptura para área C, ensaio de piezocone, hipó	tese 4
	139
Figura 93 - Triaxial CIU - Área L	154
Figura 94 – Triaxial CIU Área L	154
Figura 95 - Triaxiais CIU - Área C	155

Figura 96 - Triaxiais - Area C	155
Figura 97 - Triaxiais CIU - Área O	156
Figura 98 - Triaxiais CIU - Área O	156
Figura 99 - Triaxiais UU - Área L	157
Figura 100 - Triaxiais UU - Área C	157
Figura 101 - Triaxiais UU - Área O	158
Figura 102 - Piezômetro Casagrande - Área L	159
Figura 103 - Piezômetro Casagrande - Elevação do aterro no tempo - Área L	159
Figura 104 - Piezômetros Casagrande - Área C - Etileno	160
Figura 105 - Piezômetro Casagrande - Elevação do aterro no tempo - Área	
	160
,	161
Figura 107 - Piezômetro Casagrande - Elevação do aterro no tempo - Área	
	161
Figura 108 - Piezômetro Casagrande - Área O	162
Figura 109 - Piezômetro Casagrande - Elevação do aterro no tempo - Áre	a C 162
Figura 110 - Anexo - Piezômetro Corda Vibrante – Variação de poropressão	
	163
Figura 111 - Anexo - Piezometro de Corda Vibrante - Elevação do aterro	no
tempo para Área L	164
Figura 112 - Anexo - Piezômetro de Corda Vibrante para Área C	165
Figura 113 - Anexo - Piezômetro de Corda Vibrante - Elevação do aterro	no
tempo para área C	166
Figura 114 - Anexo - Piezômetros de Corda Vibrante para Área O	167
Figura 115 - Anexo - Piezômetro de Corda Vibrante - Elevação do aterro	no
tempo para área O	168
Figura 116 - Placas de recalque - Área L	169
Figura 117 - Placas de recalque - Área C	169
Figura 118 - Placas de recalque - Área O	170
Figura 119 - Placas de recalque - Área O.	170
Figura 120 – Ensaio de Dissipação do CPTU 01 na profundidade de 6,24 m	171
Figura 121 – Ensaio de Dissipação do CPTU 01 na profundidade de 10,30 m	171
Figura 122 - Ensaio de Dissipação do CPTU 01 na profundidade de 14,80 m	172
Figura 123 – Ensaio de Dissipação do CPTU 02 na profundidade de 5,07 m.	172
Figura 124 - Ensaio de Dissipação do CPTU 02 na profundidade de 11,27 m	173

Figura 125 - Ensaio de Dissipação do CPTU 02 na profundidade de 14,45 m $$	173
Figura 126 - Ensaio de Dissipação do CPTU 03 na profundidade de 7,0 m	174
Figura 127 - Ensaio de Dissipação do CPTU 03 na profundidade de 9,0 m	174
Figura 128 - Ensaio de Dissipação do CPTU 03 na profundidade de 12,11 m $$	175
Figura 129 - Ensaio de Dissipação do CPTU 05 na profundidade de 4,0 m	175
Figura 130 - Ensaio de Dissipação do CPTU 05 na profundidade de 8,41m	176
Figura 131 - Ensaio de Dissipação do CPTU 05 na profundidade de 10,06 m $$	176
Figura 132 - Ensaio de Dissipação do CPTU 06 na profundidade de 4,27 m	177
Figura 133 - Ensaio de Dissipação do CPTU 06 na profundidade de 8,31 m	177
Figura 134 - Ensaio de Dissipação do CPTU 06 na profundidade de 12,35 m $$	178
Figura 135 - Placa de recalque RP - 06.	180
Figura 136 - Placa de recalque RP - 07.	181
Figura 137 - Placa de recalque RP - 08.	182
Figura 138 - Placa de recalque RP - 09.	183
Figura 139 - Placa de recalque RP - 10.	184
Figura 140 - Placa de recalque RP - 11.	185
Figura 141 - Placa de recalque RP - 12.	186
Figura 142 - Placa de recalque RP - 13.	187
Figura 143 - Placa de recalque RP - 14.	188
Figura 144 - Placa de recalque RP - 01.	189
Figura 145 - Placa de recalque RP - 02.	190
Figura 146 - Placa de recalque RP - 03.	191
Figura 147 - Placa de recalque RP - 04.	192
Figura 148 - Placa de recalque RP - 27.	193
Figura 149 - Placa de recalque RP - 32.	194
Figura 150 - Placa de recalque RP - 16.	195
Figura 151 - Placa de recalque RP - 17.	196
Figura 152 - Placa de recalque RP - 18.	197
Figura 153 - Placa de recalque RP - 19.	198
Figura 154 - Placa de recalque RP - 20.	199
Figura 155 - Placa de recalque RP - 21.	200
Figura 156 - Placa de recalque RP - 24.	201
Figura 157 - Placa de recalque RP - 28.	202
Figura 158 - Placa de recalque RP - 31.	203

Lista de tabelas

Tabela 1 - Sensibilidade de argila (Skempton e Northey, 1952)	27
Tabela 2 - Fator tempo T (Houlsby & Teh (1988))	32
Tabela 3 - Razão entre as permeabilidades em argilas (Ladd et al, 1976)	33
Tabela 4 – Monitoramento em aterros	33
Tabela 5- Métodos de equilíbrio limite recomendados para análise	de
estabilidade (DNER-PRO 1998)	48
Tabela 6 - Fatores de Redução em Função do Tipo de Aplicação	do
Geossintético (Sieira, 2003)	50
Tabela 7 - Alturas do aterro e de sobrecargas no aterro. (Terratek, 2002)	64
Tabela 8 - Espessuras de argila mole	66
Tabela 9 - Peso específico dos grãos	72
Tabela 10 - Valores de permeabilidade saturada	73
Tabela 11 - Parâmetros de resistência	76
Tabela 12 - Profundidade máxima dos ensaios	81
Tabela 13 - Valores de permeabilidade in-situ da camada drenante	82
Tabela 14 - Observações sobre os ensaios de palheta descartados	93
Tabela 15 - Sensibilidade de argilas (Skempton e Northey, 1952)	97
Tabela 16 – Valores de N _{kt} para a área C	103
Tabela 17 – Valores de Nkt para a área O	105
Tabela 18 – Valores de N∆u e Nke nas áreas C e O	106
Tabela 19 - Profundidades dos ensaios de dissipação	111
Tabela 20 - Valores de c, e c, na argila mole pelo método de Houlsby e	Teh
(1988)	113
Tabela 21 – Valores de cv e ch na argila siltosa pelo método de Houlsby e	Teh
(1998)	114
Tabela 22 – Placas de recalque instaladas na área L.	118
Tabela 23 – Coeficientes de adensamento para área L.	121
Tabela 24 – Placas de recalque instaladas na área C.	121
Tabela 25 – Placas de recalque instaladas na área O.	122
Tabela 26 - Coeficientes de adensamento para área C.	125
Tabela 27 - Coeficientes de adensamento para área O.	125
Tabela 28 – Fatores de segurança para área L	138
Tabela 29 - Fatores de segurança para a área C	139

Tabela 30 – Fatores de segurança para área O	139
Tabela 31 - Resultados das análises químicas	151
Tabela 32 – Resultados dos ensaios CIU apresentados pela Tecnosolo	152
Tabela 33 – Resultados dos ensaios UU apresentados pela Tecnosolo	153

LISTA DE SÍMBOLOS

a_v	Coeficiente de compressibilidade
c'	Intercepto da envoltória de resistência τ vs. σ
Cc	Índice de compressão virgem
C _h	Coeficiente de adensamento horizontal
C _{h (NA)}	Coeficiente de adensamento horizontal na situação NA
C _{re}	Índice de recompressão
Cr	Coeficiente de adensamento radial
Cs	Índice de expansão
\mathbf{C}_{u}	Coesão não drenada
C_{v}	Coeficiente de adensamento vertical
C_{α}	Coeficiente de compressão secundária
D	Módulo oedométrico ou confinado
d	Profundidade do dreno
Е	Módulo de Young
е	Índice de vazios
E 50	Módulo de Young referente ao ponto 50% de q _f
E_D	Módulo dilatométrico
\mathbf{e}_{f}	Índice de vazios final
e _o	Índice de vazios inicial
E_u	Módulo de Young não drenado
E _{u 50}	Módulo de Young não drenado referente ao ponto 50% de q _f
f(n)	Função da razão entre o diâmetro de influência do dreno e seu diâmetro
1(11)	efetivo
\mathbf{f}_{amb}	Fator de redução devido à danos ambientais
f_{dm}	Fator de redução devido à danos mecânicos
f_s	Atrito lateral
f _t	Atrito lateral corrigido
G	Módulo cisalhante
G_s	Densidade relativa real dos grãos
Н	Horizontal
H_0	Espessura inicial da camada

Т

Fator tempo

 H_d Altura de drenagem ı Inclinômetro Índice do material I_D IΡ Índice de plasticidade Índice de rigidez da argila Condutividade hidráulica k Índice de tensão horizontal K_D k_h Coeficiente de permeabilidade horizontal K_o Coeficiente de empuxo lateral no repouso k_{v} Coeficiente de permeabilidade vertical LL Limite de liquidez LP Limite de plasticidade Constante de adensamento M Coeficiente de variação volumétrica m_v Ordem de reflexão de onda n $N_{\Delta u}$ Fator de poropressão de cone N_{ke} Fator "efetivo" de cone Fator "total" de cone N_{kT} N_{SPT} Número de golpes no ensaio SPT p' Semi-soma das tensões efetivas principais Ha Metade da tensão desviadora q q_{c} Resistência de ponta Coordenada de posição radial em um ponto genérico r Raio do cone R Raio de influência de drenos Razão de atrito R_{f} S Espaçamento entre drenos Si Recalque S_u Resistência ao cisalhamento não drenada indeformada S_{ur} Resistência ao cisalhamento não drenada amolgada tempo

φ'

Ângulo de atrito efetivo

 T_{50} Tempo referente à 50% da dissipação do excesso de poropressão T_h Fator tempo horizontal $\mathsf{T}_{\mathsf{projeto}}$ Resistência à tração de geossintéticos em projeto T_r Fator tempo radial $\mathsf{T}_{\mathsf{ref}}$ Resistência de referência à tração de geossintéticos u Poropressão U Porcentagem média de adensamento Poropressão na base U_{b} U_h Porcentagem média de adensamento devido à drenagem horizontal Pressão hidrostática Uo U_{v} Porcentagem média de adensamento devido à drenagem vertical Porcentagem média de adensamento devido à drenagem combinada $U_{v,h}$ vertical e horizontal V Vertical Teor de umidade Teor de umidade final Wf Wo Teor de umidade natural Profundidade z Δh Variação de altura Δu Variação de poropressão Δе Variação do índice de vazios Δt Variação de tempo Variação de poropressão na ruptura Δ_{uf} Acréscimo de tensão vertical Δ_{z} Δσ Variação de tensões Δσ', Variação de tensão efetiva vertical $\Delta\sigma_{\sf d}$ Variação de tensão desviadora α' Inclinação da envoltória p'_f vs. q_f (Lambe, 1967) $\Delta \varepsilon_a$ Variação da deformação vertical Deformação axial na ruptura ϵ_{f} ϵ_{vol} Deformação volumétrica

Peso específico seco γ_{d} Peso específico dos grãos γ_s Peso específico total γ_t γ_{w} Peso específico da água Coeficiente de Poisson ρ Recalque Recalque no tempo ρ_{tempo} Recalque total ρ_{total} σ'_c Tensão efetiva confinante σ'_{v} Tensão efetiva vertical σ'_{vm} Tensão de pré-adensamento Tensão efetiva vertical inicial σ'_{vo} Tensão total σ Tensão axial σ_{a} Tensão confinante σ_{c} Tensão desviadora $\sigma_{\sf d}$ σ_{v} Tensão total vertical σ_{v1} Tensão total vertical no tempo inicial σ_{v2} Tensão total vertical no tempo final Tensão total vertical inicial ou no campo σ_{vo} Tensão cisalhante τ Tensão principal maior σ_1 Tensão principal menor σ_3 ABNT Associação brasileira de normas técnicas AISF Aeroporto Internacional Salgado Filho, RS **ASTM** "American society for testing materials" CID Consolidado isotropicamente drenado CIU Consolidado isotropicamente não drenado CIU Consolidado isotropicamente não drenado com medida de poropressão CK_oU Consolidado na linha Ko – não drenado Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Coppe Engenharia

CP Piezômetro de Casagrande

CPTU "Cone penetration test" com medida de poropressão

CRS "Constant rate of strain"

DNER Departamento Nacional de Estradas de Rodagem

ETE Estação de tratamento de esgoto

FS Fator de Segurança

IPR Instituto de Pesquisas Rodoviárias

NBR Norma brasileira

OCR Razão de pré-adensamento ("Over Consolidation Ratio")

PR Placas de recalque

Reduc Refinaria Duque de Caxias

Senac Serviço Nacional de Aprendizagem Comercial

Sesc Serviço Social do Comércio

SPT "Standart penetration test"

SPT "Standart penetration test" com medida de S_u

VWP Piezômetro de corda vibrante