

Otávio Baumgratz Delgado Oliveira Pires

Caracterização microestrutural da propagação de trincas em aços estruturais.

Projeto de Graduação

Projeto de Graduação apresentado ao Departamento de Engenharia Mecânica da PUC-Rio

> Orientador: Marcos Venicius Soares Pereira Coorientador: Thiago Abreu Pereira Peixoto

> > Rio de Janeiro Dezembro de 2018

AGRADECIMENTOS

Agradeço a meus pais, Virgílio Pires e Flávia Baumgratz, minha irmã, Nara Pires e meu irmão, Gustavo Pires, pelo amor, incentivo e apoio incondicional em todos os momentos, e incentivo a estudar e perseguir meus sonhos.

Ao corpo docente do departamento de Engenharia Mecânica da PUC-Rio, ao meu orientador Marcos Venicius Pereira e ao meu coorientador Thiago Peixoto, pelo apoio, confiança, transmissão de conhecimento, entrega e disponibilidade para realizar este trabalho.

Ao Asafe Bittencourt, Adrian e Marques e toda equipe dos laboratórios de Metalografia e Tratamentos Térmicos, de Ensaios Mecânicos e de Estruturas e Materiais da PUC-Rio.

Aos meus amigos e minha namorada, que sempre me apoiaram e estiveram presentes em todos os momentos ao longo desta jornada, com muita parceria e paciência.

A Pontifícia Universidade Católica por proporcionar um ambiente amigável, acolhedor e de extremo incentivo ao estudo e preparo para vida profissional.

Aos meus colegas de curso que sempre me auxiliaram durante a jornada da graduação em Engenharia mecânica.

E a Deus, que me sustentou e me deu forças para enfrentar todos os desafios dessa longa e vitoriosa caminhada.

RESUMO

Dois aços estruturais com composições químicas diferentes e propriedades mecânicas similares foram selecionados para a pesquisa, visando serem alternativas para a fabricação de eixo virabrequim (aço DIN 34CrNiMo6) de motores Diesel e gás natural de usinas termelétricas. Corpos de prova do tipo CT foram usinados em aços SAE 4140 e 4340 e submetidos a ensaios de propagação de trinca de fadiga, para levantamento das respectivas curvas d*a*/dN versus Δ K. Após os ensaios, as trincas de fadiga foram indicadas nas superfícies dos corpos de prova com líquidos penetrantes. Amostras da região de propagação de trinca, com ênfase para o limiar de propagação (threshold - Δ Kth), foram retiradas dos corpos de prova e analisadas por microscopia ótica, numa tentativa de correlacionar Δ Kth e a propagação das trincas com características microestruturais e heterogeneidades metalúrgicas dos materiais, como por exemplo, inclusões, vazios e partículas de segunda fase.

Palavras chaves: Fadiga; Trinca; Curva da/dN versus ΔK ; threshold; microestrutura; Aço SAE 4140; Aço SAE 4340, Eixo virabrequim.

ABSTRACT

Two structural steels with different chemical compositions and similar mechanical properties were selected for the research, aiming to be alternatives for the manufacture of crankshaft (DIN 34CrNiMo6 steel) of Diesel and natural gas engines of thermoelectric plants. CT-type test specimens were machined in SAE 4140 and 4340 steels and subjected to fatigue crack propagation tests, in order to obtain the respective curves of d*a*/dN versus ΔK . After the tests, the fatigue cracks were indicated on the specimens' surfaces by means of penetrating liquid. Samples from the crack propagation region, with emphasis on the threshold (ΔK_{th}), were removed from the specimens and analyzed by optical microscopy, in an attempt to correlate ΔK_{th} and the crack propagation with microstructural characteristics and metallurgical heterogeneities of the materials, such as inclusions, voids and second phase particles.

Key words: Fatigue; Crack; da/dN versus ΔK curve; threshold; microstructure; SAE 4140 Steel; SAE 4340 Steel; crankshaft.

Lista de Figuras

Figura 1 - Experiência de Paris	17
Figura 2 - Curva de Propagação de trincas por fadiga típica	17
Figura 3 - Variação do ΔK_{th} com R para diferentes características dos aços.	20
Figura 4 - Efeito do R no ferro puro	21
Figura 5 - Efeito do R na microestrutura ferrita-perlita	21
Figura 6 - Efeito do R na microestrutura ferrita-martensita	22
Figura 7 - Efeito do R na microestrutura austenítica	22
Figura 8 - Geometria do CP tipo C(T)	27
Figura 9 – Corpo de Prova C(T) – Aço SAE 4140	28
Figura 10 – Corpo de Prova C(T) – Aço SAE 4340	28
Figura 11 – Representação esquemática do ciclo de carregamento	29
Figura 12 - Máquina INSTRON utilizada nos ensaios de fadiga	30
Figura 13 – Painel eletrônico da Máquina INSTRON utilizada para fornecer cargas determinadas pelo instrumentador e o número de ciclos do ensaio d propagação de trinca por fadiga	as e 30
Figura 14 - Máquina INSTRON com o corpo de prova fixado	31
Figura 15 – Kit para END por líquido penetrante	32
Figura 16 – Corpo de prova do aço SAE 4340 após aplicação de LP	32
Figura 17 – Corpo de prova do aço SAE 4340 após aplicação de LP	33
Figura 18 – Corpos de prova do aço SAE 4340 após aplicação do spray	33
revelador	
revelador Figura 19 – Corpos de prova do aço SAE 4140 após aplicação do spray revelador	34
revelador Figura 19 – Corpos de prova do aço SAE 4140 após aplicação do spray revelador Figura 20 – Amostra do corpo de prova de aço 4140	34
revelador Figura 19 – Corpos de prova do aço SAE 4140 após aplicação do spray revelador Figura 20 – Amostra do corpo de prova de aço 4140 Figura 21 – Amostra do corpo de prova de aço 4340	34 34 35
revelador Figura 19 – Corpos de prova do aço SAE 4140 após aplicação do spray revelador Figura 20 – Amostra do corpo de prova de aço 4140 Figura 21 – Amostra do corpo de prova de aço 4340 Figura 22 – Microscópio Ótico Zeiss Discovery V8	34 34 35 36

Figura 24 – Trinca de fadiga medida microscopicamente sob efeito do LP na amostra do aço SAE 4140
Figura 25 – Trinca de fadiga medida microscopicamente na amostra do aço SAE 414037
Figura 26 – Trinca de fadiga medida microscopicamente sob efeito do LP na amostra do aço SAE 4340
Figura 27 – Trinca por fadiga medida microscopicamente na amostra do aço SAE 4340
Figura 28 – Primeira lixa utilizada para lixamento da superfície das amostras.39
Figura 29 – Máquina Arotec Aropol 2V39
Figura 30 – Amostra do aço SAE 4140 durante o processo de lixamento40
Figura 31 – Máquina Struers DPU-10 para polimento com pasta de 6µm40
Figura 32 – Máquina Arotec Aropol VV para polimento com pasta de 3µm41
Figura 33 – Máquina Arotec Aropol VV para polimento com pasta de 1µm41
Figura 34 – Amostras em banho de ultrassom na máquina GUIMIS42
Figura 35 – Microscópio Ótico Carl Zeiss AXIO Lab.A143
Figura 36 – Microscópio Ótico Carl Zeiss AXIO Lab.A143
Figura 37 – Gráfico d a /dN versus Δ K – Aço 414047
Figura 38 – Gráfico d a /dN versus Δ K – Aço 434047
Figura 39 – Microestrutura do aço SAE 4140 na região de threshold49
Figura 40 – Inclusões no aço SAE 4140 na região de threshold49
Figura 41 – Inclusões no aço SAE 4140 na região de threshold50
Figura 42 – Microestrutura do aço SAE 4340 na região de threshold51
Figura 43 – Desvio de trinca em barreiras microestruturais aço SAE 4340 na região de threshold51
Figura 44 – Microestrutura do aço SAE 4340 na região de threshold52

Lista de Tabelas

Tabela 1 – Composição química dos aços	26
Tabela 2 - Dimensão dos corpos de prova	27
Tabela 3 – Dados referentes ao ensaio de propagação de trinca por fadig SAE 4140	a no 44
Tabela 4 – Dados referentes ao ensaio de propagação de trinca por fadig SAE 4340	a no 45
Tabela 5 – Valores de Δ Kth	48

Lista de Símbolos

- *S_e* Resistência ao escoamento
- S_{Rt} Resistência à ruptura por tração
- *S_{Rc}* Resistência à ruptura por compressão
- S_R Resistência à ruptura
- ε_{pl} Componente plástica da deformação
- E Módulo de elasticidade ou de Young
- G Módulo de elasticidade ao cisalhamento
- HR Dureza Rockwell
- HB Dureza Brinnel
- HV Dureza Vickers
- *d*₀ Diâmetro inicial
- d_f Diâmetro final
- $\Delta \sigma$ Variação de tensão
- σ_{max} Tensão máxima
- σ_1 Tensão Principal na direção 1
- σ_2 Tensão Principal na direção 2

- σ_3 Tensão Principal na direção 3
- σ_x Tensão na direção x
- σ_{v} Tensão na direção y
- τ_{xy} Tensão cisalhante
- $\Delta \epsilon$ Variação de deformação
- N Número de ciclos
- ΔK Variação do fator de intensidade de tensão
- ΔK_{th} Limiar de propagação de trinca
- Kmax Fator de intensidade de tensão máximo
- *K_{min}* Fator de intensidade de tensão mínimo
- *K_C* Tenacidade a fratura
- R Razão de tensão (K_{min}/K_{max})
- *a* Comprimento de trinca
- *a_c* Comprimento crítico da trinca
- Δa Propagação de trinca

da/dN Taxa de crescimento de trincas pelo número de ciclos

Lista de Abreviaturas e Siglas:

- CP Corpo de prova
- RA Redução de área
- H Dureza
- A Área
- F Força
- END Ensaio não destrutivo
- LP Líquido Penetrante
- AISI American Iron and Steel Institute
- ASTM American Society for Testing and Materials
- C(T) Tipo do corpo de prova para ensaios de fadiga
- DIN Deutsches Institut für Normung Instituto Alemão para Normatização
- *ZP_{cíclica}*Zona plástica cíclica
- d_{grao} diâmetro do grao

Sumário

1.	Inti	odução	10								
1	.1.	Motivação	10								
1	1.2. Objetivo										
1	1.3. Considerações Iniciais10										
2.	Re	visão Bibliográfica	11								
2	2.1. Propriedades Mecânicas 11										
2	.2.	Tipos de Falhas	12								
2	.3.	Falha por Fadiga	13								
	2.3	.1. Os métodos tradicionais de dimensionamento à Fadiga	15								
	2.3	.2. Tipos de Ensaio de Fadiga	23								
2	.4.	Ensaios não destrutivos	23								
	2.4	.1. Ensaio Por Líquidos Penetrantes	24								
3.	Me	todologia Experimental	25								
3	.1.	Materiais e Corpos de Prova	25								
3	.2.	Procedimento Experimental	29								
	3.2	.1. Ensaio de Fadiga	29								
	3.2	.2. Líquidos Penetrantes	31								
	3.2	.3. Análise Microestrutural do material	35								
4.	Re	sultados e Discussões	44								
5.	Со	nclusão	52								
6.	Sugestões para trabalhos futuros 52										
7.	Referências Bibliográficas53										

1. Introdução

1.1. Motivação

Eixos virabrequins de motores Diesel e gás natural de unidades geradoras de usinas termoelétricas, quando fabricados com o aço estrutural DIN 34CrNiMo6 vem apresentando falhas por fadiga com baixo número de ciclos de carregamento. Essas falhas apresentadas podem ter correlação com heterogeneidades metalúrgicas do material. A motivação deste trabalho consiste em correlacionar resistência à propagação de trincas de fadiga com aspectos microestruturais de materiais estruturais.

1.2. Objetivo

O objetivo deste projeto consiste em correlacionar a propagação de trincas de fadiga em dois aços estruturais com seus aspectos microestruturais e heterogeneidades metalúrgicas. Com base nos resultados obtidos, selecionar a melhor alternativa de material para a fabricação de eixos de virabrequins de motores Diesel ou gás natural de turbinas de usinas termelétricas.

1.3. Considerações Iniciais

A fadiga é um tipo de falha mecânica decorrente de carregamentos cíclicos. Esse tipo de falha depende do estado de tensão atuante, geometria e material do componente. O estudo da iniciação de trincas em materiais estruturais é requisito fundamental para evitar falhas catastróficas que em engenharia podem levar a perdas de vidas, recursos materiais e tempo.

Um estudo prévio pode evitar que se utilizem fatores de seguranças exagerados, fazendo com que o projeto seja confiável e economicamente viável. A influência de algumas características microestruturais na fase I de propagação da trinca de fadiga, pode ser de fácil explicação. Como por exemplo, obstáculos no caminho da trinca como vazios ou inclusões podem ancorar ou cegar a ponta de uma trinca, dificultando assim o seu progresso e, consequentemente, aumentando ΔK_{th} .

Por outro lado, os obstáculos também podem funcionar como concentradores de tensão nas cargas mais altas, aumentando a taxa de propagação da trinca. Portanto, quanto maior o valor de ΔK_{th} , maior é quantidade de ciclos que a estrutura suporta antes da trinca se propagar de fato, visto que as trincas na região do Threshold são incipientes.

2. Revisão Bibliográfica

2.1. Propriedades Mecânicas

Conforme Ashby e Jones [2, 3], a maioria dos materiais, quando em serviço, são suscetíveis a forças ou cargas. Nessas circunstâncias, é importante compreender as características do material e então criar um componente de modo que, as deformações resultantes não excedam o esperado visando evitar falhas mecânicas.

As propriedades mecânicas dos materiais quantificam as diversas respostas do material às cargas que lhe são impostas. Entre essas propriedades destacam-se: rigidez, resistência ao escoamento, à ruptura, ductilidade, tenacidade e dureza do material.

A rigidez dos materiais estruturais, medida em GPa, relaciona tensões e deformações elásticas que atuam na peça. Além disso, a energia de ligação entre os átomos é a causa física da rigidez dos materiais. Ou seja, os materiais rígidos possuem ligações atômicas fortes e elevados módulos de elasticidade E (tração) e G (cisalhamento).

A resistência ao escoamento (S_e), medida em MPa, quantifica a resistência do material ao início da deformação plástica. S_e é obtida através de um teste de tração uniaxial. Já a resistência à ruptura por tração (S_{Rt}), ou por compressão (S_{Rc}), quantificam a resistência do material até sua falha e são medidas através da divisão entre a maior força suportada pelo corpo de prova pela sua área original. É importante citar que as resistências tendem a diminuir quando a temperatura aumenta.

A ductilidade do material indica sua capacidade em tolerar deformações plásticas (ε_{pl}) antes de romper. Umas das formas de se medir a ductilidade é através da redução de área experimentada pelo corpo de provas, vide equação abaixo:

$$RA = (d_0^2 - d_f^2)/d_0^2)$$
(Eq.1)

Em geral, os materiais considerados dúcteis possuem RA>5%.

A tenacidade quantifica a resistência do material a propagação de trincas e pode ser medida pela energia necessária para propagá-las. No caso das ligas metálicas, a tenacidade depende muito da ductilidade do material. Os testes mais usados para quantificar, ainda que indiretamente, a tenacidade dos materiais na prática são os testes de Charpy e de Izod. A dureza (H) quantifica a resistência a penetração e é medida pela razão entre a força F aplicada através de um penetrador padronizado muito duro e a área A da impressão residual por ele deixada na peça, H=F/A. Em mecânica, prefere-se utilizar a dureza Vickers (HV), onde o penetrador é uma pirâmide especial de diamante, a dureza Brinnel (HB) onde o penetrador é uma esfera de aço duro e a dureza Rockwell (HR), medida pela profundidade da penetração residual de um cone de diamante ou esferas de aço.

O comportamento mecânico de qualquer material utilizado em engenharia é função de sua estrutura interna e de sua aplicação em projeto, por isso, na indústria mecânica, estas propriedades são de fundamental importância para a escolha correta do material para um eventual projeto de engenharia.

2.2. Tipos de Falhas

Segundo Castro e Meggiolario [4], chama-se de "falha" a perda parcial ou terminal da funcionalidade ou da capacidade operacional de qualquer equipamento. Chama-se de "mecanismo de dano", qualquer processo que possa contribuir para a falha, agindo de forma independente ou concomitante. As falhas podem ser divididas nos seguintes grupos: quebra, distorção excessiva, desgaste excessivo e obsolescência.

As duas primeiras podem ser evitadas pelo dimensionamento e modo de operação corretos, mas o desgaste e a obsolescência são inevitáveis e só podem ser retardados por manutenção apropriada. As falhas também podem ser didaticamente separadas por suas causas primárias, como por exemplo: mecânicas, de materiais, químicas ou eletroquímicas, eletro-eletrônicas, econômicas e humanas.

Os principais mecanismos de dano são:

- <u>Deflexão Excessiva:</u> quando a rigidez da estrutura é insuficiente para resistir às cargas ou sobrecargas operacionais elásticas, plásticas ou de fluência.
- <u>Flambagem</u>: é o mecanismo de falha mecânica associada à instabilidade estrutural causada por tensões compressivas. Dominante nas estruturas esbeltas (cujo comprimento é muito maior que a menor dimensão transversal).
- <u>Fluência:</u> é um mecanismo de falha que causa a variação contínua das deformações numa estrutura sob carga (mesmo constante), e pode levála a fratura. Nos metais, essas deformações são causadas por

micromecanismos como escalada de discordâncias e deslizamento dos contornos dos grãos, crescem ao longo do tempo e dependem da tensão (σ) e temperatura (θ), ou seja, a deformação por fluência é função da tensão, temperatura e tempo. A fluência pode ser o mecanismo de falha dominante quando as temperaturas de trabalho são altas.

- 4) <u>Desgaste:</u> provoca perda de matéria superficial, e é causado pelo deslizamento ou pelo rolamento relativo entre duas ou mais superfícies que transmitam cargas de contato compressivas, com ou sem abrasivos entre elas. Como a fluência, o desgaste também é um tipo de falha mecânica paulatina, isto é, que progride ao longo do tempo, e pode ser dividido em: adesivo, abrasivo, fadiga superficial e erosivo.
- 5) <u>Fratura:</u> os principais micromecanismos de fraturamento são a clivagem, associada à fratura frágil, e a geração de coalescência de microcavidades, associada à fratura dúctil. Macroscopicamente, as fraturas ocorrem por propagação brusca de trincas nas estruturas frágeis, ou por esgotamento da ductilidade nas estruturas tenazes. Materiais que apresentam uma extensa zona plástica à frente da ponta do defeito (trincas) são dúcteis, em contrapartida, àqueles cujos tamanhos da zona plástica é pequeno são conhecidos como frágeis. A propagação estável ocorre enquanto o tamanho da trinca não atinge o *a*_c. A partir desse momento, a trinca passa a se propagar de maneira instável. O que ocorre é que em materiais frágeis, rapidamente o valor de *a*_c é alcançado, ou seja, a trinca muda o seu regime de propagação.
- 6) <u>Fadiga</u>: é o tipo de falha mecânica induzida primariamente pelas cargas variáveis atuantes na peça, provoca a geração e/ou a propagação de uma trinca até a eventual quebra da estrutura. Este, em geral, é o mecanismo de falha dominante nas estruturas mecânicas.

Como em geral as máquinas e equipamentos trabalham sob cargas dinâmicas que induzem tensões variáveis relevantes ao longo da sua vida operacional, a fadiga é o mais importante dentre todos os vários mecanismos indutores de falhas mecânicas, pois ela afeta a grande maioria das falhas estruturais causadas na prática.

2.3. Falha por Fadiga

Fadiga é o tipo de falha mecânica causada primariamente pela aplicação repetida de cargas variáveis, cuja principal característica é gerar e/ou propagar paulatinamente uma trinca, até a eventual fratura da peça. As falhas por fadiga são localizadas, progressivas e acumulativas. Logo, a modelagem do

"trincamento", que significa o crescimento estável da trinca, pode ser tratada como um problema local, que pouco depende das tensões na peça como um todo. A iniciação da trinca depende dos detalhes da geometria e do material do ponto crítico da peça, e das tensões e deformações que nele atua. Já a propagação da trinca, que é paulatina e estável, depende da história dos fatores de intensidade de tensões que a solicita em serviço, mas a fratura final da peça pode ser brusca, quase instantânea. A grande maioria das falhas estruturais que ocorrem na prática envolve problemas de fadiga.

A fratura por fadiga ocorre porque a tensão máxima do ciclo excede o limite de fadiga, mesmo que esse valor esteja bem abaixo da tensão de escoamento do material obtido em um ensaio de tração.

Três são os fatores considerados causadores da fratura por fadiga:

1- Carregamentos que produzem tensões de tração suficientemente altas;
2- Variações ou flutuações da tensão de tração suficientemente grande;
3- Número de ciclos ou tempo de atuação da carga suficientemente longo.

A fratura por fadiga é causada pela ação simultânea de tensões cíclicas, tensões de tração e deformações plásticas, mesmo que localizadas, atuando durante certo tempo relativamente longo. Se um desses três fatores não estiver presente, uma trinca por fadiga não se inicia e, consequentemente, não se propaga.

Trincas de fadiga iniciam-se sob ação de tensões cíclicas e se propagam sob ação de tensões de tração. Tensões de compressão não causam fratura por fadiga.

A modelagem das falhas por fadiga precisa ser precisa e confiável, já que a geração e a propagação paulatina e irreversível de uma trinca em geral não provocam mudanças evidentes no comportamento global da estrutura. Isto porque o dano gerado pelo surgimento e propagação da trinca fica quase sempre restrito à região crítica da peça, e não tende a gerar avisos prévios de falha iminente. Assim, as fraturas das peças fadigadas podem ocorrer de forma brusca e inesperada, e por isso tem que ser evitadas a qualquer custo nas estruturas potencialmente perigosas. Portanto, o controle das falhas por fadiga nessas estruturas deve ser feito através de um plano de garantia da segurança que inclua um programa periódico de inspeções e de avaliações de integridade estrutural baseado na modelagem precisa do processo de propagação da trinca.

Nas peças inicialmente não trincadas, as falhas por fadiga começam pela geração de uma trinca no seu ponto mais solicitado, quase sempre a raiz de um entalhe que atua como concentrador de tensão. Quando a variação das tensões cíclicas que solicitam aquele ponto crítico é pequena em relação à resistência ao escoamento macroscópico do material daquele ponto, a geração por fadiga é

lenta (no sentido de requerer muitos ciclos de carga), e muito influenciada pelas características locais, ou pelos detalhes: (i) das propriedades mecânicas do material; (ii) do acabamento superficial; (iii) do gradiente de tensões atuantes; e (iv) do estado das tensões residuais lá atuantes.

Nestes casos, nos quais a vida à fadiga é relativamente longa, a resistência ao crescimento estável da trinca do ponto crítico aumenta com: (i) a resistência (localizada) do material a ruptura, S_R ; (ii) a melhoria do acabamento superficial; (iii) o aumento do gradiente de tensões; e (iv) a presença de tensões residuais compressivas.

Os detalhes do ponto crítico têm menos importância quando as cargas que lá atuam são altas o suficiente para induzirem (pelo menos localmente) escoamento macroscópico cíclico. Nestes casos, a vida de iniciação é curta, e a propriedade controladora da resistência à fadiga é a ductilidade do material. A chamada vida de iniciação finda quando se pode detectar uma pequena trinca no ponto crítico, mas a vida total à fadiga pode ser dominada pela sua propagação até a fratura final das grandes estruturas.

2.3.1. Os métodos tradicionais de dimensionamento à Fadiga

A iniciação das trincas por fadiga é um fenômeno gerado por deformações plásticas cíclicas, as quais são associadas ao movimento cíclico de discordâncias nos metais, e controladas pelas tensões de Tresca (eq. 2) ou von Mises (eq.3).

$$\sigma_{Tresca} = \sigma_1 - \sigma_3 = \frac{\sigma_x + \sigma_y + \sqrt{(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2}}{2}$$
 (Eq. 2)

$$\sigma_{Mises} = \sqrt{\frac{(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2}{2}} = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2} \quad (Eq. 3)$$

As metodologias tradicionais de projeto à fadiga (isto é, baseada em rotinas bem estabelecidas e consagradas na prática) podem ser divididas em três grupos [4 e 5]:

1- Método S-N ou de Wöhler:

A metodologia S-N, desenvolvida a partir dos trabalhos pioneiros de Wöhler em meados do século XIX, correlaciona as variações de tensões $\Delta\sigma$ e tensões máximas (σ_{max}) das tensões elásticas cíclicas que atuam nos pontos críticos, em geral raízes de entalhes, com o número de ciclos *N* que lá iniciam uma macrotrinca por fadiga. Este método não quantifica explicitamente qualquer efeito plástico nem reconhece a presença das trincas, e em princípio só deve ser usado para evitar ou prever a iniciação de trincas por fadiga quando as tensões atuantes no ponto crítico da peça são

menores que a resistência ao escoamento cíclico do material, as quais são associadas a vidas longas. Mas como a grande maioria das peças. Máquinas e estruturas são projetadas para trabalhar sob tensões elásticas e ter vidas longas, o SN ainda é o método mais usado na prática.

2- Método ε-N ou de Coffin-Manson:

A metodologia ε-N, que é muito mais recente e poderoso do que o S-N correlaciona as variações Ac das deformações elastoplásticas macroscópicas cíclicas que atuam no ponto crítico com o número de ciclos N necessários para lá iniciar uma macrotrinca por fadiga. O dimensionamento à fadiga pela rotina ε-N tradicional reconhece o escoamento localizado, considerando o amolecimento ou endurecimento cíclico do material no ponto crítico da peça, mas não a transição a partir da curva tensão x deformação ($\sigma\epsilon$) monotônica, pois usa propriedades obtidas numa única curva σε cíclica estabilizada. Suas grandes vantagens são prever qualquer vida de iniciação, quantificar os efeitos plásticos induzidos por sobrecargas, e também as tensões residuais geradas por descargas após escoamentos localizados, em particular, nas raízes dos entalhes. A sua principal desvantagem é precisar de equações não-lineares e não-inversíveis, que só são solucionadas numericamente, um problema nada trivial no caso de cargas complexas. As equações ε-N devem ser usadas sequencialmente, para reconhecer e preservar os efeitos de memória. Além disso, como na metodologia S-N, o método ɛ-N também não reconhece a presença das trincas.

3- Método da/dN ou de Paris:

Através de estudos de Paris, Gomez e Anderson em [20], o método d*a*/dN ou de Paris (Eq. 4) é usado para prever a vida residual à fadiga de estruturas trincadas em função da variação do fator de intensidade de tensões (ΔK) e do máximo valor (K_{max}) que atinge a tenacidade à fratura da peça, K_c ou K_{lc} . Os parâmetros A e m da equação de Paris, dependem do material.

$$\frac{da}{dN} = A \ \Delta K^m \tag{Eq. 4}$$

A trinca é o ponto crítico da peça, mas como tem um raio de ponta muito pequeno, idealmente nulo, ela só pode ser bem modelada pelos conceitos da Mecânica da fratura.

No início da década de 60, Paris mostrou convincentemente ser o ΔK , e não a tensão, o parâmetro que controla a propagação das trincas por fadiga, como pode ser observado na Figura 1:

Figura 3 - Experiência de Paris [5].

Num clássico experimento, Paris usou duas chapas idênticas, feitas do mesmo material e com uma trinca central de mesmo comprimento. A chapa 1 foi carregada pelas bordas enquanto a chapa 2 foi carregada pelas faces da trinca, mantendo a mesma variação de tensão nas duas chapas. Apesar disso, a trinca acelerava na chapa 1 e desacelerava na chapa 2. Como ambas trabalhavam sob o mesmo intervalo de tensões ($\Delta \sigma$), a tensão não podia estar controlando a propagação das trincas. Entretanto, devido à maneira da aplicação da carga, na chapa 1 ΔK aumentava à medida que a trinca crescia, enquanto na chapa 2 ΔK decrescia à medida que a trinca crescia.

Assim, Paris sugeriu que era ΔK que controlava a propagação, e mostrou que quando se relacionava a taxa de propagação da trinca (*da/dN*) com ΔK , os pontos experimentais gerados tanto na chapa1 quanto na chapa 2 coincidiam.

Plotando da/dN versus ΔK , na forma logarítmica, tipicamente obtém-se uma curva com 3 fases bem distintas, como apresentado na Figura 2.

Figura 4 - Curva de Propagação de trincas por fadiga típica [5].

Esta curva é de grande importância na prática, pois com esse tipo de informação pode-se fazer previsões sobre a vida residual das estruturas trincadas. As três fases são apresentadas a seguir:

- Fase I: Tem como principal característica um limiar de propagação, principal assunto no estudo desse projeto em questão, abaixo do qual os carregamentos não causam danos à peça trincada e a trinca tem uma propagação muitíssimo lenta. Este limiar recebe o nome de limiar de propagação de trincas por fadiga, e é caracterizado por um fator de intensidade de tensões limiar (ΔK_{th} - *threshold*). ΔK_{th} é muito influenciado por heterogeneidades no material (como vazios e inclusões) e pelo fechamento das trincas de fadiga. O fechamento ocorre porque as trincas se propagam cortando um material previamente deformado pelas zonas plásticas que (sempre) as acompanham. As faces das trincas de fadiga ficam embutidas num envelope de deformações residuais trativas, que as comprimem quando completamente descarregadas, e só se abrem paulatinamente ao serem carregadas. A fase I vai do limiar ΔK_{th} até taxas de $10^{-10} \sim 10^{-9}$ m/ciclo, isto é, até taxas da ordem de um espaçamento atômico por ciclo (diâmetro atômico de aproximadamente 0,3 nm). A zona plástica é definida pelo intervalo onde $ZP_{ciclica} < d_{qrão}(d_{qrão} \acute{e}$ tipicamente de 10 a 100 mm nas ligas estruturais metálicas). O crescimento da trinca é descontínuo, gerado por micro-mecanismos intragranulares sensíveis à carga média, à microestrutura do material, ao meio ambiente e à carga de abertura da trinca. Abaixo do limiar ΔK_{th} as trincas são incipientes, de modo que para a trinca atingir o tamanho de 1 mm são necessários cerca de 10¹⁰ ciclos.
- <u>Fase II:</u> Nesta fase as taxas vão de $10^{-10} \sim 10^{-9}$ até $10^{-6} \sim 10^{-4}$ m/ciclo, ou de cerca de um espaçamento atômico até da ordem de um tamanho de grão por ciclo. A zona plástica cíclica é definida pelo intervalo onde $ZP_{ciclica}>d_{grão}$. O crescimento da trinca é aproximadamente contínuo ao longo da sua frente, como indicado pelas estrias observadas nas faces das trincas quando observadas num microscópio eletrônico de varredura (as estrias são a característica fratográfica mais importante das trincas de fadiga). A regra de propagação da /dN é controlada pelas deformações cíclicas que acompanham as pontas das trincas de fadiga, e é pouco sensível à microestrutura, à carga média, ao meio ambiente e à espessura da peça. Nesta fase a gama das deformações cíclicas depende principalmente de ΔK , e tanto a carga de abertura da trinca K_{ab} quanto à tenacidade do material K_c ou KIc_c possuem pouca influência nas taxas de propagação.

• <u>Fase III:</u> Esta fase tem como característica principal a propagação instável da trinca (ou fratura da peça). Os mecanismos de fratura podem ser dúcteis (cavitação e coalescência de vazios) ou frágeis (clivagem), e superpõem-se aos de "trincamento" (crescimento estável da trinca). Esta fase depende de K_{max} e de K_C , logo é sensível à carga média e aos fatores que afetam a tenacidade do material, como a microestrutura, o meio ambiente e a espessura da peça. K_C depende não apenas do material, mas também da geometria, a menos que $ZP_{cíclica}$ seja bem menor que todas as dimensões da peça).

Diversos fatores mecânicos que afetam significativamente as características da extensão da trinca por fadiga em uma grande variedade de materiais de engenharia são alvos de estudos recentes. Entre esses fatores, destacam-se a microestrutura do material e a carga de tensão *R*, definida como a razão entre a carga minima sobre a carga máxima utilizada durante os ciclos do ensaio de fadiga [21-22]. Bulloch realizou estudos [21-22] para analisar o comportamento de ΔK_{th} em função de *R* (relação entre a tensão máxima e mínima) para diferentes microestruturas, como pode ser visto na Figura 3.

Ferrite-Pearlite; □, Pearlite; ◆, Austenite. △, Tempered Structures Figura 3 - Variação do △Kth com R para diferentes características dos aços [21].

Conclui-se que, para diferentes microestruturas, o valor de ΔK_{th} é maior quando o ensaio de fadiga é realizado com menores valores de *R*, ou seja, o limiar de propagação de trincas por fadiga tende a diminuir quando a carga estática aumenta. A diminuição de $\Delta K_{th}(R)$ à medida que R cresce não é surpreendente, pois as cargas médias trativas ajudam a separar as faces das trincas e, consequentemente, a aumentar as taxas de propagação *da/dN*. Já as cargas médias compressivas, por sua vez, ajudam a manter as trincas de fadiga fechadas e, portanto, tendem a retardar sua propagação. [5]

Por isso, deve-se seguir uma norma para o ensaio de propagação de trinca por fadiga. Para este trabalho de conclusão de curso, a norma a ser utilizada é a ASTM E 647-15 [6], onde a razão R é igual a 0,1.

O formato da curva obtida através do ensaio da/dN realizado por Bulloch em [22], como previsto, também sofre alterações bem perceptíveis para diferentes valores de *R* e condições microestruturais, como se observa nas Figuras 4 – 7.

Figura 4 - Efeito do R no ferro puro [22].

Figura 5 - Efeito do R na microestrutura ferrita-perlita [22].

Figura 6 - Efeito do R na microestrutura ferrita-martensita [22].

Figura 7 - Efeito do R na microestrutura austenítica [22].

O limiar de propagação da trinca ΔK_{th} é influenciado tanto pela carga média (quantificada por *R*), quanto pela microestrutura do material, que altera as propriedades mecânicas do material, como por exemplo, o valor da resistência a ruptura *S*_{*R*}.

A influência de algumas características microestruturais na fase I das curvas de propagação de trincas por fadiga pode ser de fácil explicação. Por exemplo, heterogeneidades no caminho do defeito como vazios ou inclusões podem ancorar ou cegar a ponta da trinca de fadiga nas taxas de propagação muito baixas, dificultando assim o seu progresso e, consequentemente, aumentando ΔK_{th} . Por outro lado, estas heterogeneidades podem funcionar como concentradores de tensão nas cargas mais altas, aumentando a taxa de propagação (em relação à do material mais "limpo", com menos inclusões). [5, 22]

2.3.2. Tipos de Ensaio de Fadiga

Os aparelhos de ensaio de fadiga são constituídos por um sistema de aplicação de cargas, que permite alterar a intensidade e o sentido do esforço, e por um contador de número de ciclos. O teste é interrompido assim que o corpo de prova se rompe.

O ensaio é realizado de diversas maneiras, de acordo com o tipo de solicitação que se deseja aplicar:

- Torção;
- Tração-compressão;
- Flexão;
- Flexão rotativa;

2.4. Ensaios não destrutivos

Como o próprio nome já diz, Ensaios Não Destrutivos (END) são técnicas utilizadas na inspeção de materiais e equipamentos sem destruir ou danificá-los, sendo executadas nas etapas de fabricação, construção, montagem e manutenção.

Os END estão entre as principais ferramentas do controle da qualidade e monitoramento de materiais e componentes e são amplamente utilizados nos mais variados setores industriais. Também contribuem para o monitoramento da qualidade dos bens e serviços, redução de custos, preservação da vida e do meio ambiente, sendo fator de competitividade para as empresas que os utilizam. Comumente são usados para guiar estudos que tem como objetivo principal a elevação dos índices de confiabilidade dos equipamentos industriais. Além de incluir métodos capazes de proporcionar informações a respeito do teor de defeitos de um determinado produto, das características tecnológicas de um material, ou ainda, da monitoração da degradação em serviço de componentes, equipamentos e estruturas. [9 - 10]

- Emissão Acústica
- Radiografia, Radioscopia e Gamagrafia
- Ensaio Visual

- Estanqueidade
- Líquido Penetrante
- Partículas Magnéticas
- Ultrassom
- Corrente de Foucault (ou corrente parasita)
- Ultrassom
- Termografia

Dentre as técnicas citadas acima, será especificado o ensaio não destrutivo por líquido penetrante, pois o mesmo será utilizado no trabalho de conclusão de curso em questão.

2.4.1. Ensaio Por Líquidos Penetrantes

O ensaio por líquidos penetrantes (LP) é um método desenvolvido para a detecção de descontinuidades essencialmente superficiais, abertas na superfície do material. O método começou a ser utilizado antes da primeira guerra mundial, principalmente pela indústria ferroviária na inspeção de eixos. Nessa época, o método consistia em aplicar querosene ou óleo sobre a superfície da peça e removê-lo após várias horas. Em seguida, era aplicada uma mistura de solvente com pó de giz sobre a superfície, que ao secar absorvia de dentro das trincas o querosene ou óleo aplicado anteriormente. Evidentemente, este processo permitia apenas a observação de grandes defeitos abertos sobre a superfície da peça.

O método de ensaio por LP, como conhecemos hoje, tomou impulso em 1942, nos EUA, quando foi desenvolvido o método de penetrantes fluorescentes, destinado a inspeção de componentes para a área aeronáutica. O método vemse desenvolvendo através da pesquisa e do aprimoramento de novos produtos utilizados no ensaio, até seu estágio atual.

Este consiste em fazer penetrar na abertura da descontinuidade um líquido; após a remoção do excesso de líquido da superfície, faz-se o líquido retido sair da descontinuidade por meio de um revelador. A imagem da descontinuidade fica então delineada sobre a superfície. [8,12-18]

Existem seis etapas essenciais no emprego deste método de ensaio:

- (1) Preparação e limpeza da superfície;
- (2) Aplicação do líquido penetrante;
- (3) Remoção do excesso de penetrante;
- (4) Aplicação do Revelador;
- (5) Inspeção;
- (6) Limpeza;

A "NBR 16450 de 02/2016 – Ensaios não destrutivos — Líquido penetrante — Qualificação de procedimento" estabelece os requisitos mínimos de uma sistemática de qualificação do procedimento de ensaio não destrutivo por líquido penetrante. [9]

Vantagens e Limitações do Ensaio: [17]

Vantagens:

- Simplicidade do método;
- Utilizando a fotografia do defeito, é mais fácil avaliar os resultados;
- Não há limitação de tamanho e forma das peças a ensaiar;
- O método é capaz de detectar descontinuidades (trincas) extremamente finas, da ordem de 0,001mm de abertura.

Limitações:

- Só detecta descontinuidades abertas para a superfície;
- A superfície do material não pode ser porosa ou absorvente, pois ocorre o mascaramento de resultados;
- Temperatura da superfície recomendada para realização dos testes: de 10 a 50° C;
- Em alguns casos é necessária uma limpeza mais rigorosa (caso de soldagem posterior ou equipamento que será utilizado na indústria alimentícia).

3. Metodologia Experimental

3.1. Materiais e Corpos de Prova

No presente trabalho, foram usinados dois corpos de prova do tipo C(T), dos aços SAE 4140 e SAE 4340, para serem submetidos a ensaio de propagação de trinca por fadiga para obtenção das curvas *da /dN versus* ΔK . Em seguida, o valor do ΔK_{th} desses aços foram comparados com o DIN 34CrNiMo6, material original do eixo do virabrequim.

O aço SAE 4140, também conhecido como aço-cromo-molibdênio, é classificado como aço médio carbono ligado para tratamentos térmicos de tempera e revenimento. Este assume teores de carbono entre 0,3% e 0,5% em massa, explicando a classificação de ser considerado um aço de médio carbono. O aço SAE 4140 é empregado em peças que exigem elevada dureza, resistência e tenacidade, sendo de uso recorrente na fabricação de automóveis, aviões, virabrequins, bielas, eixos, engrenagens, armas, parafusos, equipamentos para a indústria do petróleo, dentre outros. (Rocha, 2004) [25].

Já o aço SAE 4340, é um aço com elevada temperabilidade, conhecido como aço cromo-níquel-molibdênio, também classificado como aço de médio carbono, utilizado na fabricação de diferentes componentes mecânicos, inclusive com seções espessas, quando se deseja uma combinação de resistência à mecânica média e resistência à fratura e também possui elevada resistência à fadiga. Suas principais aplicações são em componentes para sistemas mecânicos, principalmente estruturais, onde se necessita uma homogeneidade de dureza ao longo da seção transversal em pequenas ou grandes seções. Entre elas, destacam-se: eixos, engrenagens, engrenagens planetárias, colunas, mangas e cilindros. [26]

O aço DIN 34CrNiMo6, é classificado como aço baixa liga e alta resistência com elevada tenacidade à fratura. Também possui boa temperabilidade, de forma que este tenha alta dureza não só na parte mais externa de sua estrutura, mas também em profundidades mais interiores. Geralmente muito utilizado em componentes mecânicos, como eixos e virabrequins.

As composições químicas dos aços citados acima, são apresentadas na Tabela 1 a seguir: [27 – 30]

	Elemento Químico	SAE 4140	SAE 4340	DIN 34CrNiMo6
	Carbono (C)	0,38 - 0,43	0,38 - 0,43	0,30 – 0,38
ca	Cromo (Cr)	0,80 - 1,1	0,70 - 0,90	1,40 – 1,70
ími	Níquel (Ni)	-	1,65 - 2,00	1,40 – 1,70
Qu	Molibdênio (Mo)	0,15 - 0,25	0,2 - 0,3	0,15 – 0,30
ção m p	Manganês (Mn)	0,75 - 1,00	0,60 - 0,80	0,50 – 0,80
osio % e	Silício (Si)	0,20 - 0,35	0,20 - 0,35	≤ 0,04
) dwd	Enxofre (S)	≤ 0,04	≤ 0,04	≤ 0,035
Ö	Fósforo (P)	≤ 0,04	≤ 0,04	≤ 0,035

Tabela 1 – Composição química dos aços.

• Elementos de Liga nos aços: [28,29]

C: aumenta a temperabilidade, forma carbonetos duros e dificultam a soldagem. Quanto mais carbono, maior dureza e resistência mecânica, menor ductilidade e maior facilidade de ocorrer trincas;

Cr: aumenta a temperabilidade e as resistências à corrosão, à temperatura e ao desgaste

Ni: aumenta a temperabilidade e a tenacidade, estabiliza a austenita;

Mn: aumenta a temperabilidade e a tenacidade, estabiliza a austenita, controla o efeito deletério do S (Enxofre);

Mo: aumenta a temperabilidade e a tenacidade e à resistência à temperatura, refina o grão;

Si: aumenta a temperabilidade, tenacidade, a resistência à corrosão e a permeabilidade magnética, desoxidante;

P: endurece a ferrita, mas em geral é impureza (com teor limitado a 0,04%); *S:* aumenta a usinabilidade, mas em geral é impureza (com teor limitado a 0,05%), fragiliza a quente, reduz a soldabilidade, a tenacidade e a ductilidade.

Corpos de prova do tipo C(T) para ensaios de propagação de trincas foram usinados de acordo com a norma ASTM E 647 – 15 [18]. Sua geometria pode ser vista nas Figuras 8 – 10, enquanto que a Tabela 2 apresenta suas dimensões.

Figura 8 - Geometria do CP tipo C(T) [18].

Material	W	В	a 0	bo	B W ^{1/2}	B W ^{1/2}
	[mm]	[mm]	[mm]	[mm]	[mm ^{3/2}]	[m ^{3/2}]
SAE 4140	40,00	10,00	8,00	32,00	63,246	0,0020
SAE 4340	40,00	10,00	8,00	32,00	63,246	0,0020

Tabela 2 - Dimensão dos corpos de prova.

Figura 9 – Corpo de Prova C(T) – Aço SAE 4140.

Figura 10 – Corpo de Prova C(T) – Aço SAE 4340.

A equação utilizada para obter o valor de ΔK apresentada pela norma ASTM E 647-15 é apresentada na Equação 5.

$$\Delta K = \frac{\Delta P}{B\sqrt{W}} \frac{(2+\alpha)}{(1-\alpha)^{3/2}} (0,866 + 4,64\alpha - 13,32\alpha^2 + 14,72\alpha^3 - 5,6\alpha^4)$$
(Eq. 5)

Nesta equação, ΔP é a diferença das cargas aplicadas a cada ciclo, B é a espessura do corpo de prova, W é a largura do corpo de prova e α é a razão entre o tamanho da trinca e a largura do CP.

$$\Delta P = P_{m \acute{a} x} - P_{m \acute{n}} \tag{Eq. 6}$$

$$\alpha = \frac{a}{W}$$
(Eq. 7)

3.2. Procedimento Experimental

3.2.1. Ensaio de Fadiga

O ensaio de propagação de trinca por fadiga foi realizado com intuito de obter as curvas da/dN versus ΔK e avaliar o crescimento das trincas quando aplicadas tensões alternadas na forma senoidal (Figura 11) com razão de carga (*R*) fixada em 0,1.

Figura 11 – Representação esquemática do ciclo de carregamento [4].

Os ensaios foram realizados no Laboratório de Ensaios Mecânicos (LEM) da PUC-Rio, na temperatura ambiente (25 ° C) utilizando a máquina INSTRON 8874, com carga máxima de 25 kN (Figuras 12 – 13). A frequência do ensaio foi fixada em 5 Hz e reduzida para 1 Hz para realizações das medidas do tamanho da trinca com auxílio do micrômetro e do microscópio (Figura 14). A cada medida realizada, as cargas mínimas e máximas eram reduzidas 5% a cada 6500 ciclos, em média, conforme especificado na norma ASTM E 647-15.

Figura 12 - Máquina INSTRON utilizada nos ensaios de fadiga.

Figura 13 – Painel eletrônico da Máquina INSTRON utilizada para fornecer as cargas determinadas pelo instrumentador e o número de ciclos do ensaio de propagação de trinca por fadiga.

Figura 14 - Máquina INSTRON com o corpo de prova fixado.

Para o acompanhamento do crescimento da trinca, foi utilizado um microscópico ótico e um micrometro de 0,02 mm de incerteza (Figura 14). As medidas foram realizadas a cada 6500 ciclos de carga, em média, variando a quantidade de ciclos quando necessário, para uma melhor análise do crescimento da trinca, e então utilizadas para preencher a tabela de cálculos para posteriormente plotar a curva d*a* /dN de cada CP ensaiado.

3.2.2. Líquidos Penetrantes

Após a realização do ensaio de propagação de trinca por fadiga, o END por LP foi utilizado para uma melhor visualização da trinca nos corpos de prova ensaiados.

O ensaio por LP foi realizado no LEM, na temperatura ambiente (25 °C) e seguindo as instruções especificadas pela norma NBR 16450 – 2016.

Figura 15 – Kit para END por líquido penetrante.

Primeiramente, foi necessário limpar a superfície dos corpos de prova utilizando água e o limpador da Spotcheck (Figura 15). Após limpar e secar totalmente as peças, foi aplicado o líquido penetrante por 15 minutos para que o líquido penetrasse totalmente na peça trincada por fadiga, como apresentado nas Figuras 16 e 17.

Figura 16 – Corpo de prova do aço SAE 4340 após aplicação de LP.

Figura 17 – Corpo de prova do aço SAE 4140 após aplicação de LP.

Após 15 minutos, os corpos de prova foram submetidos a lavagem em água e remoção do excesso do líquido penetrante. Depois de secos, os corpos de prova forma submetidos a aplicação do spray revelador por 10 minutos, com o objetivo de tornar a trinca mais visível na superfície (Figuras 19 e 20).

Figura 18 – Corpos de prova do aço SAE 4340 após aplicação do spray revelador.

Figura 19 – Corpos de prova do aço SAE 4140 após aplicação do spray revelador.

Após a aplicação do revelador, as trincas de fadiga ficaram mais visíveis a olho nu. Os corpos de prova foram cortados em amostras no Laboratório de Metalografia e Tratamentos Térmicos (LMTT) da PUC-Rio, deixando apenas a região das trincas (região de interesse) para análise microestrutural por microscopia ótica (Figuras 21 e 22).

Figura 20 – Amostra do corpo de prova do aço 4140.

Figura 21 – Amostra do corpo de prova do aço 4340.

3.2.3. Análise Microestrutural do material

Após a análise da região de interesse dos corpos de prova foi realizada por microscopia ótica no LMTT, com o objetivo de correlacionar a propagação de trincas de fadiga com aspectos microestruturais dos materiais.

Primeiramente, através do microscópio ZEISS SteREO Discovery V8 (Figuras 22 – 23), foram feitas imagens para uma melhor observação das trincas de fadiga e sua medição mais precisa, como pode ser visto nas Figuras 25 – 28.

Figura 22 – Microscópio Ótico Zeiss Discovery V8.

Figura 23 – Microscópio Ótico Zeiss Discovery V8.

Figura 24 – Trinca de fadiga medida microscopicamente sob efeito do LP na amostra do aço SAE 4140.

Figura 25 – Trinca de fadiga medida microscopicamente na amostra do aço SAE 4140.

Figura 26 – Trinca por fadiga medida microscopicamente sob efeito do LP na amostra do aço SAE 4340.

Figura 27 – Trinca por fadiga medida microscopicamente na amostra do aço SAE 4340.

Após a medição das trincas por fadiga por microscopia ótica, foi dado início a preparação das amostras para análise e correlação do limiar de

propagação ΔK_{th} com as características microestruturais e heterogeneidades metalúrgicas dos aços SAE 4140 e 4340.

Para isso, também no LMTT, foi necessário submeter as amostras aos seguintes procedimentos:

I- Três fases de lixamento das superfícies dos aços utilizando as lixas Norton T223 Advance 400, 600 e 1200 na máquina Arotec Aropol 2V (Figuras 29 – 31).

Figura 28 – Primeira lixa utilizada para lixamento da superfície das amostras.

Figura 29 – Máquina Arotec Aropol 2V.

Figura 30 – Amostra do aço SAE 4140 durante o processo de lixamento.

II- Após o lixamento, as amostras foram submetidas a três fases de polimento com diferentes pastas de diamante com tamanhos de grão de 6μ m, 3μ m e 1μ m, utilizando as máquinas Struers DPU-10 e duas Arotec Aropol VV, respectivamente (Figuras 32 - 34).

Figura 31 – Máquina Struers DPU-10 para polimento com pasta de 6µm.

Figura 32 – Máquina Arotec Aropol VV para polimento com pasta de 3µm.

Figura 33 – Máquina Arotec Aropol VV para polimento com pasta de 1µm.

Os processos de lixamento e polimento geram tensões residuais de compressão nas superfícies das amostras, podendo ocasionar em fechamento das trincas de fadiga. Portanto, antes de dar continuidade na preparação das amostras, foi necessário observar as superfícies, visando garantir a presença das trincas nos aços ensaiados e felizmente, as trincas não foram fechadas e foi possível prosseguir com a preparação das superfícies.

III- Após a etapa de polimento, as amostras foram submetidas a um banho de ultrassom em acetona e atacadas com reagente Nital 2% durante 15 minutos (Figura 36). Este procedimento final visou limpar a trinca e preparar as amostras para a análise microestrutural.

Figura 34 – Amostras em banho de ultrassom na máquina GUIMIS.

Por fim, após o banho em ultrassom e o ataque por Nital 2%, as amostras foram submetidas a análise microestrutural, desta vez, utilizando o Microscópio Ótico Carl Zeiss AXIO Lab.A1 (Figuras 37 e 38), pois este possui uma maior resolução e uma melhor qualidade de imagem.

Figura 36 – Microscópio Ótico Carl Zeiss AXIO Lab.A1.

4. Resultados e Discussões

Neste projeto foram ensaiados corpos de prova do tipo C(T) dos aços SAE 4140 e SAE 4340 para a determinação da curva de propagação de trincas por fadiga. Uma grande quantidade de pontos experimentais foram obtidos nos ensaios desses materiais, a fim de determinar com maior eficácia a região do threshold. Por fim, as curvas destes aços foram comparadas com a curva do material original do virabrequim citado na motivação do trabalho.

Ao iniciar os ensaios de propagação de trincas por fadiga, após a preparação da máquina foi possível obter todos os parâmetros e valores necessários e com o auxílio do software Microsoft Excel, efetuar os cálculos para posteriormente traçar as curvas da/dN versus ΔK para os CP's de aço 4140 e 4340.

P _{máx} (N)	P _{min} (N)	Ni	N _f	<i>a</i> ₀ (mm)	a _f (mm)	α (a/W)	ΔK (MPa √m)	delta N	delta <i>a</i>	d <i>a /</i> dN
13300	1480	0	5000	1,50	2	0,2375	28,12345209	5000	0,50	0,0001
12610	1260	5600	10700	2,00	2,45	0,25	27,94740838	5100	0,45	8,82353E-05
11930	1190	11200	16200	2,45	2,85	0,26125	27,26057593	5000	0,40	0,00008
11100	1138	16400	21500	2,85	3,25	0,27125	25,96858181	5100	0,40	7,84314E-05
10420	1060	22000	29500	3,25	3,6	0,28125	25,05126795	7500	0,35	4,66667E-05
10070	1010	29950	37000	3,60	3,9	0,29	24,80966772	7050	0,30	4,25532E-05
9527	961	37500	45000	3,90	4,2	0,2975	23,91880309	7500	0,30	0,00004
9083	910	45300	52800	4,20	4,55	0,305	23,26876575	7500	0,35	4,66667E-05
8500	840	52900	60400	4,55	4,85	0,31375	22,30582711	7500	0,30	0,00004
8090	810	60800	68300	4,85	5,2	0,32125	21,61201528	7500	0,35	4,66667E-05
7660	760	0	7490	5,20	5,55	0,33	20,94912397	7490	0,35	4,6729E-05
7300	726	7600	15000	5,55	5,85	0,33875	20,41230359	7400	0,30	4,05405E-05
7000	700	15500	22900	5,85	6,1	0,34625	19,94155747	7400	0,25	3,37838E-05
6600	667	23000	30500	6,10	6,35	0,3525	19,08375723	7500	0,25	3,33333E-05
6313	640	30980	38500	6,35	6,55	0,35875	18,54319343	7520	0,20	2,65957E-05
5997	598	39000	46250	6,55	6,7	0,36375	17,87646496	7250	0,15	2,06897E-05
5697	570	46740	54000	6,70	6,85	0,3675	17,14102233	7260	0,15	2,06612E-05
5413	550	54700	62000	6,85	7,05	0,37125	16,41686762	7300	0,20	2,73973E-05
5112	517	62500	70000	7,05	7,25	0,37625	15,71453712	7500	0,20	2,66667E-05
4866	491	70360	77450	7,25	7,45	0,38125	15,15797453	7090	0,20	2,82087E-05
4625	471	78000	85000	7,45	7,6	0,38625	14,58128088	7000	0,15	2,14286E-05
4390	431	0	8500	7,60	7,85	0,39	14,03388622	8500	0,25	2,94118E-05
4130	420	9000	16500	7,85	8	0,39625	13,36904747	7500	0,15	0,00002
3900	383	16500	24000	8,00	8,1	0,4	12,79964667	7500	0,10	1,33333E-05
3705	365	24500	32000	8,10	8,2	0,4025	12,23619511	7500	0,10	1,33333E-05
3520	350	32230	38900	8,20	8,25	0,405	11,69069735	6670	0,05	7,49625E-06

As Tabelas 3 – 4 apresentam os dados dos ensaios de propagação de trinca:

P _{máx} (N)	P _{min} (N)	Ni	N _f	<i>a</i> ₀ (mm)	a _f (mm)	α (a/W)	ΔK (MPa √m)	delta N	delta <i>a</i>	d <i>a /</i> dN
3343	335	39600	47100	8,25	8,25	0,40625	11,13018221	7500	0,00	0
3343	335	48000	98000	8,25	8,3	0,40625	11,13018221	50000	0,05	1E-06
3300	330	98500	199000	8,30	8,3	0,4075	11,02620347	100500	0,00	0
3560	340	0	20000	8,30	8,3	0,4075	11,95433507	20000	0,00	0
3560	340	20000	30000	8,30	8,3	0,4075	11,95433507	10000	0,00	0
3560	340	30000	40000	8,30	8,35	0,4075	11,95433507	10000	0,05	5E-06
3560	340	40000	50000	8,35	8,4	0,40875	11,9942305	10000	0,05	5E-06
3560	340	50000	60000	8,40	8,4	0,41	12,03431136	10000	0,00	0
3560	340	60000	70000	8,40	8,42	0,41	12,03431136	10000	0,02	2E-06
3560	340	70000	80000	8,42	8,45	0,4105	12,05039604	10000	0,03	3E-06
3560	340	80000	90000	8,45	8,48	0,41125	12,07457951	10000	0,03	3E-06
3560	340	90000	100000	8,48	8,53	0,412	12,09883106	10000	0,05	5E-06
3560	340	100000	130000	8,53	8,53	0,41325	12,13940274	30000	0,00	0
3730	370	0	10000	8,53	8,55	0,41325	12,66720286	10000	0,02	2E-06
3730	370	10000	20000	8,55	8,57	0,41375	12,68419316	10000	0,02	2E-06
3730	370	20000	30000	8,57	8,58	0,41425	12,70121567	10000	0,01	1E-06
3730	370	30000	40000	8,58	8,6	0,4145	12,70973905	10000	0,02	2E-06
3730	370	40000	50000	8,60	8,61	0,415	12,72681012	10000	0,01	1E-06
3730	370	50000	60000	8,61	8,63	0,41525	12,73535784	10000	0,02	2E-06
3730	370	60000	70000	8,63	8,65	0,41575	12,75247775	10000	0,02	2E-06
3730	370	70000	80000	8,65	8,85	0,41625	12,76963039	10000	0,20	2E-05
3730	370	80000	90000	8,85	9	0,42125	12,9429854	10000	0,15	0,000015
3730	370	90000	100000	9,00	9,2	0,425	13,0752375	10000	0,20	2E-05
3730	370	100000	110000	9,20	9,3	0,43	13,25466465	10000	0,10	1E-05

Tabela 3 – Dados referentes ao ensaio de propagação de trinca por fadiga no SAE 4140.

P _{máx} (N)	P _{min} (N)	Ni	N _f	<i>a</i> ₀ (mm)	a _f (mm)	α (a/W)	ΔK (MPa √m)	delta N	delta <i>a</i>	d <i>a /</i> dN
13100	1410	0	5723	1,20	1,7	0,23	27,23878453	5723	0,50	8,73668E-05
12630	1246	6000	13000	1,70	2,35	0,2425	27,46232772	7000	0,65	9,28571E-05
12000	1210	13500	20200	2,35	2,95	0,25875	27,20435848	6700	0,60	8,95522E-05
11400	1170	20600	27400	2,95	3,6	0,27375	26,84421551	6800	0,65	9,55882E-05
10790	1080	27600	33000	3,60	4,25	0,29	26,58961077	5400	0,65	0,00012037
10400	1030	33000	39500	4,25	4,98	0,30625	26,76291153	6500	0,73	0,000112308
9850	970	40000	46500	4,98	5,63	0,3245	26,58281375	6500	0,65	1E-04
9330	940	46500	53000	5,63	6,33	0,34075	26,18496546	6500	0,70	0,000107692
8900	840	53000	59500	6,33	6,84	0,35825	26,31162687	6500	0,51	7,84615E-05
8420	830	60000	66500	6,84	7,5	0,371	25,60629292	6500	0,66	0,000101538
8050	805	67000	73500	7,50	8,13	0,3875	25,51451415	6500	0,63	9,69231E-05
7550	760	74100	80600	8,13	8,68	0,40325	24,92489467	6500	0,55	8,46154E-05

P _{máx} (N)	P _{min} (N)	Ni	N _f	<i>a</i> ₀ (mm)	a _f (mm)	α (a/W)	ΔK (MPa √m)	delta N	delta <i>a</i>	d <i>a /</i> dN
7190	715	80700	87200	8,68	9,11	0,417	24,65784253	6500	0,43	6,61538E-05
6770	670	88000	94500	9,11	9,68	0,42775	23,91613522	6500	0,57	8,76923E-05
6440	650	94800	101300	9,68	10,08	0,442	23,60892416	6500	0,40	6,15385E-05
6155	628	0	6500	10,08	10,4	0,452	23,17670074	6500	0,32	4,92308E-05
5852	580	6780	13000	10,40	10,7	0,46	22,61548993	6220	0,30	4,82315E-05
5521	553	13350	19400	10,70	10,95	0,4675	21,77621879	6050	0,25	4,13223E-05
5242	522	19500	26500	10,95	11,15	0,47375	21,06901871	7000	0,20	2,85714E-05
4987	485	27000	33500	11,15	11,4	0,47875	20,39354175	6500	0,25	3,84615E-05
4735	480	34500	42500	11,40	11,65	0,485	19,63590365	8000	0,25	0,00003125
4461	465	42900	50000	11,65	11,85	0,49125	18,79044895	7100	0,20	2,8169E-05
4213	418	50400	56870	11,85	12	0,49625	18,11856473	6470	0,15	2,31839E-05
4000	400	57000	64500	12,00	12,2	0,5	17,38634154	7500	0,20	2,66667E-05
3860	380	64700	71200	12,20	12,35	0,505	17,06879534	6500	0,15	2,30769E-05
3630	363	71700	78200	12,35	12,55	0,50875	16,21276706	6500	0,20	3,07692E-05
3450	347	78600	85100	12,55	12,75	0,51375	15,64342976	6500	0,20	3,07692E-05
3230	327	85600	92100	12,75	13	0,51875	14,87008606	6500	0,25	3,84615E-05
3070	300	93000	99500	13,00	13,15	0,525	14,47768322	6500	0,15	2,30769E-05
2920	295	99900	106400	13,15	13,3	0,52875	13,88862901	6500	0,15	2,30769E-05
2800	270	107000	113500	13,30	13,5	0,5325	13,55210726	6500	0,20	3,07692E-05
2660	260	0	10000	13,50	13,65	0,5375	13,07108442	10000	0,15	0,000015
2527	250	10000	20000	13,65	13,8	0,54125	12,55826225	10000	0,15	0,000015
2400	240	20000	30000	13,80	13,9	0,545	12,06521762	10000	0,10	1E-05
2280	230	30000	40500	13,90	14,03	0,5475	11,54886869	10500	0,13	1,2381E-05
2166	220	40500	50500	14,03	14,13	0,55075	11,08606444	10000	0,10	1E-05
2058	206	50500	60500	14,13	14,22	0,55325	10,64220752	10000	0,09	9E-06
1955	195	60500	70500	14,22	14,35	0,5555	10,19303985	10000	0,13	1,3E-05
1860	185	70800	80800	14,35	14,5	0,55875	9,81185078	10000	0,15	0,000015
1730	167	81500	91500	14,50	14,65	0,5625	9,277927148	10000	0,15	0,000015
1630	160	92800	122800	14,65	14,83	0,56625	8,843410036	30000	0,18	6E-06
1550	155	123000	223000	14,83	14,83	0,57075	8,529483628	100000	0,00	0
1550	155	0	10000	14,83	14,83	0,57075	8,529483628	10000	0,00	0
1550	155	10000	20000	14,83	14,83	0,57075	8,529483628	10000	0,00	0
1550	155	20000	30000	14,83	14,83	0,57075	8,529483628	10000	0,00	0
1550	155	30000	40000	14,83	14,85	0,57075	8,529483628	10000	0,02	2E-06
1550	155	40000	50000	14,85	14,88	0,57125	8,544972501	10000	0,03	3E-06
1550	155	50000	60000	14,88	15	0,572	8,568296136	10000	0,12	1,2E-05
1550	155	60000	70000	15,00	15,25	0,575	8,662688192	10000	0,25	0,000025
1550	155	70000	80000	15,25	15,5	0,58125	8,865147254	10000	0,25	0,000025

Tabela 4 – Dados referentes ao ensaio de propagação de trinca por fadiga no SAE 4340.

Ainda utilizando o software Microsoft Excel e os dados apresentados nas Tabelas 3 e 4, foi possível traçar os gráficos abaixo e as linhas de tendência, referentes aos corpos de prova dos aços ensaiados e posteriormente analisálos:

Figura 37 – Gráfico da/dN versus Δ K – Aço 4140.

Figura 38 – Gráfico da/dN versus Δ K – Aço 4340.

Ao analisar os gráficos, pode-se determinar os valores de ΔK_{th} de cada material, parâmetro de fundamental importância, visto que quanto maior o limiar de propagação de trinca por fadiga, mais difícil da trinca se propagar no material. Para a determinação dos valores do ΔK_{th} , as cargas do ensaio foram reduzidas até que não houve mais incremento no comprimento da trinca. Após essa situação ocorrer, o ensaio foi mantido até 10⁵ ciclos, para que esse valor de threshold fosse confirmado (norma ASTM E-647).

Aços	ΔK_{th} (MPa \sqrt{m})
SAE 4140	12,13
SAE 4340	8,53
DIN 34CrNiMo 6	6,51
	1

Tabela 5 – Valores de ∆Kth.

O valor de ΔK_{th} do aço DIN 34CrNiMo6 [31], material original do eixo virabrequim citado na motivação deste trabalho, foi fornecido e calculado seguindo o mesmo procedimento dos aços SAE 4140 e 4340 e apresentado na Tabela 5 para permitir comparação com os resultados obtidos neste trabalho.

As imagens geradas pelo Microscópio Ótico Carl Zeiss AXIO Lab.A1, apresentadas nas Figuras 40 – 45, mostram a microestrutura e heterogeneidades metalúrgicas dos aços SAE 4140 e SAE 4340 na região de threshold, facilitando correlacionar estes aspectos microestruturais com o limiar de propagação de trinca por fadiga de cada um dos materiais analisados neste trabalho.

Figura 39 – Microestrutura do aço SAE 4140 na região de threshold.

Figura 40 – Inclusões no aço SAE 4140 na região de threshold.

Figura 41 – Inclusões no aço SAE 4140 na região de threshold. Detalhamento da figura anterior.

Na microestrutura do aço SAE 4140 foi possível perceber que os grãos deste aço são muito finos e que o caminho que a trinca se propagou foi

influenciado pelas heterogeneidades metalúrgicas presentes no material, como ficou mais claro na Figura 43.

Figura 42 – Microestrutura do aço SAE 4340 na região de threshold.

Figura 43 – Desvio de trinca em barreiras microestruturais aço SAE 4340 na região de threshold.

Figura 44 – Microestrutura do aço SAE 4140 na região de threshold. Detalhamento da figura anterior.

Já na microestrutura do aço SAE 4340, pode-se perceber que o ataque por ultrassom com Nital 2% não foi tão eficaz quanto no aço SAE 4140 e por isso, as heterogeneidades metalúrgicas não ficaram tão claras. Para este material, também foi possível perceber que as trincas tendem a se propagar sendo guiadas por essas heterogeneidades e em alguns momentos, como visto na Figura 45, o caminho da trinca se modifica bruscamente por causa de heterogeneidade microestrutural, responsável pela bifurcação da trinca, que posteriormente se uniu novamente.

5. Conclusão

O presente trabalho avaliou a relação entre limiar de propagação de trincas por fadiga e aspectos microestruturais nos aços SAE 4140 e SAE 4340. Os resultados obtidos nesse trabalho levam as seguintes conclusões:

- O aço SAE 4140 foi aquele que apresentou o maior valor de ΔK_{th} (12.13 MPa √m).
- Líquidos penetrantes indicaram para esse material um menor comprimento de trinca, quando comparado com o SAE 4340.
- Apesar do aço SAE 4340 apresentar um valor de ΔK_{th} (8.53 MPa √m) menor do que aquele encontrado para o aço SAE 4140, ainda assim foi um valor superior ao do material de referência aço DIN 34CrNiMo6, cujo ΔK_{th} foi 6.51 MPa √m.
- Ensaios de microscopia ótica indicaram que heterogeneidades metalúrgicas estavam presentes no caminho de propagação das trincas de fadiga para os aços SAE 4140 e SAE 4340, mostrando assim que aspectos microestruturais influenciam na propagação das trincas.
- Com isso, no que se refere à iniciação de trincas de fadiga, o aço SAE 4140 se apresenta como a alternativa mais adequada para utilização na fabricação de um eixo virabrequim para motores de usinas termoelétricas, uma vez que apresentou o maior valor de ΔKth, além de possuir uma microestrutura com grãos de pequeno tamanho e bem refinados, com menor quantidade de heterogeneidades metalúrgicas.

6. Sugestões para trabalhos futuros

Fica como sugestão para trabalhos futuros, a realização de uma análise microestrutural mais completa e detalhada através do Microscópio Eletrônico de Varredura (MEV) dos aços SAE 4140 e SAE 4340, buscando identificar de maneira mais clara as heterogeneidades metalúrgicas e outros aspectos microestruturais que possam influenciar a propagação da trinca de fadiga tanto na região de threshold como em outras regiões. Além disso, poderia ser viável uma análise mais completa de outros aços comumente usados em eixos virabrequins e motores Diesel e gás natural para ampliar as possibilidades de escolha.

7. Referências Bibliográficas

[1] CALLISTER JR, W. D. Ciência e engenharia de materiais: uma introdução. 7.ed. Rio de Janeiro: LTC, 2008. 705p.

[2] Ashby, MF; Jones, DRH. Engineering Materials, Pergamon 1981.

[3] Ashby, MF; Jones, DRH. Engineering Materials 2, Pergamon 1981.

[4] Castro. J. T. P. D.; Meggiolaro. M. A.: "Fadiga – Técnicas e Práticas de Dimensionamento Estrutural sob Cargas Reais de Serviço. Volume I – Iniciação de Trincas."

[5] Castro. J. T. P. D.; Meggiolaro. M. A.: "Fadiga – Técnicas e Práticas de Dimensionamento Estrutural sob Cargas Reais de Serviço. Volume II – Propagação de Trincas, Efeitos Térmicos e Estocásticos."

[6] AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM E 647 – 15 Fatigue Crack Growth Rates - Standard Test Method for

[7] Measurement of Fatigue Crack Growth Rates – EUA, 2016 - 49p.

[8] https://www.manutencaoemfoco.com.br/ensaios-nao-destrutivos-end/

[9] https://engeteles.com.br/ensaios-nao-destrutivos/

[10] https://russelservicos.com.br/blog/tipos-de-ensaios-nao-destrutivos/

[11] http://wwwo.metalica.com.br/o-que-e-end-ensaio-nao-destrutivo

[12] <u>http://www.infosolda.com.br/biblioteca-digital/livros-senai/ensaios-nao-destrutivos-e-mecanicos/217-ensaio-nao-destrutivo-liquidos-penetrantes.html</u>

[13] <u>ftp://ftp.mecanica.ufu.br/LIVRE/Valtair%20-</u> %20END/L%CDQUIDO%20PENETRANTE.pdf

[14] <u>http://www.abnt.org.br/noticias/4597-ensaios-nao-destrutivos-liquido-penetrante-qualificacao-de-procedimento</u>

[15] http://www.engbrasil.eng.br/pp/em/aula14.pdf

[16] http://essel.com.br/cursos/material/01/EnsaioMateriais/ensa19.pdf

[17]

http://www.abepro.org.br/biblioteca/enegep2010_tn_sto_116_761_17564.pdf

[18] AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM E 1417, ASTM Internacional. Standard Practice for Liquid Penetrant Testing. Estados Unidos, 2005. [19] ANDREUCCI, R. Ensaio por líquidos penetrantes. ABENDE Associação Brasileira de Ensaios não Destrutivos. São Paulo, 2008. 68 p

[20] Paris,PC; Gomez,MP; Anderson, WE "A rational analytic theory of fatigue", The Trend in Engineering,1961

[21] Bulloch, J.H., The influence of Mean Stress or R-Ratio on the Fatigue Crack Threshold Characteristics of Steels – A Review, Dublin, 1990.

[22] Bulloch, J.H., Fatigue threshold in steels – Mean stress and microstructure influences, Dublin, 1993.

[23] <u>https://www.materiais.gelsonluz.com/2017/10/aco-sae-4140-propriedades-mecanicas.html</u>

[24] <u>https://www.materiais.gelsonluz.com/2017/10/aco-sae-4340-propriedades-mecanicas.html</u>

[25] Rocha, M. A. C. (2004) Análise das propriedades Mecânicas do aço SAE 4140 com estrutura Bifásica. Dissertação de Mestrado.

[26] http://www.ggdmetals.com.br/produto/sae-4340/

[27]http://www.feis.unesp.br/Home/departamentos/engenhariamecanica/maprot ec/catalogo_acos_gerdau.pdf

[28] Budinski,KG; Budinski,MK. Engeneering Materials,7th ed., Prentice Hall 2002

[29] ASM Handbook v.1, Properties and Selection: Irons, Steels and High Performance Alloys, ASM 1993

[30] ASM Metals Handbook v.1, Properties and Selection of Metals, 8th ed ASM 1961

[31] PEIXOTO, Thiago; "Interação Entre Aspectos Microestruturais e Iniciação de Trincas de Fadiga em Aços Estruturais", Rio de Janeiro, Agosto 2018. Dissertação de Mestrado.