REFERÊNCIAS BIBLIOGRÁFICAS

- Abelém, A. J. Gomes, Redes neurais artificiais na previsão de séries temporais. Dissertação de Mestrado. Departamento de Engenharia Elétrica, Pontificia Universidade Católica do Rio de Janeiro. Rio de Janeiro, 100f, 1994.
- Barros, Mônica. Processos estocásticos. Notas de aula, <u>www.mbarros.com</u>, 2003
- Bishop, Christopher M. Neural networks for pattern recognition. Oxford: Clarendon Press, 1995.
- Braga, P.A.; Carvalho, A.; Ludemir, T. Redes Neurais Artificiais: Teoria e Aplicações, Livro Técnico e Científico, Rio de Janeiro, 2000.
- Box, George E. P.; Jenkins, Gwilym M. Time series analysis: forecasting and control. San Francisco, Calif.: Holden-Day, 553p, 1970.
- Box, George E. P.; Jenkins, Gwilym M. Time series analysis: forecasting and control. Rev. ed. San Francisco, Calif.: Holden-Day, 575p, 1976
- Caproni N. Jr.; Armelin J. L.; Emídio N.S.L.; Shimabukuro, M.;Ribas J.B.M.;Mori RT.; Fundação em Solo Residual - Barragem de Corumbá I. XXI Seminário Nacional de Grandes Barragens, Vol I, Rio de Janeiro, dezembro 1994.
- Caproni, N. Jr.; Palocci A.; Shimabukuro, M.; Propriedades geotécnicas dos solos coluvionares e residuais do AHE Corumbá I. XXI Seminário Nacional de Grandes Barragens, Vol I, Rio de Janeiro, dezembro 1994.
- Choary, Cristina F., **Previsão de tensões e deformações do material do núcleo da barragem da UHE Corumbá I**. Dissertação de Mestrado. Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro. Rio de Janeiro, maio 1993.
- Comitê Brasileiro de Barragens (CBDB), Main Brazilian Dams II Design, Construction and Performance, 2000.

- Comitê Brasileiro de Barragens (CBDB) II Simpósio sobre instrumentação de Barragens no Brasil (2 Vol.). Anais. Minas Gerais, MG. agosto, 1996.
- Dickley, D.A., Fuller, W.A., **Distribution of the estimates for autoregressive time series with a unit root**, Journal of the American Statistical Association, 74, 427-431, 1979.
- Diniz, H. Andrade, L.C.M. Carvalho, A.C.P.L.F Andrade, M.G. Previsão de séries temporais utilizando redes neurais artificiais e modelos de Box & Jenkins. Simpósio brasileiro de redes neurais; (pg 173-178); Belo Horizonte, MG/Anais / Dezembro, 1998.
- Dorffner, G., Neural networks for time series processing, Neural Network World, 447-448, 1996.
- Dyminsky, A. Sell Análise de problemas geotécnicos através de redes neurais. Tese de doutorado. Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro. Rio de Janeiro, 208 f, 2000.

Eviews 4.0 Quantitative Micro Software, California. Copyright © 1994-2001

- Fairbairn, M.R. Eduardo; M. Guedes, Evandro Goulart, Diane M. Viana, Álvaro L. G. A. Coutinho, Nelson F. F. Ebecken, Adolfo Goldener, Emilio R. Bugarin, Retroanálise neural para identificação dos parâmetros elásticos da barragem casca de Funil. XXIII Seminário de Grandes Barragens, Anais, Volume I, Tema II. Belo Horizonte. março, 1999.
- Furnas Eletric Power Company, Technical Reports FR85A-CD8-101, FR85A-CD8-103, FR85A-CD8-106, FR85A-CD8-108, FR85A-CD8-112, FR85A-CD8-115, FR85A-CD8-118, 1987-1994.
- Goh, A.T.C. Empirical Design in Geotechnics using Neural Networks, Géotechnique, Vol. 45, No. 4, pp 709-714. 1995
- Harvey, A. C., Forecasting Structural Time Series Models and the Kalman Filter, Cambridge University Press, Cambridge, 1989.
- Haykin, Simon. Neural Networks: A Comprehensive Foundantion, 2nd edition, Prentice-Hall, 1999.

- MATLAB The Language of Technical Computing, v. 6.1.0.450 Release 12.1., Copyright 1984-2001 The MathWorks, Inc. May 18, 2001.
- Mohamed A. Shahin, Mark B. Jaksa and Holger R. Maier. Artificial neural network applications in geotechnical engineering. Australian Geomechanics, p 49-62. March 2001
- Morettin, Pedro Alberto; Toloi, Clélia Maria de Castro. Previsão de series temporais /. 2. ed. São Paulo : Atual, 439p. 1987.
- Pires Filho, Celso José, **Considerações sobre uma metodologia de formulação de modelos matemáticos estatísticos do comportamento de grandezas medidas: Aplicação: controle de segurança de barragens em operação**. Dissertação de Mestrado. Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.Rio de Janeiro, 237f, 1990.
- Quintiliano M. Guedes; A. Goldener e Emilio R. Bugarin. A contribuição da retroanálise bayesiana no controle de segurança da barragem de Funil com modelo híbrido. XXIII Seminário de Grandes Barragens, Anais, Volume I, Tema II. Belo Horizonte, Março, 1999.
- Ribas M.J. Bonifácio; Shimabukuro M. AHE Corumbá I O projeto da barragem de enrocamento. XX Seminário Nacional de Grandes Barragens, Anais Vol. II, Tema III. Curitiba, novembro 1992.
- Ruffier, A. P., Lisboa, E. A., Danziger, F. A. B. Aplicação de redes neurais ao Estudo da Capacidade de Carga de Fundações à Tração. In: XI Congresso Brasileiro de Mecanica dos Solos e Engenharia Geotécnica, ABMS, v.3. p.1519 – 1526, Brasilia,1998
- Soto, Claver Pari, **Redes neurais temporais para o tratamento de sistemas** variantes no tempo. Dissertação de Mestrado. Departamento de Engenharia Elétrica, Pontificia Universidade Católica do Rio de Janeiro. 101f. Rio de Janeiro, 1999.

Theil, H., Applied economic forecasting, North-Holland, Amsterdam, 1966.

Toll, D. Artificial Intelligence Systems for Geotechnical Engineering with Specific Reference to the Ground Improvement. Tenth European Young Geotechnical Engineers Conference, Izmir, Turkey. 1996 U.S. Army Corps of Engineers. Instrumentation of embankment dams and levees. Engineering and Design. Engineer Manual N° 1110-2-1908, Washington, DC 20314-1000. Chapter 3, 30 June, 1995

Zurada, Jacek M. Introduction to artificial neural systems: Boston, Mass. PWS, 683, 76p, 1992.

APÊNDICE A

Neste apêndice mostram-se todos os valores das séries envolvidas no processo de modelagem e previsão, através dos modelos de Box & Jenkins e das RNA, para todos os casos estudados.

Grandeza	Unidades
Vazão	l/min
Carga de pressão	m
Cota do nível d'água do reservatório	m
Freqüência uniformizada das leituras	Ouinzenal

Tabela A.1				
N٥	DATA	VZ (l/min)	PZ15 (m)	NA (m)
1	13/08/97	260,840	29,633	594,651
2	28/08/97	264,000	29,970	594,592
3	12/09/97	197,910	29,076	592,196
4	27/09/97	171,660	28,530	590,083
5	12/10/97	139,352	27,051	588,056
6	27/10/97	99,680	25,502	585,900
7	11/11/97	71,121	24,054	583,695
8	26/11/97	75,256	24,745	585,650
9	11/12/97	114,308	25,181	586,320
10	26/12/97	116,915	26,131	587,940
11	10/01/98	100,256	25,427	586,440
12	25/01/98	141,783	27,541	590,670
13	09/02/98	203,310	29,571	591,677
14	24/02/98	299,511	29,769	594,769
15	11/03/98	252,438	31,390	593,820
16	26/03/98	201,181	30,549	594,482
17	10/04/98	218,260	28,878	592,640
18	25/04/98	129,791	27,371	586,780
19	10/05/98	114,924	26,333	586,570
20	25/05/98	76,020	22,290	582,480
21	09/06/98	49,320	21,577	581,113
22	24/06/98	41,486	21,149	581,129
23	09/07/98	34,255	20,487	580,285
24	24/07/98	26,427	20,275	580,383
25	08/08/98	25,110	20,338	580,371
26	23/08/98	22,748	19,791	579,206
27	07/09/98	14,921	18,721	577,773
28	22/09/98	11,342	17,659	577,072
29	07/10/98	16,519	17,333	577,001
30	22/10/98	13,615	18,583	578,137
31	06/11/98	18,248	21,221	580,328
32	21/11/98	54,602	24,108	588,615
33	06/12/98	148,743	26,199	590,868
34	21/12/98	184,440	26,785	591,288

Tabela A.1				
N°	DATA	VZ (l/min)	PZ15 (m)	NA (m)
35	05/01/99	204,407	25,686	589,720
36	20/01/99	159,757	24,584	588,720
37	04/02/99	113.371	24,727	582,937
38	19/02/99	46.824	25.687	578,623
39	06/03/99	65 772	26,856	586 826
40	21/03/99	240 493	27,627	593 934
41	05/04/99	249,380	27,616	593 290
42	20/04/99	230 113	26 861	592 820
43	05/05/99	204 157	25,633	591 190
44	20/05/99	159 601	20,000	588 999
45	04/06/99	120,892	23,877	586 752
40	10/06/00	116 527	23,077	587 283
40	04/07/00	111 00/	23,013	586 640
47	10/07/00	106 720	23,400	596,040
40	19/07/99	100,720	23,200	500,240
49	03/06/99	90,341	22,910	505,050
50	10/00/99	00,473	22,510	504,720
51	02/09/99	81,622	22,079	584,215
52	17/09/99	76,153	21,515	583,290
53	02/10/99	68,782	20,697	582,521
54	17/10/99	50,240	19,706	581,051
55	01/11/99	36,239	18,739	577,543
56	16/11/99	28,786	18,032	579,460
57	01/12/99	32,888	17,841	579,728
58	16/12/99	34,944	18,421	581,303
59	31/12/99	48,110	19,767	581,460
60	15/01/00	60,062	21,185	583,455
61	30/01/00	75,549	22,216	583,430
62	14/02/00	128,590	23,354	588,330
63	29/02/00	175,003	25,085	589,460
64	15/03/00	293,806	26,886	594,540
65	30/03/00	216,581	27,940	592,840
66	14/04/00	280,744	27,752	594,218
67	29/04/00	245,940	25,912	592,857
68	14/05/00	155,744	22,722	587,011
69	29/05/00	76,870	19,775	578,013
70	13/06/00	38,090	17,930	577,817
71	28/06/00	24,424	17,080	577,800
72	13/07/00	21,257	16,930	577,944
73	28/07/00	21,151	17,088	578,282
74	12/08/00	19,799	17,397	578,382
75	27/08/00	25,932	17,886	582,956
76	11/09/00	53,890	18,586	592,279
77	26/09/00	82,072	19,530	593,397
78	11/10/00	87,340	20,751	586,222
79	26/10/00	97,408	22,274	584.661
80	10/11/00	166.557	23,951	588.240
81	25/11/00	181.197	25,445	590.260
82	10/12/00	98.004	26.408	589.700
83	25/12/00	239.336	26,501	593.750
84	09/01/01	199,410	25,937	593,722
85	24/01/01	190,890	25.327	590,470
86	08/02/01	170 860	24 603	586 423
87	23/02/01	132 252	22,773	582 627
		· , - · -	,	,

Tabela A.1				
N°	DATA	VZ (l/min)	PZ15 (m)	NA (m)
88	10/03/01	112,797	20,720	584,570
89	25/03/01	149,243	20,222	588,690
90	09/04/01	203,397	20,921	592,060
91	24/04/01	228,119	22,167	592,820
92	09/05/01	192,728	23,306	590,700
93	24/05/01	160,110	23,748	588,500
94	08/06/01	154,412	23,621	588,890
95	23/06/01	166,232	23,515	590,150
96	08/07/01	185,064	23,873	591,050
97	23/07/01	180,611	24,002	590,970
98	07/08/01	168,730	23,397	590,290
99	22/08/01	156,226	22,833	589,130
100	06/09/01	144,522	22,488	588,330
101	21/09/01	135,484	22,146	587,740
102	06/10/01	129,041	21,804	586,730
103	21/10/01	139,477	21,490	587,850
104	05/11/01	143,084	21,839	587,390
105	20/11/01	165,809	23,148	588,870
106	05/12/01	183,079	24,663	591,890
107	20/12/01	191,601	25,578	590,360
108	04/01/02	216,175	25,347	594,800
109	19/01/02	267,882	24,926	592,200
110	03/02/02	228,690	24,505	590,440
111	18/02/02	276,453	24,084	592,790
112	05/03/02	231,087	23,043	589,240
113	20/03/02	201,615	22,597	589,700
114	04/04/02	306,827	22,878	594,810
115	19/04/02	274,240	23,250	592,980
116	04/05/02	209,754	23,457	591,140
117	19/05/02	205,265	23,578	591,000
118	03/06/02	194,417	23,644	591,300
119	18/06/02	178,675	23,549	590,290
120	03/07/02	175,739	23,237	588,400
121	18/07/02	176,233	22,892	589,500
122	02/08/02	176,923	22,653	590,080
123	17/08/02	173,975	22,542	589,550
124	01/09/02	159,415	22,537	588,253
125	16/09/02	143,688	22,537	587,280
126	01/10/02	126,309	22,537	586,760
127	16/10/02	110,050	22,505	585,050
128	31/10/02	87,817	21,771	582,900
129	15/11/02	89,885	21,037	584,550
130	30/11/02	89,624	20,303	583,125
131	15/12/02	84,351	19,834	580,324
132	30/12/02	89,136	19,789	588,172
133	14/01/03	207,582	19,972	592,730
134	29/01/03	263,025	20,278	593,400
135	13/02/03	274,256	20,500	591,840
136	28/02/03	276,387	20,428	592,020
137	15/03/03	296,760	20,110	593,687

Tabela A.1 Séries históricas da vazão a jusante na região da ombreira esquerda, poropressões no piezômetro 15 (PZ15) e nível d'água do reservatório a montante.

Tabela	Tabela A.2									
N°	DATA	NA (m)	PZ7(m)	PZ8 (m)	PZ9 (m)	PZ10 (m)	PZ11 (m)	PZ12 (m)	PZ13 (m)	PZ14 (m)
1	03/01/97	582,410	53,862	52,178	27,284	26,543	6,086	17,476	4,958	0,514
2	18/01/97	582,760	55,867	52,679	28,313	29,007	8,194	17,918	5,456	0,514
3	02/02/97	582,804	55,867	52,679	28,251	29,663	7,152	17,811	5,456	0,514
4	17/02/97	581,552	55,867	52,679	28,788	30,569	8,088	17,973	5,456	0,514
5	04/03/97	582,350	54,737	50,843	29,862	31,483	9,922	18,523	5,954	0,514
6	19/03/97	586,450	56,452	52,284	30,770	32,155	10,091	19,193	5,954	0,514
7	03/04/97	594,600	65,693	58,751	34,803	36,944	11,882	26,101	7,802	0,568
8	18/04/97	594,861	64,886	59,692	35,304	37,112	12,909	24,940	8,446	0,514
9	03/05/97	595,218	67,466	62,563	35,995	40,060	13,099	26,612	8,445	1,817
10	18/05/97	594,810	61,653	60,546	34,118	39,397	13,202	26,822	8,445	1,667
11	02/06/97	594,050	60,376	58,690	32,296	37,112	13,094	24,940	7,449	0,615
12	17/06/97	594,559	65,865	55,350	30,079	38,187	11,303	26,305	9,414	2,702
13	02/07/97	594,085	65,925	65,484	34,828	42,562	11,140	27,514	11,045	2,328
14	17/07/97	594,171	65,325	56,322	33,542	41,911	12,259	27,198	12,180	2,594
15	01/08/97	594,460	56,869	50,671	29,790	35,077	14,138	26,454	12,523	2,001
16	16/08/97	594,639	56,830	48,671	30,338	37,265	15,772	26,018	11,776	2,494
17	31/08/97	594,320	61,779	57,286	32,613	41,013	15,257	27,475	9,641	2,757
18	15/09/97	591,780	51,858	48,171	31,795	38,621	14,596	25,935	9,143	4,452
19	30/09/97	589,850	64,151	58,646	32,959	40,212	15,860	25,281	8,684	2,031
20	15/10/97	587,010	62,457	57,304	32,638	39,370	14,596	24,145	8,394	1,983
21	30/10/97	585,763	61,768	56,668	32,296	38,544	14,399	22,746	7,696	1,635
22	14/11/97	583,000	59,882	55,034	31,795	37,509	14,095	21,259	7,586	1,423
23	29/11/97	586,070	61,309	56,457	31,924	37,325	13,689	21,957	7,240	1,662
24	14/12/97	587,150	61,669	56,977	32,197	37,985	13,844	22,630	7,366	1,769
25	29/12/97	587,590	62,904	57,736	32,811	38,889	14,020	23,968	7,926	1,460
26	13/01/98	587,541	62,455	57,448	32,314	38,737	14,520	23,238	7,767	1,316
27	28/01/98	592,410	65,313	59,885	33,545	39,191	14,473	25,429	8,164	1,271
28	12/02/98	591,620	67,598	61,743	33,800	40,811	14,439	27,757	8,747	1,586
29	27/02/98	594,979	67,893	62,196	33,800	42,430	15,097	28,405	9,242	2,233
30	14/03/98	593,278	68,232	62,522	33,800	43,045	16,792	28,425	9,905	2,481
31	29/03/98	594,976	68,430	62,731	33,800	43,145	16,650	28,423	9,510	2,752
32	13/04/98	591,540	66,590	60,894	32,597	42,748	15,797	27,726	8,246	2,233
33	28/04/98	586,436	63,583	58,036	31,105	40,821	15,605	24,201	8,261	2,034
34	13/05/98	585,669	62,513	57,634	30,479	39,952	15,089	23,595	8,357	1,825
35	28/05/98	581,736	59,385	54,610	28,860	37,647	14,475	20,979	7,165	1,910
36	12/06/98	581,059	58,871	53,975	27,862	36,721	13,757	20,027	6,608	2,021
37	27/06/98	580,977	58,657	53,953	27,785	36,177	13,396	19,653	6,251	1,394
38	12/07/98	580,258	57,902	53,187	27,785	35,638	13,307	18,974	6,256	1,130

Na tabela A.2, mostram-se as séries dos piezômetros instalados no núcleo da barragem e das cotas do nível d'água do reservatório.

Tabela	A.2									
N٥	DATA	NA (m)	PZ7(m)	PZ8 (m)	PZ9 (m)	PZ10 (m)	PZ11 (m)	PZ12 (m)	PZ13 (m)	PZ14 (m)
39	27/07/98	580,399	57,871	53,180	27,785	35,602	13,094	18,968	6,153	1,019
40	11/08/98	580,284	57,673	53,180	27,785	35,602	13,098	18,968	5,993	1,019
41	26/08/98	578,784	56,979	52,811	27,754	35,244	12,962	18,661	5,779	1,019
42	10/09/98	577,690	56,025	51,767	27,632	34,316	12,673	17,747	5,587	1,019
43	25/09/98	576,830	55,163	50,856	27,454	33,690	12,409	16,832	5,512	1,019
44	10/10/98	576,890	55,120	50,900	27,427	33,562	12,174	16,621	5,468	1,019
45	25/10/98	578,720	56,685	52,579	27,819	33,793	11,856	17,767	5,423	0,954
46	09/11/98	581,045	59,396	55,376	28,582	34,648	11,696	20,048	5,461	0,810
47	24/11/98	589,720	62,120	58,130	29,497	36,597	12,126	22,763	6,037	0,881
48	09/12/98	591,126	64,065	59,921	30,265	39,301	13,164	25,100	7,152	1,187
49	24/12/98	590,912	64,977	60,208	30,468	41,161	14,156	26,074	7,932	1,323
50	08/01/99	589,249	64,975	59,183	30,037	41,282	14,600	25,445	7,871	1,323
51	23/01/99	588,363	64,887	58,551	29,677	40,566	14,465	24,631	7,431	1,323
52	07/02/99	580,951	65,144	59,066	29,727	39,790	13,933	24,443	7,003	1,323
53	22/02/99	578,806	65,629	60,216	30,004	39,327	13,355	24,789	6,751	1,323
54	09/03/99	589,987	66,200	61,426	30,299	39,529	13,087	25,528	6,825	1,323
55	24/03/99	593,472	66,709	62,128	30,410	40,716	13,468	26,509	7,363	1,399
56	08/04/99	593,003	66,864	62,023	30,291	42,349	14,330	27,313	8,113	1,838
57	23/04/99	592,668	66,248	61,121	30,064	43,007	14,977	27,262	8,427	2,148
58	08/05/99	590,564	65,036	59,806	29,800	42,441	15,157	26,333	8,206	2,133
59	23/05/99	588,166	63,946	58,785	29,511	41,494	15,052	25,120	7,870	1,992
60	07/06/99	587,020	63,343	58,357	29,229	40,751	14,833	24,183	7,693	1,874
61	22/06/99	587,528	62,910	58,046	29,013	40,269	14,617	23,964	7,632	1,810
62	07/07/99	586,580	62,511	57,601	28,859	39,958	14,457	24,323	7,552	1,767
63	22/07/99	586,070	62,300	57,169	28,707	39,673	14,331	24,408	7,255	1,653
64	06/08/99	585,380	62,221	56,845	28,560	39,355	14,206	24,008	6,804	1,493
65	21/08/99	584,580	61,985	56,641	28,476	39,045	14,048	23,538	6,503	1,421
66	05/09/99	584,097	61,397	56,436	28,455	38,735	13,843	23,237	6,469	1,463
67	20/09/99	583,340	60,451	55,937	28,306	38,350	13,611	22,970	6,459	1,434
68	05/10/99	581,590	59,199	54,915	27,884	37,810	13,368	22,574	6,254	1,191
69	20/10/99	579,870	57,871	53,681	27,384	37,112	13,094	21,954	5,954	0,918
70	04/11/99	577,916	56,750	52,666	27,049	36,346	12,766	21,099	5,719	0,836
71	19/11/99	579,450	56,112	52,129	26,901	35,693	12,403	20,249	5,568	0,910
72	04/12/99	580,260	56,232	52,285	26,908	35,389	12,031	19,707	5,483	1,045
73	19/12/99	581,379	57,372	53,339	27,040	35,672	11,682	19,769	5,449	1,145
74	03/01/00	581,570	59,053	54,989	27,361	36,380	11,488	20,424	5,477	1,156
75	18/01/00	582,500	59,672	56,159	28,080	36,752	11,743	21,227	5,619	1,094
76	02/02/00	583,750	59,170	56,664	29,096	36,785	12,448	22,113	5,937	1,013
77	17/02/00	589,320	60,029	57,813	29,816	37,734	13,128	23,575	6,498	1,025

Tabela	Tabela A.2									
N٥	DATA	NA (m)	PZ7(m)	PZ8 (m)	PZ9 (m)	PZ10 (m)	PZ11 (m)	PZ12 (m)	PZ13 (m)	PZ14 (m)
78	03/03/00	589,860	63,712	60,391	29,881	40,281	13,559	25,859	7,280	1,202
79	18/03/00	594,928	67,633	63,052	29,767	42,874	13,979	27,980	7,956	1,485
80	02/04/00	593,265	69,366	64,389	29,652	44,141	14,399	29,056	8,278	1,798
81	17/04/00	593,871	68,699	63,830	29,491	44,142	14,819	29,003	8,311	2,095
82	02/05/00	591,959	65,756	60,967	28,998	43,128	15,040	27,852	8,152	2,331
83	17/05/00	585,463	61,638	56,868	28,117	41,352	14,777	25,778	7,710	2,335
84	01/06/00	577,350	58,382	54,019	27,132	39,092	14,126	23,157	6,742	1,859
85	16/06/00	577,863	56,584	52,812	26,375	36,951	13,270	20,803	5,627	1,281
86	01/07/00	577,727	55,874	52,316	26,133	35,638	12,419	19,652	5,052	1,274
87	16/07/00	577,950	55,833	52,173	26,247	35,133	11,708	19,458	4,955	1,654
88	31/07/00	578,417	56,069	52,297	26,418	35,114	11,230	19,517	4,972	1,908
89	15/08/00	578,360	56,486	52,667	26,590	35,434	10,995	19,659	5,006	1,927
90	30/08/00	584,850	57,126	53,285	26,764	36,026	10,974	19,953	5,082	1,791
91	14/09/00	593,577	58,029	54,155	26,969	36,825	11,140	20,471	5,224	1,578
92	29/09/00	591,487	59,233	55,281	27,244	37,766	11,463	21,283	5,458	1,366
93	14/10/00	586,007	60,780	56,667	27,627	38,781	11,918	22,462	5,807	1,234
94	29/10/00	584,414	62,687	58,304	28,149	39,805	12,469	24,053	6,290	1,253
95	13/11/00	587,791	64,700	60,040	28,749	40,753	13,025	25,800	6,824	1,397
96	28/11/00	589,582	66,392	61,633	29,306	41,526	13,458	27,257	7,267	1,579
97	13/12/00	590,685	67,332	62,838	29,698	42,029	13,636	27,972	7,474	1,709
98	28/12/00	593,401	67,134	63,409	29,804	42,166	13,447	27,536	7,317	1,727
99	12/01/01	593,296	66,254	63,111	29,525	41,880	13,131	26,357	7,005	1,727
100	27/01/01	589,873	65,342	61,748	28,808	41,164	13,206	25,521	7,001	1,727
101	11/02/01	585,318	64,231	59,640	27,932	40,285	13,549	25,058	7,021	1,727
102	26/02/01	582,773	62,053	57,534	27,388	39,699	13,627	24,325	6,385	1,727
103	13/03/01	586,342	60,517	56,425	27,301	39,727	13,599	23,843	5,811	1,738
104	28/03/01	588,100	60,978	56,712	27,574	40,401	13,704	24,094	5,939	1,845
105	12/04/01	592,350	62,596	57,883	28,030	41,455	13,880	24,810	6,486	2,008
106	27/04/01	592,840	64,389	59,365	28,490	42,602	14,040	25,674	7,103	2,160
107	12/05/01	589,930	65,370	60,582	28,773	43,557	14,099	26,369	7,443	2,233
108	27/05/01	588,480	65,387	61,081	28,755	44,077	14,009	26,651	7,449	2,185
109	11/06/01	588,930	65,387	61,113	28,648	44,184	13,928	26,717	7,449	2,128
110	26/06/01	590,250	65,387	61,194	28,788	43,997	14,095	26,930	7,449	2,233
111	11/07/01	591,140	65,387	61,591	29,245	43,635	14,532	27,390	7,449	2,570
112	26/07/01	590,860	65,339	61,599	29,065	43,212	14,428	27,203	7,319	2,823
113	10/08/01	590,100	65,018	60,963	28,365	42,788	13,761	26,510	6,632	2,799
114	25/08/01	588,900	64,632	60,171	28,286	42,411	13,518	26,432	6,362	2,556

Tabela	A.2									
N٥	DATA	NA (m)	PZ7(m)	PZ8 (m)	PZ9 (m)	PZ10 (m)	PZ11 (m)	PZ12 (m)	PZ13 (m)	PZ14 (m)
115	09/09/01	588,170	64,278	59,529	28,286	42,209	13,797	26,432	6,649	2,182
116	24/09/01	587,570	63,931	59,202	28,286	42,145	14,084	26,432	6,942	1,778
117	09/10/01	586,940	63,648	59,329	28,286	42,144	13,962	26,432	6,798	1,441
118	24/10/01	588,680	63,997	59,908	28,286	42,144	13,657	26,432	6,495	1,245
119	08/11/01	587,560	65,633	60,806	28,376	42,144	13,598	26,637	6,532	1,246
120	23/11/01	589,590	67,992	61,725	28,733	42,144	13,813	27,457	6,917	1,400
121	08/12/01	591,480	69,726	62,642	29,129	42,144	14,072	28,402	7,343	1,595
122	23/12/01	589,810	69,472	63,472	29,310	42,144	14,139	28,923	7,495	1,720
123	07/01/02	593,240	66,606	64,045	29,051	42,144	13,825	28,618	7,147	1,727
124	22/01/02	594,510	65,889	64,187	28,423	42,144	13,346	28,402	6,852	1,727
125	06/02/02	589,810	65,889	63,724	27,829	42,144	13,158	28,721	7,019	1,727
126	21/02/02	594,180	65,889	62,481	27,842	42,144	13,731	28,920	7,532	1,747
127	08/03/02	589,100	65,889	60,972	28,340	42,144	14,718	28,920	7,982	2,307
128	23/03/02	590,780	65,889	60,625	28,173	42,144	14,650	28,920	7,779	2,129
129	07/04/02	594,520	65,889	61,068	27,815	42,144	14,159	28,920	7,463	1,745
130	22/04/02	592,330	66,081	61,681	27,892	42,144	14,093	28,920	7,449	1,727
131	07/05/02	591,120	66,616	62,116	28,212	42,144	14,416	28,920	7,449	1,727
132	22/05/02	591,100	67,061	62,156	28,286	42,144	14,699	28,920	7,449	1,727
133	06/06/02	591,060	67,143	61,879	28,286	42,144	14,732	28,920	7,449	1,727
134	21/06/02	589,760	66,780	61,680	28,286	42,144	14,542	28,906	7,426	1,727
135	06/07/02	588,540	66,096	61,707	28,286	42,144	14,209	28,567	7,011	1,727
136	21/07/02	589,730	65,605	61,567	28,211	42,144	13,894	28,192	6,951	1,727
137	05/08/02	590,110	65,428	61,280	27,954	42,144	13,680	27,989	6,951	1,727
138	20/08/02	589,340	65,389	61,185	27,786	42,144	13,595	27,925	6,951	1,727
139	04/09/02	588,050	65,357	61,509	27,785	42,144	13,595	27,925	6,951	1,727
140	19/09/02	587,000	65,394	61,901	27,785	42,144	13,595	27,925	6,951	1,727
141	04/10/02	586,450	65,385	61,837	27,785	42,144	13,595	27,925	6,951	1,727
142	19/10/02	584,566	64,530	60,795	27,722	42,144	13,565	27,807	6,922	1,697
143	03/11/02	583,018	63,076	58,929	26,895	42,144	13,155	26,175	6,512	1,283
144	18/11/02	584,200	61,621	57,427	26,353	41,801	12,807	24,792	6,166	0,932
145	03/12/02	582,080	60,166	56,374	26,275	40,852	12,623	24,060	5,983	0,745
146	18/12/02	584,045	59,645	55,785	26,442	40,179	12,716	23,748	5,954	0,840
147	02/01/03	592,340	59,961	55,613	26,678	40,016	12,969	23,753	5,954	1,095
148	17/01/03	593,866	60,397	55,696	26,783	40,145	13,094	23,963	5,954	1,222
149	01/02/03	591,875	60,518	55,918	26,783	40,402	13,094	24,265	5,954	1,222
150	16/02/03	591,812	60,389	56,168	26,783	40,624	13,094	24,441	5,954	1,222
151	03/03/03	593,920	60,160	56,419	26,783	40,687	13,094	24,307	6,091	1,222
152	18/03/03	593,290	59,893	56,669	26,783	40,639	13,094	23,969	6,427	1,222

Tabela A.2 Séries históricas de cargas de pressão dos piezômetros instalados no núcleo da barragem Corumbá I e do nível d'água a montante do reservatório

SERIES	VZ	PZ15	NA
Nº Observações	137	137	137
Média	141,06	23,17	587,39
Mediana	143,08	23,15	588,33
Máximo	306,83	31,39	594,81
Mínimo	11,34	16,93	577,00
Desvío padrão	78,47	3,19	4,99

Tabela A.3 Estatística básica das séries vazão (VZ), carga de pressão no piezômetro PZ15 e cotas do nível d'água do reservatório a montante (NA)

SERIES	PZ7	PZ8	PZ9	PZ10	NA
Nº Observações	152	152	152	152	152
Média	62,50	58,01	29,10	39,53	587,65
Mediana	63,21	58,33	28,47	40,28	588,51
Máximo	69,73	65,48	36,00	44,18	595,22
Mínimo	51,86	48,17	26,13	26,54	576,83
Desvio padrão	3,97	3,79	2,11	3,30	5,15

Tabela A.4 Estatística básica das leituras de carga de pressão nos piezômetros PZ7, PZ8, PZ9, PZ10 e das cotas do nível d'água do reservatório a montante.

APÊNDICE B

B.1. Previsão da Vazão por Box & Jenkins.

Dados:	
Fonte dos dados:	Furnas Centrais Elétricas (tabela A.1).
Série:	Vazão nos drenos 3 e 4 da barragem Corumbá I
Período:	13/Agosto / 1998 a 15/Março/ 2003
Unidade:	lit/min
Periodicidade:	Quinzenal.
Software utilizado	E-views vs 4.0.
Análise	Univariado
Previsão	Um horizonte

Conta-se com um total de 137 dados, dos quais 104 foram reservados para a fase de modelagem e os demais para a etapa de avaliação do desempenho do modelo de Box & Jenkins.

B.1.1. Identificação da série.

a) Gráfico da série de vazão.

Como primeiro passo requer-se que a série de interesse seja estacionária.

Figura B.1 Série de vazão para o conjunto de modelagem (104 primeiros valores da série histórica).

Pelo gráfico da série de vazão, observamos antecipadamente que a mesma apresenta média e variância constantes no tempo.

Um aspecto importante a ser levado em conta em previsões de séries temporais é a constatação de que as incertezas aumentam com o acréscimo do horizonte de previsão; quanto mais distante o futuro, maior a incerteza dos resultados previstos. Nas análises dessa dissertação foi adotado um horizonte, isto é, as previsões são feitas com somente um passo à frente.

c) Teste da Raiz Unitária ($|\alpha_1| < 1$ para condição de estacionariedade para um AR(1))

O teste mais usual para determinar a estacionariedade de uma série temporal consiste na aplicação do chamado teste de Dickey–Fuller Ampliado (ADF test).

Hipótese nula (H_o)

H_o: Existe RU (raiz unitária, $|\alpha_1| = 1$)

Se $|\mathbf{T}_{avaliado}| > |\mathbf{T}_{tabela}|$ então rejeita-se H_o (hipótese nula)

Da tabela abaixo, |-3.613777| > |-2.8906| com 5% de significância. Logo não existe raiz unitária (RU) e a série é admitida estacionária.

ADF Test Statistic	-3.613777	1%	Critical Value*	-3.4972
		5%	Critical Value	-2.8906
		10%	Critical Value	-2.5821
*Mackinnon critical val	ues for rejec	tion o	of hypothesis of a unit	root.

Tabela B.1 Teste de Dickey–Fuller Ampliado (ADF test) para a série de vazão (E-views 4.0)

B.1.2. Análise do Correlograma (Identificação do modelo)

Para identificar o modelo analisamos as funções de autocorrelação simples (ACF) e de autocorrelação parcial (PACF).

ncluded observation	is: 104	
Autocorrelation	Partial Correlation	AC PAC
		1 0.822 0.822 2 0.596 -0.245 3 0.370 -0.124 4 0.166 -0.097 5 0.027 0.028 6 -0.067 -0.041 7 -0.136 -0.072 8 -0.210 -0.145 9 -0.270 -0.057 10 -0.285 0.036 11 -0.262 0.014 12 -0.218 -0.032 13 -0.175 -0.061 14 -0.162 -0.109 15 -0.137 0.048 16 -0.086 0.077 17 -0.042 -0.056 18 -0.019 -0.103 19 0.024 -0.089 20 0.034 -0.066

Date: 08/06/03 Time: 16:23

Figura B.2 Funções de autocorrelação simples e parcial da série de vazão (E-views 4.0).

Observando o comportamento da ACF na figura B.2, verifica-se que a autocorrelação decresce exponencialmente, indicando que a série é estacionária na média, conforme observado na figura B.1. O comportamento da PACF mostra um corte no 'lag 1', podendo-se inferir que se trata de um processo auto-regressivo de ordem p=1, isto é, AR(1).

Nesta fase, identificam-se os valores de p (ordem da autoregressão) e q (ordem das médias móveis) do modelo ARMA (p,q).

B.1.3. Modelo autoregressivo AR(1)

$$Vz_t = 21,04082 + 0,822179 * Vz_{t-\Lambda t}$$
(B.1)

onde, a variável Vz, no instante t, é uma função linear da mesma variável atrasada em um período $Vz_{t-\Delta t}$, ou seja, o valor da vazão no tempo t- Δt . Onde $\alpha_1 = 0.822179 < 1$

B.1.4. Verificação do desempenho do modelo AR(1)

a) Teste de significância dos parâmetros (t-student)

Para um nível de confiança do 95%, a hipótese nula é:

Ho: C(1) = 0

Então, se **Prob.** < 0.05, rejeita-se Ho e o coeficiente C(1) da variável $Vz_{t-\Delta t}$ é significativo em 5%.

Dependent Variable: VZ								
Method: Least Squares								
04								
: 103 after a	djusting end	points						
Coefficient	Std. Error	t-Statistic	Prob.					
21.04082	7.852288	2.679579	0.0086					
0.822179	0.053846	15.26921	0.0000					
0.697739	Mean depe	ndent var	123.6122					
0.694747	S.D. depen	dent var	74.69074					
11 26612	Akaiko info	critorion	10 20720					
41.20045	Andine IIII	CITCETION	10.29720					
41.20043 171994.7	Schwarz c	riterion	10.34836					
171994.7 -528.3059	Schwarz c F-statistic	riterion	10.34836 233.1488					
	 v2 es l04 coefficient 21.04082 0.822179 0.697739 0.694747 41.26643 	 V2 es 104 103 after adjusting end; Coefficient Std. Error 21.04082 7.852288 0.822179 0.053846 0.697739 Mean depe 0.694747 S.D. depen 41.26643 Ataiko infer 	V2 es 104 s: 103 after adjusting endpoints Coefficient Std. Error t-Statistic 21.04082 7.852288 2.679579 0.822179 0.053846 15.26921 0.697739 Mean dependent var 0.694747 S.D. dependent var 41.26643 Akaika info aritarian					

Tabela B.2 Teste de significância dos parâmetros para o modelo AR(1) na previsão da vazão.

Os critérios de Akaike e Schwarz são úteis para comparações com outros modelos.

b) Análise do resíduo

Nesta fase, verifica-se se o resíduo é um ruído branco (RB).

b.1) Análise dos resultados gráficos

O gráfico da figura B.3 mostra a série experimental das vazões, a previsão pelo modelo de Box & Jenkins e a distribuição temporal dos resíduos. Nesta última, observa-se que alguns "picos" caem fora da faixa de significância estabelecida em 5% mas, em geral, o comportamento é satisfatório.

Figura B.3 Representação gráfica das séries de vazão, do modelo ajustado AR(1) e dos resíduos.

b.2) Análise do correlograma (quadrado dos resíduos)

Mostra as funções de autocorrelação simples e parcial do quadrado dos resíduos (erros) da equação B.1 estimada. No caso, observa-se que não existe autocorrelação com 5% de significância.

Date: 08/06/03 Tin Sample: 2 104 Included observation	ne: 18:52 ns: 103	
Autocorrelation	Partial Correlation	AC PAC
		$\left \begin{array}{ccccc} 1 & 0.060 & 0.060 \\ 2 & 0.088 & 0.084 \\ 3 & -0.018 & 0.028 \\ 4 & 0.001 & -0.004 \\ 5 & -0.018 & -0.014 \\ 6 & -0.055 & -0.054 \\ 7 & 0.049 & 0.058 \\ 8 & -0.094 & -0.093 \\ 9 & -0.123 & -0.126 \\ 10 & -0.113 & -0.083 \\ 11 & -0.109 & -0.089 \\ 12 & -0.100 & -0.088 \\ 13 & -0.072 & -0.088 \\ 13 & -0.072 & -0.088 \\ 13 & -0.072 & -0.088 \\ 13 & -0.072 & -0.088 \\ 13 & -0.072 & -0.088 \\ 13 & -0.072 & -0.088 \\ 13 & -0.072 & -0.088 \\ 13 & -0.072 & -0.088 \\ 13 & -0.029 & -0.055 \\ 18 & -0.041 & -0.079 \\ 19 & 0.149 & 0.117 \\ 20 & -0.026 & -0.088 \end{array}\right.$

Figura B.4 Correlograma do quadrado dos resíduos obtidos pelo modelo AR(1) na modelagem da vazão.

b.3) Análise da variância dos resíduos (teste de ARCH)

Regra de decisão:

Hipótese nula

Ho: variância é constante (homocedasticidade)

- Se (Prob < 0.05) heterocesdasticidade, então rejeita-se a Ho
- Se (Prob > 0.05) homocedasticidade, então aceita-se a Ho

No caso, como Prob(0.545692) > 0.05 então aceita-se a Ho, considerandose a variância do resíduo constante.

ARCH Test.								
F-statistic	0.367791	Probability		0.545585				
Obs*R-squared	0.373772	Probability		0.540956				
Test Equation:								
Dependent Variable: RESID ² ; Method: Least Squares								
Sample(adjusted): 3 104								
Included observations	: 102 after ad	djusting endpo	pints					
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
С	1576.154	425.6524	3.702914	0.0003				
RESID ² (-1)	0.060571	0.099877	0.606457	0.5456				
R-squared	0.003664	Mean depen	dent var	1678.259				
Adjusted R-squared	-0.006299	S.D. depende	ent var	3935.926				
S.E. of regression	3948.302	Akaike info criterion		19.41937				
Sum squared resid	1.56E+09	Schwarz criterion		19.47084				
Log likelihood	-988.3880	F-statistic		0.367791				
Durbin-Watson stat	2.008718	Prob(F-stati	stic)	0.545585				

Tabela B.3 Teste de ARCH para avaliação da variância dos resíduos obtidos pelo ajuste do modelo AR(1) na previsão de vazão.

A estatística de Durbin-Watson (DW) indica o grau de correlação serial existente nos resíduos, com valores entre 0 e 2 indicando correlação positiva e valores entre 2 e 4 correlação negativa. O ideal é que DW seja 2, isto é, não exista correlação. Neste estudo DW=2,008718, podendo-se portanto inferir que o modelo AR(1) capturou toda a estrutura da série temporal analisada.

B.1.5. Previsão

ADCU Toot

As estimativas para os conjuntos de validação e teste foram pontuais e por intervalo, em outras palavras, definiram-se intervalos de confiança de 95% de probabilidade. Os resultados da previsão são mostrados no item 5.1.3 e nas figuras 5.1 e 5.2.

B.2. Previsão das cargas de pressão no piezômetro PZ8 por Box & Jenkins.

Dad	os:
-----	-----

Instrumento	PZ8
Localização	Núcleo da barragem Corumbá I
Unidade	m
Fonte de dados	Furnas Centrais Elétricas (tabela A.3)
Software utilizado	E-views v. 4.0.
Periodicidade da série	Quinzenal

B.2.1. Identificação da série

a) Gráfico da série do piezômetro PZ8.

A figura B.5 mostra a variação temporal das 145 primeiras leituras das cargas de pressão no PZ8 entre 03/01/1997 a 03/12/2002. Nota-se em primeira análise que a série é aproximadamente constante na sua média e variância.

Figura B.5 Série das cargas de pressão no piezômetro PZ8.

Os 17 primeiros valores da série foram desconsiderados nas análises deste trabalho por apresentarem fortes variações no tempo, provavelmente relacionadas com a estabilização do regime de fluxo após o primeiro enchimento do reservatório da barragem Corumbá-I. O conjunto de modelagem contou então com 80 valores de cargas de pressão entre 12/07/98 e 08/11/2001, reservando-se as demais leituras de instrumentação para as etapas de validação e teste das previsões.

b) Definição do horizonte de previsão.

Adotou-se o mesmo critério da série de vazões, isto é, previsões com apenas um horizonte.

c) Teste da Raiz Unitária

Condições de estacionariedade para um AR(2)

 $\alpha_2 + \alpha_1 < 1$ $\alpha_2 - \alpha_1 < 1$ $-1 < \alpha_2 < 1$

De maneira similar ao caso da análise das vazões,

Hipótese nula

Ho: Existe RU

Se $|T_{avaliado}| > |T_{tabela}|$ então rejeita-se Ho

Da tabela abaixo constata-se que |-4,725776| > |-2.8903| com 5% de significância, ou seja, RU (raiz unitária) não existe e a série é, portanto, estacionária.

ADF Test Statistic	-4.725776	1%	Critical Value*	-3.4965
		5%	Critical Value	-2.8903
		10%	Critical Value	-2.5819
*mackinnon critical val	ues for rejec	tion o	of hypothesis of a unit	root.

Tabela B.4 Teste de Dickey-Fuller Ampliado (ADF test) para valores do piezômetro PZ8.

Date: 08/06/03 Time: 20:38 Sample: 20 119 Included observations: 100						
Autocorrelation	Partial Correlation		AC	PAC		
		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0.926 0.755 0.532 0.303 0.099 -0.065 -0.196 -0.299 -0.365 -0.394 -0.339 -0.269 -0.339 -0.269 -0.186 -0.096 -0.096 0.115 0.126 0.105	0.92% -0.72% -0.04% -0.06% -0.06% -0.06% -0.06% -0.00% -0.09% -0.09% -0.09% -0.09% -0.09% -0.09% -0.09% -0.044 -0.06% -0.06% -0.06% -0.06% -0.06% -0.06% -0.06% -0.06% -0.06% -0.06% -0.044 -0.06% -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.045 -0.045 -0.045 -0.045 -0.045 -0.045 -0.045 -0.045 -0.046 -0.045 -0.		

B.2.2. Análise do correlograma para Identificação do modelo

Figura B.6 Funções de autocorrelação simples e parcial da série para PZ8. (E-views 4.0).

A ACF decresce exponencialmente indicando que a série é estacionária na média, conforme observado anteriormente no gráfico da série de carga de pressão; a PACF apresenta um corte brusco no lag 2, indicando tratar-se de um modelo auto-regressivo de ordem 2 AR(2).

B.2.3. Modelo autoregressivo AR(2)

Para obtenção dos coeficientes c(1) e c(2) do modelo, utiliza-se o método dos mínimos quadrados (minimização do quadrado dos resíduos), obtendo-se:

$$Pz8_{t} = 5,790003 + 1,317340 * Pz8_{t-\Lambda t} - 0,418152 * Pz8_{t-2\Lambda t}$$
(B.2)

onde a variável PZ8, no instante t, é uma função linear da mesma variável atrasada nos tempos PZ8_{t- Δt} e PZ_{t- $2\Delta t$} com Δt = 15 dias. Onde α_1 = 1,317340 e α_2 = -0,418152.

Validando-se enfim os coeficientes,

$$\alpha_2 + \alpha_1 = 0,899582 < 1$$

 $\alpha_2 - \alpha_1 = -1,73589 < 1$
 $-1 < \alpha_2 = -0,41815 < 1$

B.2.4. Verificação do desempenho do modelo

a) Significância dos parâmetros (t-student)

Para um nível de confiança de 95% a hipótese nula é

Ho: C(1) = 0

Então, se: Prob. < 0.05. rejeita-se a Ho.

Da tabela abaixo, observa-se que a Ho é rejeitada e que os coeficientes das variáveis $PZ8_{t-\Delta t}$ e $PZ_{t-2\Delta t}$ são significativos em 5%.

Dependent Variable: PZ8; Method: Least Squares Sample: 20 119; Included observations: 100

Variable	Coefficient	Std. Error t-Statistic		Prob.
C	5.790003	1.859315	3.114052	0.0024
Pz8 _{t-∆t}	1.317340	0.069157	19.04866	0.0000
PZ8 _{t-2∆t}	-0.418152	0.066822	-6.257709	0.0000
R-squared	0.903022	Mean dependent var		57.72830
Adjusted R-squared	0.901022	S.D. depend	3.481860	
S.E. of regression	1.095418	Akaike info	criterion	3.049691
Sum squared resid	116.3943	Schwarz criterion		3.127846
Log likelihood	-149.4845	F-statistic		451.6125
Durbin-Watson stat	1.055984	Prob(F-statis	stic)	0.000000

Tabela B.5 Teste de significância dos parâmetros para o modelo AR(2) relativo à série de cargas de pressão do piezômetro PZ8.

b) Análise do resíduo

Constata-se que o resíduo é um ruído branco (RB).

b.1) Análise do resultados gráficos

O gráfico da figura B.3 mostra a série experimental das cargas de pressão no piezômetro PZ8, a previsão pelo modelo de Box & Jenkins e a distribuição temporal dos resíduos. Nesta última, observa-se que alguns "picos" caem fora da faixa de significância estabelecida em 5% mas, em geral, o comportamento é satisfatório.

Figura B.7 Representação gráfica das séries temporais de cargas de pressão, previsão pelo modelo AR(2) e distribuição dos resíduos para o piezômetro PZ8.

b.2) Análise do correlograma

Mostra as funções de autocorrelação simples e parcial do quadrado dos resíduos. No caso, observa-se que existe correlação.

Date: 08/06/03 Tin Sample: 20 119 Included observatio	me: 21:02 ns: 100		
Autocorrelation	Partial Correlation	AC	PAC
		1 0.016 2 0.027 3 0.073 4 0.006 5 0.013 6 -0.024 7 0.143 8 0.038 10 -0.018 10 -0.013 11 -0.012 13 0.622 14 -0.013 15 0.198 16 -0.034 17 -0.040 18 0.006 19 -0.016 20 -0.026	0.018 0.027 0.003 0.009 -0.030 0.143 0.030 -0.044 -0.044 -0.044 -0.045 -0.036 0.183 -0.043 -0.043 -0.044 -0.020 -0.044

Figura B.8 Correlograma do quadrado dos resíduos obtidos pelo modelo AR(2) na série temporal das cargas de pressão no piezômetro PZ8.

b.3) Análise da variância dos resíduos (Teste de ARCH)

Hipótese nula H_o: variância é constante (homocedasticidade)

- Se (Prob < 0.05) heterocesdasticidade, então rejeita-se a H_o
- Se (Prob > 0.05) homocedasticidade, então aceita-se a H_o

F-statistic Probability 2.703346 0.072135 Obs*R-squared Probability 0.071465 5.277097 Test Equation: Method: Least Squares Dependent Variable: RESID²; Sample(adjusted): 22 119 Included observations: 98 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. С 0.647949 0.171510 3.777910 0.0003 RESID²⁽⁻¹⁾ 0.222585 0.099688 2.232815 0.0279 R-squared 0.053848 Mean dependent var 0.866530 Adjusted R-squared 0.033929 S.D. dependent var 1.424924 S.E. of regression 1.400542 Akaike info criterion 3.541730 Sum squared resid 186.3442 Schwarz criterion 3.620861 Log likelihood -170.5448 F-statistic 2.703346 **Durbin-Watson stat** Prob(F-statistic) 1.956428 0.072135

Como **Prob(0,072135)** > **0.05** então a H_o é aceita. Logo, a variância é admitida constante (homocedasticidade).

Tabela B.6 Teste de ARCH para avaliação da variância dos resíduos obtidos no modelo AR(2) para o piezômetro PZ8.

B.2.5. Previsão.

As estimativas para os conjuntos de validação e teste foram pontuais e por intervalo, em outras palavras, definiram-se intervalos de confiança ao 95% de probabilidade. Os resultados das previsões são mostrados no item 5.2.3 e nas figuras 5.7 e 5.8.

APÊNDICE C

Nas análises para previsão da vazão através da fundação de solo residual na ombreira esquerda da barragem Corumbá I foram considerados 10 modelos de RNA, cada um com cinco diferentes topologias, descritas nas tabelas C1 a C10. Nestas tabelas são também listados os erros de modelagem (MAPE, RMSE) e os valores do coeficiente U de Theil para as fases de treinamento e validação das redes neurais. Para obtenção dos menores erros, cada topologia de rede neural foi randomicamente reinicializada 10 vezes.

Nas tabelas C.1 a C.10 os valores em negrito se referem à melhor topologia para cada um dos modelos de RNA testados.

N.	Treinamento		Validação			
Neurônios	MAPE (%)	RMSE (l/min)	U	MAPE (%)	RMSE (l/min)	U
2	35,119	41,067	0,953	10,297	34,313	1,028
3	27,266	41,440	0,963	8,859	27,756	0,829
5	26,692	39,688	0,924	10,547	33,846	1,009
8	27,128	39,285	0,912	10,059	32,892	0,982
10	30,166	39,688	0,921	10,119	33,133	0,992

Tabela C.1 Desempenho da RNA I para modelagem da vazão.

N.	Treinamento		Validação			
Neurônios	MAPE (%)	RMSE (l/min)	U	MAPE (%)	RMSE (l/min)	U
2	42,556	43,145	1,002	8,018	32,158	0,931
3	55,490	44,774	1,041	7,098	29,039	0,839
5	38,015	38,259	0,887	6,575	33,846	0,980
8	42,962	37,841	0,879	7,562	33,610	0,9752
10	45,798	42,213	0,979	8,267	32,158	0,929
15	34,000	30,897	0,719	6,894	32,158	0,934

Tabela C.2 Desempenho da RNA II para modelagem da vazão.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (l/min)	U	MAPE (%)	RMSE (l/min)	U
2	38,579	39,082	0,905	9,381	33,133	0,993
3	49,810	42,588	0,984	9,001	34,773	1,040
5	35,569	41,067	0,948	8,665	34,544	1,033
8	32,203	39,285	0,907	9,340	33,846	1,009
10	34,055	35,899	0,830	10,829	39,688	1,183

Tabela C.3 Desempenho da RNA III para modelagem da vazão.

N.	Treir	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (l/min)	U	MAPE (%)	RMSE (l/min)	U	
2	43,068	42,960	1,003	9,075	29,581	0,860	
3	44,590	38,672	0,904	7,277	30,114	0,871	
5	47,490	43,512	1,015	7,936	27,921	0,814	
8	42,442	39,888	0,931	6,974	32,158	0,929	
10	43,900	40,873	0,952	7,654	30,897	0,893	

Tabela C.4 Desempenho da RNA IV para modelagem da vazão.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (l/min)	U	MAPE (%)	RMSE (l/min)	U
2	29,797	35,676	0,868	10,606	34,544	1,031
3	33,814	36,774	0,907	10,203	35,228	1,044
5	26,376	38,259	0,888	9,546	33,846	1,010
8	25,721	34,313	0,800	9,731	30,638	0,915
10	25,343	34,080	0,794	9,395	34,773	1,040

Tabela C.5 Desempenho da RNA V para modelagem da vazão.

N.	Treir	Treinamento				
Neurônios	MAPE (%)	RMSE (l/min)	U	MAPE (%)	RMSE (l/min)	U
2	38,513	36,339	0,843	8,491	31,910	0,923
3	41,462	40,481	0,938	10,190	30,897	0,893
5	59,008	45,653	1,060	8,475	33,133	0,958
8	35,116	35,453	0,823	8,313	36,120	1,046
10	32,907	34,313	0,794	8,480	33,372	0,971

Tabela C.6 Desempenho da RNA VI para modelagem da vazão.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (l/min)	U	MAPE (%)	RMSE (l/min)	U
2	26,050	33,846	0,762	10,298	35,453	1,037
3	25,514	33,133	0,746	10,822	34,544	1,009
5	40,544	43,695	0,985	9,297	32,405	0,950
8	26,892	34,080	0,769	10,307	35,453	1,033
10	20,075	28,013	0,631	8,573	27,508	0,804

Tabela C.7 Desempenho da RNA VII para modelagem da vazão.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (l/min)	U	MAPE (%)	RMSE (l/min)	U
2	84,743	54,253	1,278	9,859	35,228	0,995
3	60,834	43,512	1,025	10,380	37,205	1,050
5	43,250	42,401	0,999	10,709	39,285	1,109
8	43,641	40,481	0,954	10,243	32,405	0,914
10	33,537	35,453	0,833	10,302	30,377	0,855

Tabela C.8 Desempenho da RNA VIII para modelagem da vazão.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (l/min)	U	MAPE (%)	RMSE (l/min)	U
2	37,053	37,841	0,880	10,040	33,133	0,988
3	51,355	40,086	0,930	9,762	33,133	0,991
5	31,304	36,558	0,851	9,041	32,405	0,966
8	27,291	36,774	0,856	9,804	33,846	1,008
10	27,641	35,899	0,834	9,584	33,610	1,005

Tabela C.9 Desempenho da RNA IX para modelagem da vazão.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (l/min)	U	MAPE (%)	RMSE (l/min)	U
2	46,085	41,834	1,002	10,114	32,405	0,922
3	23,491	34,080	0,817	12,710	44,774	1,276
5	74,216	76,518	1,833	13,833	30,377	0,865
8	32,229	42,213	1,013	11,576	36,120	1,032
10	33,990	33,846	0,810	8,854	34,773	0,991

Tabela C.10 Desempenho da RNA X para modelagem da vazão.

APÊNDICE D

D.1. Previsão por RNA das cargas de pressão no piezômetro PZ8

Modelos neurais considerados e variáveis de entrada:

Modelo Neural	Entradas
RNA8 I	$Pz8_{t-\Delta t}$
RNA8 II	$Pz8_{t-\Delta t}, Pz8_{t-19\Delta t}$
RNA8 III	$Pz8_{t-\Delta t}, Pz8_{t-18\Delta t}, Pz8_{t-19\Delta t}$
RNA8 IV	$Pz8_{t-\Delta t}, Pz8_{t-\Delta t}$
RNA8 V	$Pz8_{t-\Delta t}, NA_{t-\Delta t}$
RNA8 VI	$Pz8_{t-\Delta t}, Pz8_{t-19\Delta t}, NA_{t-\Delta t}, NA_{t-19\Delta t}$
RNA8 VII	$Pz8_{t-\Delta t}, Pz8_{t-18\Delta t}, Pz8_{t-19\Delta t}, Pz8_{t-20\Delta t}, NA_{t-\Delta t}, NA_{t-18\Delta t}, NA_{t-19\Delta t}, NA_{t-20\Delta t}$

Tabela D.1 Modelos de redes neurais considerados para o piezômetro pneumático PZ8.

As entradas referem-se aos padrões ou variáveis explicativas, sendo as siglas identificadas na tabela 5.7.

O desempenho das diversas topologias consideradas é mostrado nas tabelas D.2 a D.8, onde os valores em negritos se referem à melhor configuração dentre as testadas em cada modelo de RNA. A tabela D.9 apresenta em resumo das melhores topologias (arquiteturas de rede).

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	2,928	2,361	0,918	1,001	0,926	1,084
3	2,457	2,172	0,844	1,179	0,926	1,166
5	2,374	2,012	0,797	1,139	0,861	1,117
8	2,284	1,974	0,782	1,137	0,916	1,188
10	2,539	2,172	0,873	1,069	0,655	1,029

Tabela D.2 Desempenho do modelo RNA8 I.

	N.	Treinamento			Validação		
1	Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
	2	2,044	1,456	1,121	1,294	0,258	1,288
	3	2,469	1,779	1,369	1,190	0,872	1,109
	5	2,466	1,762	1,356	0,882	0,636	0,809
	8	1,513	1,161	0,894	1,101	0,821	1,044
	10	1,755	1,317	1,014	1,034	0,873	1,112

Tabela D.3 Desempenho do modelo RNA8 II.

N.	Trein	Treinamento				
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	2,095	1,492	1,148	1,366	1,061	1,350
3	2,543	1,727	1,329	1,267	0,935	1,189
5	1,734	1,228	0,945	1,055	0,818	1,041
8	3,570	2,450	1,918	1,007	0,655	0,926
10	1,618	1,204	0,927	1,176	0,952	1,211

Tabela D.4 Desempenho do modelo RNA8 III.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	MAPE (%) RMSE (m) U		MAPE (%)	RMSE (m)	U
2	1,325	1,181	0,909	0,626	0,552	0,661
3	1,615	1,225	0,942	0,777	0,636	0,815
5	1,127	0,872	0,670	0,810	0,654	0,838
8	1,031	0,795	0,611	0,927	0,746	0,956
10	1,646	1,234	0,949	0,722	0,719	0,921

Tabela D.5 Desempenho do modelo RNA8 IV.

N.	Treina	amento		Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	3,551	2,854	1,145	1,393	1,134	1,423
3	2,815	2,268	0,914	1,473	1,310	1,628
5	2,710	2,172	0,874	1,053	0,926	1,176
8	2,432	2,051	0,813	1,063	0,901	1,170
10	2,440	2,071	0,821	1,384	1,134	1,456

Tabela D.6 Desempenho do modelo RNA8 V.

N.	Trein	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U	
2	2,309	1,707	1,314	0,967	0,729	0,928	
3	3,481	2,700	2,091	1,558	1,310	1,635	
5	2,317	1,649	1,270	0,949	0,719	0,915	
8	1,831	0,000	1,053	1,209	1,041	1,324	
10	1,820	1,353	1,041	1,009	0,823	1,047	

Tabela D.7 Desempenho do modelo RNA8 VI.

N.	Trein	Treinamento				
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	2,962	2,172	1,693	1,321	1,134	1,368
3	2,874	2,172	1,667	1,239	0,926	1,283
5	2,965	2,268	1,718	1,559	1,464	1,810
8	1,678	0,000	0,976	1,172	1,025	1,314
10	1,842	1,381	1,066	1,143	0,915	1,173

Tabela D.8 Desempenho do modelo RNA8 VII.

Modelo	Topologia	Treinamento		Validação			
		MAPE	RMSE	U	MAPE	RMSE	U
		(%)	(m)		(%)	(m)	
RNA8 I	1/2/1univ	2,928	2,361	0,918	1,001	0,926	1,084
RNA8 II	2/5/1univ	2,466	1,762	1,356	0,882	0,636	0,809
RNA8 III	3/8/1univ	3,570	2,450	1,918	1,007	0,655	0,926
RNA8 IV	2/2/1mult	1,325	1,181	0,909	0,626	0,552	0,661
RNA8 V	2/5/1mult	2,710	2,172	0,874	1,053	0,926	1,176
RNA8 VI	4/5/1mult	2,317	1,649	1,270	0,949	0,719	0,915
RNA8 VII	8/3/1mult	2,874	2,172	1,667	1,239	0,926	1,283

Tabela D.9 Resumo das melhores topologias de cada modelo de RNA considerado para o piezômetro PZ8.

Na adoção do melhor modelo neural, levou-se em conta o conceito de parcimônia, i.e. adotou-se como o melhor modelo aquele capaz de representar o comportamento de uma série temporal com a menor quantidade de parâmetros. Assim, escolheu-se finalmente o modelo de rede neural I composto de dois padrões de entrada, correspondentes a dois valores da variável atrasados no tempo, com dois neurônios na camada escondida.

A Figura 5.15 compara os valores reais da série temporal do piezômetro PZ8 (medidas de instrumentação) com os resultados obtidos pela RNA8 IV (melhor rede neural) para as fases de aprendizado, validação e teste.

D.2. Previsão por RNA das cargas de pressão no piezômetro PZ9

Os modelos de redes neurais testados estão listados na tabela D10, a seguir. As entradas referem-se aos padrões ou variáveis explicativas.

Modelo neural	Entradas
RNA9 I	$Pz9_{t-\Delta t}$
RNA9 II	$Pz9_{t-\Delta t}, Pz9_{t-19\Delta t}$
RNA9 III	$Pz9_{t-\Delta t}, Pz9_{t-18\Delta t}, Pz9_{t-19\Delta t}, Pz9_{t-20\Delta t}$
RNA9 IV	$Pz9_{t-\Delta t}, Pz9_{t-2\Delta t}$
RNA9 V	$Pz9_{t-\Delta t}, Pz9_{t-18\Delta t}, Pz9_{t-19\Delta t}$
RNA9 VI	$Pz9_{t-\Delta t}$, $NA_{t-\Delta t}$
RNA9 VII	$Pz9_{t-\Delta t}$, $Pz9_{t-2\Delta t}$, $NA_{t-\Delta t}$, $NA_{t-2\Delta t}$
RNA9 VIII	$Pz9_{t-\Delta t}$, $Pz9_{t-19\Delta t}$, $NA_{t-\Delta t}$, $NA_{t-19\Delta t}$

Tabela D.10 Modelos de redes neurais consideradas para o piezômetro pneumático PZ9.

O desempenho das diversas topologias para cada um dos modelos neurais considerados está apresentado nas tabelas D.11 a D.8 onde os valores em negrito se referem à melhor topologia para cada um dos modelos de RNA. A tabela D.19 contém um resumo final destas melhores topologias.

N.	Treir	amento		Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	1,962	0,949	1,010	0,842	0,327	1,062
3	1,886	0,876	0,933	0,846	0,321	1,044
5	1,947	0,904	0,963	0,756	0,309	1,004
8	1,889	0,893	0,950	0,871	0,328	1,066
10	1,973	0,909	0,968	0,724	0,303	0,985
15	1,963	0,916	0,976	0,745	0,308	1,000

Tabela D.11 Desempenho do modelo RNA9 I.

N.	Treina	imento		Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	1,845	0,731	1,505	1,048	0,392	1,209
3	2,684	1,484	3,042	1,094	0,509	1,376
5	1,422	0,537	1,106	0,788	0,301	0,929
8	1,336	0,546	1,125	0,820	0,306	0,944
10	1,596	0,576	1,186	0,841	0,315	0,970
15	1,469	0,607	1,250	0,836	0,311	0,959

Tabela D.12 Desempenho do modelo RNA9 II.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	1,924	0,811	1,670	0,913	0,381	1,180
3	2,657	0,970	1,998	0,895	0,354	1,096
5	2,657	0,970	1,998	0,895	0,354	1,096
8	1,467	0,578	1,190	0,848	0,328	1,015
10	1,315	0,564	1,162	0,767	0,300	0,928
15	1,362	0,556	1,145	0,924	0,348	1,078

Tabela D.13 Desempenho do modelo RNA9 III.

ſ	N.	Treina	Treinamento			Validação		
	Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U	
	2	2,147	0,964	1,027	0,926	0,333	1,082	
	3	1,733	1,023	1,090	0,752	0,300	0,975	
	5	1,931	0,969	1,032	0,681	0,270	0,876	
	8	1,567	0,800	0,853	0,668	0,260	0,845	
	10	1,774	0,885	0,944	0,760	0,281	0,913	
	15	1,277	0,686	0,731	0,689	0,274	0,892	

Tabela D.14 Desempenho do modelo RNA9 IV.

N.	Treina	Treinamento				
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	1,897	0,753	1,552	0,909	0,337	1,040
3	1,426	0,542	1,117	0,789	0,301	0,927
5	1,569	0,602	1,241	0,732	0,277	0,855
8	1,545	0,602	1,240	0,821	0,321	0,990
10	1,721	0,628	1,294	0,783	0,282	0,870
15	1,140	0,433	0,891	0,724	0,273	0,841

Tabela D.15 Desempenho do modelo RNA9 V.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	2,344	1,028	1,095	1,333	0,506	1,646
3	2,178	1,003	1,068	1,062	0,418	1,359
5	2,250	0,965	1,028	1,130	0,456	1,483
8	2,079	0,913	0,972	0,948	0,380	1,236
10	2,319	0,997	1,062	0,880	0,314	1,020
15	2,072	0,932	0,992	0,916	0,336	1,093

Tabela D.16 Desempenho do modelo RNA9 VI.

	N.	Treinamento			Validação		
]	Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
	2	4,672	1,938	2,056	1,786	0,558	2,378
	3	2,797	1,194	1,245	1,404	0,509	1,737
	5	2,439	1,033	1,101	1,154	0,449	1,461
	8	2,136	0,958	1,021	1,094	0,444	1,443
	10	1,572	0,812	0,866	0,949	0,398	1,292
	15	1,752	0,795	0,847	1,026	0,389	1,263

Tabela D.17 Desempenho do modelo RNA9 VII.

N.	Treina	imento		Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	2,430	0,949	1,954	1,792	0,662	2,039
3	2,703	1,050	2,164	1,292	0,420	1,294
5	3,387	1,247	2,538	1,321	0,509	1,509
8	1,661	0,660	1,359	0,922	0,363	1,119
10	2,018	0,738	1,520	0,900	0,337	1,038
15	1,354	0,530	1,093	1,242	0,558	1,721

Tabela D.18 Desempenho do modelo RNA9 VIII.

Modelo	Topologia	Treinament	Treinamento				
de RNA		MAPE (%)	RMSE	U	MAPE (%)	RMSE	U
			(m)			(m)	
RNA9 I	1/10/1 univ	1,973	0,909	0,968	0,724	0,303	0,985
RNA9 II	2/5/1 univ	1,422	0,537	1,106	0,788	0,301	0,929
RNA9 III	4/10/1 univ	1,315	0,564	1,162	0,767	0,300	0,928
RNA9 IV	2/8/1 univ	1,567	0,800	0,853	0,668	0,260	0,845
RNA9 V	3/5/1 univ	1,569	0,602	1,241	0,732	0,277	0,855
RNA9 VI	2/10/1 mult	2,319	0,997	1,062	0,880	0,314	1,020
RNA9 VII	4/15/1 mult	1,752	0,795	0,847	1,026	0,389	1,263
RNA9 VIII	4/10/1 mult	2,018	0,738	1,520	0,900	0,337	1,038

Tabela D.19 Resumo das melhores topologias de cada modelo considerado para o piezômetro PZ9.

Adotou-se como melhor RNA a topologia do modelo RNA9 IV constituída por dois padrões de entrada e oito neurônios na camada escondida. As entradas correspondem aos dois últimos valores atrasados da série, como indicado na tabela D.10. A figura 5.17 compara os valores reais com os estimados pelo modelo RNA9 IV para os conjuntos de aprendizado, validação e teste.

D.3. Previsão por RNA das cargas de pressão no piezômetro PZ10

Os modelos de redes neurais testados estão listados na tabela D20, a seguir. As entradas referem-se aos padrões ou variáveis explicativas.

Modelo neural	Entradas
RNA10 I	$Pz10_{t-\Delta t}$
RNA10 II	$Pz10_{t-\Delta t}, Pz10_{t-18\Delta t}$
RNA10 III	$Pz10_{t-\Delta t}, Pz10_{t-17\Delta t}, Pz10_{t-18\Delta t}, Pz10_{t-19\Delta t}$
RNA10 IV	$Pz10_{t-\Delta t}, NA_{t-\Delta t}$
RNA10 V	$Pz10_{t-\Delta t}$, $Pz10_{t-18\Delta t}$, $NA_{t-\Delta t}$, $NA_{t-18\Delta t}$
RNA10 VI	$Pz10_{t-\Delta t}, Pz10_{t-17\Delta t}, Pz10_{t-18\Delta t}, Pz10_{t-19\Delta t}, NA_{t-\Delta t}, NA_{t-17\Delta t}, NA_{t-18\Delta t}, NA_{t-19\Delta t}$

Tabela D.20 Modelos de redes neurais considerados para o piezômetro pneumático PZ10.

O desempenho das diversas topologias para cada um dos modelos neurais considerados está apresentado nas tabelas D.21 a D.26 onde os valores em negrito se referem à melhor topologia para cada um dos modelos de RNA. A tabela D.27 contém um resumo final destas melhores topologias.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	3,009	1,593	1,100	0,199	0,227	1,212
3	2,624	1,397	0,986	0,116	0,186	0,992
5	2,516	1,348	0,946	0,120	0,189	1,008
8	2,582	1,346	0,946	0,075	0,110	0,586
10	2,739	1,393	0,978	0,098	0,133	0,709

Tabela D.21 Desempenho do modelo RNA10 I.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	1,929	0,984	1,013	0,304	0,248	1,251
3	2,243	1,148	1,182	0,161	0,235	1,188
5	1,891	0,945	0,973	0,187	0,196	0,988
8	2,231	1,100	1,132	0,219	0,263	1,328
10	1,877	0,973	1,002	0,251	0,236	1,193

Tabela D.22 Desempenho do modelo RNA10 II.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	2,218	1,143	1,187	0,339	0,269	1,358
3	2,154	1,083	1,125	0,276	0,251	1,269
5	1,830	0,931	0,967	0,306	0,263	1,329
8	1,817	0,976	1,013	0,252	0,242	1,220
10	1,904	0,955	0,992	0,188	0,253	1,281

Tabela D.23 Desempenho do modelo RNA10 III.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	2,687	1,393	0,978	0,477	0,307	1,636
3	2,453	1,321	0,928	0,310	0,187	1,001
5	2,208	1,183	0,931	0,506	0,250	1,331
8	2,645	1,143	0,955	0,421	0,251	1,340
10	2,314	1,214	0,853	0,457	0,255	1,363

Tabela D.24 Desempenho do modelo RNA10 IV.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	2,131	1,062	1,093	0,351	0,217	1,096
3	4,039	1,976	2,034	0,320	0,000	1,419
5	1,866	0,919	0,946	0,646	0,408	2,060
8	2,085	1,031	1,062	0,296	0,263	1,328
10	1,484	0,758	0,781	0,792	0,426	2,153

Tabela D.25 Desempenho do modelo RNA10 V.

N.	Treinamento			Validação		
Neurônios	MAPE (%) RMSE (m)		U	MAPE (%)	RMSE (m)	U
2	3,350	1,653	1,718	0,694	0,442	2,261
3	8,446	3,927	4,071	0,800	4,374	2,194
5	3,199	1,531	1,582	0,518	0,442	1,583
8	2,332	1,130	1,173	0,672	0,366	1,851
10	1,588	0,817	0,848	0,556	0,338	1,710

Tabela D.26 Desempenho do modelo RNA10 VI.

Modelo	Topologia	Treinamento		Validação			
		MAPE	RMSE	U	MAPE	RMSE	U
		(%)	(m)		(%)	(m)	
RNA10 I	1/8/1univ	2,582	1,346	0,946	0,075	0,110	0,586
RNA10 II	2/5/1univ	1,891	0,945	0,973	0,187	0,196	0,988
RNA10 III	4/8/1univ	1,817	0,976	1,013	0,252	0,242	1,220
RNA10 IV	2/3/1mult	2,453	1,321	0,928	0,310	0,187	1,001
RNA10 V	4/8/1mult	2,085	1,031	1,062	0,296	0,263	1,328
RNA10 VI	8/8/1 mult	2,332	1,130	1,173	0,672	0,366	1,851

Tabela D.27 Resumo das melhores topologias de cada modelo considerado para o piezômetro PZ10.

Adotou-se como melhor RNA a topologia do modelo RNA10 I constituída por um padrão de entrada e oito neurônios na camada escondida. A entrada corresponde ao último valor atrasado da série, como indicado na tabela D.20. A figura 5.19 compara os valores reais com os estimados pelo modelo RNA10 I para os conjuntos de aprendizado, validação e teste.

D.4. Previsão por RNA das cargas de pressão no piezômetro PZ15

Os modelos de redes neurais testados estão listados na tabela D.28, a seguir. As entradas referem-se aos padrões ou variáveis explicativas.

Modelo neural	Entradas			
RNA15 I	$Pz15_{t-\Delta t}$			
RNA15 II	$Pz15_{t-\Delta t}, Pz15_{t-2\Delta t}, Pz15_{t-18\Delta t}$			
RNA15 III	$Pz15_{t-\Delta t}, Pz15_{t-17\Delta t}, Pz15_{t-18\Delta t}, Pz15_{t-19\Delta t}$			
RNA15 IV	$Pz15_{t-\Delta t}, Pz15_{t-2\Delta t}$			
RNA15 V	$Pz15_{t-\Delta t}, Pz15_{t-2\Delta t}, Pz15_{t-17\Delta t}, Pz15_{t-18\Delta t}, Pz15_{t-19\Delta t}$			
RNA15 VI	$Pz15_{t-\Delta t}, NA_{t-\Delta t}$			
RNA15 VII	$Pz15_{t-\Delta t}, Pz15_{t-18\Delta t}, NA_{t-\Delta t}, NA_{t-18\Delta t}$			
Continua tabela na seguinte folha				

RNA15 VIII	$Pz15_{t-\Delta t}, Pz15_{t-2\Delta t}, NA_{t-\Delta t}, NA_{t-2\Delta t}$
RNA15 IX	$Pz15_{t-\Delta t}, Pz15_{t-2\Delta t}, Pz15_{t-18\Delta t}, NA_{t-\Delta t}, NA_{t-2\Delta t}, NA_{t-18\Delta t}$
RNA15 X	$Pz15_{t-\Delta t}, Pz15_{t-17\Delta t}, Pz15_{t-18\Delta t}, Pz15_{t-19\Delta t}, NA_{t-\Delta t}, NA_{t-17\Delta t}, NA_{t-18\Delta t},$
	$NA_{t-19\Delta t}$
RNA15 XI	$Pz15_{t-\Delta t}, Pz15_{t-2\Delta t}, NA_{t-\Delta t}$

Tabela D.28 Modelos de redes neurais considerados para o piezômetro pneumático PZ15.

O desempenho das diversas topologias para cada um dos modelos neurais considerados está apresentado nas tabelas D.29 a D.39 onde os valores em negrito se referem à melhor topologia para cada um dos modelos de RNA. A tabela D.40 contém um resumo final destas melhores topologias.

N.	Trein	amento		Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	4,133	1,245	1,039	1,868	0,598	1,006
3	5,460	1,582	1,313	1,987	0,691	1,123
5	3,982	1,196	0,980	1,908	0,598	1,047
8	4,183	1,196	0,998	1,913	0,691	1,105
10	4,644	1,381	1,153	2,060	0,598	1,076

Tabela D.29 Desempenho do modelo RNA15 I.

N.	Trein	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U	
2	4,184	1,145	0,961	1,215	0,345	0,886	
3	2,161	0,699	0,586	0,908	0,316	0,753	
5	1,849	0,555	0,465	1,122	0,356	0,847	
8	3,821	1,033	0,866	1,010	0,314	0,747	
10	3,715	1,092	0,928	1,127	0,345	0,918	
15	2,310	0,671	0,563	1,229	0,359	0,856	

Tabela D.30 Desempenho do modelo RNA15 II.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	3,547	1,013	0,848	1,445	0,381	0,907
3	6,358	1,794	1,495	1,682	0,488	1,247
5	3,428	0,979	0,820	0,887	0,283	0,675
8	2,291	0,655	0,548	1,185	0,353	0,841
10	2,666	0,793	0,664	1,028	0,316	0,752
15	2,857	0,778	0,651	1,561	0,406	0,966

Tabela D.31 Desempenho do modelo RNA15 III.

N.	Trein	Treinamento				
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	2,367	0,821	0,680	1,046	0,370	0,633
3	3,289	1,092	0,920	1,179	0,345	0,707
5	2,236	0,766	0,636	1,013	0,345	0,589
8	2,882	0,929	0,769	1,115	0,347	0,593
10	2,964	0,945	0,783	1,386	0,434	0,741
15	2,268	0,762	0,632	1,284	0,443	0,757

Tabela D.32 Desempenho do modelo RNA15 IV.

N.	Trein	Treinamento			y Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U	
2	2,781	0,810	0,678	1,268	0,362	0,862	
3	5,555	1,505	1,260	1,422	0,488	1,009	
5	3,531	0,979	0,820	1,224	0,370	0,880	
8	4,149	1,145	0,968	1,609	0,488	1,169	
10	2,641	0,775	0,649	1,202	0,370	0,881	
15	2,821	0,848	0,710	1,347	0,424	1,008	

Tabela D.33 Desempenho do modelo RNA15 V.

Nro.	Trein	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U	
2	4,123	1,292	1,071	1,651	0,598	0,949	
3	4,368	1,292	1,081	1,936	0,598	1,034	
5	3,917	1,245	1,051	1,614	0,598	0,971	
8	3,721	1,245	1,016	1,758	0,598	1,072	
10	4,189	1,245	1,043	2,256	0,772	1,346	

Tabela D.34 Desempenho do modelo RNA15 VI.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	3,123	0,955	0,791	1,773	0,564	0,964
3	2,294	0,788	0,653	1,117	0,390	0,666
5	2,351	0,799	0,662	1,394	0,416	0,710
8	2,608	0,858	0,711	1,483	0,414	0,707
10	2,964	1,026	0,850	1,285	0,420	0,719

Tabela D.35 Desempenho do modelo RNA15 VII.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	2,387	0,823	0,682	1,192	0,418	0,715
3	3,179	1,046	0,866	1,019	0,338	0,577
5	2,462	0,807	0,669	1,136	0,405	0,693
8	2,719	0,890	0,737	0,961	0,316	0,540
10	2,308	0,744	0,617	1,224	0,362	0,620
15	2,541	0,838	0,694	0,946	0,348	0,595

Tabela D.36 Desempenho do modelo RNA15 VIII.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	2,048	0,152	0,561	0,931	0,324	0,772
3	3,536	0,978	0,820	1,217	0,409	0,973
5	2,637	0,735	0,616	1,064	0,348	0,828
8	3,187	0,962	0,806	0,979	0,318	0,757
10	2,352	0,666	0,558	0,935	0,304	0,725
15	2,402	0,714	0,599	1,034	0,323	0,769

Tabela D.37 Desempenho do modelo RNA15 IX.

N.	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U
2	2,102	0,683	0,572	1,258	0,376	0,894
3	2,369	0,705	0,590	1,035	0,346	0,823
5	3,641	0,953	0,798	1,214	0,353	0,841
8	3,044	0,855	0,716	1,595	0,458	1,089
10	2,976	0,855	0,716	0,931	0,292	0,696
15	2,659	0,738	0,618	1,500	0,445	1,060

Tabela D.38 Desempenho do modelo RNA15 XI.

N.	Trein	Treinamento			Validação		
Neurônios	MAPE (%)	RMSE (m)	U	MAPE (%)	RMSE (m)	U	
2	2,414	0,853	0,707	1,156	0,412	0,705	
3	2,947	0,933	0,773	1,172	0,350	0,599	
5	2,286	0,740	0,613	1,036	0,361	0,617	
8	2,480	0,847	0,702	0,994	0,348	0,594	
10	2,690	2,674	0,701	1,229	0,440	0,753	
15	2,395	0,781	0,647	1,048	0,337	0,575	

Tabela D.39 Desempenho do modelo RNA15 XII.

Modelo	Topologia	Treinamento			Validação		
		MAPE	RMSE	U	MAPE	RMSE	U
		(%)	(m)		(%)	(m)	
RNA15 I	1/2/1univ	4,133	1,245	1,039	1,868	0,598	1,006
RNA15 II	3/3/1univ	2,161	0,699	0,586	0,908	0,316	0,753
RNA15 III	4/5/1univ	3,428	0,979	0,820	0,887	0,283	0,675
RNA15 IV	2/5/1univ	2,236	0,766	0,636	1,013	0,345	0,589
RNA15 V	5/2/1univ	2,781	0,810	0,678	1,268	0,362	0,862
RNA15 VI	2/2/1 mult	4,123	1,292	1,071	1,651	0,598	0,949
RNA15 VII	4/3/1 mult	4,138	1,196	0,995	1,100	0,345	0,822
RNA15 VIII	4/8/1 mult	2,294	0,788	0,653	1,117	0,390	0,666
RNA15 IX	6/10/1 mult	2,352	0,666	0,558	0,935	0,304	0,725
RNA15 X	8/10/1 mult	2,976	0,855	0,716	0,931	0,292	0,696
RNA15 XI	3/8/1 mult	2,480	0,847	0,702	0,994	0,348	0,594

Tabela D.40 Resumo das melhores topologias de cada modelo considerado para o PZ15.

Adotou-se como melhor RNA a topologia do modelo RNA15 V constituída por dois padrões de entrada e cinco neurônios na camada escondida. As entradas correspondem aos dois últimos valores atrasados da série, como indicado na tabela D.28. A figura 5.21 compara os valores reais com os estimados pelo modelo RNA15 V para os conjuntos de aprendizado, validação e teste.

APÊNDICE E

Apresenta-se neste apêndice os resultados relativos ao desempenho das redes neurais artificiais consideradas para modelagem do comportamento no tempo dos piezômetros PZ7, PZ8, PZ9 e PZ10 localizados no núcleo da barragem Corumbá I. Cada um destes piezômetros foi, por sua vez, considerado danificado, conforme terceiro caso estudado no capítulo 5.

E.1. Piezômetro PZ7 danificado

Foram testados 4 modelos neurais com as entradas descritas na tabela E.1. As tabelas E.2 a E.5 mostram o desempenho das redes para diferentes topologias selecionadas com diferentes números de neurônios na camada escondida. Os resultados para as melhores topologias estão marcados em negrito, sendo resumidos na tabela E.6.

Modelo	Entradas
RNA7_d I	$NA_{t_{s}}NA_{t-\Delta t}, Pz8_{t_{s}}Pz8_{t-\Delta t}, Pz9_{t_{s}}Pz9_{t-\Delta t}, Pz10_{t_{s}}Pz10_{t-\Delta t}, Pz11_{t_{s}}Pz11_{t-\Delta t}, Pz12_{t},$
	$Pz12_{t-\Delta t}, Pz13_{t}, Pz13_{t-\Delta t}, Pz14_{t}, Pz14_{t-\Delta t}$
RNA7_d II	$NA_{t_{\gamma}}NA_{t-\Delta t}$
RNA7_d III	$NA_{t_{\tau}}NA_{t-\Delta t}, NA_{t-2\Delta t}, Pz8_{t_{\tau}}Pz8_{t-\Delta t}, Pz8_{t-2\Delta t}, Pz9_{t_{\tau}}Pz9_{t-\Delta t}, Pz9_{t-2\Delta t}, Pz10_{t_{\tau}}Pz10_{t_{\tau}}$
	$ \Delta_{t}, Pz10_{t-2\Delta t}, Pz11_{t}, Pz11_{t-\Delta t}, Pz11_{t-2\Delta t}, Pz12_{t}, Pz12_{t-\Delta t}, Pz12_{t-2\Delta t}, Pz13_{t}, Pz13_{t}. $
	$_{\Delta t}$, Pz13 _{t-2Δt} , Pz14 _t , Pz14 _{t-Δt} , Pz14 _{t-2Δt}
RNA7_d IV	$NA_{t,}NA_{t-\Delta t}, Pz8_{t,}Pz8_{t-\Delta t}, Pz10_{t,}Pz10_{t-\Delta t}, Pz12_{t,}Pz12_{t-\Delta t}$

Tabela E.1 Modelos neurais considerados para modelagem do piezômetro pneumático PZ7 danificado.

N.	Treinamento		Validação	
Neurônios	MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
5	1,670	1,457	1,475	1,357
10	1,603	0,308	1,477	1,381
15	1,429	1,243	1,298	1,211
20	1,548	1,323	1,246	1,198
25	1,699	1,559	1,264	1,188
30	1,502	0,000	1,358	1,189

Tabela E.2 Desempenho do modelo neural RNA7_d I.

N.	Treinamento		Validação	
Neurônios	MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
2	4,971	4,298	2,748	2,313
3	3,713	3,486	2,457	2,092
4	4,780	4,241	2,493	2,092
6	3,533	3,270	2,365	1,972
8	3,813	3,486	2,337	1,972
10	3,209	2,875	2,323	1,972

Tabela E.3 Desempenho do modelo neural RNA7_d II.

N.	Treir	namento	Valid	lação
Neurônios	MAPE (%) RMSE (m)		MAPE (%)	RMSE (m)
5	1,829	1,568	1,515	1,389
10	1,652	1,451	1,594	1,460
15	1,479	1,226	1,482	1,348
20	1,503	1,297	1,394	1,248
25	1,389	0,000	1,230	1,184

Tabela E.4 Desempenho do modelo neural RNA7_d III.

N.	Treii	namento	Val	idação
Neurônios	MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
5	1,838	1,530	1,261	1,195
8	1,726	1,482	1,015	1,058
10	1,538	1,273	1,088	1,021
15	1,479	1,224	1,063	0,963
20	1,766	1,543	1,150	1,165
25	1,481	1,246	1,109	0,978
30	1,197	0,994	1,137	1,093

Tabela E.5 Desempenho do modelo neural RNA7_d IV.

Modelo	Topologia	Saída	Treinamento		Validação	
			MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
RNA7_d I	16/30/1 mult	PZ7	1,502	0,000	1,358	1,189
RNA7_d II	2/6/1 mult	PZ7	3,533	3,270	2,365	1,972
RNA7_d III	24/25/1 mult	PZ7	1,389	0,000	1,230	1,184
RNA7_d IV	8/15/1 mult	PZ7	1,479	1,224	1,063	0,963

Tabela E.6 Resumo das melhores topologias de cada modelo considerado para o piezômetro PZ7.

Da tabela E.6 pode-se concluir que o modelo neural RNA7_d IV apresentou o melhor desempenho em relação aos demais, tendo como topologia 8 padrões de entrada, correspondentes à cota do reservatório e a valores dos piezômetros vizinhos, e camada escondida com 15 neurônios.

E.2. Piezômetro PZ8 danificado

Foram testados 5 modelos neurais com as entradas descritas na tabela E.7. As tabelas E.8 a E.12 mostram o desempenho das redes para diferentes topologias selecionadas com diferentes números de neurônios na camada escondida. Os resultados para as melhores topologias estão marcados em negrito, sendo resumidos na tabela E.13.

Modelo	Entradas
RNA8_d I	$NA_{t,} NA_{t-\Delta t}, Pz7_{t,} Pz7_{t-\Delta t}, Pz9_{t,} Pz9_{t-\Delta t}, Pz10_{t,} Pz10_{t-\Delta t}, Pz11_{t,} Pz11_{t-\Delta t},$
	$Pz12_{t}, Pz12_{t-\Delta t}, Pz13_{t}, Pz13_{t-\Delta t}, Pz14_{t}, Pz14_{t-\Delta t}$
RNA8_d II	$NA_{t,}NA_{t-\Delta t}$
RNA8_d III	$NA_{t_{s}} NA_{t-\Delta t_{s}} NA_{t-2\Delta t_{s}} Pz7_{t_{s}} Pz7_{t-\Delta t_{s}} Pz7_{t-2\Delta t_{s}} Pz9_{t_{s}} Pz9_{t-\Delta t_{s}} Pz9_{t-2\Delta t_{s}} Pz10_{t_{s}}$
	$Pz10_{t-\Delta t}, Pz10_{t-\Delta t}, Pz11_{t}, Pz11_{t-\Delta t}, Pz11_{t-\Delta t}, Pz12_{t}, Pz12_{t}, Pz12_{t-\Delta t}, Pz12_{t-\Delta t}$
	$Pz13_{t,}Pz13_{t-\Delta t}, Pz13_{t-2\Delta t}, Pz14_{t,}Pz14_{t-\Delta t}, Pz14_{t-2\Delta t}$
RNA8_d IV	$NA_{t_s}NA_{t-\Delta t}$, $Pz10_{t_s}Pz10_{t-\Delta t}$, $Pz12_{t_s}Pz12_{t-\Delta t}$
RNA8_d V	$Pz10_{t}, Pz10_{t-\Delta t}, Pz12_{t}, Pz12_{t-\Delta t}$

Tabela E.7 Modelos neurais considerados na modelagem do piezômetro pneumático PZ8 danificado.

N.	Treinamento		Validação	
Neurônios	MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
5	1,915	1,460	1,605	1,356
10	1,544	1,211	1,365	1,119
15	1,135	0,858	0,807	0,678
20	1,331	1,061	1,341	1,086
25	1,218	0,913	0,924	0,763
30	1,276	1,022	1,207	0,998

Tabela E.8 Desempenho do modelo neural RNA8_d I.

N.	Trein	amento	Validação	
Neurônios	MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
2	7,534	5,440	3,298	2,619
3	4,744	3,874	3,117	2,268
4	6,300	5,783	2,722	2,071
6	4,541	3,646	2,888	2,172
8	3,520	2,929	3,183	2,361

Tabela E.9 Desempenho do modelo neural RNA8_d II.

N.	Trein	amento	Validação	
Neurônios	MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
5	2,173	1,765	1,374	1,136
10	2,419	2,071	1,490	1,310
15	2,245	1,993	1,456	1,160
20	1,459	1,167	1,375	1,107
25	2,265	2,361	1,070	1,134

Tabela E.10 Desempenho do modelo neural RNA8_d III.

N.	Treinamento		Validação	
Neurônios	MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
3	3,332	2,854	2,642	1,965
5	3,291	3,001	1,908	1,464
8	2,669	2,268	1,590	1,310
10	2,487	2,172	1,658	1,310
15	2,589	2,268	1,636	1,464
20	3,010	2,619	1,790	1,464

Tabela E.11 Desempenho do modelo neural RNA8_d IV.

N.	Treinamento		Validação	
Neurônios	MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
5	4,206	4,767	1,904	1,604
10	2,477	2,172	1,424	1,134
15	2,018	1,754	1,061	1,068
20	2,138	0,000	1,737	1,390
25	1,841	1,575	1,427	1,181

Tabela E.12 Desempenho do modelo neural RNA8_d V.

Modelo	Topologia	Saída	Treinamento		Validação	
			MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
RNA8_d I	16/15/1mult	PZ8	1,135	0,858	0,807	0,678
RNA8_d II	2/3/1mult	PZ8	4,744	3,874	3,117	2,268
RNA8_d III	24/20/1mult	PZ8	1,459	1,167	1,375	1,107
RNA8_d IV	6/8/1 mult	PZ8	2,669	2,268	1,590	1,310
RNA8_d V	4/15/1mult	PZ8	2,018	1,754	1,061	1,068

Tabela E.13 Resumo das melhores topologias de cada modelo considerado para o piezômetro PZ8.

Da tabela E.13 pode-se concluir que o modelo neural RNA8_d I apresentou o melhor desempenho em relação aos demais, tendo como topologia 16 padrões de entrada, correspondentes à cota do reservatório e a valores dos piezômetros vizinhos, e camada escondida com 15 neurônios.

E.3. Piezômetro PZ9 danificado

Foram testados 3 modelos neurais com as entradas descritas na tabela E.14. As tabelas E.15 a E.17 mostram o desempenho das redes para diferentes topologias selecionadas com diferentes números de neurônios na camada escondida. Os resultados para as melhores topologias estão marcados em negrito, sendo resumidos na tabela E.18.

Modelo	Entradas
RNA9_d I	$NA_{t,} NA_{t-\Delta t}, Pz7_{t,} Pz7_{t-\Delta t}, Pz8_{t,} Pz8_{t-\Delta t}, Pz10_{t,} Pz10_{t-\Delta t}, Pz11_{t,} Pz11_{t-\Delta t},$
	$Pz12_{t}, Pz12_{t-\Delta t}, Pz13_{t}, Pz13_{t-\Delta t}, Pz14_{t}, Pz14_{t-\Delta t}$
RNA9_d II	$NA_{t_{\tau}}NA_{t-\Delta t}$, $Pz13_{t_{\tau}}Pz13_{t-\Delta t}$
RNA9_d III	$Pz13_{t}, Pz13_{t-\Delta t}, Pz13_{t-2\Delta t}$

Tabela E.14 Modelos neurais considerados para a modelagem do piezômetro pneumático PZ9 "danificado".

N.	Treinamento		Validação	
Neurônios	MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
5	6,303	3,155	5,631	2,296
10	5,863	4,238	4,660	2,025
15	4,944	2,688	4,230	1,875
20	3,519	1,711	3,720	1,653
25	3,438	1,711	3,686	1,653
30	3,296	1,653	3,703	1,653

Tabela E.15 Desempenho do modelo neural RNA9_d I.

N.	Treinamento		Validação	
Neurônios	MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
2	4,214	1,763	4,517	1,484
4	3,696	1,527	4,628	1,527
6	3,457	1,394	4,521	1,484
10	4,938	2,811	3,377	1,138
15	3,153	1,298	3,605	1,298
20	3,091	1,247	3,516	1,247

Tabela E.16 Desempenho do modelo neural RNA9_d II.

N.	Treinamento		Validação	
Neurônios	MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
5	3,385	1,419	2,293	0,823
10	3,470	1,347	3,013	1,080
15	4,578	1,835	2,435	0,882
20	4,173	1,688	2,311	0,882
25	3,332	1,440	3,135	1,080

Tabela E.17 Desempenho do modelo neural RNA9_d III.

Modelo	Topologia	Saída	Treinamento		Validação	
			MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
RNA9_d I	16/20/1 mult	PZ9	3,519	1,711	3,720	1,653
RNA9_d II	4/10/1 mult	PZ9	4,938	2,811	3,377	1,138
RNA9_d III	3/5/1 mult	PZ9	3,385	1,419	2,293	0,823

Tabela E.18 Resumo das melhores topologias de cada modelo admitido, correspondente ao PZ9.

Da tabela E.18 pode-se concluir que o modelo neural RNA9_d III apresentou o melhor desempenho em relação aos demais, tendo como topologia 3 padrões de entrada, correspondentes aos valores do piezômetro vizinho PZ13, e camada escondida com 5 neurônios.

E.4. Piezômetro PZ10 "danificado"

Foram testados 4 modelos neurais com as entradas descritas na tabela E.19. As tabelas E.20 a E.23 mostram o desempenho das redes para diferentes topologias selecionadas com diferentes números de neurônios na camada escondida. Os resultados para as melhores topologias estão marcados em negrito, sendo resumidos na tabela E.24.

Modelo	Entradas
RNA10_d I	$NA_{t_{\tau}}NA_{t-\Delta t}, Pz7_{t_{\tau}}Pz7_{t-\Delta t}, Pz8_{t_{\tau}}Pz8_{t-\Delta t}, Pz9_{t_{\tau}}Pz9_{t-\Delta t}, Pz11_{t_{\tau}}Pz11_{t-\Delta t}, Pz12_{t},$
	$Pz12_{t-\Delta t_{s}}Pz13_{t_{s}}Pz13_{t-\Delta t_{s}}Pz14_{t_{s}}Pz14_{t-\Delta t}$
RNA10_d II	$NA_{t,}NA_{t-\Delta t}$
RNA10_d III	$NA_{t,} NA_{t-\Delta t}, NA_{t-\Delta t}, Pz7_{t,} Pz7_{t-\Delta t}, Pz7_{t-\Delta t}, Pz8_{t,} Pz8_{t-\Delta t}, Pz8_{t-\Delta t}, Pz8_{t-\Delta t}, Pz9_{t,}$
	$Pz9_{t-\Delta t}, Pz9_{t-\Delta t}, Pz9_{t}, Pz9_{t}, Pz9_{t-\Delta t}, Pz11_{t-2\Delta t}, Pz12_{t}, Pz12_{t-\Delta t}, Pz12_{t-2\Delta t}, Pz13_{t}, Pz13_{t}, Pz12_{t-\Delta t}, Pz12_{t-\Delta$
	$Pz13_{t-\Delta t}, Pz13_{t-2\Delta t}, Pz14_{t}, Pz14_{t-\Delta t}, Pz14_{t-2\Delta t}$
RNA10_d IV	$NA_{t_{t}}NA_{t-\Delta t}, Pz7_{t_{t}}Pz7_{t-\Delta t}, Pz8_{t_{t}}Pz8_{t-\Delta t}, Pz11_{t_{t}}Pz11_{t-\Delta t}, Pz12_{t_{t}}Pz12_{t-\Delta t}$

Tabela E.19 Modelos neurais considerados para modelagem do piezômetro pneumático PZ10 "danificado".

N.	Treinamento		Validação	
Neurônios	MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
5	2,767	1,465	0,487	0,291
10	2,228	1,193	0,362	0,218
15	2,333	1,176	0,659	0,443
20	8,625	3,852	0,846	0,442
25	6,150	2,794	0,626	0,442

Tabela E.20 Desempenho do modelo neural RNA10_d I.

N.	Treinamento		Validação	
Neurônios	MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
2	4,584	2,420	3,014	1,653
3	7,392	3,697	2,061	1,326
4	6,753	3,562	2,446	1,397
6	6,431	3,306	2,668	1,711
8	7,476	4,192	2,351	1,397

Tabela E.21 Desempenho do modelo neural RNA10_d II.

N.	Treinamento		Validação	
Neurônios	MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
5	3,723	2,209	0,941	0,625
10	3,194	1,926	1,116	0,625
15	2,593	1,386	1,057	0,646
20	2,764	1,593	1,226	0,765
25	3,064	1,875	1,275	0,765
30	4,018	2,460	1,262	0,765

Tabela E.22 Desempenho do modelo neural RNA10_d III

145

N.	Treinamento		Valid	ação
Neurônios	MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
3	4,224	2,420	1,158	0,765
5	3,441	1,822	1,278	0,765
8	3,113	1,926	0,930	0,625
10	3,217	1,653	0,995	0,625
15	2,188	1,151	0,497	0,303
20	2,891	1,653	1,080	0,625

Tabela E.23 Desempenho do modelo neural RNA10_d IV

Modelo	Topologia	Saída	Treinamento		Validação	
			MAPE (%)	RMSE (m)	MAPE (%)	RMSE (m)
RNA10_d I	16/15/1mult	PZ10	4,356	2,576	1,201	0,765
RNA10_d II	2/3/1 mult	PZ10	7,392	3,697	2,061	1,326
RNA10_d III	24/5/1 mult	PZ10	3,723	2,209	0,941	0,625
RNA10_d IV	10/15/1mult	PZ10	2,188	1,151	0,497	0,303

Tabela E.24 Resumo das melhores topologias de cada modelo considerado para o piezômetro PZ10. .

Da tabela E.24 pode-se concluir que o modelo neural RNA10_d IV apresentou o melhor desempenho em relação aos demais, tendo como topologia 10 padrões de entrada, correspondentes à cota do reservatório e aos valores dos piezômetros vizinhos, e camada escondida com 15 neurônios.