

Maristâni Gampert Spannenberg

Caracterização Geotécnica de um Depósito de Árgila Mole da Baixada Fluminense

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio. Área de concentração: Geotecnia.

> Orientadores: Alberto S. F. J. Sayão Denise M. S. Gerscovich

> > Rio de Janeiro, Agosto de 2003

Maristâni Gampert Spannenberg

Caracterização Geotécnica de um Depósito de Argila Mole da Baixada Fluminense

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Alberto S.F. Jardim Sayão Orientador Departamento de Engenharia Civil – PUC-Rio

> Profa. Denise Maria S. Gerscovich Co-Orientador UERJ

Prof. Franklin dos Santos Antunes

Departamento de Engenharia Civil - PUC-Rio

Prof. José Alberto R. Ortigão UFRJ

Prof. Ney Augusto Dumont Coordenador Setorial

do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 28 de Agosto de 2003

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização do autor, do orientador e da universidade.

Maristâni Gampert Spannenberg

Graduou-se em Engenharia Civil, pela Universidade de Passo Fundo, em 2000. Ingressou no curso de mestrado em Engenharia Civil (Geotecnia) no ano de 2001, atuando na área de Geotecnia Experimental. Desenvolveu pesquisa sobre a caracterização e comportamento de argila mole da Baixada Fluminense.

Ficha Catalográfica

Spannenberg, Maristâni Gampert

Caracterização Geotécnica de um Depósito de Argila Mole da Baixada Fluminense / Maristâni Gampert Spannenberg; orientadores: Alberto de Sampaio Ferraz Jardim Sayão; Denise Maria Soares Gerscovich. – Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2003.

[21]., 162 f.: il. ; 29,7 cm

1. Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

1. Engenharia Civil – Teses. 2. Aterro sobre Argila Mole. 3. Ensaios de Laboratório. I. Sayão, Alberto S. F. J. (Alberto de Ferraz Jardim). II. Gerscovich, Denise Maria Soares. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

PUC-Rio - Certificação Digital Nº 0115517/CA

Dedico a meus maravilhosos pais, irmãos e em especial a meu amor Luis Eduardo.

Agradecimentos

A Deus pelos momentos de conforto espiritual.

Aos meus amados pais, responsáveis por esta difícil conquista. Meus sinceros agradecimentos àqueles que buscaram sempre me transmitir os ensinamentos da vida. À minha querida irmã, Mariane e ao meu irmão Orly Matheus. A minha família que apesar da distância sempre esteve presente com carinho e confiança.

Ao meu amado noivo e companheiro nesta jornada, Luis Eduardo, pelo apoio incondicional em todos os momentos, pelo carinho e por todo o seu amor. Aos meus sogros, cunhadas e cunhado pelo carinho.

Ao meu orientador Alberto S.F.J. Sayão, pelos conceitos transmitidos, sugestões e orientação ao longo de toda pesquisa, além da amizade adquirida.

À minha orientadora Denise M.S. Gerscovich, pelo apoio, colaboração e dedicação ao longo do nosso trabalho, obrigada pela sua amizade e paciência.

Ao professor J. A. R. Ortigão, pela disponibilização de muitos dos dados utilizados neste trabalho.

Aos demais professores do Departamento de Engenharia Civil da PUC-Rio, pelos conhecimentos transmitidos ao longo de todo o curso de mestrado.

A todos os funcionários do DEC, pela dedicação e amizade, meus agradecimentos, em especial à querida "mãe" Ana Roxo.

Ao Eng. William e aos funcionários do Laboratório de Geotecnia da PUC-Rio, Sr. José, Amaury e Josué, sempre dispostos a ajudar.

Aos amigos, irmãos e companheiros em cada minuto da nossa vida no Rio de Janeiro: Saré e Laryssa,

Aos amigos Ana Júlia e Carlos Ataliba, Fred, Patrícia e Lucas, Ana Cristina, André, Luciana, Nelly e Ciro, companhias sempre agradáveis nos momentos de descontração.

A todos os colegas e amigos do curso de mestrado e doutorado da PUC-Rio, pela convivência sadia e amizade construída e que ajudaram de certa forma no desenvolvimento desta dissertação

Ao CNPq e à PUC-Rio, pelo apoio financeiro indispensável ao desenvolvimento deste trabalho.

Resumo

Spannenberg, Maristâni Gampert; Sayão, Alberto de Sampaio Ferraz Jardim; Gerscovich, Denise Maria Soares. **Caracterização Geotécnica de um Depósito de Argila Mole da Baixada Fluminense**. Rio de Janeiro, 2003. 183p. Dissertação de Mestrado – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro

A caracterização geotécnica de um depósito de argila mole da Baixada Fluminense foi realizada neste trabalho. Sobre o depósito, foi executado um extenso aterro para implantação da Indústria Rio Polímeros, abrangendo aproximadamente 500.000m². Uma ampla campanha de ensaios de laboratório foi realizada em amostras extraídas da camada de argila mole, antes do lançamento do aterro. Este programa de investigação incluiu ensaios de caracterização, ensaios de adensamento convencionais (SIC) e contínuos (CRS) e ensaios triaxiais drenados e não drenados. Os ensaios CRS foram realizados sob diferentes velocidades de deformação, a fim de avaliar a sua influência nas características de compressibilidade e de adensamento do material. Foi também realizado um ensaio CRS em amostra previamente amolgada. Os parâmetros geotécnicos obtidos foram confrontados e mostraram-se razoavelmente concordantes com os valores reportados na literatura, para a Baixada Fluminense. A influência da velocidade de deformação dos ensaios CRS foi significativa. Entretanto, para a faixa de velocidades adotada no presente trabalho, os parâmetros resultantes situaram-se dentro da dispersão observada na área. O amolgamento prévio da amostra resultou numa redução dos parâmetros de compressibilidade e de adensamento.

Palavras-chave

Engenharia Civil, Aterro sobre Argila Mole, Ensaios de Laboratório.

Abstract

Spannenberg, Maristâni Gampert; Sayão, Alberto de Sampaio Ferraz Jardim; Gerscovich, Denise Maria Soares. **Geotechnical haracterization of a Soft Clay Deposit in Baixada Fluminense.** Rio de Janeiro, 2003. 183p. MSc Thesis – Civil Engineering Department, Pontifícia Universidade Católica do Rio de Janeiro

This work has focused on the geotechnical characterization of a soft clay deposit in Baixada Fluminense, Rio de Janeiro. In this area, a large embankment of approximately 500.000m² was executed for implantation of Rio Polimeros Industry. An extensive laboratory program was carried out on undisturbed samples, extracted from the soft clay layer before embankment construction. The geotechnical investigation consisted of characterization tests, conventional (SIC) and controlled deformation (CRS) consolidation tests, and drained and undrained triaxial tests. CRS tests were carried out under different deformation velocities, in order to evaluate its influence on compressibility parameters and on consolidation rates. An additional CRS test was also performed using a disturbed sample. The geotechnical parameters were analysed and revealed a resonable agreement with the results reported in the literature, for the Baixada Fluminense soft clay deposit. The strain rate of CRS tests has a significant influence on compressibility parameters. However, the results still remain within the range of experimental data, avaliable for the soft clay deposit of Baixada Fluminense. It is worthwile to notice that a limited range of velocities was used in this research. The sample disturbance resulted in a reduction of both compressibility parameters (cr, cc) and coefficient of consolidation.

Keywords

Civil Enginireeng, Embankment on Soft Clay, Laboratory Tests

Sumário

1 Introdução	22
2 Revisão bibliográfica	24
2.1 Origem e formação dos depósitos moles	24
2.2 Amostragem em solos moles	26
2.3 Comportamento de solos moles	27
2.3.1 Análises físico-químicas: matéria orgânica e pH	30
2.3.2 Ensaios de adensamento	32
2.3.3 Ensaios triaxiais	36
2.3.4 Sensitividade de depósitos argilosos moles	37
2.4 Argila mole da Baixada Fluminense	43
2.4.1 Estudos prévios	43
2.4.2 Considerações finais	51
3 Histórico do local	53
3.1 Descrição da Obra	53
3.2 Aspectos geológicos	56
3.3 Aspectos geotécnicos	57
3.4 Ensaios de laboratório	58
3.4.1 Amostragem	58
3.4.2 Caracterização	61
3.4.3 Permeabilidade	64
3.4.4 Adensamento	64
3.4.5 Resistência	67
3.5 Ensaios de Campo	70
3.5.1 Palheta	70
3.5.2 CPTU	72
3.5.3 Permeabilidade in-situ	72
3.6 Instrumentação de campo	73
3.6.1 Piezômetros	73
3.6.2 Inclinômetros	76
3.6.3 Placas de recalque	79

4 Programa experimental 81				
4.1 Introdução				
4.2 Amostragem	81			
4.3 Caracterização				
4.3.1 Caracterização geotécnica				
4.3.2 Composição mineralógica				
4.4 Análises físico-químicas: matéria orgânica e pH				
4.5 Ensaios de adensamento				
4.5.1 Adensamento convencional (SIC) 8				
4.5.2 Adensamento com velocidade de deformação constante (CRS)				
4.6 Ensaios triaxiais	88			
4.6.1 Ensaio Consolidado Isotropicamente e Drenado (CID)	90			
4.6.2 Ensaio Consolidado Isotropicamente e Não-Drenado (CIU)	91			
4.6.3 Ensaio Não-Consolidado e Não-Drenado (UU)	91			
5 Resultados e análises	92			
5.1 Caracterização	93			
5.1.1 Caracterização geotécnica 93				
5.2 Composição mineralógica 9				
5.2.1 Análises físico-químicas: matéria orgânica e pH				
5.3 Adensamento 100				
5.3.1Velocidade de deformação100				
5.3.2 História de tensões	102			
5.3.3 Índices de compressibilidade	105			
5.3.4 Coeficiente de adensamento vertical (c _v)	110			
5.3.5 Coeficiente de variação volumétrica (m _v)	115			
5.3.6 Coeficiente de permeabilidade (k)	119			
5.4 Triaxiais	121			
5.4.1 Deformabilidade	126			
5.4.2 Resistência ao cisalhamento	129			
6 Conclusões	133			
7 Referências bibliográficas	135			

ANEXO 1	140
Análises Químicas	141
Ensaios Triaxiais CIU e UU	142
Ensaios de Campo - CPTU	149
Ensaios de Campo - Piezômetros Casagrande e Corda Vibrante	151
Ensaios de Campo - Placas de recalque	
ANEXO 2	163
Equações de Calibração	164
Ensaios de Adensamento Convencional (SIC)	165
Ensaios de Adensamento Deformação Controlada (CRS)	169

Lista de figuras

Figura 1 – Amostrador de parede fina do tipo Osterberg	27
Figura 2 - Condições geométricas da difração de raios X (Mitchell, 1976)	29
Figura 3 - Faixa de valores de $c_{\!\scriptscriptstyle V}$ da argila do Rio de Janeiro obtida em ens	saios
oedométricos (Ortigão,1993)	33
Figura 4 - Resistência não drenada em ensaios UU com (adaptado de Sa	ayão
1980)	45
Figura 5 - Comparação entre $S_{\!\scriptscriptstyle J}$ médio obtido em ensaios de UU e palhe	eta (
adaptado de Gerscovich,1983)	48
Figura 6 - Mapa da localização do aterro	53
Figura 7 - Vista aérea do aterro em dois momentos da obra	54
Figura 8- Planta baixa esquemática do aterro	55
Figura 9 - Posição dos SPT's, dos perfis e espessura da argila mole (Terra	atek,
2002)	57
Figura 10 - Perfil de SPT – AA	59
Figura 11 - Perfis de SPT - BB	60
Figura 12 – Detalhe do amostrador tipo Osterberg	61
Figura 13 - Valores dos limites de Atterberg	62
Figura 14 - Variação do teor de M.O. com a profundidade	63
Figura 15- Variação de OCR, c $_{\rm c}$ e c $_{\rm s}$ com a profundidade	65
Figura 16 - Valores de Cv - subáreas Tanques e Utilitários	66
Figura 17 - Valores de Cv – subáreas Etileno e Polietileno	66
Figura 18 - Valores de Cv – subáreas Parqueamento, Depósito e Prédios	67
Figura 19 - Trajetórias p'x q - subáreas Tanques e Utilitários	68
Figura 20 - Trajetórias p' x q – subáreas Etileno e Polietileno	68
Figura 21 - Trajetórias p' x q - subáreas Parqueamento, Depósito e Prédios	68
Figura 22 – Estado de tensões na ruptura - subáreas Tanques e Utilitários	69
Figura 23 - Estado de tensões na ruptura – subáreas Etileno e Polietileno	69
Figura 24 - Estado de tensões na ruptura - Parqueamento, Depósito e Prédic	os 70
Figura 25 - Ensaio de Palheta - Variações de (Su) _{indeformado} com a profundio	dade
	71
Figura 26 - Sensibilidade da argila	71
Figura 27 - Localização dos ensaios CPTU	72

Figura 28 - Planta de localização dos piezômetros tipo Casagrande	74
Figura 29 - Planta de localização dos piezômetros tipo Corda Vibrante	75
Figura 30 - Excesso de poropressão no piezômetro CP-01 com o alteamento	o do
aterro	75
Figura 31 - Excesso de poropressão no piezômetro VWP-01 com o alteame	ento
de aterro	76
Figura 32 - Planta de localização dos inclinômetros	77
Figura 33 - Instalação do I – 10	78
Figura 34 - Leituras do inclinômetro I-10	78
Figura 35 - Deslocamento vertical com o alteamento do aterro no tempo	79
Figura 36 - Planta de localização das placas de recalque	80
Figura 37 - Localização do furo de amostragem	82
Figura 38 – Aparelho medidor do pH (MultiLine P3/Ph)	84
Figura 39 - Prensa utilizada para os ensaios CRS	86
Figura 40 - Equipamento de compressão triaxial com acessórios	; е
instrumentações	89
Figura 41 - Corpo de provas depois da realização de ensaio triaxial	90
Figura 42 – Mapa de localização das áreas de estudo na Baixada Fluminense	93
Figura 43 - Curva granulométrica da argila mole	94
Figura 44 - Valores do limite de liquidez para a argila do Rio de Janeiro	96
Figura 45 - Valores do limite de plasticidade para a argila do Rio de Janeiro	96
Figura 46 – Difração de Raio-X	99
Figura 47 - Valores da razão de poropressão nos ensaios CRS	100
Figura 48 – Valores da velocidade de deformação em ensaios SIC	102
Figura 49 – Variação do índice de vazios com a tensão efetiva - Ensaios SIC	103
Figura 50 - Efeito da variação da velocidade de deformação no ensaio CRS	103
Figura 51 - Valores do OCR para a argila do Rio de Janeiro	105
Figura 52 – Variação de $c_r e c_s$ em função da velocidade de deformação	106
Figura 53 – Variação do c $_{\rm c}$ em função da velocidade de deformação	107
Figura 54 - Valores do c $_{ m s}$ para a argila do Rio de Janeiro	107
Figura 55 - Valores do c_ para a argila do Rio de Janeiro	108
Figura 56 – Variação do índice de vazios em função do tempo	109
Figura 57 - Valores de Cv - Ensaios SIC	110
Figura 58 - Valores de Cv - Ensaios CRS	111
Figura 59 – Comparação da variação do c $_{ m v}$ para os ensaios CRS	112
Figura 60 –Variação do c $_{ m v}$ em função da velocidade de deformação	113

Figura 61 - Valores de Cv	114
Figura 62 – Adequação dos valores de c_v à faixa proposta por Ortigão (1993)	115
Figura 63 - Valores de m $_{v}$ - Ensaios SIC	116
Figura 64 – Comparação da variação do módulo M para os ensaios CRS	117
Figura 65 – Variação do módulo M para o trecho de recompressão	118
Figura 66 – Variação do módulo M para o trecho virgem	118
Figura 67 - Valores de permeabilidade obtidos no ensaio SIC	119
Figura 68 – Comparação da variação de k para os ensaios	120
Figura 69 – Variação de k com a velocidade de deformação	121
Figura 70 - Resultados dos ensaios triaxiais CID	123
Figura 71 - Resultados dos ensaios triaxiais CIU	124
Figura 72 - Resultados dos ensaios triaxiais UU	125
Figura 73 – Módulo E a partir de ensaios não drenados	127
Figura 74 - Esquema das trajetórias de tensão	128
Figura 75 - Envoltória de resistência	130
Figura 76 - Resistência não drenada em função da tensão confinante	131
Figura 77 - Variação de Su (UU) com a profundidade	132
Figura 78 - Triaxial CIU - Área L	144
Figura 79 – Triaxial CIU Área L	144
Figura 80 - Triaxiais CIU - Área C	145
Figura 81 - Triaxiais - Área C	145
Figura 82 - Triaxiais CIU - Área O	146
Figura 83 - Triaxiais CIU - Área O	146
Figura 84 - Triaxiais UU - Área L	147
Figura 85 - Triaxiais UU - Área C	147
Figura 86 - Triaxiais UU - Área O	148
Figura 87 - Ensaio de CPTU 01 - Área C	149
Figura 88 - Ensaio de CPTU 02 - Área C	149
Figura 89 - Ensaio de CPTU 03 - Área C	149
Figura 90 - Ensaio de CPTU 04 - Área O	150
Figura 91 - Ensaio de CPTU 05 - Área O	150
Figura 92 - Ensaio de CPTU 06 - Área O	150
Figura 93 - Piezômetro Casagrande - Área L	151
Figura 94 - Piezômetro Casagrande - Elevação do aterro no tempo - Área L	151
Figura 95 - Piezômetros Casagrande - Área C - Etileno	152
Figura 96 - Piezômetro Casagrande - Elevação do aterro no tempo - Área	C –

Etileno	152
Figura 97 - Piezômetro Casagrande - Área C - Polietileno	153
Figura 98 - Piezômetro Casagrande - Elevação do aterro no tempo - Á	rea C-
Polietileno	153
Figura 99 - Piezômetro Casagrande - Área O	154
Figura 100 - Piezômetro Casagrande - Elevação do aterro no tempo - Á	ĺrea O
	154
Figura 101 - Anexo - Piezômetro Corda Vibrante – Variação de poroprese	são no
tempo para Área L	155
Figura 102 - Anexo - Piezometro de Corda Vibrante - Elevação do ate	rro no
tempo para Área L	156
Figura 103 - Anexo - Piezômetro de Corda Vibrante para Área C	157
Figura 104 - Anexo - Piezômetro de Corda Vibrante - Elevação do ate	rro no
tempo para área C	158
Figura 105 - Anexo - Piezômetros de Corda Vibrante para Área O	159
Figura 106 - Anexo - Piezômetro de Corda Vibrante - Elevação do ate	rro no
tempo para área O	160
Figura 107 - Placas de recalque - Área L	161
Figura 108 - Placas de recalque - Área C	161
Figura 109 - Placas de recalque - Área O	162
Figura 110 – Curvas do ensaio SIC-01 pelo método de Casagrande	165
Figura 111 – Curvas do ensaio SIC-01 pelo método de Taylor	166
Figura 112 – Curvas do ensaio SIC-02 pelo método de Casagrande	167
Figura 113 – Curvas do ensaio SIC-02 pelo método de Taylor	168
Figura 114 - Variação do índice de vazios para o CRS-01	169
Figura 115 - Valores de c $_{v}$ para o CRS-01	169
Figura 116 - Valores de Mpara o CRS-01	170
Figura 117 - Valores de k para o CRS-01	170
Figura 118 - Variação da razão de poropressão para o CRS-01	171
Figura 119 - Variação da velocidade de deformação para o CRS-01	171
Figura 120 - Variação do índice de vazios para o CRS-02	172
Figura 121 - Valores de c $_{v}$ para o CRS-02	172
Figura 122 - Valores de Mpara o CRS-02	173
Figura 123 - Valores de k para o CRS-02	173
Figura 124 - Variação da razão de poropressão para o CRS-02	174
Figura 125 - Variação da velocidade de deformação para o CRS-02	174

Figura 126 - Variação do índice de vazios para o CRS-03	175
Figura 127 - Valores de c _v para o CRS-03	175
Figura 128 - Valores de Mpara o CRS-03	176
Figura 129 - Valores de k para o CRS-03	176
Figura 130 - Variação da razão de poropressão para o CRS-03	177
Figura 131 - Variação da velocidade de deformação para o CRS-03	177
Figura 132 - Variação do índice de vazios para o CRS-04	178
Figura 133 - Valores de c _v para o CRS-04	178
Figura 134 - Valores de Mpara o CRS-04	179
Figura 135 - Valores de k para o CRS-04	179
Figura 136 - Variação da razão de poropressão para o CRS-04	180
Figura 137 - Variação da velocidade de deformação para o CRS-04	180
Figura 138 - Variação do índice de vazios para o CRS-05	181
Figura 139 - Valores de c _v para o CRS-05	181
Figura 140 - Valores de Mpara o CRS-05	182
Figura 141 - Valores de k para o CRS-05	182
Figura 142 - Variação da razão de poropressão para o CRS-05	183
Figura 143 - Variação da velocidade de deformação para o CRS-05	183

Lista de tabelas

Tabela 1 - Classificação do solo quanto à atividade da fração argila (Skem	pton,
1953)	28
Tabela 2 - Distâncias interplanares basais típicas para argilominerais (Sa	ntos,
1975)	30
Tabela 3 - Teor de matéria orgânica de depósitos argilosos moles	31
Tabela 4 – Classificação do material com base no valor de pH	32
Tabela 5 - Velocidade para CRS em função do limite de liquidez (ASTM,	1982)
	35
Tabela 6 - Proposições para velocidade dos ensaios CRS	36
Tabela 7- Classificação das argilas quanto à sensitividade	38
Tabela 8 - Sensitividade de alguns depósitos de argila mole do litoral brasile	iro 39
Tabela 9 - Valores médios do coeficiente de adensamento (Sayão -1980)	44
Tabela 10 - Resultados de ensaios triaxiais na argila do Sarapuí, RJ (Sa	ayão,
1980)	45
Tabela 11 - Resistência não drenada em ensaios rápidos na argila mol	e de
Sarapuí, RJ	45
Tabela 12 – Índices físicos da argila de Sarapuí (Ortigão, 1980)	46
Tabela 13 – Resultados dos ensaios triaxiais UU (Ortigão -1980)	47
Tabela 14 – Variação dos parâmetros com a profundidade	49
Tabela 15 - Índices físicos obtidos	50
Tabela 16 - Características iniciais dos corpos de prova e resultados	dos
ensaios SIC.	51
Tabela 17 - Resumo dos resultados obtidos para a argila mole da Ba	ixada
Fluminense.	52
Tabela 18 - Alturas do aterro e de sobrecargas no aterro. (Terratek, 2002)	55
Tabela 19 - Espessuras de argila mole	57
Tabela 20 - Peso específico dos grãos	63
Tabela 21 - Valores de permeabilidade saturada	64
Tabela 22 - Parâmetros de resistência	67
Tabela 23 - Profundidade máxima dos ensaios	72
Tabela 24 - Valores de permeabilidade in-situ da camada drenante	73
Tabela 25 – Programa de ensaios de laboratório	81
Tabela 26 - Velocidades dos ensaios CRS	87

Tabela 27 - Resumo dos ensaios de caracterização (Rio-Polímeros II)	94
Tabela 28 – Características iniciais dos corpos de prova	95
Tabela 29 - Atividade da argila mole da Baixada Fluminense	97
Tabela 30 - Teor de matéria orgânica da argila mole da Baixada Fluminense	99
Tabela 31 - Velocidades dos ensaios CRS	100
Tabela 32 - Velocidades dos ensaios SIC	102
Tabela 33 – Valores de tensão de pré-adensamento e OCR	104
Tabela 34 - Valores dos índices $c_r, c_s e c_c$	105
Tabela 35 - Resultados dos ensaios triaxiais CID	122
Tabela 36 - Resultados dos ensaios triaxiais CIU	122
Tabela 37 - Resultados dos ensaios triaxiais UU	125
Tabela 38 - Módulo de deformabilidade (E) obtido de ensaios triaxiais	126
Tabela 39 - Parâmetros de deformabilidade obtidos nos ensaio CID	128
Tabela 40 – Parâmetros de poro-pressão dos ensaios triaxiais	129
Tabela 41 – Resistência não drenada dos ensaios triaxiais CIU e UU	131
Tabela 42 - Resultados das análises químicas	141
Tabela 43 – Resultados dos ensaios CIU	142
Tabela 44 – Resultados dos ensaios UU	143
Tabela 45 – Equações de calibração	164
Tabela 46 - Equações de calibração das prensas triaxiais	164

LISTA DE SÍMBOLOS

А	Parâmetro de poropressão (Skempton, 1954)
A _f	Parâmetro de Skempton na ruptura
A'	Parâmetro de resistência de Lambe (intercepto)
В	Parâmetro de poropressão (Skempton, 1954)
C'	Intercepto da envoltória de resistência τ vs. σ '
C _c	Índice de compressão virgem
Cr	Índice de recompressão
Cs	Índice de expansão
Cα	Coeficiente de compressão secundária
Cv	Coeficiente de adensamento vertical
d	Distância interplanar basal
E	Módulo de deformabilidade
E 50	Módulo de deformabilidade referente ao ponto 50% de q _f
Eu	Módulo de deformabilidade não drenado
Ei	Módulo de deformabilidade inicial
E _{u 50}	Módulo de deformabilidade não drenado referente ao ponto 50% de $q_{\rm f}$
е	Índice de vazios
e _o	Índice de vazios inicial
e _f	Índice de vazios final
Gs	Densidade real dos grãos
l _a	Atividade
IL	Índice de liquidez
IP	Índice de plasticidade
k	Coeficiente de permeabilidade
k _o	Coeficiente de empuxo lateral no repouso
LL	Limite de liquidez
LP	Limite de plasticidade
Μ	Módulo de deformabilidade unidimensional

M _{cal}	Módulo de deformabilidade unidimensional (calculado)
M _m	Módulo de compressão da membrana em ensaios triaxiais
m _v	Coeficiente de variação volumétrica
n	Ordem de reflexão de onda
p'	Semi-soma das tensões efetivas principais
p' _f	Semi-soma das tensões efetivas principais na ruptura
q	Tensão desviadora dividida por dois
q f	Tensão desviadora dividida por dois na ruptura
S	Grau de Saturação
S _o	Grau de Saturação inicial
St	Sensitividade de argilas
Su	Resistência ao cisalhamento não drenada indeformada
S _{ur}	Resistência ao cisalhamento não drenada amolgada
t ₁₀₀	Tempo referente ao término (100%) do adensamento primário
u	Poropressão
Ub	Poropressão na base
U	Grau de adensamento
V	Velocidade de deformação do corpo de prova
V _f	Velocidade de deformação no término do adensamento
V ₁₀₀	Velocidade de deformação no tempo t ₁₀₀
w	Teor de umidade
Wo	Teor de umidade inicial
W _f	Teor de umidade final
Z	Profundidade
α'	Parâmetro de resistência de Lambe (coeficiente angular)
Δ_{u}	Variação de poropressão
Δ_{uf}	Variação de poropressão na ruptura
Δh	Variação de altura
$\Delta\sigma_{v}$	Acréscimo de tensão vertical
$\Delta\sigma_1$	Incremento de tensões efetivas verticais
$\Delta\sigma_{\rm c}$	Variação de tensão confinante

$\Delta \sigma_{d}$	Variação de tensão desviadora
ε _a	Deformação axial
ϵ_{af}	Deformação axial na ruptura
έ _v	Velocidade de deformação vertical
ϵ_v	Deformação volumétrica
φ'	Ângulo de atrito efetivo
$\gamma_{ m d}$	Peso específico seco
γ_{s}	Peso específico dos grãos
γ_t	Peso específico total
γ_{w}	Peso específico da água
λ	Comprimento de onda
ν	Coeficiente de Poisson
σ_{c}	Tensão efetiva confinante
σ'_{R}	Tensão efetiva residual
σ_v	Tensão total vertical
σ'_{vmed}	Tensão efetiva vertical média (no estágio)
σ'_v	Tensão efetiva vertical
σ' _{vm}	Tensão de pré-adensamento
σ'_{vo}	Tensão efetiva vertical inicial ou no campo
σ_1	Tensão principal maior
σ_3	Tensão principal menor
σ_{a}	Tensão axial
σ_{c}	Tensão confinante
σ_{d}	Tensão desviadora
σ_{v1}	Tensão total vertical no tempo inicial
σ_{v2}	Tensão total vertical no tempo final
σ_{vo}	Tensão total vertical inicial ou no campo
θ	Ângulo de refração
τ	Tensão cisalhante
ABNT	Associação Brasileira de Normas Técnicas

ASTM	"American Society for Testing Materials"
СР	Piezômetro de Casagrande
CID	Ensaio Consolidado isotropicamente drenado
CIU	Ensaio Consolidado isotropicamente não drenado
CI-EL	Ensaio Consolidado isotropicamente – extensão lateral
CK₀-EL	Ensaio Consolidado na linha K_o – extensão lateral
CK₀U	Ensaio Consolidado na linha K $_{\rm o}$ – não drenado
CPTU	"Cone penetration test" com medida de poropressão
CRS	"Constant rate of strain"
DCMM	Departamento de Ciência dos Materiais e Metalurgia da PUC-Rio
Embrapa	Empresa Brasileira de Pesquisa Agropecuária
MO	Matéria orgânica
NBR	Norma brasileira
OCR	Razão de pré-adensamento ("Over Consolidation Ratio")
PPA	Perda de peso por aquecimento
Reduc	Refinaria Duque de Caxias
SIC	"Standart incremental consolidation"
SPT	"Standart penetration test"
UU	Ensaio não consolidado não drenado

VWP Piezômetro de corda vibrante