7 Referências bibliográficas

- [1] WEBDUTOS, Banco de Dados de Dutos da Petrobras, mai. 2003.
- [2] ASME B31G, Manual for Determining the Remaining Strength of Corroded Pipelines, A supplement to ANSI/ASME B31 Code for Pressure Piping, New York, 1991.
- [3] VIETH, P.H.; KIEFNER, J.F. A Modified Criterion for Evaluating the Remaining Strength of Corroded Pipe, Contract PR-3-805, Pipeline Research Council International, Inc, American Gas Association, Catalog No. L51688Be, dec.1989.
- [4] DNV Recomended Practice DNV-RP-F101 Corroded Pipelines, Det Norske Veritas, Norway, 1999.
- [5] Code of Federal Regulation 49 Parts 186 to 199, Office of the Federal Register National Archieves and Records Administration, Oct. 2002.
- [6] Z662-99 Oil and Gas Pipeline Systems, Canadian Standard Association, Apr. 1999.
- [7] PGIED Padrão para Gerenciamento da Integridade Estrutural dos Dutos da Petrobras, Rio de Janeiro: Petrobras, Rev. 1, mai. 2002.
- [8] Specification for Line Pipe, Specification 5L, American Petroleum Institute, 1995.
- [9] BENJAMIN, A.C. Avaliação de Dutos Corroídos com Defeitos de Profundidade Variável, Relatório Final do Projeto Produt 600536, Petrobras/Cenpes/PDP/MC, abr. 2003.
- [10] BENJAMIN, A.C. Avaliação da Resistência Remanescente de Dutos Corroídos Através do Método dos Elementos Finitos e de Duas Versões do Método Empírico do Código ASME B31G, 1º Relatório Parcial do Projeto 296400, Petrobras/Cenpes, mar. 1996.

 BENJAMIN, A.C. Métodos para Avaliação da Resistência
[11] Remanescente de Dutos com Defeitos Causados por Corrosão, 2º Relatório Parcial do Projeto 296400, Petrobras/Cenpes, mar. 1996

BENJAMIN, A.C. Avaliação Estrutural em Dutos com Defeitos[12] Longos, Relatório Final do Projeto 317900, Petrobras/Cenpes set. 2000.

- [13] NORONHA JR, D.B.; BENJAMIN, A.C; ANDRADE, E. Q. Modelagem de Dutos Corroídos Usando Elementos Finitos Sólidos, Relatório Final do Projeto 320500, Petrobras/Cenpes, set. 2000.
- [14] CALDWELL, J.; SMITH, G.;VIETH, P.; WILLIAMSON, G. Pipeline Pigging Course, Clarion Technical Conference and Pipes& Pipelines International, sep. 2001.
- [15] NESTLEROTH, B.; PORTER P., Pipeline Inspection Workshop, Petrobras/Cenpes, dez. 2001.
- [16] Specification and Requirements for the intelligent pig Inspection of Pipelines, Pipeline Operators'Forum, Shell International Exploration and Production BV, Netherlands, Version 2.1, nov. 1998.
- [17] MORAES, P.R.V. 15^a Reunião do Pipeline Operators Fórum. Rio de Janeiro: Transpetro/DT/Suporte/TEC/Conf, mai. 2002, Relatório de Missão ao Exterior.
- [18] CROUCH, A.; SMITH, M.Q. Resolution Impacts accuracy, Pipe Strength, pp.35-42, Sep. 2002.
- [19] VIETH, P.H.; KIEFNER, J.F. Database of Corroded Pipe, Contract PR-218-9206, Pipeline Research Council International, Inc, American Gas Association, Catalog No. L51689e, jan. 1993.
- [20] API Recommended Practice 579, Fitness for Service, American Petroleum Institute, First Edition, jan.2000
- [21] PII Pipetronix GmgH, UltraScan WM Final Report, 18" Orbel I, Regap-Esman, dec. 2000.
- [22] BINI, E.; BIASE, L. D.; SCROCCHI, D.; ZONTA, G. Cost-saving Strategies for Pipeline Integrity, The Journal of Pipeline Integrity, sep. 2001, pp.20-30.
- [23] CHOUCHAOUI, B. A.; PICK, R. J. A Thre Level assessment of Residual Strength of Corroded Line Pipe. Proceedings of 13th Intenational Conference on Offshore Mechanics and Arctic Engineering, OMAE 94, vol.5, Pipeline Technology, pp.9-18.1994.
- [24] CRONIN, D.S., PICK, R.J. A New Multi-level Assessment Procedure for Corroded Line Pipe. Proceedings of 3th International Pipeline Conference, ASME 2000, vol.2, pp. 801-808, 2000.
- [25] COSHAM, A.; HOPKINS, P. PDAM. The Pipeline Defect Assessment Manual, A Report to the PDAM Joint Industry Project, Andrew Palmer and Associates, Draf Final Report, nov. 2001.

- [26] CAZENAVE, P. and CLYNE, A., Corrosion Growth and Fitness-for-Purpose of the Orbel 18" Pipeline, PII TPI, mar. 2002
- [27] BJORNOY, O.H.; MARLEY, M.J. Assessment of Corroded Pipelines: Past, Present and Future. Proceedings11th International Offshore and Polar engineering Conference, Stavanger, Norway, jun. 2001. pp.93-101.
- [28] ASME B31.4, Pipeline Transportation System for Liquids Hydrocarbons and Other Liquids, ASME Code dor Pressure Piping, B31, An American National Standard, 1998 Edition.
- [29] ASME B31.8, Gas Transmition and Distribution Piging Systems, ASME Code dor Pressure Piping, B31, An American National Standard, 1999 Edition.
- [30] BENJAMIN, A.C. Avaliação de Dutos com Defeitos de Profundidade Variável, Projeto Produt 600536, Relatório Parcial, dez. 2002.
- [31] VIEIRA, R.D. Inspeção dos Segmentos de Dutos, Rio de Janeiro: PUC-Rio, Relatório Técnico Nº 1 do contrato Cenpes Nº 650.2.164.01.0, nov. 2001.
- [32] VIEIRA, R.D. Mapeamento de Espessura dos Espécimes Tubulares, Relatório Técnico Nº 3 do contrato Cenpes Nº 650.2.164.01.0, PUC-Rio, mai. 2002.
- [33] VIEIRA, R.D. Ensaios de Tração dos Materiais dos Tubos, Relatório Técnico Nº2 contrato Cenpes Nº 650.2.164.01.0, PUC-Rio, mai. 2002.
- [34] VIEIRA, R.D. Confecção dos Tampos Soldados, Relatório técnico Nº 4 do contrato Cenpes Nº 650.2.164.01.0, PUC-Rio, mai. 2002.
- [35] VIEIRA, R.D. Testes de Pressão nos Espécimes Tubulares, Relatório técnico Nº 5 contrato Cenpes Nº 650.2.164.01.0, PUC-Rio, jun. 2002.
- [36] DEMIROVIC, N. Publicação Eletrônica [RSTRENG V3.0 (Assessment of Complex Shaped Defects)]. Mensagem recebida por <u>souzards@centroin.com.br</u>, dez. 2002.
- [37] BJORNOY, O.H. Publicação Eletrônica [Assessment of Complex Shaped Defects (Part B)]. Mensagem recebida por <u>Adilson@cenpes.petrobras.com.br</u> em nov. 2002.

- [38] KIEFNER, J.F., VIETH, P.H. and Roytman I. Continued Validation of RSTRENG, Contract PR-218-9304, Pipeline Research Council International, Inc, American Gas Association, Catalog No. L51749e, dec. 1996.
- [39] SIGURDSSON, G.; CRAMER, E.H.; BJORNOY, O.H.; FU, B.; RITTCHIE, D. Background to DNV RP-F101"Corroded Pipelines". Proceedings of 18th International Conference On Offshore Mechanics and Arctic Engineering, St. Johns, Newfoundland, Canada, jul. 1999.

Apêndice A – gráfico taxa de corrosão x probabilidade acumulativa

Figura 26 – Gráfico taxa de corrosão x probabilidade acumulativa

Apêndice B - telas dos programas Rstreng e DNV RP-F101

Figura 27 - Tela do programa Rstreng

1.0	A		DN	/ Red	comme	nd	led Pr	act	ice. RF	- -F	101 Cor	roded Pi	pelines
Lí	Ā				:	Sing	le defec	t, se	ction 3, P	art /	A		•
			_							_			
Ð	াওঁৰ ক	_	Dere	loped 	by: Det i nemon	Vor. NO.	ske Peril Le	'as;' i	Pipelines -	Sect	ion / Rev.	017 M May	1999
P	en.ie	ст		<i>sea ко</i> 2646 т		2464	10						
		.01		ITAT									
Pr	ojecti	title:	Tubo	10 -G	eratriz Ri	ver	Bottom	Su =	80.784 p	si		sign:	RDS
Pr	oject i Stat	no.:	Medi	ção M	anual - Tu	bo	com 50 j	pont	os espaç	ado	s de 20 m	date:	1/9/2002
Su	ient ibiect						•••••	•••••		•••••			
-			1				1						
Sa	afety	class	s, mate	rial ar	nd inspe	etic	on capa 1	biliti	les				
Sa	ifety C	lass		High		-		Ins	pection m	ethe	bd	Absolute r &	- (UD)
M	aterial	l req.	"U"	NO		٠		Ins	pection c	apab	oilities		
M	aterial	Grad	de			•	ļ.,		Confider	nce l	evel (%)	35 💌	
		(SMYS		0	01	W/mm*		Sizing a	ccur	acy	0	(exact)
			SMITS		511.1		V/mm"						
G	eome	etry, I	oad, de	ensity	and refe	erer	nce heig	ht					
0.	itor di	amati	or (D)		457.0				18	00	inch	inch AMSI	
H w	all thic	cknes	s(t)		6.35	m	 m			1.25	inch	D/t =	72.0
P.	íst	ref. h	eight)		63.4	Ь	ы г			920	psi		
			Ľ,										
R	feren	ce hei	ight		0.0	m		Wa	iter densil	:y		kg/m³	lear height ir -
C	ontaini	ment	density		0.0	<u>k</u> k	9/m³	Hei	ght, at de	fect	0.0	m	abav.
S	pecifi	catio	on of de	efect :	size								
			(.1)									0.07.41.1	0.000
	efect o	lepth	(a) (b)		2.24	m	m _		3	5.3	% of t Users∕⊡s	StD[4/t] =	0.000
	rection	engen	10 3		1020.0	; m	m I		10	.33	irsqr(Do	7	0.12
R	esults	5				_							
AI	lowab	le dif	if, press	ure		\vdash	69.4	ba	1	007	psi		
AI	lowab	le int	ernal pr	essure	at ref.he	ight	69.4	ba	10	007	, psi	Jtilisation =	0.91
Pl	ot ado	dition	al defec	ts, nu	mber of:		0					(rof.hoight)	
						-							
Ηſ		10-									-		
									1		. D.f		- I 🗖
			L,				-			_	- Allous	isizo Iblo dofoctsis	
	ž	0.8 -					<u>+</u>				1	1	
	ž		$ \rangle$	1							1		
$\left \right $	1	0.6 -	`	777			¦						+
+	-			\sim	2		1						
	÷.						<u></u>	_	1				
	1	0.4 -					÷		· · · · · · ·				
	j.						1		1				
	Ę	02											
	di di	0.2											
+				:								-	
		0.0 -											
		0)	20	0	4	00		600		800	1000	1200
H						D	efect la	-	th (mm)				
			1			1							

Figura 28 - Tela do programa DNVRP-F101 para defeitos isolados

		NV D		ad Deee		DDF	101 C -	and a distant		-	
	L	NT Hec	Jmmend	eu rrac	cice	. nr-r		iroded	- ipeline	5	
				somplex de	arects	, section	J, Part A				
PROJECT	INFORM	ATION									
Denis at tit		Tube 10	Diana baila Dia			00.704 -					DD2
Project da		Madiata N	Jeratriz Riv Assust - Tul	er Dottom	30 =	00.104 p	isi Islamida S			sign:	1990000
Client		i Mediçao P	rianuai - Tui	bo com bo	ponte	os espaç	idos de a	.0 mm		date:	: 11012002;
Subject											
oubject											
Safety clas	s, Materia	al, Inspectio	n capabiliti	es, Geomet	ry, Pr	essure ar	id Density	y			
Safetu Cla	ss	High			Insp	ection m	thod	Absolute r	& t (UT)		
Material re	.a. "U"	NO			Insp	ection ca	pabilities				
Material G	irade				Cor	fidence l	evel (%)	35			
SMTS		511.1	N/mm ²		Sizi	ng accur:	acy .	0.0	(exact)		
Outer diam	eter (D)	457.2	mm	18.00	inch	F	eference	height	0.0	m	
Wall thickr	iess (t)	6.35	mm	0.25	inch	C	ontainme	nt density	0.0	kg/m³	
D (at rel	(, height)	63.4	bar	920	DSI	. V	/ater den	situ .	0.0	ka/m ³	
P						H	ciaht. at ·	defect	0.0		
Defect list	ing and Re	esults									
				Illurtrati	 -f	comple	x				
						-	-				,
		<u></u>	***	*****	÷**	A	same a	*****		Τ	
											1.11
											_ = =
	-388										
						11					
				Allowable	diff.	pressure			76.9	bar	1115 psi
Number of	increment:	100		Allowable	inter	, nal press	ure at ref.	height	76.9	har	1115 psi
		°				· ·					· · · ·
Max 1000											
points		Defect	profile								
	Ident	Defect length	profile depth								
52	Ident	Defect length (mm)	profile depth (mm)								
52 1	ldent	Defect length (mm) 0	profile depth (mm) 0								
52 1 2	ldent	Defect length (mm) 0 20	profile depth (mm) 0 1.18								
52 1 2 3	Ident	Defect length (mm) 0 20 40	profile depth (mm) 0 1.18 1.03			Camp	loz ska	. calc 1	allau pro		
52 1 2 3 4	Ident	Defect length (mm) 20 40 60	profile depth (mm) 0 1.18 1.03 1.03		83 T	C==,	lex sha	••. calc al	- allau pro		
52 1 2 3 4 5	ldent	Defect length (mm) 20 40 60 80	profile depth (mm) 0 1.18 1.03 1.03 1.45		*3]	C,	lex shap		² allau pro		
52 1 2 3 4 5 6	Ident	Defect length (mm) 20 40 60 80 100	profile depth (mm) 0 1.18 1.03 1.03 1.45 1.22		*3 T *2 -	C==,	lez skaj				<u>.</u>
52 1 2 3 4 5 6 6	Ident	Defect length (mm) 20 40 60 80 100 120	profile depth (mm) 0 1.18 1.03 1.03 1.45 1.22 0.87		*3 T *2 -	C,	lez skaj	>*, calc #			<u></u>
52 1 2 3 4 5 6 7 7 8	Ident	Defect length (mm) 20 40 60 80 100 120 140	profile depth (mm) 1.18 1.03 1.03 1.45 1.22 0.87 1.44		*3 T *2 - *1 -	C	lox sha	••, calc al			
52 1 2 3 4 5 6 7 7 8 8 9	Ident	Defect length (mm) 20 40 60 80 100 120 140 140 160	profile depth (mm) 1.18 1.03 1.03 1.45 1.22 0.87 1.44 1.63		*3 - *2 - *1 -	C,	lex rb a	••. calc =1		/	
52 1 2 3 4 4 5 6 7 7 8 8 9 9 10	Ident	Defect length (mm) 0 20 40 60 80 100 120 140 140 160 180	profile depth (mm) 0 1.18 1.03 1.03 1.45 1.22 0.87 1.44 1.63 1.45		*3 - *2 - *1 - *0 -	C,	lex rb a	••. calc =1		/	#*
52 1 2 3 4 5 6 7 7 8 8 9 9 10 10		Defect length (mm) 0 20 40 60 80 100 120 140 160 180 200	profile depth (mm) 0 1.18 1.03 1.03 1.45 1.22 0.87 1.44 1.63 1.45 1.45 1.54	are (ber)	*3 T *2 - *1 - *0 -	C,	lex rb a	••. calc =1	allau pra	/	#*
52 1 2 3 4 4 5 6 7 7 8 3 10 11 11 12		Defect length (mm) 0 20 40 60 80 100 120 140 160 180 200 220	profile depth (mm) 0 1.18 1.03 1.03 1.45 1.22 0.87 1.44 1.63 1.44 1.63 1.45 1.54 1.54	erer (t-r)	*3 - *2 - *1 - *0 - 79 -	C,	lex rb a		allau pra	/	**
52 1 2 3 4 4 5 6 7 7 8 9 10 10 11 11 12 13		Defect length (mm) 0 20 40 60 80 100 120 140 160 180 200 220 240	profile depth (mm) 0 1.18 1.03 1.03 1.45 1.22 0.87 1.44 1.63 1.44 1.63 1.45 1.54 1.54 1.11 0.84	Prezente (ber)	83 - 82 - 81 - 80 - 79 -	C,	lex rb a	•••, calc al	allau pra	/	
52 1 2 3 4 4 5 6 7 7 8 9 10 10 11 11 12 13 14		Defect length (mm) 0 20 40 60 80 100 120 140 160 180 200 220 240 240 260	profile depth (mm) 0 1.18 1.03 1.03 1.45 1.22 0.87 1.44 1.63 1.45 1.54 1.54 1.11 0.84 1.11	Prezente (ber)	*3 - *2 - *1 - *0 - 79 - 7* -	C			allau pra	/	
52 1 2 3 4 4 5 6 7 7 8 8 9 10 11 11 12 13 14 14 5 5 5 7 7 8 8 9 10 11 12 13 14 14 15 15 10 10 11 10 10 10 10 10 10 10 10 10 10		Defect length (mm) 0 20 40 60 80 100 120 140 180 200 220 240 260 280	profile depth (mm) 0 1.18 1.03 1.03 1.45 1.22 0.87 1.44 1.63 1.45 1.54 1.54 1.54 1.54 1.11 0.84 1.4	Prezrare (ber)	83 - 82 - 81 - 80 - 79 - 78 -	C	lex rbay	••, calc al	allau pro	/	
52 1 2 3 4 4 5 6 7 7 8 8 9 10 11 12 13 14 14 5 5 7 7 7 7 8 8 9 10 11 12 13 13 14 14 15 15 16		Defect length (mm) 0 20 40 60 80 100 120 140 160 180 200 240 240 260 280 300	profile depth (mm) 0 1.18 1.03 1.45 1.22 0.87 1.44 1.63 1.45 1.54 1.54 1.54 1.54 1.11 0.84 1.4 0.83 1.47	Prezrare (ber)	*3 - *2 - *1 - *0 - 79 - 78 - 77 -	C	lex rbay	••. calc al		/	
52 1 2 3 4 4 5 6 7 7 8 8 9 10 11 12 13 14 14 15 16 17		Defect length (mm) 0 20 40 60 80 100 120 140 180 200 240 240 260 280 300 320	profile depth (mm) 0 1.18 1.03 1.03 1.45 1.22 0.87 1.44 1.63 1.45 1.54 1.54 1.54 1.54 1.54 1.54 1.54	Prezrare (ber)	*3 - *2 - *1 - *0 - 79 - 78 - 77 -	C===,	lex rbay	••. calc al		/	
52 1 2 3 4 4 5 6 7 7 8 8 9 10 10 11 12 13 14 15 16 17 17 18		Defect length (mm) 0 20 40 60 80 100 120 140 180 200 240 240 260 280 300 320 340	profile depth (mm) 0 1.18 1.03 1.03 1.45 1.22 0.87 1.44 1.63 1.45 1.54 1.54 1.54 1.54 1.11 0.84 1.47 0.83 1.47 0.82 1.37	Prezrare (ber)	*3 - *2 - *1 - *0 - 79 - 78 - 77 - 77 -	C==,	lex rbay	10. calc n		/	
52 1 2 3 4 4 5 6 7 7 8 8 3 9 10 11 12 13 14 15 16 17 17 18 19 19		Defect length (mm) 0 20 40 60 80 100 120 140 160 180 200 240 260 280 300 320 340 340	profile depth (mm) 0 1.18 1.03 1.03 1.45 1.22 0.87 1.44 1.63 1.45 1.54 1.54 1.11 0.84 1.41 0.83 1.47 0.82 1.37 1.37	Prezrare (ber)	*3 - *2 - *1 - *0 - 79 - 79 - 77 - 77 - 76 -	C==,	lex she	••. calc al	allau pro	2	±
52 1 2 3 4 4 5 6 7 7 8 8 3 1 4 10 11 12 13 14 15 16 17 17 18 19 20		Defect length (mm) 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 340 360	profile depth (mm) 0 1.18 1.03 1.03 1.45 1.22 0.87 1.44 1.63 1.45 1.54 1.54 1.11 0.84 1.45 1.54 1.11 0.84 1.47 0.82 1.37 1.37 1.37	Prezente (ber)	*3 - *2 - *1 - *0 - 79 - 79 - 77 - 77 - 76 - 0	C==,	lex sher	20. calc al	allau pro	2	±

Figura 29 - Tela do programa DNVRP-F101 para defeitos de geometria complexa

Apêndice C – mapeamento manual e CSCAN dos

espécimes T04,T05,T06 e T10

		9	н		1	К	L	н	н	0	P	11	R	5	T	U	Y	W	Х	۲	2	88	PP	CC	DD
			547		599	592		226	573	575			10	615	511	515	538	611		596	594			514	591
	616	622	622	624	611	622	616	511	555	\$75	461	471	562	597	\$75	598	682	587	687	578	554	612	685	551	558
2	62	62	611	645	64	647	645		55	575	- 11	- 61	586	682		525	554	627	627	587	5 5	55		646	554
-	652	647	627	636	616	11		616	574	200	244		575	515	574	536	535	512		537	595	535	592	535	552
1	614	683	611	624	616			624	585	455	0.7	542	\$74	515	586		513	682	611	681	591		687	651	\$75
11	624	614	646	642	645	55	624	626	5	566	417	414	642	55	555	554		685	622		554	55	596		651
12	676	626	527	11	624	1	615	624	585	5.74	535		576	517	555	111	533	537	542	533	594	592	587	592	644
14	613	611	692	514	628	595	682			665	175	111	\$74	ŝ	597	514	598	685	61 7	615	614	ŝ	571	597	687
15	635	612	626	616	625	551	613	614	55	633	472	564	633	575	681	558	55	555	683	687	634	584	698	665	648
15	22	1		515	525	512	611	1	515	565	125		692	572	555		515			611	59	575		599	597
11		597	594	sii		646	646	685	586	574	100	175	575	\$75		592	594	612		625	647	595	\$74	55	575
15	615	52	61	616	55	611	636	554	52	55	- 411	464	511	585	552	665	55	615	682	611		685	595	651	578
28	22	11	521		22	525	1		11	556	-		535	555	576	515			517		599			51	682
22	117	622	599	591		625	687	641	595		541		571	515	512	599			511		554	516	594	52	595
25	615	611	695	597	621	611	612	615	597	647	541	477	568	584	592	618	62	615	598		594	592	511	587	558
24	616	644	592	642	622	636		624	652	585	633	555	555	525	584	574	576	584	554	64	614	584	641	587	
25	694			554	662	685	622			555	342	542		682	59	555	595				554	585			572
27	626	62	618	636	662	55	641	615	535	536	551	172	555	555	596	633	681	558	687	611	685	685	585	592	683
28		684	651	642	671	611	655	625		554	511	- 925	587	585	652	555	55			554	576	5 5	584	587	682
		522	631	652	644	694	64	524	585		500		242	535	511	591	527	230	535	642	505	534	300	584	27
11	611	682	52	616	611	615	647	696	615	612	624	115	472	555	557	685	583	586			596	681	682	598	611
52	613	614	62	61	638	611	615	684	55	522	417	552	552	585	551	554	555	586	611	585	562	555	685	511	682
		517	627	62	658	611	627	535	524	65	535	555	644	5 5	575	534	512	533	534	5 5 5	596	576	597	533	615
35	624	611	627	616	688	685	614	655	582	115	- 11	626	584	62		588	611	583	684	682	596	591	594		682
36	612	616	625	645	625	596	628	614	611	511	411	485	587	558	611	555	585	595	597	684	683	592	683	683	684
37		616	51	655	641	E11	615	612		587			565	565		551	592	555	611	55	525	534	55	14	61
33	535	611	617	521	51	625	614	614	656	641	511	1.11	611	111	552	595	616	614	592	571	614	517	\$75	592	
4	597	611		615	687	633	667	682	555	634	542	514	\$74	554	558	65	614	614	554	554	598		599	681	555
41	625	614	611	52			524	22	55	571	525	454	558	574	592	61		554	597	52	682	596	587	597	685
10		696	625	647	525	571	595	644	554	575	- 202	-	525	574	574	514	590		585	594	514	590	525	644	
44	611	614	613	626	618	621	683	611	575	584	525	457	618	578	588		595	612	684	597	541		611	683	686
45	11	51	642	625	524	642	665	611	585	575	566	511	- 11	52	5	5	554	665		611	575	592	587	687	
45		5 5	522	625	652	22	535	531	533	57		624	524	645	538		584	514		542	597	536	533	575	682
ä	626	614	622	611	621	612	511	595	687	550	171	511	554	\$77		683	585		682	613		59	552	665	683
45		6	621	685	682	643	615	611	611	592	415	585	581	575	611	556	592	585	682	585	592		554	683	628
5		52	555	612	611			587	597	568	125	- 22		560	55	592	551	595	52		615		585	544	
52	611			612		61	691	64	555	572	155	- 65	595	541	651	595	1 12		611		514		614		595
55	612	61	62	625	51	595	683	595	555	474	411	451	576	574	586	595	515	683	555	611	597	595	592	551	683
54	682	612	612				5		587	555	451	474	555	577	55	11	511	554	587 1		615	587	555	64	
55		645	687	625	57		592		595	555		511	554	570		50		595	5 5	575	525	5		599	514
57	612	612	621		598	612		62		552	111	545	558	584		655	55	595	594	596	681	587	551	595	688
58		614	547	524	575	611	685	596	5	597	414	- 548	555	524	61	555	55	682	555	685	554		55	55	685
55		55	544		17		615		511	5 1	55		525	5 2	55	542		597			611	535	595	21	
61	61		626		616	611	655	617	595	\$75	466	551	644	\$77	628	595	614	598		622	611	612	682	682	
62	611		685	622	626	587	55	586	555	565	565	582	417	551	587	616	555	686	645	61	681	595	582	642	
61	622	1	621	612		616		612	517	586			55	554		612	612		225		55		535	612	612
65	575	611	645	62	627	642		625	587	634	557	548	511	599			615	685	611	667	599	645	511	626	681
66	611	624	622		611		685	625	5	582	545	524	525	682	557	612		615	62	685	61			613	611
67	592	57	22	21	11		622	612	5	525	625		515	624		596	515	517	592	612		595	612	51	
63				623	623	612	647	611	535	55	515		555	554	683	595	599	592	62	612	663	614	612	611	558
78	\$77	611	599	554	682	675	611	622	683	511	683	595	SEE	111	558	542	634	551	616	613	655		612	555	684
21	551	11		11			651	535	5 1 1	511			551	557	554	535	55	11		511	511	533	1	53	535
73	554	511		524	625	625	613	665	51	592	511	100	611	571		643	591	\$75	614		622	5	592	617	551
74	683	665	683	614	595	688	616	684		625	565	461	614	575	551	615	614	695	645	595	682	685	578	551	555
75	11	617		25		614	62	114	612	511	574		624	541	616	645	55	624	636	687	665	686	614	636	
77	61	614		55	614	699	111	55	551	551	612	551	551	5	647	625		614	647	617	611	647	613		654
78	611	611	628	611	683	614	647	614	684	575	552	471	565	527	588	551	621	683		596	551	618	614	683	611
75			555	22	114		555	652	554	571	525		55	551	585	555	599	614	61	552	687	585	598	11	613
11		624		11	52	525	624	622	617	575	545		592	50	505	iii i	592	512	51	5 15	592	511		514	511
12	625	597	554	684	626	683	616	685		586	585	471	\$72	575	551	585	611	596	598	616	647	616	665	595	682
13	625	515	525			514		51	584	587		545	57		585	596		555		555	55	575	571		
15	535	525	523	646	542		623	5	585	5 2	-		572	50	587	5	595	5	585	542	55		53	612	512
16	511	551	683	623	683	614	621	615	625	566	585	412	595	571	585	592	592	682	595	596	667	685	595	592	592
87	65	585	586	622	514	611	597	631		599	557	111	551	11		555	596	684	611		584	615		611	611
		522		644	522	51		642	542	545	545		22	552	5 2	535		645	517	533	544				
31		613	683	617	617	627	613	681	684	571	562	111	682	111	538	595	583	551	615	599	683	613	596	551	654
31	614	646	682	684	642	61	628	647	615	597	642	582	\$74	548	584	612	597	683	612			636	558	631	
52	512	611	642	1	11	616	11	587	645	57	\$75		545	555	505		534		5	1	544	533	571	12	535
34	612	684			612	611		684		521	544	511		575	617	592	626	552	624		555	614	599	611	
35	611	612	614	621	612	612	687	622	684	556	578	547	595	512	588	628	595	615	644	665	595	634	681	687	551
36	544	647		622			645	624	644	599	500		552	541		554	554		665			662	612	1	
31			iii	622	625		64		61	552	\$75	515	ŝ	555	ŝ	614	597	595	611	611				686	685
33	625	625	685	615	622	655	686	622	628	615	548	111	564	541	588	681	668	699	647	684	598	681	547	596	681
111	595		597		12		51	61	614	5	583	555		555	572		592	517	595	514	587	525		533	614
112	611		624	614	522	642	514	5	522	524	554		554	555	525		517	512	595	515	595	644	503	595	533
183	615	63	687	641	622	611	668	611	624	597	552	471	595	568	592	686	597	596	681	599	\$74	611	554	647	682

Figura 30 - Mapeamento manual por ultra-som - Espécime T04 - L=1980 mm

Figura 31 - Mapeamento CSCAN ímpar - Espécime T04 - L=990 mm

Figura 32 - Mapeamento CSCAN par - Espécime T04 - L=990 mm

_																		
	- 1	- 1	-										I .		Ger.			
		- F	G	н			K	L	н	н	0	P P	0	R	5	T .	U	Y
	42	647	612	684	623	626	552	624	6 1 3	611	552	647	55	548	511	111	685	697
		682	282		599	642		622	642	644				575	554	511	625	528
1											220	2.0		- 11	202	241	ar	336
1	45	682	55	684			6 2	612	615	613	55	571			565	552	55	574
	46	614	599		596	685	642		682	648	682	552	595		599	551		645
-	-																	
_																		
	•	1	115	531	11	12		11		11	536	582			200	57	287	533
1	13		554	624	554	556	647	614	611	611	614	554	582	577	587	511	582	552
-		645		644	624	644	622			676	644	282	282	525	5.8.4	592	552	
-																		
	21	B10				bee.		bee.					202	21.6	233	233	224	226
	52	614	557	612	682	615	611		613		597	557	575	564	- 415	575		682
	59	683	552	682	684	684	692	645	552		684	557	645	515	567	555	644	582
-																		
1													3.6		231		ara	are
	55	12	F 1		6 2		597	622	597	5 5	5.1	554	587	551	536	- 52	517	
	56	613	586		613	641	613	616	555	584	576	5 5 5	555	555	5 5	114	576	582
	57	645	645	599	585	528	684	624		682	682	683	557	12.5	565	544	551	568
- 11																		
-																		
	53		11	617	612		51	625	612		516	1 1	617	511	612	513	252	514
			646	625	624				557	555	555	555	584	545	551	455	562	
	64	645		6.9.8	648	642	625	554		511	586		554	568	582	522	584	551
-																		
-														_			-	
		625	14	611	611		117	11		622	111	51	117	538	571	222	535	617
	6 A	622	62	E 13	615	625	641	626		622			587	584		526	555	575
	55	614	645	652	644	648	622		648	682	648	599	551	566	560	552	524	554
-			575		545			633	642							1.44		
-	-													-		112		
	67	617		11	11	635		121	537	592	611		576	611	512	247	227	201
		625			637	555		614		682	55	584		556	575	555	541	
	53	625	684	625	500	645	648	684	624	585	575	595		415	541	544	544	515
H	28	644			535									6.7.8		121	525	
			111						111						111		111	
	r1				317	225	112		112		5	236	211	20.0	552	25	122	362
	72	5 5		514	5	615	614		611	552	\$75	2555	592	557	511	517	514	555
	73	555	558	\$75	683	555	552	584	533	586	\$78	584	538	544	564		554	\$75
	24	585	528	5.85	582	687		595	582	582	528			2.48	552	55.0	545	524
H														-	111		111	
	rà -		20	214	202	124			147	202	233		515	272	271	351	535	263
	76		66	62	5 5	592	612	534	\$77	514	\$74	5	571	622	548		561	514
	77	622	515	616	551	611	517	512	557	611	611	555	538	511	SEE	511	565	552
	28	644	676	682	644	648	622		5.9.4		599	574		574	554	111	574	511
-	_																	
_	<u></u>	110		112						22		- 201	- 200	222	200		3.6	222
		625	111	6.16	621	612	614	622	5 2	6	512	574	555	512	543	437	12	27.
	11	662			554	647	614	652	614	556	565	671	566	511	5	485	647	577
	12	631	614	611	515	624		585	585	511	515	535	511	572	511	545	560	551
- 11		628		644	595	644	242	628	644	E 8 2				282		100	555	548
-																		
						116			22	333	arr	act	2.0	238	aar			ara
	5	E 13	624	12	61	614	12	F 13	611		611	5	575	578	575	115	692	564
	16 1	636	616	685		587	552	614	551	555	558	588	572	555	561	522	578	552
	12	644	628	595				584		223	223	525	5.04	574	662	545	222	528
-	-																1.11	- 22
						6.1			ara	are			200		366		ara	221
		612		621				5.1	5	514	592	5	554	574	57	115	555	57
		647	62	614	624	625	55		647	5	582	578	574	552	557	544	574	575
	94	624	645	628	642	646	625	683	558	584	577	554	572	542	554	474	564	554
-	-																	
1	16													2.16	364		221	
		1	6		616	6		614	51	5 5	575	516	571	574	522	551	551	555
		622	621		684	613	622	552	685	557	587	585	565	557	- 411	555	565	555
	15	625		648		644	644	676	648	644	5.9.8		574	552	599	5.5.5	648	564
-																		- 222
1	36		110							224	222	226		202	244	263		
	37	F 1 1	625	612	617	626	612	5.1	536	611	67.6	\$77	511	552	451		257	545
		648			585	538	612	614	614	688	552	684	568	545	527	411	551	565
		6.9.8	644	596	685	644	622	622			592	598	552	558	598	528	545	222
1.1	-																	
1				68 C	68 C	68 C			238	200	283	202	262	224	201	43.4	242	208
1	1			F 1 1	F 1 1	614	627	626		614	611	112	554	546	555		537	54
1	2	622	61	655	614	5 5	612	634	557	555	576	552	522	544	577	457	55	578
- 1		618	683	615	613	613	647	522	614	552	554	624	551	625	555	525	551	555
- 14	11	674	648	625	642				682	283	592	524	585	622	584	422		555
- 63	-																	
1	•		282		238	663		bee.		282	282	208	204	282	22			288
1	16	11	614	622	22	627	222	611	625	515	514	5 5	5 5	222	241	224	224	612
1	17	525	686	615	554	611	616	625	646	613	6.1	555	686	552	565	554	585	611
- 1		628	625	625		626	647	624	695	645	685	684	514	555	650	585	552	551
Б	ii.	645		645	644					5.8.2	5.8.2			2.44	545		5.8.5	5.85
H	11 - L											-		-				
1	1		124	122	617		125	122	112	236	100	11	200	27	211	232	214	201
1	11	12	615	61	61	612	642	11			614	557	555	5	555	517	5 5	574
1	12	625	615	613	622	525	F12	511	633	681	685	618	612	622	552	551	554	555
- Fi	49	644	682		6.8.9		625	5.8.4	644	582	642	594	622	592	552	588	584	582
	44																	
1	14	122	113	614		113	115			647		207	1	225	278	116	575	202
1	15	11	61	621	631	11	613	64	612	622	22	571	614	512	562	125	515	613
13	16	638	585	686	613	615	615	615	582	582	616	611	525	555	586	151	565	511
14	17	645	645	684	6.8.5	622	614	624	585	5.8.8	585	582	FRE	585	525	586	575	683
Б	10	6.7.6	643					141										
	-		11		13			112		113		111						
1	13	122	11	615	675		615	622	612	62		592	597	55	\$75	263	\$77	612
1	21	12	647	614	611	614	625	615	611	557	536	555	515		596	557	587	611
1	21	628	614	622	617	611	683	\$17	611	618	533	557	614	555	685	571	575	555
h	22	645		644	622		582	644	622	622	595	598	522	548	585	5.94	585	522
В																	-	
1	63		227			114	612	113	122			107			513	575	233	232
1	24	626			552	615	626	627			5 5	611	599	571	635	535	587	511
1	25	624	525	638	613	624	636	634	613	512	515	551	557	514	511	515	545	554
h	25	644	648	644	644	644	644	644	525	694	6	548	528	644	588		524	592
В	22	111											-				100	
11	61			113	12						114			231	22	225	262	262
1	2	22		647	611	647	647	645	616	22	611		612	611	562	545	566	586
1	25	522	614	616	582	611	582	685	622	645	640	614	615	571	567	555	554	684
Ъ	11	611	E-15	68.5	592	642	68.5	64	614	68.5	648	554	6.8.9	574	699	111	582	533
Б										646						242	533	
	44			12										110			-	
1	36		111	124	114			121	112			200	115	2.1	271	242	224	
1	33	622	624	611	622		597	11	692	22	552		612	552	571	551	\$75	625
1	14	622	622	614	655	6.	61	61	611	61	612	686	611	55	127	544	578	613
- Fi	35	552	625	611	615	621	68.3	622	F12	611	645	585	522	515	578	548	584	552
Б	15						620	647		624	6.75							
В	-																	
11	31		15	111	15	111					11	225	114	2/3		200	276	
1		615	612	1	627		625	2	647	614	612	2	552	5	587	551	655	682
1	33	511	511	613	610	521	615	51	587	618	614	611	685	587	587	525	\$74	582
h	1	622	6.9.8	648	644	644	628	641	694		592		645	5.0	555	554	554	5.8.8
Б																		
1	44								110						136	-		
_	_																	

Figura 33 - Mapeamento manual por ultra-som - Espécime T05 - L=1980 mm

Figura 34 – Mapeamento CSCAN ímpar - Espécime T05 – L=990 mm

Figura 35 - Mapeamento CSCAN par - Espécime T05 - L=990 mm

		G	н		1	K	L	н	н	0	P	0	R	5	En.T	· u	Y	W	X	Y	2	88	PP	CC	DD
67	628	645	534	593	591	E III	100	645	584	599	648	648	562	550	542	\$72	515	SEE	500	682	598	645	644	528	592
5.	645		595	5.0		642		644	584	594	696		528	662	1.1		524	557	582			648		628	644
5.5	645		642			100	584			5.84		1.1.2	562	594	522		\$22	222		582	245		584	674	
20													6.2.5	633											
1		331		232										arr		1.11									
		238		336			226			112	636	22	111	664	- 26.2	2.00	200	282	200	303	200			221	144
16		336		110		200					236	-		222	are	336	- 202				20	200	330	231	
75	611	61	641	556	55	5	611	651	692			287	565	565	535	536	643	657		599	599	614		626	614
74	585			597	5	212	55	11		5 5		597	652	51		245	\$77	5 5	67	555	592	641	6.4	652	621
75	687	612	614	55	52	575	5 5	514	671	61	551	582	5 5	578	52	586		571	615	555			687	625	625
75	692	E 14	615		E 13	5	5 5	687	5 5	62	612	614	642	555	545	511	555	5	647	576	584	555	61	552	611
77	646	625	62	633	5 5	578	584	613	577	555	555	575	565	558	634	525	544	555	555	641	582	514	613	557	52
78	618	614	611	555	658	587	585	587	577	585		683	552	555	575	435	644	527	558	588	555	588	582	557	585
75	513		651	595	55	615	5	\$75	575	682	615	555	\$77	122	625	512	521	582	697	685	584		655	511	5 5
11	684	645	514	645	595	515		595	574		595	577	557	555	111	111	656	645	584	\$75	625	575	595	599	
11						644	292	100			612		100	545	242	292	242	677			587	177	657	586	
					5.2.6	5.12										-								1.1	
	- 333				231						2.2	-				aar		201			-				
	- 330					220	2.2	200	363			202	- 270	200	242	224	275	242	282	12		101		613	336
15	5	55	5 5	5 6	11		5 5	554	514	\$75	575	287	64	534	516		533	533	224	5 5	576	611	597	65	644
	535		592	551	514	6 2	587	554	55	5	611	554	552	597	55	515	244	597	576	- 57	644	12	644		512
87	622		6 2	595	551	5 2		576	5 2	577	1	555	524	55	525	5	511	64		5 5	687	687	61		555
	599		552	514	555	612	55	5	578	5	575	555	686	521	545	525	556	576	1 24	687	555	514	571	551	5 5
	623	5 5	555	577	511	615	555	575	567	555	555	525	511	587	575	511	566	644	\$75	61	22	514	55	615	555
31	611	514	55	5 5	554	555	611	554	575	577	555	15	522	611	12.1	554	52	5	55	5 5	5	514		511	646
31			627	52	555	557	62	571	576	576	625	555	55	648	551	555	621	554	624	555	61		587	611	615
52	624	695	618	685	684	554	5 5	555	575	\$74	584	558	546	555	584	546	524	558	515	599	5	644	622	615	622
33	624	61	645	611		686	645	684	SEE	575	568	555	511	528	415	111	515	633	658	572	618	557	645	688	658
34	633	6.5	599		552	638	587	555	583	646	576	582	545	511	555	522	551	633	556	618	585	SEE	557	618	
35	524	524	645	614	648	625	685	665		525	684	599	545	525	545	544	599	595	545	598	614	595	592	683	552
35	624	5.54	584	582	610	645	585	645	625	595	558	552	558	528	540	548	525	599	525	633	6.8.9	585	6.0	525	595
32	645	628		592	62.5		642	595	595	592		685		544		522	544	555	645	650	511	522	578	644	582
- St					622	500	5.9.8		500	5.04	524		100	595	520	592	520	524		5.00	520	646	622	67.	
									574					1.1											
33												-													
111			222				226		- 201			-	252	222	224	212		- 220		211			226	236	232
111	6.12			537			622		592	576	576	100	541	244	625	611	535	641	5 6 6	522	5 6		614	\$77	665
182	1.65		615	614	55			4	626	575	12	552		611	625	574		6.1	611	647	536	5		612	597
183	597		6.2		615		614	597	1	574	515	5.07	65	552	115	521	597	257		571	614	612	576	617	
184	536	53	555	6	555	617	514	64	5	536	571		64	55	55	592	671	555	55		611	592	5 5	571	55
185	511	55	552	557	587	5 5	587	514	511	584	665	645	557	571	545	554	595	586	5 5	684	551		555	612	552
186	55	586	587	55	552	597		555	5	567	622	571	551	585	576	558	574	554	5	552	555		616	557	55
187	511	552		554	614	512	555	5		5 5	5	576	555	586	528	555	555	626	643	587	5		611	684	5
100	583	61	685	688	683	558	555	554	684	684	618	578	686	574	548	545	554	554	555	644	611	555	582	683	577
183	592	615	557	613		683	625	557		555	575	564	584	552	528	555	552	575	576	558	586	611	618	652	
11	597	645	611	622	625	682	626		597	555	591	535	557	685	633	525	51	55	515	514	51	597	615	511	684
111	622	599	616	648	614	592	686	554	514	592	557	595	618	552	595	514	550	511	\$77	592	683		597	611	
442	599	577		584	582	592	592	646		648				575		557		586	576	625			644	692	12.1
445								5.02							520										622
114																	-								
114																212		211							
115			232	22	22		22		115	22	200	200		22	- 220	212	200	2.2	- 200	313					
116	624			592		533		621			287	5	555	555	592	57	5	57	582	576		585	621	626	616
117	617	615	5	597	599	55	534	61	624	533	612		1	576	595	243	534	624	5 6	576	624	5 5	617	612	614
11	591	597	611	587	5 5	584	611	575	5 5	625	555	55	536	2555	555	551	584	571	6.11	578	5		622	6.1	614
115	592	587	556	5 5	555	552		611		62	62	555	555	555	5	555	641			582	514	555	624	627	
121	595	597	55	587		5 5	616	512	5 5		64	512	626	574	557	633	572	684	555	577			611	651	
121	588	511	552	685	55	555	686	587	555	557	682	616	582	565	582	562	5 5	551	635	636	621	555	61	581	614
122	592	683	582	626	584	665	655	618	587	558	584	658	582	557	555	656	574	585	628	552	552	555	685	615	618
125	554	582	685	645	612	555	681	555	684	684	585	518	565	547	568	578	568	628	655	634	615	65	556	614	664
124		625	599	597	614	648	597	652	615	625	647	621	592	555	582	656	592	5.5	611	651	5 1 5		625	685	678
125	525	645	646	55		591	642	511	648		582	511		557	514	554	648	646	683	585	647	645	611		2112
125	642	644	625	611	645	625	626	524	644	644		628	642	552	526	655	592	55	648	645	583	645	665		
422				644	582					642	624	646	69.2			648		524	525			145	648	676	
121					£ 12							642				663	245		576						
125			642						525						111			111	642						
																		642							
144																									
131	234						222				202		211	ara					222		224		11	202	
136	110			22	22				-	636	201	- 221	2.22	141	- 20	202		22		313	236		636	615	222
133		615	611			5	533	612		652	62	576	- 27	662	555	565		537	5		535		1	633	592
134		625	627	5 1 2	111		61	265	\$74		111	561	223	554	245	55	534	511	57	611	61	622	692		1
135	582	-	621	22	53	575	201	282	\$75	575	-	263			271	571	207	575	53	125	233	11		15	
136	612	622	1	5.5		222	5 5	207	565	265	654	576	575	\$77	224	55	222	522	2 2	536	\$72	11		113	224
137	616		62		- 571	647	- 65	- 111	566	646	- 65	\$77	533	\$72	228	11	582	563		57	12			1.1	5
13	587	611	11			5	692	224	555		15	226	277	246	222	622	506	5 6 5	107			107	233	53	637
133		667		595	595	1	592	55	556	565	- 565	512	515	55	534	\$76	567	\$72	571		53	595	534	\$77	123
14	599	112		524	514	571	585	\$75	226	1	595	5	626	552	64		2	595	514	587	595			584	5 5
141	636	592	2	595	5 5	511	613	655	625	696	55	5 5	586	562	555	554	551	599	5 5	685	655			587	552
142	611	554	556	575	552	595	244	564	557	554	682	554	584	248	52	628	624	566	681	585	584		599	578	\$75
145	686	595	587	551	584	568	551	554	SEE	551	\$72	564	241	568	557	633		678	585	585	585	683	595	55	626
144	55	565	585	575	564	552	545	551	611	547	682	547	524	545	554	555	688	\$74	587	586	571	686	614	615	
145	552	511	552	552	621	544	555	541	555	525	555	514	555	525	535	655	620	572	565	595	599	555	595	584	555
146	\$75	555	551	567	554	572	595	552	514	575	\$75	654	512	514	555	552	555	555	513	552	582	586	557	552	555
147	555	555	554	500	525	582	511	528	528	555	512	415	112	512	111	518	\$75	648	577	611	511	533	613	535	521
10	574	545	554	584	621	515	\$77	514	575		574	415	115	132	422	115	521	555	557	534	511	686	592	688	\$77
141	1.14	578	552	SEE	525			554	550	562	545	415	555	511	433	111	577	578	555	611	552	524	515	514	554
150	640		545	595	524	455	121	592				422		545	5.8.5	554	554	525	574	595	645	582	578	5.9.8	540
454	500		555	545			122	5.8.2	555	1.1.1	544	5.85	45.5		111		544	555	545	585	522		582	565	528
452				1.1		5.8.7	535	111						244		584	6.9.7							500	
45.0				5.00	5.8.7		101				124						110						57	5.03	
122						133		111			100	101											111		
124	<u></u>	222		221		223	261		1.1			224	223						11	2/3	202		227		
155	582	\$76	611	245	552	222	22	521	222	27	223	525			224	512	222	247	566		515	514	21	5	273
156	565	582	535	245	551	243	537	512		232	532	525		545		522	111	625	5 5	\$77	575	576	57	\$75	5
157	517	511	543	541	541	244	695	522	545	592	232	115	586	\$75	531	636	5 5	552	576	64		2	595	656	515
15	\$74	645	551	567	536	545	244	523	556	\$75	242	241	515		533	545	241	555	567	578	576	506	655	674	576
155	542	\$57	551	617	525	558	545	251	527	515	285	511	533	597	285	\$72	560	554	555	587	561	645	614		514
161	541	578	555	554	241	682	241	554	557	522	245	115	111	685	241	558	525	554	596	585	571	615	683	575	511
161	551	282	555	558	544	545	518	555	545	244	687	555	111	552	555	542	695	567	652	565	554	585	664	\$77	645
162	555	587	565	555	555	528	568	552	521	555	555	578	558	525	571	625	\$74	558	576	558	\$72	\$74	668	685	582
165	\$72	567	578	562	574	555	548	555	545	588	585	562	565	544	525	685	686	547	555	634	\$75	588	558	555	643
164	557	555	544	615	562	548	565	557	575	564	571	576	558	511	541	554	641	685	638	557	615	571	585	585	585
165	616	578	572	644	\$75	552	542	555	547	\$75	550	592	541	511	555	575	612	511	511	511	555	557	611	612	622
155	100	152	555	528	554	548	592	557	555	528	111	568	555	525	557	554	550	585	555	528	555	582	592		645

Figura 36 - Mapeamento manual por ultra-som - Espécime T06 - L=1980 mm

Figura 37 – Mapeamento CSCAN ímpar - Espécime T06 – L=990 mm

Figura 38 - Mapeamento CSCAN par - Espécime T06 - L=990 mm

		6	u			ĸ		н	н	0	P	0	P	,	т		Eu. 8	ω	Y	v	,	00	88		00
17		531	596	582	592	611 524	595	684 592	585 684	597 592	595	584	611 500	550	551	525	555	592	615 510	51	514	575		<u>.</u>	595
ü		5			550	595	585	55	558	500	585	558	575	50	551	551	568	555	\$75				555	557	
11	SIS	533	555	sii		ŝ	517		515	511	51	53	555	-	555	554	505			5		SIL	517		
31	-	599	599	585	ŝ	5	612		594	592		684	665	572	575	566	55	57	557	57	511	534	597	597	642
34	594	5 5	597	587	52	597	597	533	551	616	597	616	595	512	543	545	524	595	575	554	599	59	582	585	55
36 37	592 611	545 595	597	584 597	597 598	594	599	595		599	595	55	592 646	5	557	555	574	545	55	597		592 592	587	587	514
31 33	646 622	599	511	582	597	585	572	551	5	552	595	576 574	575	555	552	545 645	£12 557	587	565	575	599	575	587 578	597	511
111	611	558	551	596	554		597	55	588	555	551	594	578	575	575	555	558	572	511	575	555	582	595		597
182	582	575	1	592	51	612	611		555	6 15	562		552	557	575	545	574	582	585			514			517
114	592	599	684	500	599	545	596	514	595	556	576	597	iii	500	585	55	558	5			iii	\$75	514	662	575
185	597	55	587 574	555			576	592 587	592		594 587	575	592	582	574	548	575	524	599 572	595	555	515	597 592	514	592
117	515	597 578	597 598	582	599 592	575	599	582	575	562	594	595 592	585 591	576 575	568	548	575	575 574	585	5 5 5	645	511	557	594	597 599
115	585	599	55	585		505	595 595	599 594	575	584 587	599	594	595	575	555 524	552	557	514	55	595	515	599	587 586	555	551 514
111	51	552		55	597	611		555	555	597	585	585	585	576		554		567	511	552	-	595	5		558
111	554	615	51	587	50		592	511	587	556	575	514	\$72	521	545		531	551	575	595	<u></u>	612		5	55
115	592	62	615	595		592	595	514	55	515	641	sii	571	541	545	521	557	572	511	581	645	595	ŝ		682
115	592	599	612	577	572	587	59	597	577 572	576	511	591	514	55	551	551	595	551	57	55	5	592	577	5	597
111	597 599	611 682	555	575	576 576	597 599	592 584	584 592	5 5	5 2	575	527	572	557	555	477	55	551	57	584	599 582	592	576 576	584	5 5 5
128	595	572	585	645 585	5	595	599	554	576	567	575	545	577	552	558	548	551	555	577	575	575	576	595	597	514
122	571		51	51	514	5	1 12	5		555	\$72	\$77	547	55		- 97	524	554	5	51			597	592	512
124	61		612	587	ŝ	598	585		554	599	571	598	\$75	555	50	588	- CII	598	iii i		556	592		622	599
125	533		516	55	585	59	592	511	599	591	585	534	514	571	555	541	- 66	575	574	592	596	515	585	592	592
127	592	612	595	592	511	61	59	5 2	592	592	574	598 576	575	575 575	525	546	52	582	584	595 584	551	597 681		597	514
123	585	5	554	576	592 596	597		555	586	595	575	585	514	552	555		547	555	584	552	555	585	5	511	557
111	645	515	584	587	597	595	587	575	585	585	599	596	\$72	545	100	- 99	554	598	-		574	578		595	511
111	682		555	599	597	599	586	5 5	535	554	511	5 5		5	545		547	\$75	<u>.</u>	5	574	595	535	597	
134	595		515	551	592		583	500	51	571	574	584	584	551	542	564	545	575	515	595	595	577	582	582	
135	576	612	599	595	595	595	585	587	587	500	571	514	575	552	568	542 647	524	574	514	574	511	596	5	512	595
133	599	595	596 592	502	595 594	599	5	586 584	574	599 576	578	597 594	575	555	554	525	525	552	5 5 5	576 585	554	588 592		595	585
148	===		558	592	592	525	525	500	585	555	584	578	555	555	554	525	57	587	575	574	555	585	587	599	
142	535	582	585	595	555	592	587	582	615		592		595	\$75	551	558	50	584	545			511	5	535	555
144	645	595	5	511	22	5	587	512	592		592		555	533	551	592	50		531	557	2	500	575	594	597
145	535	587	513	582	592	587	597	592	519	535	55	565	557		57	548	585	595	592	534	612	576	534	575	595
147	599	512	572 598	542	595 596	575	511	554	596	525	585 594	555	512	59 59	542	524	572	572	515 552	55	595	597 594	555	5 5 5	595
145 150	591	511	587	597 592	599 599	599	585	55 5 1	645	511	584	585	682 684	57	566	545	554	595	55	622 622	555	592 575	55	55	577 645
151	597	592	582		515		597	585	114		599	55	595	544	575	548		525	571	511	574	598	5	555	515
153		111		ŝ	555	622	595	1	51	533	597	599	555	554	697		555	587	534	5	535			585	514
155				595	611	584	500	597	554	611	- 663	611	315	599	585	544		175	ŝ	597	514	584	612	575	582
156	597	595	597	574	511	595	574	5	599	57	594 597	576	593	554	572	527	554	555	55	555	597	514	595	511	527
158	598 576	511	592	575 594	567	576 576	552	584	576 594	642 622	599	599	599 647	584	575	515	545	554	5 5 5	53	595	588 592	591	585	585
168	585	516	575	558	555	598	575	597 586	585	587	575	533	55	554	586	554	585	588		555	554	555	587	515	577
162	585	585	555	598	514	575	576	514	555	615	575	597	557	57	574	547		568	\$75	5	-	545	522	555	555
151	555	597	595	599	535	612	iii	533		585	57		545	555	<u>.</u>	582		554	\$75	592	575	514	51	<u>.</u>	582
166	615	685		512	685		57		597	592	599	5	575	584	551	227	546	585	550		592	514	64	584	511
167	594	556	55	575	556	514	574	597	5 6	511	552	59 646	534 574	575	552	- 22	455	555	572	532	514	592 595	595	591	
155 178	554 572	557	588	597	585	587 599	594 584	598 592	587	545	644 62	624 631	528 572	572	555	533	477	540 500	576 575	594 585	582	555	585 582	599	545 547
474	587	597	585	500	585	584	576	572	534	584	582	568	557	554	544		111	555	\$77	558	558	595	598	545	511
175	517		534	585	586	514	511	511	-	582	611	575	585	57	592	155	-	555	-		592	587	511	595	534
175	577		551	587	592	584	585	515	571	585	511	575	511	571	545		474	55	57	ŝ	597	599		595	5 1 3
176	515	511		554	575	595	594	592 597	583 57	592	597	584	565	575	564	544	417	555	574	595	514	5 6	575	556	5 5 5
178 175	587 595	582 592	511	584	645 647	577	5	582	571	594 582	514	565	557	575	551	505	585	648	575	582	576	685 594	554	575	584
111	585	587 595	552	574	554	558 575	592 582	599	552	587 595	554	584	584	571	562 575	561	415	542	578	584	534	584	582	587 588	554
112	551		584	578	575	584	585	595	572	578	597	586	571	577	541	562	554	- 11	575	551	551	576	574	5	578
111	517	514	535	\$71	582	531	\$74	585	587	582		592	\$74	585	512		-	453	552	533	535	595	51		\$72
115	591	585	614	591	515	571	585	575	574	572	511	595	552	517	555	455	417	- di	571	597	614	511	612	595	555

Figura 39 - Mapeamento manual por ultra-som - Espécime T10 - L=1980 mm

Figura 40 - Mapeamento CSCAN ímpar - Espécime T10 - L=990 mm

Figura 41 – Mapeamento CSCAN par - Espécime T10 – L=990 mm

Apêndice D - valores de P_{*rup*} e P_{*rup*}, perfis river bottom e geratriz de ruptura

Perfil River Bottom, $\sigma_y e \sigma_u$	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area $(\sigma_{flow} = \sigma_u)$	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 02 MM(100,20)	68,3	81,4	105,4	90,3	123,8	119,0	123,3
T 02 MM(50,20)	70,1	84,5	110,0	90,3	123,8	119,8	123,7
T 02 CSCAN (100,10, i)	54,9	70,6	87,3	80,8	110,8	109,0	108,8
T 02 CSCAN (100,10, p)	58,9	74,3	93,4	81,9	112,3	109,8	109,8
Perfil Geratriz de Ruptura $\sigma_v e \sigma_u$	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area $(\sigma_{flow} = \sigma_u)$	RP-F101 (complexo)	$\operatorname{\acute{A}rea Total}_{(\sigma_{flow}=\sigma_u)}$
T 02 MM(100,20)	68,3	81,4	105,4	93,7	128,5	126,7	130,5
T 02 MM(50,20)	71,0	85,2	111,2	94,7	129,8	127,5	130,2
T 02 CSCAN (100,10, i)	61,3	76,4	97,0	87,5	120,0	117,3	118,1
T 02 CSCAN (100,10, p)	61,3	76,4	97,0	88,3	121,1	119,2	119,0

Tabela 20 – P_{rup} (kgf/cm²) para Espécime T02, perfis river bottom e geratriz de ruptura

Tabela 21 – P_{rup} (kgf/cm²) para Espécime T04, perfis river bottom e geratriz de ruptura

Perfil River Bottom, σ _y e σ _u	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area $(\sigma_{flow} = \sigma_u)$	RP-F101 (complexo)	$\operatorname{\acute{A}rea Total}_{(\sigma_{flow}=\sigma_u)}$
T 04 MM(100,20)	69,3	82,5	98,6	91,9	116,7	115,9	116,3
T 04 MM(50,20)	69,3	83,9	100,3	92,8	117,8	116,7	116,0
T 04 CSCAN(100,10, i)	51,6	67,9	76,1	85,6	108,7	104,4	108,1
T 04 CSCAN(100,10, p)	51,6	67,9	76,1	85,1	108,0	104,7	106,7
Perfil Geratriz de Ruptura σ _v e σ _u	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area (σ _{flow} =σ _u)	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 04 MM(100,20)	69,3	82,5	98,6	95,0	120,6	119,8	120,3
T 04 MM(50,20)	69,3	83,9	100,3	96,5	122,5	120,7	120,7
T 04 CSCAN(100,10, i)	57,2	73,0	83,8	92,5	117,4	115,0	118,0
T 04 CSCAN(100,10, p)	51,6	67,9	76,1	89,5	113,6	111,1	112,9

Perfil River Bottom, $\sigma_{y} e \sigma_{u}$	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area $(\sigma_{flow} = \sigma_u)$	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 05 MM(100,20)	53,7	67,1	75,8	78,6	95,1	94,6	96,5
T 05 MM(50,20)	55,8	70,2	80,1	81,0	98,0	96,6	97,1
T 05 CSCAN (100,10, i)	46,6	61,5	67,6	73,9	89,4	87,2	87,9
T 05 CSCAN (100,10, p)	45,3	60,3	65,9	74,3	89,9	87,7	88,4
Perfil Geratriz de Ruptura $\sigma_v e \sigma_u$	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area (σ _{flow} =σ _u)	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 05 MM(100,20)	62,9	75,8	88,4	87,9	106,4	105,0	107,6
T 05 MM(50,20)	62,9	76,8	89,7	88,3	106,9	105,6	107,8
T 05 CSCAN (100,10, i)	47,0	61,9	68,2	78,3	94,8	91,9	94,3
T 05 CSCAN (100.10, p)	45,3	60,3	65,9	79,8	96,6	94,3	95,1

Tabela 22 – P_{rup} (kgf/cm²) para Espécime T05, perfis river bottom e geratriz de ruptura

Tabela 23– P_{rup} (kgf/cm²) para Espécime T06, perfis river bottom e geratriz de ruptura

Perfil River Bottom, $\sigma_v e \sigma_u$	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area $(\sigma_{flow} = \sigma_u)$	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 06 MM(100,20)	54,8	69,3	66,3	95,1	102,1	99,9	106,4
T 06 MM(50,20)	70,4	85,0	86,1	95,1	102,1	100,3	106,4
T 06 CSCAN(100,10, i)	56,9	72,7	70,4	74,1	79,5	77,6	77,7
T 06 CSCAN(100,10, p)	56,9	72,7	70,4	75,0	80,5	78,9	78,8
Perfil Geratriz de Ruptura $\sigma_v e \sigma_u$	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area $(\sigma_{flow} = \sigma_u)$	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 06 MM(100,20)	79,3	91,8	95,0	101,8	109,3	108,5	114,5
T 06 MM(50,20)	79,3	92,9	96,3	101,8	109,3	108,7	113,3
T 06 CSCAN(100,10, i)	57,7	73,5	71,5	86,6	93,0	90,3	91,9
T 06 CSCAN(100,10, p)	56,9	72,7	70,4	85,1	91,4	89,7	91,0

Perfil River Bottom, $\sigma_v \mbox{ e } \sigma_u$	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area $(\sigma_{flow} = \sigma_u)$	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 10 MM(100,20)	66,8	80,4	96,6	94,2	121,7	118,7	123,9
T 10 MM(50,20)	73,1	87,4	107,1	94,2	121,7	118,7	121,7
T 10 CSCAN (100,10, i)	58,4	74,3	86,9	89,9	116,2	114,7	113,9
T 10 CSCAN (100,10, p)	57,6	73,4	85,7	89,1	115,1	113,0	113,1
Perfil Geratriz de Ruptura $\sigma_{v} e \sigma_{u}$	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area (σ _{flow} =σ _u)	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 10 MM(100,20)	76,1	88,8	109,6	98,0	126,6	124,9	131,4
T 10 MM(50,20)	76,1	90,1	111,3	98,0	126,6	124,7	128,1
T 10 CSCAN (100,10, i)	62,7	78,1	92,9	93,4	120,7	119,9	118,7

85,5

Tabela 24 – P_{rup} (kgf/cm²) para Espécime T10, perfis river bottom e geratriz de ruptura

Tabela 25– P_{rup}, para Espécime T02, perfis river bottom e geratriz de ruptura

57,6

T 10 CSCAN (100,10, p)

73,4

Perfil River Bottom, σ _v e σ _u	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area $(\sigma_{flow} = \sigma_u)$	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 02 MM(100,20)	0,51	0,61	0,79	0,68	0,93	0,89	0,93
T 02 MM(50,20)	0,53	0,64	0,83	0,68	0,93	0,90	0,93
T 02 CSCAN (100,10, i)	0,41	0,53	0,66	0,61	0,83	0,82	0,82
T 02 CSCAN (100,10, p)	0,44	0,56	0,70	0,62	0,84	0,83	0,83
Perfil Geratriz de Ruptura σ _v e σ _u	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area (o _{flow} =o _u)	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 02 MM(100,20)	0,51	0,61	0,79	0,70	0,97	0,95	0,98
T 02 MM(50,20)	0,53	0,64	0,84	0,71	0,98	0,96	0,98
T 02 CSCAN (100,10, i)	0,46	0,57	0,73	0,66	0,90	0,88	0,89
T 02 CSCAN (100,10, p)	0,46	0,57	0,73	0,66	0,91	0,90	0,89

120,2

119,0

118,3

93,0

Perfil River Bottom, $\sigma_{v} e \sigma_{u}$	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area $(\sigma_{flow} = \sigma_u)$	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 04 MM(100,20)	0,56	0,67	0,80	0,75	0,95	0,94	0,95
T 04 MM(50,20)	0,56	0,68	0,82	0,75	0,96	0,95	0,94
T 04 CSCAN(100,10, i)	0,42	0,55	0,62	0,70	0,88	0,85	0,88
T 04 CSCAN(100,10, p)	0,42	0,55	0,62	0,69	0,88	0,85	0,87
· · · · · · · · · · · · · · · · · · ·							
Perfil Geratriz de Ruptura σ _v e σ _u	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area $(\sigma_{flow} = \sigma_u)$	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 04 MM(100,20)	0,56	0,67	0,80	0,77	0,98	0,97	0,98
T 04 MM(50,20)	0,56	0,68	0,82	0,78	0,99	0,98	0,98
T 04 CSCAN(100,10, i)	0,47	0,59	0,68	0,75	0,95	0,94	0,96
T 04 CSCAN(100,10, p)	0,42	0,55	0,62	0,73	0,92	0,90	0,92

Tabela 26– P_{rup'} para Espécime T04, perfis river bottom e geratriz de ruptura

Tabela 27– P_{rup}, para Espécime T05, perfis river bottom e geratriz de ruptura

Perfil River Bottom, σ _v e σ _u	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area $(\sigma_{flow} = \sigma_u)$	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 05 MM(100,20)	0,52	0,65	0,73	0,76	0,92	0,92	0,93
T 05 MM(50,20)	0,54	0,68	0,78	0,78	0,95	0,94	0,94
T 05 CSCAN (100,10, i)	0,45	0,60	0,65	0,72	0,87	0,84	0,85
T 05 CSCAN (100,10, p)	0,44	0,58	0,64	0,72	0,87	0,85	0,86
Perfil Geratriz de Ruptura σ _v e σ _u	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area (σ _{flow} =σ _u)	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 05 MM(100,20)	0,61	0,73	0,86	0,85	1,03	1,02	1,04
T 05 MM(50,20)	0,61	0,74	0,87	0,85	1,03	1,02	1,04
T 05 CSCAN (100,10, i)	0,45	0,60	0,66	0,76	0,92	0,89	0,91
T 05 CSCAN (100,10, p)	0,44	0,58	0,64	0,77	0,94	0,91	0,92

Perfil River Bottom, $\sigma_v e \sigma_u$	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area $(\sigma_{flow} = \sigma_u)$	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 06 MM(100,20)	0,52	0,66	0,63	0,90	0,97	0,95	1,01
T 06 MM(50,20)	0,67	0,81	0,82	0,90	0,97	0,95	1,01
T 06 CSCAN(100,10, i)	0,54	0,69	0,67	0,70	0,75	0,74	0,74
T 06 CSCAN(100,10, p)	0,54	0,69	0,67	0,71	0,76	0,75	0,75
Perfil Geratriz de Ruptura σ _v e σ _u	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area $(\sigma_{flow} = \sigma_u)$	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 06 MM(100,20)	0,75	0,87	0,90	0,96	1,04	1,03	1,09
T 06 MM(50,20)	0,75	0,88	0,91	0,96	1,04	1,03	1,07
T 06 CSCAN(100,10, i)	0,55	0,70	0,68	0,82	0,88	0,86	0,87
T 06 CSCAN(100,10, p)	0,54	0,69	0,67	0,81	0,87	0,85	0,86

Tabela 28– P_{rup}, para Espécime T06, perfis river bottom e geratriz de ruptura

Tabela 29– P_{rup}, para Espécime T10, perfis river bottom e geratriz de ruptura

Perfil River Bottom, $\sigma_v e \sigma_u$	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area $(\sigma_{flow} = \sigma_u)$	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 10 MM(100,20)	0,52	0,62	0,75	0,73	0,94	0,92	0,96
T 10 MM(50,20)	0,57	0,68	0,83	0,73	0,94	0,92	0,94
T 10 CSCAN (100,10, i)	0,45	0,58	0,67	0,70	0,90	0,89	0,88
T 10 CSCAN (100,10, p)	0,45	0,57	0,67	0,69	0,89	0,88	0,88
Perfil Geratriz de Ruptura $\sigma_y e \sigma_u$	B31G	0,85 dL	RP-F101 (isolado)	Eff. Area	Eff. Area $(\sigma_{flow} = \sigma_u)$	RP-F101 (complexo)	Área Total (σ _{flow} =σ _u)
T 10 MM(100,20)	0,59	0,69	0,85	0,76	0,98	0,97	1,02
T 10 MM(50,20)	0,59	0,70	0,86	0,76	0,98	0,97	0,99
T 10 CSCAN (100,10, i)	0,49	0,61	0,72	0,73	0,94	0,93	0,92
T 10 CSCAN (100,10, p)	0,45	0,57	0,66	0,72	0,93	0,92	0,92

Apêndice E – Análise das pressões de ruptura

Em tubos novos sem defeito de corrosão e submetidos apenas ao carregamento de pressão, a pressão de ruptura é determinada levando em consideração as condições em que o tubo se encontra:

• Tubo com deformação longitudinal não restringida ('unconstrained pipe'') - a tensão longitudinal assume o valor zero, $\sigma_1 = 0$.

Ex. Situação de um tubo aéreo.

A pressão de ruptura, considerando o critério da máxima energia de distorção (tensão equivalente de von Mises), é dada por:

$$P_{rup} = \frac{2t\sigma_u}{D}$$

- Tubo com deformação longitudinal restringida a tensão longitudinal (σ₁) equivale à tensão circuferencial (σ_c) multiplicada pelo coeficiente de poisson do aço, σ₁= υ σ_c.
- Ex. Situação de um duto enterrado.

$$P_{rup} = 1,125 \frac{2t\sigma_u}{D}$$

• Tubo com a extremidade fechada ("endcaped pipe") – A tensão longitudinal é a metade da tensão circunferencial, $\sigma_l = 0.5\sigma_c$.

Ex. Tubo com a extremidade fechada

$$P_{rup} = 1,155 \frac{2t\sigma_u}{D}$$

No caso dos tubos com defeitos de corrosão, as equações semi-empíricas que determinam a pressão de ruptura foram desenvolvidas com o objetivo de reproduzir os resultados de ensaios de laboratório de espécimes tubulares com defeitos. Apêndice E

Na equação do método DNV RP-F101, dentre os fatores de ajustes utilizados por Sigurdsson et al (1999) [39] para modelar a equação que estima a pressão de ruptura por elementos finitos, foi definido um fator (Y_B), que levou em consideração a deformação longitudinal existente no tubo. O fator Y_B ficou definido da seguinte forma:

- Tubo sem restrição("unconstrained pipe") $Y_B = 1,0$
- Tubo com restrição ("constrained pipe") $Y_B = 1,08$
- Tubo com a extremidade fechada ("endcaped pipe") $Y_B = 1,1$

Na Recomendação Prática DNV RP-F101 [4], o fator Y_B não é citado para o cálculo da pressão de ruptura, portanto ele foi tomado como sendo a unidade, ou seja, para a situação do tubo sem restrição. Como os ensaios de laboratórios foram realizados com espécimes tubulares tamponados nas extremidades, a equação que estima a pressão de ruptura deveria ser multiplicada por 1,1. Portanto, os resultados calculados pelo método DNV RP-F101 apresentam um conservadorismo pela não aplicação deste fator.

Para os demais métodos, as equações desenvolvidas reproduzem os resultados dos ensaios de laboratório, não necessitando, portanto, de nenhum ajuste a mais.