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Abstract: In this paper a new procedure to continuously adjust weights in a multi layered
neural network is proposed. The network is initially trained by using traditional
Backpropagation algorithm. After this first step, non-linear programming technique is used in
order to properly on line calculate the new weights sets. This methodology is tailored to be
used in time varying (non-stationary) models, eliminating necessity of retraining. Numerical
results for a chaotic time series and an electricity load forecasting applications are presented.
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1. INTRODUCTION

The main challenge when dealing with non-stationary data is to balance the information
related to recent data with the information previously incorporated by the model. Multi
layered neural networks [1] have been successfully used in a variety of relevant problems
when invariance assumptions can be properly made. An attractive feature of neural networks
is its natural ability to deal with non-linear data. The procedure proposed in this paper is
directed to neural non-stationary models. Few papers can be found in the literature concerning
time varying connectionist models [2][3][4].
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The proposed algorithm [5] could be divided in two phases. The first one consists in training
a neural network by using a standard Backpropagation scheme. The size of the data set is
crucial in this phase, it must be representative of the system and at the same time not very
large, so that stationary hypotheses can be assumed in this set. In the second phase the system
is put in use and at the same time an on-line training algorithm is turned on updating the
weights in accordance to new incoming data. The weights are automatically adjusted when
necessary only. In section 2, it is proved that if the series remain stationary for a period of
time, the weight set is maintained.

The main objective is to keep the error related to the latest incoming data within a pre-
established tolerance, while maximising the information incorporated up to that point. By
choosing a balance parameter the designer is able to decide the relevance, in relation to
incorporated information, that should be attributed to the new data. This is an interesting
feature of the algorithm. For instance, in a situation of temporary large volatility, there is the
possibility of trying not to damage the old model. The pre-established tolerance for the error
of the recent incoming data generates an optimisation problem that is solved by a non-linear
programming technique. The solution of this problem, as will be seen in the continuation,
produces the new updated weight set. Off course an alternative to the proposed method would
be to retrain the neural network, by using Backpropagation, every time a change in the model
is detected, but this would not be an acceptable solution for most on line systems to which
one needs a fast and automatic reaction.

2. THE PROBLEM ANALYSIS

Let W be the weight set produced by training a neural network with the data pairs {(xi,di), i =
1,...,n}. Let (xn+1,dn+1) be a new data pair that is presented to the system. The aim is to
determine a new weight set W’= W + ∆W such that the following associated energy function
is minimised, subject to the new data constraint.
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where y ∈  ℜ o is the network output vector and εl , l = 1,...,o is the associated error tolerance.
This objective function reflects the desire of minimising the error concerning the original
training data while the constraint will keep the error associated with the last data within a
specified tolerance. Note that this formulation establishes the trade off between the old model
information and the new data. The bound parameters ε l l K, =1 o  are chosen by the
designer, allowing a tolerance control. This flexibility may constitute in a very useful tool, for



instance when a temporary large amount of noise affects the system, or a transient increase of
the volatility level occurs. This adaptation is done independently from a moving window that
discards a parcel of the old information that is not explaining the system anymore.

To improve analytic and implementation tractability, the constraint of problem Pε  is
linearized by applying a first order Taylor series expansion. The optimisation problem can
then be rewritten as a function of the weight changes ∆W. As a result, the feasible region is
expressed as the intersection of the hyperspace defined by the linearized constraint and the
region where the linearity assumption is valid. Algebraic details concerning these procedures
can be found in Appendix 1.

The  energy  function  of  problem   Pε   can  also  be  rewritten  in  a  compact  form  as:

J z z Kzt( )=
1
2

where   K S St= ,   S  is  the  matrix  of  sensitivity  of  y  over  a  weight  change  and
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The algebraic calculation of matrix K is presented in Appendix 2.
Problem Pε can now restated as:
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Let’s label this problem as Pβ. Here we define the linearity region

β ≡  { z ∈  ℜ q : zi ≤δ, i q=1K } for some δ > 0.                                                            (Dβ)

Note that z represents the weight changes and c1 , c2  are bounds on the activation error of the
output units for the new data.
Problem Pβ can be solved by a variety of non-linear programming algorithms (e.g. projected
gradient, convex simplex). A gradient projection type algorithm (c.f. [1]) was used in the
present case to solve this quadratic programming problem. In general, these methods lead to
local optimality of the cost function. However, in this case, global convergence is guaranteed
since one is minimising a convex functional over a convex feasible region (c.f. [2]). The
solution of problem Pβ  is the wanted weight changes z.

A valuable characteristic of this procedure is the absence of drift. This important feature
means that, if the new incoming data does not incorporate a variation in the original model,
then the network weights will not be modified. This property can be proved by letting



{ }W VN N,  be the weight set resulting from the training phase with the set of input-output
pairs ( ){ }D x d i Ni i= ≤ ≤, ;1 . Let ( )x dN N+ +1 1,  be a new input-output pair not in D that
satisfies the network relationships [ ] [ ]y f V u and u f W xN

t
N
t= =1 2 , i.e., [ ]d f V uN N

t
+ =1 1 .

Therefore, the feasible region of problem Pβ includes the origin. As global convergence is
guaranteed, the algorithm will converge z = 0, resulting in ∆ ∆W and V= =0 0 .

3. NUMERICAL RESULTS

3.1 A Synthetic Experiment:  Forecasting a Chaotic Time Series

In order to illustrate the forecasting potentiality of the proposed on-line learning scheme, a
controllable experiment is presented. Chaotic time series data were generated based on the
iterative equation ( )x x xt t t+ = −1 4 1 . A training set composed of 100 input-output pairs

( )x xt t, + 1  was applied at the Backpropagation training phase. Non stationary behaviour was

introduced by modifying the underlying equation to ( )x x xt t t+ = −1 38 0 95. . . A data set with 50
patterns was produced by this new generator function.
The following three performance measures were used:
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where M is the number of points in the data set, y and d are the network output and the series
correct values respectively.
The first experiment consists in setting the linearity boundary parameter δ (see definition Dβ)
equal 2 and evaluating the outcome for different values of error tolerance ε for out of sample
data (Table 1). Other small values for δ would produce similar results.



TEST DATA MAPE (%) nRMSE U-Theil
BACKPROP. 26.9592 0.1473 0.3678

ε = 0   % 4.7791 0.0333 0.0831
ε = 1   % 4.0393 0.0310 0.0774
ε = 2   % 3.7147 0.0288 0.0720
ε = 3   % 3.9036 0.0289 0.0722
ε = 5   % 4.6423 0.0339 0.0846
ε = 10  % 7.4311 0.0566 0.1413

TABLE 1 Out of sample data performance comparison

It could be noticed a significant improvement in the forecasting performance when using the
proposed method in comparison to classical Backpropagation. The on-line scheme performed
better for all the three measures and for all the choices of ε parameter. Note that, for larger
values of ε the system behaviour tends to the standard Backpropagation, and for ε = 0 the
results approaches the obtained in [3]. In this example the optimal choice of ε is 2 %, leading
to the interpretation that some error related to the new incoming data should be allowed in
order not to strongly damage the previous information incorporated by the system. Parameter
ε = 0 would force the error concerned with the recent past data to be equal to zero since the
constraint in problem Pε  would  have been reduced to an equality.

3.2 A Real Data Experiment: Electricity Load Forecasting

Our second numerical experiment consists in applying the on-line algorithm to a long-term
electricity load series. This series was monthly (average) collected in Brazil. Please note that
we approached these data with the intention of exemplifying the proposed algorithm. It is out
of the scope of this paper to produce a solution for the quite difficult problem of load
forecasting. Off course we believe that this can be achieved by using the proposed method but
in this case one should dedicate attention to the pre treatment of the data and maybe include
some climatic variables e.g. temperature. From a total of 160 points available, the first 138
were used for the in sample training phase while the remaining 22 months were used for an
out of sample validation phase. We chose, after the usual experimentation, a six units one
hidden layer architecture. The input layer is composed by six input units corresponding time
delayed observations. The output unit corresponds to the one step ahead forecasting. A
different partition of the data set, e.g. more points for validation, would lead to an overfitting
situation because of the number of parameters (weights) that must be estimated. In this case
the on-line algorithm would be favoured in the comparison to Backpropagation because of its
ability to adapt to new data. The resulting out of sample performance is shown in Table 2 for
different values of parameter ε.



TEST DATA MAPE (%) nRMSE U-Theil
BACKPROP. 3.6352 0.7805 1.0491

ε =     0 % 4.9361 0.8996 1.2092
ε =    3 % 4.3872 0.8297 1.1152
ε = 10 % 4.1133 0.7905 1.0625
ε = 12 % 3.6869 0.7886 1.0600
ε = 15 % 3.4458 0.7468 1.0038
ε = 20 % 3.5635 0.7670 1.0309

TABLE 2 - Out of sample errors

Figure 2 illustrates a behaviour comparison between proposed (ε = 15%) (o) and
Backpropagation (*) approaches. The data is represented by the solid line.
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                                                            FIGURE 2
(o)  -->  (on-line forecasting);    * -->  (pure Backpropagation);   solid line  --> (data)

4. FINAL REMARKS

In this paper a new on-line training approach to the classical Backpropagation procedure was
introduced. The algorithm has shown very encouraging results for prediction applications
with non-stationary data. The method allows continuous weights adjustments as the
underlying system dynamics change with time. One of the main advantages of our approach is
the flexibility of controlling the trade off problem between fitting new incoming data and
causing minimum damage to the original learned information. The proposed approach allows
the designer to specify the new data matching accuracy. The smaller the chosen parameter ε,



the better the last data will be fitted but more damage will be imposed to the previously
trained network.

Numerical Results for a synthetic chaotic series and for a real electricity load time series were
presented as examples. Both experiments produced interesting behaviour in accordance to
expected from the theoretical point of view.

We believe that the design of adaptive schemes for setting the tolerance parameter ε may
bring further improvements, we leave this as a suggestion for future work.
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APPENDIX 1  - Feasible Region Determination

Let a three layer network be described by
[ ] [ ]y f V u u f W xt t= =1 2 (1)

y∈ℜ o is the output of the multi layered network, u∈ℜ h represents the activation of the hidden
neurones and x∈ℜ I is the input data vector. Matrices W and V contain the weights linking
input to hidden layer and hidden to output layer, respectively.  The vector functions f1∈ℜ o

and f2∈ℜ h are such that ( ) ( ) ( )[ ]f f f o t

1 1
1

1. . .= K  and () () ()[ ]f f f h t

2 2
1

2. . .= K , where f i
1 (.) and

f i
2 (.) are non-decreasing differentiable functions.

Let us assume that the new weight set (W’,V’) can be written as V’= V + ∆V and W’= W +
∆W, where the increments ∆V and ∆W are in ℜ hxo and ℜ Ixh, respectively. In order to simplify
notation we will omit the element denoting superscript. Now, for ( )x dN N+ +1 1, , substituting
(1) in problem Pε constraint yields
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On the other hand, applying a first order Taylor series expansion one gets
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By substituting the approximation (3) into inequality (2), one obtains:
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Note that this approximation is reasonable if r b( )∆ ≤γ, where r b( )∆  is the truncation error
associated with the Taylor series expansion and γ is an upper bound such that
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resulting in γ> M b∆ . However, by the mean value inequality theorem r b M b( )∆ ∆≤



and so, γ is an upper bound to the first order Taylor series expansion truncation error. This
result implies in limiting perturbations on W, i.e., by developing γ‘s inequality one obtains

∆w
M x hIij max

< γ . Another necessary assumption to validate inequality (4) is that

∆V V i h e j oij ij<< ∀ = =, , , , , .1 1K K  For this condition to be valid we may choose β > 0
small such that ∆V Vij ij≤β .

By limiting the perturbations on W and V a region where a linearization assumption is
acceptable can be defined. Now, by rearranging ∆W and ∆Vt  into vector form, inequality (4)
can be written in a compact form as:
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The feasible region can now be defined as the intersection between the linearity region and
the hyperspace defined by constraint (5).

APPENDIX 2 - Matrix  K  Determination

The energy function of problem Pε can also be rewritten in a compact form as follows:

J z z Kzt( )=
1
2

where K S St=  and S is the matrix of sensitivity of y over a weight change. Next, the
algebraic procedure that leads to matrix K determination is presented.



The main idea consists in finding the sensitivity of yi over a weight change.  Let us rewrite the
energy function as follows:
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respectively. The weight interconnection between input neuron j and hidden neuron k, wjk , is
the jkth element of W. The weight interconnection between hidden neuron k and output
neuron l, vkl , is the klth element of V.
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where SWi jk
l
,  andSVi kl

l
,  are the sensitivity of yi

l  due to small changes in w jk  and vkl  ,
respectively. The energy variation due to weight changes associated to the ith data can be
calculated from equations (5), (6), (7), and (8):
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The objective function can also be rewritten in terms of energy variation as
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'  are the errors of the ith datum considering the weight sets { }W V,  and
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J E E E z K z K S Si
t t t

i

N

= = = =
=
∑1

2
1
2

1
2

2

1

∆ ∆ ∆ where .

 (Pβ)  

Minimise J z z K z

subject to c Az c
z

t( )

( ) ( )

=

≤ ≤
∈

1
2

1 2ε ε
β

where { }β δ δ= ∈ ℜ ≤ > =z z i qq
i i i: , , ,0 1 K  is the region where the linearization

assumption is valid.


