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Abstract

Souto, Mario; Veiga, Álvaro (Advisor). Semidefinite Program-
ming via Generalized Proximal Point Algorithm. Rio de
Janeiro, 2018. 58p. PhD Thesis – Departamento de Engenharia
Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Many problems of interest can be solved by means of Semidefinite
Programming (SDP). The potential applications range from telecommuni-
cations, electrical power systems, game theory and many more fields. Ad-
ditionally, the fact that SDP is a subclass of convex optimization brings
a set of theoretical guarantees that makes SDP very appealing. However,
among all sub-classes of convex optimization, SDP remains one of the most
challenging in practice. State-of-the-art semidefinite programming solvers
still do not e�ciently solve large scale instances. In this regard, this thesis
proposes a novel algorithm for solving SDP problems. The main contribu-
tion of this novel algorithm is to achieve a substantial speedup by exploiting
the low-rank property inherent to several SDP problems. The convergence of
the new methodology is proved by showing that the novel algorithm reduces
to a particular case of the Approximated Proximal Point Algorithm. Along
with the theoretical contributions, an open source numerical solver, called
ProxSDP, is made available with this work. The performance of ProxSDP

in comparison to state-of-the-art SDP solvers is evaluated on three case
studies.

Keywords
Semidefinite Programming; Convex Optimization; Monotone Opera-

tors; Proximal Algorithms.
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Resumo

Souto, Mario; Veiga, Álvaro. Programação Semidefinida via
Algoritmo de Ponto Proximal Generalizado. Rio de Janeiro,
2018. 58p. Tese de Doutorado – Departamento de Engenharia
Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Diversos problemas em engenharia, aprendizado de máquina e eco-
nomia podem ser resolvidos através de Programação Semidefinida (SDP).
Potenciais aplicações podem ser encontradas em telecomunicações, fluxo de
potência e teoria dos jogos. Além disso, como SDP é uma subclasse de oti-
mização convexa, temos uma série de propriedades e garantias que fazem da
SDP uma tecnologia muito poderosa. Entretanto, dentre as diferentes sub-
classes de otimização convexa, SDP ainda permanece como uma das mais
desafiadoras. Instancias de larga escala ainda não podem ser resolvidas pelos
atuais softwares disponíveis. Nesse sentido, esta tese porpõe um novo algo-
ritmo para resolver problemas de SDP. A principal contribuição deste novo
algoritmo é explorar a propriedade de posto baixo presente em diversas ins-
tancias. A convergência desta nova metodologia é provada ao mostrar que
o algoritmo proposto é um caso particular do Approximate Proximal Point
Algorithm. Adicionalmente, as variáveis ótimas duais são disponibilizadas
como uma consequência do algoritmo proposto. Além disso, disponibiliza-
mos um software para resolver problemas de SDP, chamado ProxSDP. Três
estudos de caso são utilizados para avaliar a performance do algoritmo pro-
posto.

Palavras-chave
Programação Semidefinida; Otimização Convexa; Operadores Mo-

notônicos; Algoritmos Proximais.
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1
Introduction

Semidefinite programming (SDP) plays an important role in the field of
convex optimization and subsumes several classes of optimization problems
such as linear programming (LP), quadratic programming (QP) and second-
order cone programming (SOCP) [1]. As a consequence, the range of applica-
tions that SDP can be applied to is wide and constantly expanding. Besides
being a general framework for convex problems, SDP is also a powerful tool
for building tight convex relaxations of NP-hard problems. This property has
practical consequences to the approximation of a wide range of combinatorial
optimization problems and potentially to all constraint satisfaction problems
[2].

In practice, if one is interested in solving an SDP problem, it is crucial
to have a fast, reliable and memory-e�cient numerical solver. Unfortunately,
in comparison to other convex optimization classes, currently available SDP
solvers are not as e�cient as its counterparts.

1.1
Contributions

This thesis relies mostly on the publication "Exploiting Low-Rank Struc-
ture in Semidefinite Programming by Approximate Operator Splitting"[3]. With
that being said, the main contributions of the paper [3] are the following:

• A first-order proximal algorithm for general SDP based on the primal-
dual hybrid gradient (PDHG) [4] is proposed. The main advantage of
this methodology, in comparison to other operator splitting techniques,
is that it computes the optimal dual variables along with the optimal
primal solution. Additionally, the algorithm does not require solving
a linear system at every iteration and it allows the presence of linear
inequalities without the need of introducing additional variables to the
problem;

• A modified version of the PDHG that can exploit the low-rank property
of SDP is proposed. For several problems of interest, this modification
makes PDHG competitive with interior-point methods, in some cases
providing a speedup of an order of magnitude. For some problems, with
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Chapter 1. Introduction 11

low-rank structure, the proposed algorithm is able to solve instances with
dimensions that were still unattainable to interior-points methods in less
than ten minutes, i.e. up to 5, 000 ◊ 5, 000 sized semidefinite matrices;

• An open source SDP solver, called ProxSDP, is made publicly available.
The goal of developing and providing this software is to both make the
results of this thesis reproducible and to foster the use of semidefinite
programming on di�erent fields.

This thesis is organized to be a self contained document. In this sense,
several concepts are explained in more detail than in the associated publication
[3]. In particular, the connection between the proposed methodology and a
generalized version of the proximal point point algorithm [5] is built from first
principles.

1.2
Outline

This thesis is organized as follows. In Chapter 2, we give a brief in-
troduction to convex analysis containing the basic concepts necessary to un-
derstanding all developments presented in this work. Chapter 3 presents the
concepts of proximal operators and the proximal point meta-algorithm. Chap-
ter 4 presents semidefinite programming and does a short historical review of
the topic. These three initial Chapters provide the necessary foundation that
will be used in the design of the proposed primal-dual algorithm. The main
contributions of this work are presented in Chapters 5 and 6. Chapter 5 pro-
poses a primal-dual algorithm for solving SDPs based on the proximal point
algorithm framework. In Chapter 6, the primal-dual method is improved in
order to exploit the low-rank structure presented in several SDP problems.
The associated open source numerical SDP solver developed along this work
is presented in Chapter 7. Case studies comparing the proposed solver with
state-of-the-art solvers are evaluated in Chapter 8. Finally, concluding remarks
and future work are discussed in Chapter 9.
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2
Basic convex analysis

In this chapter we make a very brief review of some concepts and
notations from convex analysis. The main goal of this chapter is to make this
thesis self-contained and set the path for some results that will be established in
the subsequent chapters. If the reader is looking for a more in depth exposition
of convex analysis, it should refer to [6–9].

2.1
Convexity

Definition 1 A set C is convex if any convex combination between two points
in C also lies in C. In other words, if ◊ œ [0, 1], we have

’ x
1

, x
2

œ C, ◊x
1

+ (1 ≠ ◊)x
2

œ C.

It is important to highlight that the intersection between convex sets is
also a convex set [9].

Definition 2 A set K is a cone if for any ◊ Ø 0 we have that

’ x œ K, ◊x œ K.

Definition 3 A set K is a convex cone if it is both a convex set and a cone.
This two properties can be translated into

’ x
1

, x
2

œ K, ◊
1

, ◊
2

Ø 0, ◊
1

x
1

+ ◊
2

x
2

œ K.

Definition 4 A function f : Rn ‘æ Rfi{Œ} is called convex if it obeys Jensen’s
inequality

’ x
1

, x
2

œ Rn, ◊ œ [0, 1], f(◊x
1

+ (1 ≠ ◊)x
2

) Æ ◊f(x
1

) + (1 ≠ ◊)f(x
2

).

Definition 5 A convex optimization problem is the problem of finding a
solution that optimizes a convex function under convex constraints. There are
several ways of representing convex optimization problems, let’s consider the
generic form
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Chapter 2. Basic convex analysis 13

minimize
x

f(x)

subject to x œ C.
(2-1)

where f is a convex function and C is a convex set.

2.2
Subgradients

Definition 6 Given a convex function f : Rn ‘æ R fi {Œ}, the associated
subdi�erential operator is defined as

ˆf = {(x, g) œ Rn ◊ Rn : ’y œ Rn, f(y) Ø f(x) + gT (y ≠ x)}.

Definition 7 The inverse of the subdi�erential operator, denoted by (ˆf)≠1,
is defined as

(ˆf)≠1 = {(g, x) : (x, g) œ ˆf}.

Definition 8 The subdi�erential operator evaluated at the point x œ Rn is a
convex set, denoted by ˆf(x), which is called the subdi�erential of f at x. It is
given by

ˆf(x) = {g œ Rn : ’ y œ Rn, f(y) Ø f(x) + gT (y ≠ x)}.

Definition 9 An element g of the subdi�erential of f at x is called a subgra-
dient of f at x, i.e. g œ ˆf(x).

Definition 10 When the subdi�erential of f at x contains only one element,
i.e. ˆf(x) = {Òf(x)}, it is called the gradient of f . This occurs when the
function f is di�erentiable at the point x.

As it can be seen in Figure 2.1, the subdi�erential ˆf(x) has an infinite
number of subgradients if the point x corresponds to a kink in the function,
i.e. the first derivative of f is not continuous at x.

f(x2) + �f(x2)
T (x � x2)

f(x1) + gT
1 (x � x1)

f(x1) + gT
2 (x � x1)

f(x)

x1 x2

Figure 2.1: Projection of v onto the convex set C.
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Chapter 2. Basic convex analysis 14

2.3
Optimality conditions

In this section, we state two first-order optimality conditions for cons-
trained convex optimization problems.

Lemma 1 (Minimum principle) Let f be a convex function and C be a
nonempty convex set. The point xú œ C is a optimal solution of (2-1) if and
only if

’ y œ C, gT (y ≠ xú) Ø 0, (2-2)

for any g œ ˆf(xú).
To give a geometric intuition consider the case where f is di�erentiable as

in Figure 2.2. One can see that the minimum principle does provide a necessary
condition for optimality and a su�cient condition under convexity. If you take
the point x

1

in Figure 2.2 and try to move towards any other feasible point
in C the value of f will increase. In contrast, the point x

2

does not satisfy the
minimum principle since, for all the area of C shaded in red, the inequality
(2-2) does not hold.

x1

�f(x1)

C C

x2

C

�f(x2)

Figure 2.2: Illustration of the minimum principle optimality condition.

Proof :
See Theorem 3.4.3 in [10]. ⇤

Lemma 2 Let f and h be convex functions. The point xú œ C is an optimal
solution of minimize

xœC

3
f(x) + h(x)

4
if and only if there exists g

h

œ ˆh(xú) such
that

’ x œ C, f(x) ≠ f(xú) + gT

h

(x ≠ xú) Ø 0. (2-3)
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Chapter 2. Basic convex analysis 15

Proof :
Let’s first prove that if there is xú such that the inequality (2-3) holds

true, then xú will be an optimal solution. From the convexity of h we have that

’ x œ C, h(x) Ø h(xú) + gT

h

(x ≠ xú),

where g
h

œ ˆh(xú). As a consequence, the following holds

’ x œ C, f(x) ≠ f(xú) + h(x) ≠ h(xú) Ø f(x) ≠ f(xú) + gT

h

(x ≠ xú),

which implies that xú is optimal by noticing

’ x œ C, (f(x) + h(x)) ≠ (f(xú) + h(xú)) Ø 0,

Now lets show that if xú is optimal the inequality (2-3) holds. From
Lemma 1, we know that if xú is optimal then

’ x œ C, gT

f+h

(x ≠ xú) Ø 0,

where g
f+h

denotes a subgradient of (f + h) evaluated at the point xú, i.e.
g

f+h

œ ˆ(f + h)(xú). By the distributive quality of subgradients we have that

’ x œ C, gT

f

(x ≠ xú) + gT

h

(x ≠ xú) Ø 0,

where g
f

œ ˆf(xú) and g
h

œ ˆh(xú). From the convexity of f we have that

’ x œ C, f(x) Ø f(xú) + gT

f

(x ≠ xú),

and consequently

’ x œ C, f(x) ≠ f(xú) + gT

h

(x ≠ xú) Ø 0,

⇤

2.4
Convex conjugate

Definition 11 The convex conjugate of f is given by the convex function

f ú(s) = sup
x œ dom f

(sT x ≠ f(x)) ’ s œ Rn.

The convex conjugate assumes the maximum di�erence between the
original function and the linear function sT x. Each pair (s, fú(s)) corresponds
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PUC-Rio - Certificação Digital Nº 1421647/CA



Chapter 2. Basic convex analysis 16

to a tangent line of f . For instance in Figure 2.3, given a slope s
1

œ Rn the
convex conjugate returns how far the a�ne function sT

1

x is from a parallel
supporting hyperplane of f .

f(x)

x

sT
1 x

sT
1 x � f(x)

f�(s1)

Figure 2.3: Convex conjugate of f evaluated at the point s
1

.

In this work, the convex conjugate function will be used solely as a
theoretical tool. In di�erent contexts, the convex conjugate can bring insightful
perspectives to convex optimization problems [9].

Lemma 3 If f is a closed convex function, then f úú = f . In other words, the
biconjugate f úú given by the convex conjugate of the convex conjugate is the
original function f .

Proof :
See [11] Theorem 12.2.

Lemma 4 Let f : Rn ‘æ R fi {Œ} be a closed convex function. The inverse of
the subdi�erential operator is given by the subdi�erential operator of the convex
conjugate of f .

Proof :
Let the tuple (s, x) be a an element of the inverse subdi�erential operator

set, i.e. (s, x) œ (ˆf)≠1. By definition, we known that the tuple (x, s) will belong
to the set defined by ˆf . Which implies that

s œ ˆf(x) ≈∆ 0 œ ˆf(x) ≠ s,

≈∆ x œ argmin
z

3
f(z) ≠ sT z

4
,

≈∆ x œ argmax
z

3
sT z ≠ f(z)

4
.
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Chapter 2. Basic convex analysis 17

Given that x is a maximizer of sT z ≠ f(z), by the definition of the convex
conjugate we have that f ú(s) = sT x ≠ f(x). So far we have established that

s œ ˆf(x) ≈∆ f ú(s) = sT x ≠ f(x).

From lemma (3), we know that since f is convex f úú = f . Substituting above
we have that

s œ ˆf úú(x) ≈∆ f ú(s) = sT x ≠ f úú(x),
≈∆ (x, s) œ ˆ(f ú)≠1,

≈∆ (s, x) œ ˆf ú.

⇤

DBD
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3
Proximal point framework

In this chapter we are going to introduce the concept of proximal
operators and a related algorithm for optimizing convex functions. It is
important to highlight that a wide range of algorithms based on proximal
operators have been proposed in the past years and the content of this
chapter is only a brief review regarding some concepts that will be required
in subsequent chapters. More precisely, proximal operators will be the main
building blocks of the proposed algorithm for solving SDPs in chapter 5.

Methods based on proximal operators, such as the proximal gradient des-
cent [12], are particularly interesting when the proximal operator has a known
closed-form solution. Also, when the objective function is not di�erentiable,
proximal algorithms are generally a good alternative to subgradient based
methods, e.g. ISTA for linear inverse problems [13].

3.1
Proximal operator

Definition 12 Let f : Rn ‘æ R fi {Œ} be a convex function. The proximal
operator of f is given by

prox
–f

(v) = argmin
x

3
f(x) + 1

2–

Îx ≠ vÎ2

2

4
,

where the constant – > 0 is a parameter that controls the trade-o� between
moving towards the minimizer of f and shifting in the direction of v.

The use of proximal operators is particularly interesting when a closed-
form solution to the prox

–f

(v) problem is known. This is the case of several
convex functions of interest. For instance, if f = Î·Î

1

we have

prox
–Î·Î1

(v) = max{v ≠ –, 0} ≠ max{≠v ≠ –, 0},

which is also know as the soft-thresholding associated with the ¸
1

-norm [14].
Another case of interest occurs when f is the indicator function of a

convex set, i.e.

IC :=

Y
_]

_[

0, if x œ C
+Œ, if x /œ C,
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PUC-Rio - Certificação Digital Nº 1421647/CA



Chapter 3. Proximal point framework 19

where C denotes a closed convex set. In such case we have,

prox
–IC (v) = argmin

x

;
IC(x) + 1

2–

||x ≠ v||2
2

<
,

= argmin
xœC

;
||x ≠ v||2

2

<
,

= projC(v).

where projC is the Euclidean projection onto the convex set C.

Lemma 5 The resolvent of the subdi�erential operator ˆf , defined as the
operator (I + –ˆf)≠1, is given by the proximal operator associated with f .

Proof :

z = (I + –ˆf)≠1(v) ≈∆ 0 œ ˆf(z) + 1

–

(z ≠ v),

≈∆ z = argmin
x

;
f(x) + 1

2–

||x ≠ v||2
2

<
.

⇤

Lemma 6 (Moreau decomposition) Let f be a convex function and f ú be it’s
convex conjugate. Given – > 0, the following decomposition holds

’ x œ Rn, x = –prox
f/–

(x/–) + prox
–f

ú(x),

Proof : Let u = prox
–f

ú(x), by Lemma 5 we have that

0 œ ˆf ú(u) + 1

–

(u ≠ x) ≈∆ x œ (I + –ˆf ú)(u),
≈∆ x≠u

–

œ ˆf ú(u).

By Lemma (4) we know that ˆf ú = (ˆf)≠1 and therefore

0 œ ˆf(x≠u

–

) ≠ u ≈∆ x œ ˆf(x≠u

–

) + x ≠ u,

≈∆ x

–

œ (I + 1

–

ˆf)(x≠u

–

),
≈∆ x≠u

–

œ (I + 1

–

ˆf)≠1( x

–

),
≈∆ x = –prox

f/–

(x/–) + u.

By replacing u, we have that x = –prox
f/–

(x/–) + prox
–f

ú(x).
⇤
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Chapter 3. Proximal point framework 20

3.2
Generalized proximal operator

In this work we are also going to consider an extended version of the
proximal operator where the Euclidean norm is replaced by a norm induced by
a positive semidefinite matrix P . The P -norm will be denoted by Î·Î2

P

, where
ÎxÎ2

P

= xT Px. In this sense, consider the following definition and property.

Definition 13 Let f be a convex function, P be a positive definite matrix and
– > 0. The generalized proximal operator of f with respect to P is given by

proxP

–f

(v) = argmin
x

3
f(x) + 1

2–

Îx ≠ vÎ2

P

4
.

Theorem 7 Let f be a convex function, P be a positive definite matrix and
proxP

–f

its associated generalized proximal operator. A fixed point of proxP

–f

is the optimal solution of f .

Proof :
The first order optimality condition of proxP

–f

(v) is given by

0 œ ˆf(x) + 1

–

(x ≠ v)T P.

If the solution of the system above is a fixed point, i.e. x = v, we have that
0 œ ˆf(x). Therefore, a fixed point of proxP

–f

will be the optimal solution of
f . ⇤

3.3
Proximal point algorithm

The result of Lemma (7), yet very simple, suggests a very powerful
strategy to optimize the convex function f . Instead of optimizing f directly,
one can try to find a fixed point of its associated proximal operator. This
meta-algorithm, know as Proximal Point Algorithm (PPA), starts with any
initial iterate x0 and successively applies the proximal operator. PPA was first
proposed in the seminal work of Rockafellar [15] and quickly became a widely
used framework in several fields such as image processing [16] and solving
partial di�erential equations [17].

In the case of an unconstrained convex optimization problem, we want
to find the root of the subdi�erential operator, i.e. 0 œ ˆf(x). Given – > 0
and starting from x

0

, PPA can be viewed as successively finding a solution for

0 œ ˆf(xk+1) + 1

–

(xk+1 ≠ xk) ≈∆ xk+1 = argmin
x

3
f(x) + 1

2–

...x ≠ xk

...
2

2

4
,
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until a fixed point, i.e. xk+1 = xk, is found. If f is convex and has a minimum
point, then the sequence {xk} will converge to a point belonging to the set of
minimizers of f [15]. Convergence guarantees can be derived from monotone
operator theory [8].

In this work we will refer to Generalized Proximal Point Algorithm
(GPPA) as the iterative scheme

xk+1 Ω proxP

–f

(xk). (3-1)

This scheme is similar to PPA but convergence will be achieved with respect
to the P -norm [5]. In the remaining of this chapter, we are going to show that
GPPA converges to a fixed point if one exists.

Lemma 8 Let f be a convex function and proxP

–f

its associated generalized
proximal operator. If xú is a fixed point of proxP

–f

, then the sequence {xk}
generated by GPPA obeys

’ xú = proxP

–f

(xú), (xú ≠ xk+1)T P (xk+1 ≠ xk) Ø 0,

Proof :
Let xk+1 be an iteration from GPPA algorithm, i.e. xk+1 = proxP

–f

(xk),
we have from Lemma 2 that

’ x œ Rn., f(x) ≠ f(xk+1) + 1

–

(x ≠ xk+1)T P (xk+1 ≠ xk) Ø 0.

Let xú be a fixed point of proxP

–f

, according to Theorem 7 we know that
f(xú) Æ f(x) ’ x œ Rn. Therefore we have that

’ x œ Rn, (x ≠ xk+1)T P (xk+1 ≠ xk) Ø 0,

consequently ’ xú = proxP

–f

(xú), (xú ≠ xk+1)T P (xk+1 ≠ xk) Ø 0. ⇤

Definition 14 A sequence {xk} is called X -Fejér monotone with respect to
the P -norm if

’k œ N, x œ X ,
...xk+1 ≠ x

...
2

P

Æ
...xk ≠ x

...
2

P

.

Theorem 9 The sequence {xk} generated by GPPA is X ú-Fejér monotone
with respect to the P -norm, where X ú is the set of fixed-points of (3-1).
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Proof :
Let xú œ X ú,

...xk ≠ xú
...

2

P

=
...(xk+1 ≠ xú) + (xk ≠ xk+1)

...
2

P

,

=
...xk+1 ≠ xú

...
2

P

+
...xk ≠ xk+1

...
2

P

+ 2(xk+1 ≠ xú)T P (xk ≠ xk+1).

From lemma (4) we know that (xú ≠ xk+1)T P (xk+1 ≠ xk) Ø 0 and therefore
...xk+1 ≠ xú

...
2

P

Æ
...xk ≠ xú

...
2

P

≠
...xk ≠ xk+1

...
2

P

,

Æ
...xk ≠ xú

...
2

P

.

⇤

Theorem 10 The sequence {xk} generated by GPPA being X ú-Fejér mono-
tone implies that

dist(xk, X ú) = inf
xœX ú

...xk ≠ x
...

P

æ 0 as k æ Œ,

monotonically.
In other words, dist(xk, X ú) decreases at each step of GPPA. This means

that GPPA will converge to a point arbitrarily close to a fix point of proxP

–f

with respect to the P -norm [18,19].

Proof :
See Lemma 3.1 of the work of Chen and Teboulle [20].
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4
Semidefinite programming

In this work we are going to consider a formulation of semidefinite
programming where the inequalities are explicitly stated, avoiding the use of
slacks variables. The formulation referred to as general SDP form is defined as
the following

minimize
XœSn

tr(CX)

subject to A(X) = b,

G(X) Æ h,

X ≤ 0.

(4-1)

where the operators A : Sn

+

æ Rm and G : Sn

+

æ Rp are given by

A(X) =

S

WWWWWWU

tr(A
1

X)
tr(A

2

X)
...

tr(A
m

X)

T

XXXXXXV
, G(X) =

S

WWWWWWU

tr(G
1

X)
tr(G

2

X)
...

tr(G
p

X)

T

XXXXXXV
.

and the problem data are the symmetric matrices A
1

, . . . , A
m

, G
1

, . . . , G
p

, C œ
Sn, the vectors b œ Rm and h œ Rp. In this semidefinite programming
formulation, one wants to minimize a linear function subject to a set of
m linear equality constraints and p linear inequality constraints, where the
decision variable is an n◊n symmetric matrix constrained to be on the positive
semidefinite (p.s.d.) cone.

The dual problem takes the form

maximize
yœRm+p

[bT hT ] y

subject to AT (y) + GT (y) ∞ C,

y
j

Æ 0, ’ j = m + 1, . . . , p.

where the transpose operators AT : Rm æ Sn

+

and GT : Rp æ Sn

+

are given by
AT (y) = q

m

i=1

y
i

A
i

and GT (y) = q
p

j=1

y
j+m

G
j

respectively. Despite being very
similar to linear programming, strong duality does not always hold for SDP.
For a comprehensive analysis on the duality of semidefinite programming the
reader should refer to the work of Boyd and Vandenberghe [1].
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4.1
Applications

Besides the theoretical motivation, several problems of practical interest
lie precisely in the SDP class. As more applications are found, an e�cient
method for solving large scale SDP problems is required. This section aims
to briefly cover some representative applications that have been successfully
solved by SDP. For a more complete list of applications and SDP problems,
the reader can refer to [21,22].

Traditionally, semidefinite programming has been widely used in control
theory. Classic applications such as stability of dynamic systems and stochastic
control problems [23] have motivated the development of SDP over decades.
Modern applications such as motion for humanoid robots [24] use SDP as a
core element for control. In several cases, SDP problems in control can be
formulated in the form of linear matrix inequalities (LMI) [25]. In this sense,
for some particular applications in control, there is no need to use general
SDP algorithms since some LMI problems have closed form solutions, although
adding little complexity to the problem might render the closed form solutions
useless. As a consequence, interior-point methods particularly developed to
solve LMI problems were proposed [26]. An extensive literature on LMI can
be found on [27,28].

Subsequently, several fields of study have found in SDP a powerful tool
for solving complex problems. For instance, the use of SDP in power systems
allowed deriving tight bounds and solutions for more realistic optimal power
flow models with alternating current networks [29]. In chip design, transistor
sizing also was optimized with the use of SDP [30,31]. In the field of structural
truss layout, the use of SDP has been popularized after the seminal work of
Ben-Tal and Nemirovski [32]. This latter work also presented the first ideas
that subsequently lead to the expanding field of optimization under uncertainty
[33], where SDP is also used to approximate chance constraints [34].

A remarkable property of SDP is the ability to build tight convex
relaxations to NP-hard problems. This technique, also known as semidefinite
relaxation (SDR), has been a powerful tool bridging convex and combinatorial
optimization. In the early nineties, Lovász and Schrijver developed a SDR for
optimization problems with the presence of boolean variables [35]. Soon after,
SDR gained momentum after the celebrated Goemans-Williamson randomized
rounding method for the max-cut problem [36]. Eventually, similar SDR
approaches were proposed for other combinatorial problems, such as the
max-3-sat [37] and the traveling salesman problem [38]. Recently, Candès
et al. proposed an SDR approach to the phase retrieval problem [39]. Such
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relaxations generally square the original number of decision variables through a
technique called lifting [40]. From the algorithmic perspective, this can quickly
make moderate size instances computationally challenging.

In the last decade, applications in machine learning have challenged
traditional SDP methods at solving remarkably large scale instances [41].
The problem size n is usually associated with the sample size, which can
easily reach millions. One of the most celebrated application is the matrix
completion problem [42] which became very popular with the Netflix prize
[43]. In graphical models, the problem of covariance selection, which is a
powerful tool for modeling dependences between random variables, can also
be formulated as an SDP problem [44]. In statistical learning, finding the best
model that combines di�erent positive definite kernels, also known as kernel
learning, can be achieved by solving an SDP problem [45,46].

For constraint satisfaction problems (CSP), i.e. problems where one tries
to satisfy as many constraints as possible, semidefinite programming also plays
an essential role. In the work of Raghavendra [2], it was shown that, if the
Unique Games conjecture [47] is true, then semidefinite programming achieves
the best approximation for every CSP. Even though there is no consensus
on the legitimacy of the Unique Games conjecture, recent work by Khot et
al. [48, 49] provides new results suggesting that the Unique Games conjecture
may be true. Recent developments bring semidefinite programming back to
the spotlight and imply that this class of convex optimization algorithms do
have singular properties worth exploiting.

4.2
SDP solution methods

In the early days, general SDP problems were solved by the ellipsoid
method [50, 51] and subsequently by bundle methods [52]. After the advent
of the first polynomial-time interior-point algorithm for linear programming
by Karmarkar et al. [53, 54], Nesterov and Nemirovski extended interior-
points methods for other classes of convex optimization problems [55]. Shortly
afterwards, a range of interior-points methods to solve SDPs were proposed
[56–58]. The solvers CSDP [59] and MOSEK [60] use state-of-the-art interior
point methods for solving general SDP problems. Up to medium size problems,
this class of methods is preferable due to the fast convergence and high
precision. However, as it is inherent to all second-order methods, the use of
interior-points algorithms may be prohibitive for solving large-scale instances.
The main bottleneck is due to the cumbersome e�ort for computing and storing
the Hessian at each iteration.
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More recently, first-order methods have been widely used for applications
in machine learning and signal processing. Even though first-order methods
generally have slower convergence rate, their cost per iteration is usually small
and they require less memory allocation [61]. These characteristics make first-
order methods very appealing for large scale problems and, consequently, it
has been an intense area of research in several fields, e.g. image processing
[62]. A great example of the use of first order methods is the conic solver
SCS developed by O’Donoghue et al. [63], which can e�ciently solve general
conic optimization problems to modest accuracy. More recently, the use of the
alternating direction method of multipliers (ADMM) for specifically solving
SDP has been proposed by [64].

For most of the above mentioned algorithms, exploiting sparsity patterns
in the decision variable is not as straightforward as it is for other classes
of convex optimization problems. In this sense, a major recent contribution
has been made by showing that sparsity can be exploited by means of
chordal decomposition techniques [65–67]. This approach has enabled parallel
implementations that can solve larger instances with the use of supercomputers
[68]. In a series of works, Zhang and Lavaei have presented SDP algorithms
that can properly take advantage of the problem’s sparsity [69,70].
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5
Primal-dual operator splitting for SDP

In this chapter, the proposed primal-dual algorithm will be built from the
first-order optimality conditions of the SDP in general form (4-1). The strategy
adopted to derive the algorithm is to translate the problem of finding a solution
that satisfies the optimality conditions into a problem of finding a fixed point of
a related monotone operator. This approach has been previously adopted with
the purpose of designing new algorithms and developing alternative proofs for
existing ones [19]. Further information on the use of monotone operators in
the context of convex optimization can be found at [12,71–73].

Consider the general SDP form (4-1) where the problem constraints are
encoded by indicator functions

minimize
XœSn

tr(CX) + ISn
+
(X) + I =b

Æh
(M(X)), M =

S

UA
G

T

V (5-1)

and the indicator functions are defined as follows

ISn
+
(X) =

Y
]

[
0, if X ≤ 0,

Œ, otherwise,

encodes the positive semidefinite cone constraint and

I =b
Æh

(u) = I
=b

(u
1

) + IÆh

(u
2

), u = [u
1

u
2

]T ,

encodes the linear constraints right-hand side for any u œ Rm+p such that

I
=b

(u
1

) =
Y
]

[
0, if u

1

= b,

Œ, otherwise,
IÆh

(u
2

) =
Y
]

[
0, if u

2

Æ h,

Œ, otherwise.

for any u
1

œ Rm and u
2

œ Rp.

5.1
Optimality condition

The first order optimality condition (5-2) for the optimization problem
(4-1) can be expressed as

0 œ ˆ tr(CX) + ˆ ISn
+
(X) + MT (ˆ I =b

Æh
(M(X))). (5-2)
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By introducing an auxiliary variable y œ Rm+p, the optimality condition can
be recast as the following system of inclusions

0 œ ˆ tr(CX) + ˆ ISn
+
(X) + MT (y),

y œ ˆ I =b
Æh

(M(X)).

By definition, the auxiliary variable y represents the dual variable associated
with the problem constraints. This statement is easily verifiable since y œ
ˆ I =b

Æh
(M(X)), i.e. y is a subgradient of I =b

Æh
(M(X)) at X. Since problem (4-1)

is convex, finding a pair (Xú, yú) satisfying (5-2) is equivalent to finding an
optimal primal-dual pair for (4-1), as long as strong duality holds [8].

From Lemma 4 we know that (ˆf)≠1 = ˆf ú. One can manipulate the
second equation as follows

y œ ˆ I =b
Æh

(M(X)) ≈∆ ˆ Iú
=b
Æh

(y) – M(X),

≈∆ 0 œ ˆ Iú
=b
Æh

(y) ≠ M(X).

Using this new expression, the system (5-2) can be recast as 0 œ F (X, y),
where F : Sn ◊ Rm+p æ Sn ◊ Rm+p is the following monotone operator

F (X, y) =
1
ˆ tr(CX) + ˆ ISn

+
(X) + MT (y) , ˆ Iú

=b
Æh

(y) ≠ M(X)
2
. (5-3)

One can verify that F is a monotone operator by noticing that F is the sum
of a subdi�erential operator and a monotone a�ne operator [74]

This new formulation of the system (5-2) implies that finding a zero of the
underlying monotone operator F is equivalent to finding an optimal primal-
dual pair for the semidefinite programming problem (4-1). On the remainder of
this section, a method for finding a zero for the operator F will be established.

5.2
Fixed-point algorithm

Finding a zero of the monotone operator F can be translated into finding
a fixed point for the following system

P (X, y) œ –F (X, y) + P (X, y),

by simply adding P (X, y) on both sides. Where P is a positive definite operator
that works as preconditioner for the fixed-point inclusion [8]. This formulation
induces the following fixed point iteration

1
Xk, yk

2
Ω

1
P + –F

2≠1

P (Xk≠1, yk≠1). (5-4)
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By choosing P as

P =

S

WU
I ≠–MT

≠–M I

T

XV , (5-5)

the fixed-point inclusions can be expressed as
1
Xk≠1 ≠ –MT (yk≠1), yk≠1 ≠ –M(Xk≠1)

2
œ

–F (Xk, yk)+
1
Xk ≠ –MT (yk), yk ≠ –M(Xk)

2
.

By substituting the operator F (Xk, yk), we have that
1
Xk≠1 ≠ –MT (yk≠1), yk≠1 ≠ –M(Xk≠1)

2
œ

–
1
ˆ tr(CXk) + ˆ ISn

+
(Xk) + MT (yk) , ˆ Iú

=b
Æh

(yk) ≠ M(Xk)
2
+

1
Xk ≠ –MT (yk), yk ≠ –M(Xk)

2
.

Further manipulation leads to the system
1
Xk≠1 ≠ –MT (yk≠1), yk≠1 + –M(2Xk ≠ Xk≠1)

2
œ

–
1
ˆ tr(CXk) + ˆ ISn

+
(Xk), ˆ Iú

=b
Æh

(yk)
2

+
1
Xk, yk

2

which induces the following fixed-point iteration:

Xk Ω
1
I + –ˆ (tr(C·) + ISn

+
))≠1(Xk≠1 ≠ –MT (yk≠1)

2
,

yk Ω
1
I + –ˆ Iú

=b
Æh

)≠1(yk≠1 + –M(2Xk ≠ Xk≠1)
2
.

This scheme is a particular case of the primal-dual hybrid gradient
(PDHG) proposed by Chambolle and Pock [4,75] which has been successfully
applied to a wide range of image processing problems, such as image denoising
and deconvolution [62,76,77].

5.3
Convergence

Lemma 11 The matrix P is positive definite if and only if 0 < – < 1/ ÎMÎ
2

.

Proof :
By definition, P is positive definite if ÈP (X, y), (X, y)Í > 0 ’ (X, y) œ

Sn ◊ Rm+p. Lets pick an arbitrary pair (X, y), we have that

ÈP (X, y), (X, y)Í = ÎXÎ2

F

+ ÎyÎ2

2

≠ –2ÈM(X), yÍ.
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In this sense, P will be positive definite if

’ (X, y) œ Sn ◊ Rm+p, ÎXÎ2

F

+ ÎyÎ2

2

> –2ÈM(X), yÍ.

From the Cauchy-Schwarz inequality [78] we know that

’ (X, y) œ Sn ◊ Rm+p, –2ÈM(X), yÍ Æ –2 ÎMÎ
2

ÎXÎ
F

ÎyÎ
2

.

Applying Young’s inequality [78] to the right hand side gives

’ (X, y) œ Sn ◊ Rm+p, –2 ÎMÎ
2

ÎXÎ
F

ÎyÎ
2

Æ –2 ÎMÎ
2

3ÎXÎ2

F

2 + ÎyÎ2

2

2

4
.

This implies that

’ (X, y) œ Sn ◊ Rm+p, –2ÈM(X), yÍ Æ – ÎMÎ
2

3
ÎXÎ2

F

+ ÎyÎ2

2

4
.

Therefore, if – < 1

ÎMÎ2
then P will be positive definite.

⇤

Theorem 12 If 0 < – < 1/ ÎMÎ
2

, the iterative process (5-4) is equivalent to
the generalized proximal point method (3-1).

Proof :
Given that under the condition the 0 < – < 1/ ÎMÎ

2

the matrix P is
positive definite, we can consider the associated generalized proximal operator
proxP

–F

. Leading to the following iterative scheme

(Xk+1, yk+1) Ω proxP

–F

(Xk, yk),

which is equivalent to successively finding a pair (Xk+1, yk+1) that satisfies the
first order optimality condition

0 œ F (Xk+1, yk+1) + 1

–

3
(Xk+1, yk+1) ≠ (Xk, yk)

4
T

P,

which can be rearranged as

P (Xk, yk) œ –F (Xk+1, yk+1) + P (Xk+1, yk+1),

leading to the inclusion

1
Xk+1, yk+1

2
œ

1
P + –F

2≠1

P (Xk, yk).

⇤
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Given that the iterative scheme (5-4) is equivalent to GPPA, we know
from Theorem 10 that the sequence {(Xk, yK)} will monotonically converge
to a fixed point (Xú, yú) of P (X, y) œ –F (X, y) + P (X, y) if one exists.
Additionally, from Theorem 7, we know that the same point (Xú, yú) will be
the optimal solution of (5-1).

5.4
Termination criteria

In practice, the progress of the algorithm can be measured by the primal,
dual and combined residuals respectively defined as follows

‘k

primal

=
... 1

–

(Xk ≠ Xk≠1) ≠ MT (yk ≠ yk≠1)
...

F

,

‘k

dual

=
... 1

–

(yk ≠ yk≠1) ≠ M(Xk ≠ Xk≠1)
...

2

,

‘k

comb

= ‘k

primal

+ ‘k

dual

.

This stopping criterion is equivalent to the criterion proposed by [79] and can
be derived from the optimality conditions of (5-1). One can stop the iterative
scheme (5-4) as soon as the combined residual is less than a predetermined
tolerance.

5.5
Proximal operators in SDP

In order to employ the fixed-point iteration (5-4) one needs to compute
both resolvent operators (I+–ˆ (tr(C·)+ISn

+
))≠1 and (I+–ˆ Iú

=b
Æh

)≠1. As it was
stated in Lemma (5) in chapter 3, the resolvent of a subdi�erential operator
is given by its associated proximal operator. In this sense, in this section, the
proximal operators associated with (5-4) are going to be analyzed in more
detail.

5.5.1
Box constraints

The resolvent associated with ˆI =b
Æh

is simply given by the projection onto
the box constraints

1
I + –ˆI =b

Æh

2≠1

(u) = proj =b
Æh

(u) =

S

WU
proj

=b

(u
1

)

projÆh

(u
2

)

T

XV =

S

WU
b

min {u
2

, h}

T

XV ,
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where u
1

œ Rp and u
2

œ Rm and min {u
2

, h} is the point-wise minimum.
Additionally, Lemma 6 gives the Moreau identity

u =
1
I + –ˆf ú

2≠1

(u) + –
1
I + ˆf/–

2≠1

(u/–).

Therefore one concludes that
1
I + –ˆIú

=b
Æh

2≠1

(u) = u ≠ –proj =b
Æh

(u/–). (5-6)

5.5.2
Positive semidefinite cone

Similarly, the resolvent associated with the positive semidefinite cons-
traint is given by the Euclidean projection onto the positive semidefinite cone.
Let S œ Sn, the projection onto the set {X : X ≤ 0} has the closed form

1
I + –ˆISn

+

2≠1

(S) = projSn
+
(S) =

nÿ

i=1

max{0, ⁄
i

}u
i

uT

i

,

where S = q
n

i=1

⁄
i

u
i

uT

i

is the eigenvalue decomposition of the symmetric
matrix S [9].

5.5.3
Trace

Given the symmetric matrices C and S, the resolvent associated to the
trace function is given by the formula

1
I + –ˆtr(C·)

2≠1

(S) = S ≠ –C.

Unlikely the majority of cases, the resolvent associated with the trace function
plus any convex function g is given by the left composition as in

1
I + –ˆ(g + tr(C·)

2≠1

(S) =
1
I + –ˆg

2≠1 ¶
1
I + –ˆtr(C·)

2≠1

(S),

=
1
I + –ˆg

2≠1

1
S ≠ –C

2
.

Consequently,
1
I + –ˆ (tr(C·) + ISn

+
)
2≠1

(S) = projSn
+
(S ≠ –C). (5-7)

DBD
PUC-Rio - Certificação Digital Nº 1421647/CA



Chapter 5. Primal-dual operator splitting for SDP 33

5.6
PD-SDP

Algorithm 1, referred to as PD-SDP, as in Primal-Dual SemiDefinite
Programming, matches the fixed-point iteration (5-4) and the resolvents in
its closed forms (5-6, 5-7). In this particular setting, the primal-dual method
turns out to be a very simple routine. As it is illustrated in Algorithm 1, the
method avoids explicitly solving a linear system or a convex optimization pro-
blem at each iteration. One only needs a subroutine to evaluate the resolvents
and access to an abstract linear operator for M and its adjoint.

Algorithm 1 PD-SDP

Given: M, b œ Rm, h œ Rp and C œ Sn.

while ‘k

comb

> ‘
tol

do

Xk+1 Ω projSn
+
(Xk ≠ –(MT (yk) + C)) Û Primal step

yk+1/2 Ω yk + –M(2Xk+1 ≠ Xk) Û Dual step part 1
yk+1 Ω yk+1/2 ≠ –proj =b

Æh
(yk+1/2/–) Û Dual step part 2

end while

return
1
Xk+1, yk+1

2

In [4], it was shown that PDHG achieves O(1/k) convergence rate for
non-smooth problems, where k is the number of iterations. In this sense, in
terms of convergence rate, the PD-SDP is optimal among all the possible first-
order methods. Similar convergence rates can be achieved by other operator
splitting methods such as Tseng’s ADM [80] or ADMM [81,82]. However, the
PD-SDP has the advantage of o�ering the optimal dual variable as a by-product
of the algorithm.

The computational complexity of each loop is dominated by the pro-
jection onto the positive semidefinite cone. In the most naive implementation,
each iteration will cost O(n3) operations, where n is the dimension of the p.s.d.
matrix. If one knew the number of positive eigenvalues r, at each iteration, the
computational cost could be reduced to O(n2r). In this work we are going
to refer to r as the target-rank of a particular iteration. One should keep in
mind that the rank of the matrix will be smaller than or equal to r. Unfor-
tunately, in practice, one does not have access to the target-rank. However, as
it will be show in the next section, there is no need to know the target-rank
in advance. Even more surprisingly, faster running times can be achieved by
underestimating the target rank to some extent.
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6
Exploiting low-rank structure

So far we have proposed a first-order method for solving general SDP
problems. However, the projection onto the positive semidefinite cone is an
obstacle to make the algorithm scalable for larger instances. In this section,
we are going to explore how to take advantage of a low-rank structure, even if
the target rank is unknown.

6.1
Low-rank approximation

It is well-known that SDP solutions very often exhibit a low-rank
structure. More precisely, as shown by Barvinok [83] and Pataki [84], any SDP
with m equality constraints admits an optimal solution with rank at mostÔ

2m. In practice, for several SDP problems, it is frequently observed that the
optimal solution has an even smaller rank. This phenomenon is notably present
in SDPs generated by a semidefinite relaxation, where the solution has ideally
low rank. However, even if the relaxation is inexact, the rank of the solution
is usually substantially small.

This property has motivated a series of nonconvex methods aiming to
exploit the low-rank structure of the problem [85–87]. For instance, one can
encode the positive semidefinite constraint as a matrix factorization of the
type X = V T V where V œ Rr◊n and r is the target rank. This technique
was proposed a decade ago by Burer and Monteiro [88] and since then
it has been one of the main tools for tackling the scalability of low-rank
SDPs. This matrix factorization approach has been successfully applied to
large-scale computer vision [89] and combinatorial optimization problems [90].
Unfortunately, by resorting to this approach, one loses convexity and all the
associated guarantees.

The main bottleneck of PD-SDP and any other convex optimization
methods for solving SDPs is computing the eigenvalue decomposition. A
natural approach to overcome this issue is to make use of low-rank matrix
approximation techniques in place of computing the full matrix decomposition.
Recent work by Udell, Tropp et al. [91] uses matrix sketching methods [92,93]
to successfully find approximate solutions to low-rank convex problems. While
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their methodology possesses several advantages, such as optimal storage, it
does require all solutions to be low-rank in order to guarantee convergence to an
optimal solution. In contrast, the methodology proposed in this paper exploits
the low-rank structure of the problem whenever possible but also converges to
an optimal solution even in the presence of a full-rank structure.

As it was shown by Eckart and Young [94], the best rank-r approximation
of symmetric matrices, for both the Frobenius and the spectral norms, is
given by the truncated eigenvalue decomposition. Inspired by this result, the
approximate projection onto the positive semidefinite cone is given by

aprojSn
+
(X, r) =

rÿ

i=1

max{0, ⁄
i

}u
i

uT

i

, (6-1)

where X is a symmetric matrix, r is its target-rank and ⁄
1

Ø · · · Ø ⁄
r

are the
eigenvalues with the r largest real values. It is important to notice that, despite
being di�erent from the Euclidean projection, aprojSn

+
(X, r) does project the

matrix X onto the p.s.d. cone. In other words, the truncated projection maps
into the p.s.d. cone but not necessarily the closest point, according to the
Frobenius norm, as it is illustrated in Figure 6.1.

Sn
+

projSn
+
(X)

X

aprojSn
+
(X, r)

Figure 6.1: Comparison of Euclidean projection onto the positive semide-
finite cone, denoted by projSn

+
(X), and the truncated projection given by

aprojSn
+
(X, r).

If the target-rank r equals the number of nonzero eigenvalues, both the
the truncated and the full projection will be equivalent. Otherwise, if the
target-rank r is smaller than the number of nonzero eigenvalues, the truncated
projection will be only an approximation of the exact projection. In this case,
according to the Eckart–Young–Mirsky theorem, the approximation error can
be expressed as the sum of the eigenvalues that were left out by the truncated
projection:

...projSn
+
(X) ≠ aprojSn

+
(X, r)

...
2

F

=
nÿ

i=r+1

max{⁄
i

, 0}.
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For practical purposes, the approximation error can be bounded in terms of
the smaller eigenvalue computed by the truncated projection as the following

...projSn
+
(X) ≠ aprojSn

+
(X, r)

...
2

F

Æ (n ≠ r) max{⁄
r

, 0}. (6-2)

The partial eigenvalue decomposition (6-1) can be e�ciently computed
via power iteration algorithms or Krylov subspace methods [95,96]. Computa-
tional routines are freely available on almost every programming language for
numerical computing [97,98].

6.2
Target rank update

As previously noted, the PD-SDP method can be seen as a fixed-point
iteration of a monotone operator [99]. In this sense, replacing the exact
projection onto the positive semidefinite cone by its approximation (6-1) will
result in an inexact iteration as the following

1
Xk+1, uk+1

2
Ω

1
P + –F

2≠1

P (Xk, uk) + Ák, (6-3)

where F and P are the ones defined in (5-3) and (5-5) and Á is an error
component. In the literature, this methodology can be found by the name of
inexact solves or approximate proximal point [15]. In the work of Eckstein and
Bertsekas [82], they have shown that the approximate scheme (6-3) converges
as long as the error component is summable, i.e.,

Œÿ

k=1

...Ák

...
2

< Œ. (6-4)

In the context of the approximate projection onto the p.s.d. cone,
condition (6-4) can be expressed in terms of the smallest eigenvalue of the
truncated decomposition for each iterate. Let ⁄k

r

denote the smallest eigenvalue
computed at the kth iteration of the algorithm (6-3), which corresponds to the
rth largest eigenvalue at that iteration. Analogously to [82], given a target-rank
r, the fixed-point iteration (6-3) will converge to a fixed point as long as

(n ≠ r)
Œÿ

k=1

...max{⁄k

r

, 0}
...

2

< Œ (6-5)

and a fixed-point exists. It is easily verifiable that for an arbitrarily fixed
target-rank r, the iteration (6-3) will never converge. For instance, if one fixes
the target-rank to a value smaller than the rank of the optimal solution, the
error component will remain above a threshold and the sequence of errors will
not be summable. We refer to the target-rank as su�cient if it satisfies the
condition (6-5).
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Since the minimal su�cient target-rank is not known a priori, it is
necessary to use an update mechanism that can guarantee the convergence
of (6-3). The strategy adopted in this paper is to start the algorithm with
a small target-rank and increase its value whenever necessary. The combined
residual (5.4) will be used to describe the state of the algorithm and trigger
the updates of the target-rank. Given an initial target-rank, the sum of the
subsequent combined residuals can either converge or diverge. Even if the
sequence converges it will not necessarily be monotonic. In this regard, instead
of checking convergence of sub-sequential iterates we are going to evaluate the
residuals (5.4) within a window of size ¸.

In case the combined residuals converge according to a given tolerance,
we need to examine the approximation error (6-2). It follows from (6-2) that
if the approximation error is zero, the smallest eigenvalue of Xú is smaller or
equals to zero and the truncated projection is no longer an approximation.
Therefore, the inexact iteration (6-3) has also converged to a fixed-point of
(5-4) and consequently an optimal primal-dual solution for the SDP problem
of interest has been found.

If the combined residual has converged with a target rank r but the
approximation error is greater than the tolerance, the target-rank needs to be
updated. In this case, it is interesting to notice that even though the current
iterate pair is not an optimal point, it does give a feasible primal solution,
under the assumption of strong duality. By characterizing a fixed-point of (6-
2), the current iterate will be satisfying the linear constraints of the original
SDP problem. Additionally, as it was previously pointed out, the truncated
projection maps onto the positive semidefinite cone. Therefore, given a target
rank r, if a fixed-point of (6-2) is found, one has a feasible point designated by
(X

[r]

, y
[r]

).
The last possible case occurs when the combined residuals either stay

stationary or diverge within the last ¸ iterates. In this case, the target-rank also
needs to be updated. After updating the target-rank, the process is repeated.
The combination of PD-SDP and the target rank updating scheme is described
in Algorithm 2 and will be referred to as LR-PD-SDP. In the worst case scenario,
the target-rank will be updated until r equals n and the subsequent iterations
of the algorithm will be equivalent to the ones in PD-SDP. Consequently, in
this setting, LR-PD-SDP will converge to a fixed point of (5-3) under the same
conditions of PD-SDP.
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Algorithm 2 LR-PD-SDP

Given: M, b œ Rp, h œ Rq, C œ Sn and r = 1.

while (n ≠ r)⁄
r

> Á
⁄

do

while ‘k

comb

> ‘
tol

and ‘k

comb

< ‘k≠¸

comb

do

Xk+1 Ω aprojSn
+
(Xk ≠ –(MT (yk) + C), r) ÛApproximate primal step

yk+1/2 Ω yk + –M(2Xk+1 ≠ Xk) Û Dual step part 1
yk+1 Ω yk+1/2 ≠ –proj =b

Æh
(yk+1/2/–) Û Dual step part 2

end while
if ‘k

comb

< ‘
tol

then
(X

[r]

, y
[r]

) Ω (Xk+1, yk+1) Û Save feasible solution
end if
r Ω 2r Û Target-rank update

end while

return (Xk+1, yk+1)

Each iteration of Algorithm 2 has a computational complexity of O(n2r)
as opposed to O(n3) of the previous version. Additionally, if one doubles the
target-rank whenever necessary, the updating procedure can be carried out
O(log(n)) times. Usually, LR-PD-SDP will require more iterations to reach con-
vergence than PD-SDP. On the other hand, LR-PD-SDP induces the rank of the
iterates Xk to remain small. As it is illustrated in Figure 2, LR-PD-SDP avoids
the presence of high rank iterates, as happens with PD-SDP. Consequently, if
the problem of interest has a low-rank solution, the LR-PD-SDP will terminate
much faster than PD-SDP.

DBD
PUC-Rio - Certificação Digital Nº 1421647/CA



Chapter 6. Exploiting low-rank structure 39

X[1] X[2] X�

ra
n
k
(X

k
)

X[4]

Figure 6.2: Comparison of the rank path of the iterates Xk for both PD-SDP

and LR-PD-SDP methods. Additionally, the sequence of primal intermediate
feasible solution found by LR-PD-SDP are represented as the points X

[1]

, X
[2]

and X
[4]

.
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7
ProxSDP numerical solver

The complete implementation of the algorithm is available online at

https://github.com/mariohsouto/ProxSDP.jl

It is not only possible to examine the implementation of the solver but also it
can be used as a general purpose solver. The project includes usage examples
and all the data and scripts needed for next sections’ benchmarks.

The solver was completely written in the Julia language [100], making
extensive usage of its linear algebra capabilities. Sparse matrix operations were
crucial to achieve good performance on manipulations involving the linear
constraints. Also, dense linear algebra routines relying on BLAS [101] were
heavily used, just like multiple in-place operation to avoid unnecessary memory
allocations. The built-in wrappers over LAPACK [102] and BLAS made it very
easy to write high performance code. In particular, the ARPACK wrapper,
used to e�ciently compute the largest eigenvalues, was modified to maximize
in-place operations and avoid the unnecessary allocations.

Instead of writing a solver interface from scratch, we used the package
MathOptInterface.jl (MOI) that abstracts solver interfaces. In doing that, we
were able to write problems only once and test them in all available solvers.
Moreover, having a MOI based interface means that the solve is available to
through the modeling language JuMP [103].
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8
Case studies

In the following sections we will present three SDP problems to serve
as background for comparisons between SDP solvers. The main goal of the
experiments is to show how LR-PD-SDP outperforms the state-of-the-art solvers
in the low-rank setting. In this sense, the numerical experiments are focused
on semidefinite relaxation problems. On such SDP relaxations, the original
problem one is interested in solving is nonconvex and it can be formulated as a
SDP plus a rank constraint of the form rank(X) = d, where d usually assumes
a small value. Unfortunately, the rank constraint makes the problem extremely
hard to solve and any exact algorithm has doubly exponential complexity [104].
The SDR avoids this problem by simply dropping the rank constraint and
solving the remaining problem via semidefinite programming. Usually SDRs
admit low-rank solutions, even without the presence of the rank constraint,
making this the ideal case for testing the LR-PD-SDP algorithm.

In the presented numerical experiments, we are going to consider a default
numerical tolerance of ‘

tol

= 10≠3. As any first-order method, both PD-SDP and
LR-PD-SDP may require a large number of iterations to converge to a higher
accuracy [61, 105]. All the following tests were run in a Intel(R) Core(TM)
i7-5820K CPU 3.30GHz (12 cores) Linux workstation with 62 Gb of RAM. In
the following benchmarks for PD-SDP and LR-PD-SDP the Julia version used
was compiled with Intel’s MKL [106]. The maximum running time for all
experiments was set to 1200s.

8.1
Graph equipartition

Consider the undirected graph G = (V, E) where V is the set of vertices,
E is a set of edges, n is the total number of edges and a cut (S, S Õ) is a disjoint
partition of V . Let x œ {≠1, +1}n such that

x
i

=
Y
]

[
+1, if x

i

œ S,

≠1, if x
i

œ S Õ,
’ i = 1, · · · , n.

Given a set of weights w, the quantity 1

4

q
(i,j)œE

w
ij

(1 ≠ x
i

x
j

) is called the
weight of the cut (S, S Õ). The graph equipartition problem, as illustrated in
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Figure (8.1), aims to find the cut with maximum weight on a given graph such
that both partitions of the graph have the same cardinality.

1 2

3

4

5

6

S = {1, 4, 3}
S� = {2, 5, 6}

w1,2

w1,4 w2,4

w1,6

w5,6

w3,5

Figure 8.1: Graph equipartition problem

This problem can be formulated as the combinatorial optimization pro-
blem (8-1).

maximize
x

1

4

ÿ

(i,j)œE

w
ij

(1 ≠ x
i

x
j

)

subject to x
i

œ {≠1, +1}, ’ i = 1, · · · , n,
nÿ

i=1

x
i

= 0.

(8-1)

The binary constraints x œ {≠1, +1}n, can be expressed as a nonconvex
equality constraints of the form x2

i

= 1 ’ i = 1, · · · , n. By lifting the decision
variables to the space of symmetric matrices X œ Sn

+

and introducing a rank-
one constraint, the graph equipartition problem can be formulated as follows

minimize
XœSn

+
tr(WX)

subject to tr(1
n◊n

X) = 0,

diag(X) = 1,

X ≤ 0,

rank(X) = 1,

where the symmetric matrix W is composed by the original weights w and
1

n◊n

denotes a n ◊ n matrix filled with ones. By dropping the rank constraint,
one obtains an SDP relaxation. For more details on graph partition problems,
the reader should refer to [107].

Problem instances: Graph equipartition instances from the SDPLIB
[108] problem set are used to evaluate the performance of the proposed
methods. As Table 1 shows, for smaller instances Mosek solver is slightly faster.
For larger instances such as equalG11 and equalG51, LR-PD-SDP outperforms
all other considered methods with a considerable margin. Furthermore, without
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n sdplib SCS CSDP MOSEK PD-SDP LR-PD-SDP
124 gpp124-1 1.6 0.4 0.2 0.7 0.9
124 gpp124-2 1.5 0.4 0.3 0.5 0.2
124 gpp124-3 1.6 0.3 0.2 0.6 0.2
124 gpp124-4 1.7 0.5 0.3 0.6 0.2
250 gpp250-1 21.4 2.9 0.9 3.7 1.4
250 gpp250-2 7.8 2.2 1.1 4.1 1.2
250 gpp250-3 12.6 2.1 0.9 3.4 0.9
250 gpp250-4 16.4 2.2 0.9 3.8 0.6
500 gpp500-1 134.2 59.1 8.2 22.7 5.6
500 gpp500-2 97.4 12.2 8.6 21.5 6.1
500 gpp500-3 64.4 12.1 8.9 15.5 4.4
500 gpp500-4 71.4 13.4 8.7 15.4 6.5
801 equalG11 324.2 47.3 32.4 84.3 11.3
1001 equalG51 425.1 98.7 83.4 113.5 22.5

Table 8.1: Comparison of running times (seconds) for the SDPLIB’s graph
equipartition problem instances.

exploiting the low-rank structure of the problem, the primal-dual method fails
to scale to the larger instances.

8.2
Sensor network localization

Now consider the problem of estimating the position of a set of sensors
on a d-dimensional plane [109]. Let a

1

, . . . , a
m

œ Rd be a set of anchor points
in which the positions are known and let x

1

, . . . , x
n

œ Rd be a set of sensor
points that are the decision variables corresponding to the location of each
sensor. Additionally, as illustrated in Figure (8.2), some Euclidean distances
between sensors and between sensors and anchors are also given.
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x2

x1
a1

a2

a3

Figure 8.2: Sensor localization problem in two dimensions.

The sensor network localization problem can be originally formulated as
the quadratic constrained program (8-2), where the indexes of the distances
that are known are either in the set �

s

or in the set �
a

. Unfortunately, solving
(8-2) is NP-hard [9].

find
x1,··· ,xnœRd

x
1

, · · · , x
n

subject to Îx
i

≠ x
j

Î2

2

= w2

ij

, ’ (i, j) œ �
s

,

Îa
k

≠ x
j

Î2

2

= w̃2

kj

, ’ (k, j) œ �
a

.

(8-2)

One alternative is to formulate (8-2) as the SDR discussed in [110]. In
order to start building the SDR, consider the matrices X œ Rd◊n and Y œ Sn

as

X =

S

WWWU x
1

· · · x
n

T

XXXV and Y = XT X =

S

WWWWWWU

xT

1

x
1

xT

1

x
2

. . . xT

1

x
n

xT

2

x
1

xT

2

x
2

. . . xT

2

x
n

... ... . . . ...
xT

n

x
1

xT

n

x
2

. . . xT

n

x
n

T

XXXXXXV
.

Now let E(i,j) œ Sn be filled with zeros except for the following entries:
E

(i,j)

i,i

= 1, E
(i,j)

j,j

= 1, E
(i,j)

i,j

= ≠1 and E
(i,j)

j,i

= ≠1. With this setting, the
constraints that represent the distance between sensors and anchors can be
formulated as

tr(E(i,j)Y ) = Ê2

ij

, ’ (i, j) œ �
s

. (8-3)
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Similarly, let Z œ Sd+n be the matrix

Z =
S

UI
d◊d

X

XT Y

T

V .

Additionally, let U (k,j) œ Sd+n be filled with zeros except for the entries:
U

(k,j)

1,1

= aT

k

a
k

, U
(k,j)

d+j,d+j

= 1, U
(k,j)

1:d,d+j

= ≠a
k

and U
(k,j)

d+j,1:d

= ≠aT

k

. The constraints
regarding the distances between sensors and anchors can be formulated as

tr(U (k,j)Z) = Ễ2

kj

, ’ (k, j) œ �
a

. (8-4)

Using (8-3), (8-4) and the Schur complement of Y ≤ XT X [110], the
network localization problem can formulated as

find
ZœSd+n

+

Z

subject to Z =
S

UI
d◊d

X

XT Y

T

V ≤ 0,

tr(E(i,j)Y ) = Ê2

ij

, ’ (i, j) œ �
s

,

tr(U (k,j)Z) = Ễ2

kj

, ’ (k, j) œ �
a

,

rank(Y ) = d.

(8-5)

If a unique solution for the given set of distances exists, the SDR obtained by
dropping the rank constraint in (8-5) will be exact [110].

Problem instances: In a set of numerical simulation, we randomly
generate anchor points and distances measurements. Each anchor and sensor
has its position in the two-dimensional Euclidean plane, i.e. d = 2. In this
sense, if the relaxation is exact the optimal solution Y ú must have a rank of
two. This property justifies the LR-PD-SDP outperforming other solvers when
the number of sensors grow, as it can be seen in Table 2. This claim can be
verified by observing that the same operator splitting method, as in PD-SDP,
does not e�ciently scale as n increases.

n SCS CSDP MOSEK PD-SDP LR-PD-SDP
50 0.2 0.2 0.1 0.5 0.6
100 0.8 4.5 0.9 6.1 1.6
150 2.6 28.1 3.2 14.4 3.6
200 6.4 89.8 11.2 32.3 6.1
250 12.1 239.2 36.4 52.9 7.9
300 28.7 timeout 85.2 96.6 13.5

Table 8.2: Comparison of running times (seconds) for randomized network
localization problem instances.
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8.3
MIMO detection

Consider an application in the field of wireless communication known in
the literature as binary multiple-input multiple-output (MIMO) [111,112]. As
in several MIMO applications, one needs to send and receive multiple data
signals over the same channel with the presence of additive noise. The binary
MIMO can be modeled as:

y = Hx + Á,

where y œ Rm is the received signal, H œ Rm◊n is the channel and Á œ Rm is
an i.i.d. Gaussian noise with variance ‡2. The signal, which is unknown to the
receiver, is represented by x œ {≠1, +1}n.

Assuming the noise distribution is known to be Gaussian, a natural
approach is to compute the maximum likelihood estimate of the signal by
solving the optimization problem:

minimize
x

ÎHx ≠ yÎ2

2

subject to x œ {≠1, +1}n.
(8-6)

At first sight, the structure of the problem is very similar to a standard least
squares problem. However, the unknown signal is constrained to be binary,
which makes the problem nonconvex and dramatically changes the problem’s
complexity. More precisely, solving (8-6) is known to be NP-hard [113].

By using a similar technique as in the graph equipartition problem, one
can reformulate (8-6) as the following rank constrained semidefinite problem:

minimize
XœSn+1

+

tr(LX)

subject to diag(X) = 1,

X
n+1,n+1

= 1,

≠ 1 Æ X Æ 1,

X ≤ 0,

rank(X) = 1.

where the decision variable X is an n + 1 ◊ n + 1 symmetric matrix and L is
given by:

L =
S

U HT H ≠HT y

≠yT H yT y

T

V

Given the optimal solution Xú for the relaxation, the solution for the original
binary MIMO is obtained by slicing the last column as xú = Xú

1:n,n+1

. For
this particular problem, the SDR is known to be exact if the signal to noise
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ratio, ‡≠1, is su�ciently large [111]. In other words, the rank of the optimal
solution Xú is guaranteed to be equal to one even without the rank constraint.
This extreme low-rank structure makes the ideal case study for the techniques
proposed in this paper.

Problem instances: In order to measure the performance of the di�erent
methods, problem instances with large signal to noise ratio were randomly
generated. For each instance, the channel matrix A is designed as a n ◊ n

matrix with i.i.d. standardized Gaussian entries. The true signal xú was drawn
from a discrete uniform distribution. Since a high signal to noise ratio was used
to build the instances, all recovered optimal solutions are rank-one solutions.
In this setting, as it is illustrated in Table 3, LR-PD-SDP outperforms all other
methods as the signal length increases. More surprisingly, LR-PD-SDP was able
to solve large scale instances with 5000 ◊ 5000 p.s.d. matrices. The bottleneck
found while trying to optimize even larger instances was the amount of memory
required by the ProxSDP solver.

n SCS CSDP* MOSEK PD-SDP LR-PD-SDP
100 1.5 1.2 0.1 0.1 0.1
500 277.8 27.4 2.3 3.1 1.1
1000 timeout 97.2 15.6 16.5 4.7
2000 timeout 473.6 117.5 115.9 38.9
3000 timeout timeout 418.2 350.6 122.1
4000 timeout timeout 976.8 906.5 258.3
5000 timeout timeout timeout timeout 472.4

Table 8.3: Running times (seconds) for MIMO detection with high SNR.
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9
Conclusions and future work

As a concluding remark, this work has proposed a novel primal-dual
method that can e�ciently exploit the low-rank structure of semidefinite
programming problems. As it was illustrated by the case studies, the proposed
technique can achieve up to one order of magnitude faster solving times
in comparison to existing algorithms. Additionally, an open source solver,
ProxSDP, for general SDP problems was made available. We hope that the
results and tools contemplated in this work foster the use of semidefinite
programming on new applications and fields of study.

One aspect of the proposed methodology not fully explored in this paper,
is the value of the intermediate solutions found by LR-PD-SDP. For several
applications, a suboptimal feasible solution may already be useful. Particularly
if one is interested in solving a semidefinite relaxation, a suboptimal solution
can be almost as useful as the optimal solution, with the advantage of requiring
less computing time to be discovered. For instance, a branch-and-bound search
method can benefit from lower bounds that a feasible semidefinite relaxation
provides [114]. This ability of quickly generating high quality lower bounds via
intermediate feasible solutions can enhance the already well known property
of SDP to approximate hard problems.

Another promising future line of work is the combination of chordal
decomposition methods with the low-rank approximation presented in this
work. If successful, this match would allow the exploitation of both sparsity and
low-rank structure simultaneously. Furthermore, it is possible to incorporate
other cones to the primal step of LR-PD-SDP.
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