5 Simulação Numérica e Validação Experimental

5.1 Introdução

A simulação pelo Método dos Elementos Finitos (MEF) é cada vez mais útil na engenharia estrutural (FIALHO,2002), devido à grande capacidade computacional atual e à variedade de *softwares* comerciais disponíveis, a custos cada vez menores e acessíveis. Dentre os principais programas comerciais podem-se destacar: *LS-DYNA, CosmosWorks Advanced Professional*, PATRAN, Ansys, Abaqus, etc. No presente trabalho foi utilizado o programa *LS-DYNA* disponível na PUC-Rio, sendo efetuadas simulações de impacto. Neste capítulo são apresentados resultados relativos ao procedimento experimental para a estrutura de teste, e as simulações computacionais da estrutura testada.

5.2

Procedimento Experimental

Várias simulações de colisões frontais são disponíveis na literatura. Ronald e Johnson (1999), por exemplo, estudaram uma estrutura simplificada de um trem pela técnica dos elementos finitos, vide Fig. 118. Alves (2009) estudou experimentalmente o comportamento de estruturas similares submetidas ao impacto, ressaltando a importância da taxa de deformação para a previsão do comportamento das estruturas.

Figura 118 – Modelo geométrico empregado na simulação computacional tipo *Crash Test*.(Ronald e Johnson, 1999).

Considerando o estudo realizado por Seiffert e Wech (2003), ilustrado na Fig. 119, aliado a semelhança geométrica de alguns pára-choques veiculares, a estrutura na forma de "U", apresentadas nas Figs. 119 e 120 foi escolhida para o presente trabalho.

Figura 119 - Absorção de energia em diferentes partes de um veículo Fonte: Seiffert e Wech (2003)

O material selecionado foi o aço AISI 1020, por ser sensível a taxa de deformação, conforme descrito no Capítulo 3.

Figura 120- Detalhes geométricos da estrutura selecionada (SolidWorks, 2006)

Os testes mais comuns para avaliação de materiais sujeitos a cargas de natureza dinâmica são fundamentalmente de dois tipos, a saber: pêndulo de impacto tipo *Charpy* e a máquina *Drop Weight*, vide Fig. 121. Em ambos os testes é possível selecionar a velocidade de impacto através da transformação da energia potencial gravitacional em energia cinética. Entretanto o ensaio *Charpy* é em

119

geral limitado a cerca de 300 J, enquanto a máquina de ensaio de queda livre possui energia máxima de cerca de 1200 J. Desta forma este foi o ensaio escolhido, sendo necessária somente uma adaptação da base da máquina. A Fig. 122 mostra os acessórios fabricados para serem adaptados na máquina *Drop Weight* com o objetivo de fixar a estrutura de teste.

Figura 121 - Ensaios de impacto: (a) Pêndulo *Charpy,* (b) Máquina *Drop Weight* (Souza, 1990)

Figura 122 – Adaptador fabricado da base da máquina de *Drop Weight* para fixação da estrutura (Alves, 2009)

Alves (2009) posicionou um *strain gage* na parte central da estrutura, conforme Fig.123, para medir a taxa de deformação ao longo do tempo.

Figura 123 (a) Estrutura de teste instrumentada antes e depois da colisão. Laboratório de Ensaios Mecânicos da NUCLEP – Nuclebrás Equipamentos Pesados S.A.

Figura 123 (b) Taxa de deformação obtida no ensaio de uma estrutura (Alves, 2009)

5.2.1 Determinação da velocidade de impacto.

As estruturas testadas neste trabalho foram fabricadas na PUC-Rio e também na NUCLEP - Nuclebrás Equipamentos Pesados S.A., localizada no município de Itaguaí. Todas elas foram construídas somente com operações de conformações mecânicas a frio e corte manual, evitando desta forma alterações de cunho metalúrgico. O comportamento da estrutura foi avaliado em função da velocidade de impacto, determinada pela expressão (66):

$$v = \sqrt{2gh} \tag{66}$$

na qual g é a aceleração da gravidade local (m/s²), h é a altura da massa de impacto (m) e v é a velocidade no momento do impacto (m/s).

5.3 Simulações Computacionais

O tipo de elemento empregado na simulação foi o SOLID 164, amplamente utilizado em análises dinâmicas explicitas de estruturas sólidas. O SOLID 164 é um elemento sólido que possui 8 nós, onde para cada nó são definidos os seguintes graus de liberdade: translação, velocidade e aceleração nas direções nodais x, y, e z, sendo os graus de liberdade referentes a velocidades e acelerações não são graus de liberdade fisicamente atuantes, mas são considerados como tal e armazenados para processamento posterior. A Fig. 124 apresenta o elemento SOLID 124 ilustrando os seus graus de liberdade.

Figura 124: Elemento SOLID 164 (ANSYS User's Manual, 1995)

A simulação consiste no impacto de um cutelo, dotado de uma massa de 43,8 kg, que é suspenso até uma altura h específica. A partir de liberação do cutelo desta altura h, existe a colisão entre o cutelo e a estrutura de teste mostrada na Fig. 125. De posse de altura h é possível calcular a velocidade de impacto na estrutura de teste, de acordo com a equação (69). Portanto foi feita para reproduzir as condições do experimento.

Figura 125 - Modelagem Computacional em Elementos Finitos – LS-DYNA

5.3.1

Modelos Mecânicos Empregados na Simulação.

Os modelos empregados para descrever o comportamento da curva σ - ϵ são apresentados a seguir:

 Modelo Bi-linear: este modelo não considera a taxa de deformação, sendo apenas função da deformação

(67)

$$\sigma = \begin{cases} 200.10^{3} \varepsilon & \varepsilon < \varepsilon_{0} \\ 1,38.10^{3} \varepsilon & \varepsilon \ge \varepsilon_{0} \end{cases}$$

 Modelo Elástico Perfeitamente Plástico: este modelo também não leva em consideração a variação da taxa de deformação.

$$\sigma = \begin{cases} 200 \cdot 10^3 . \varepsilon, \ \varepsilon \le \varepsilon_0 \\ 200 \cdot 10^3 \cdot \varepsilon_0, \ \varepsilon > \varepsilon_0 \end{cases}$$
(68)

 Modelo de J-C: neste modelo a taxa de deformação é considerada, usando as constantes determinadas pelas estratégias de controle por taxa por deformação e por velocidade do pistão, equações (69) e (70).

$$\sigma = (1 + 340,07 \cdot \varepsilon^{0,18}) \cdot 1 + 0,00995 \cdot \ln \dot{\varepsilon} / \dot{\varepsilon}_0$$
(69)

$$\sigma = (1 + 324,90 \cdot \varepsilon^{0,197}) \cdot 1 + 0,0125 \cdot \ln \dot{\varepsilon} / \dot{\varepsilon}_0 \tag{70}$$

 Modelo de J-C modificado (JC-M): este modelo descreve matematicamente a região do patamar, além de considerar o efeito da taxa de deformação. As equações (71) e (72) mostram os valores dos parâmetros obtidos para as duas estratégias de controle.

$$\sigma = \begin{cases}
200 \cdot 10^{3}\varepsilon, \ \varepsilon \leq \varepsilon_{0} \\
11,52 \cdot \ln \dot{\varepsilon} + 368, \ \varepsilon_{0} \leq \varepsilon \leq \varepsilon_{p} \\
(1+321,95 \cdot \varepsilon^{0,21}) \cdot 1 + 0,0094 \cdot \ln \dot{\varepsilon}/\dot{\varepsilon}_{0} , \ \varepsilon \geq \varepsilon_{p}
\end{cases}$$

$$\sigma = \begin{cases}
200 \cdot 10^{3}\varepsilon, \ \varepsilon \leq \varepsilon_{0} \\
10,80 \cdot \ln(V/L_{q}) + 368, \ \varepsilon_{0} \leq \varepsilon \leq \varepsilon_{p} \\
(1+321,95 \cdot \varepsilon^{0,20}) \cdot [1+0,00902 \cdot \ln(V/L_{q})], \ \varepsilon \geq \varepsilon_{p}
\end{cases}$$
(71)
$$(72)$$

Foram selecionadas três velocidades de impacto, respeitando os limites operacionais do equipamento: Caso 1, V₁= 4,42 m/s; Caso 2, V₂= 5,42 m/s; e Caso 3, V₃= 5,75 m/s.

Para estas velocidades foram feitas simulações numéricas no LS-DYNA usando os quatro modelos constitutivos do material, as quais foram comparadas com o experimento realizado na estrutura de teste. Desta forma pode-se avaliar diretamente qual o modelo se mostra mais adequado.

Caso 1 - Velocidade de 4,42 m/s:

Os resultados da simulação considerando o modelo bi-linear juntamente com os resultados experimental da estrutura estão ilustrados na Fig. 126. O deslocamento previsto para o ponto central da estrutura, representado por *d*, foi de 49,6 mm, bem superior aos 41 mm obtidos no ensaio experimental. A Fig. 127 ilustra o resultado de deslocamento d = 58,1 mm, obtido empregando o modelo elástico e perfeitamente plástico, novamente muito superior aos 41 mm medidos experimentalmente.

Figura 126 – Deslocamento previsto com o uso do modelo bi-linear

Figura 127 – Deslocamento previsto peo modelo elástico perfeitamente plástico

O modelo J-C com dados obtidos por controle de taxa de deformação reproduz razoavelmente o resultado experimental: a simulação previu um resultado de 36,1mm, enquanto o valor medido foi 41 mm (Fig. 128)

Figura 128 – Deslocamento previsto da estrutura com o uso do modelo de J-C (com dados obtidos por controle de taxa de deformação)

A Fig. 129 ilustra a previsão obtida empregando o modelo J-C com dados obtidos por controle de velocidade, que foi de 35,4 mm, enquanto a estrutura deslocou 41 mm.

Figura 129 – Deslocamento previsto da estrutura com o uso do modelo de J-C (com dados obtidos por controle de velocidade)

Já o modelo J-C modificado com dados obtidos por controle de taxa de deformação prevê um deslocamento de 40,9 mm, que reproduz muito bem o valor medido de 41 mm (Fig.130)

Figura 130 – Deslocamento previsto da estrutura com o uso do modelo de J-C modificado (com dados obtidos por controle de taxa de deformação)

A equação de J-C modificada com dados obtidos por controle de velocidade apresentou um valor de deslocamento de 39,5 mm, uma simulação também razoável do valor experimental de 41 mm. (Fig.131)

Figura 131 – Deslocamento previsto da estrutura com o uso do modelo de J-C modificado (com dados obtidos por controle de velocidade)

Caso 2 - Velocidade de 5,42 m/s: O modelo bi-linear prevê muito mal um deslocamento d = 77,3 mm, enquanto o valor experimental medido neste caso foi de 56 mm, vide Fig.132.

Figura 132 – Deslocamento previsto da estrutura com o uso do modelo de bilinear

A Fig. 133 mostra a previsão ruim baseada no modelo elástico perfeitamente plástico de 86,2 mm, enquanto o experimento forneceu 56 mm.

Figura 133 – Deslocamento previsto da estrutura com o uso do modelo de elástico e perfeitamente plástico

A Fig. 134 mostra o deslocamento de 50,3 mm previsto usando o modelo de J-C com dados obtidos por controle de taxa de deformação, enquanto o valor experimental medido foi 56 mm.

Figura 134 – Deslocamento previsto da estrutura com o uso do modelo de J-C (com dados obtidos por controle de taxa de deformação)

A Fig. 135 mostra a previsão de 50,8 mm para o deslocamento máximo deste pórtico pelo modelo J-C com dados obtidos por controle de velocidade, sendo o valor experimental de 56 mm.

Figura 135 – Deslocamento previsto da estrutura com o uso do modelo de J-C (com dados obtidos por controle de velocidade)

O modelo J-C modificado com dados obtidos por controle de taxa de deformação prevê um deslocamento de 58,9 mm, enquanto o experimento fornece 56 mm, vide Fig. 136. Este é de novo o melhor desempenho desta simulação numérica, ilustrando a grande importância do uso de parâmetros adequados na simulação numérica dos problemas de impacto.

Figura 136 – Deslocamento previsto da estrutura com o uso do modelo de J-C modificado (com dados obtidos por controle de taxa de deformação)

O modelo J-C modificado com dados obtidos por controle de velocidade previu um valor de deslocamento de 54,0 mm, enquanto no experimento mediuse 56 mm, vide Fig.137.

Figura 137 – Deslocamento previsto da estrutura com o uso do modelo de J-C modificado (com dados obtidos por controle de velocidade)

Caso 3 - Velocidade de 5,75 m/s: A Fig. 138 mostra o deslocamento de 86,5 mm (mal) previsto com o emprego do modelo bi-linear, enquanto o valor experimental medido neste caso foi de 63 mm.

Figura 138 – Deslocamento previsto da estrutura com o uso do modelo de bilinear.

A Fig. 139 ilustra o resultado do deslocamento previsto pelo modelo elástico perfeitamente plástico, d = 99,1 mm, um valor muito ruim quando comparado com o resultado experimental de 63 mm.

Figura 139 – Deslocamento previsto da estrutura com o uso do modelo de elástico e perfeitamente plástico

O modelo J-C modificado com dados obtidos por controle de taxa de deformação apresenta previsão de deslocamento de 57 mm, enquanto o resultado experimentalmente medido foi de 63 mm, vide Fig. 140. Este desempenho foi novamente o melhor obtido nestas simulações, apesar de não tão bom quanto o das previsões anteriores.

Figura 140 – Deslocamento previsto da estrutura com o uso do modelo de J-C (com dados obtidos por controle de taxa de deformação)

O modelo J-C modificado com dados obtidos por controle de velocidade previu razoavelmente um deslocamento de 56,4 mm, já que o resultado experimental medido foi 63 mm.(Fig. 141)

Figura 141 – Deslocamento previsto da estrutura com o uso do modelo de J-C (com dados obtidos por controle de velocidade)

A Fig.142 ilustra a simulação para o modelo J-CM (com dados obtidos por controle de taxa de deformação) com valor de **d** igual a 61,4 mm e o resultado experimental fornece 63 mm.

Figura 142 – Deslocamento previsto da estrutura com o uso do modelo de J-C modificado (com dados obtidos por controle de taxa de deformação).

A Fig.143 ilustra o deslocamento de 61 mm previsto peloo modelo J-C modificado com dados obtidos por controle de velocidade, sendo o valor experimental dado por 63 mm.

Figura 143 – Deslocamento previsto da estrutura com o uso do modelo de J-C modificado (com dados obtidos por controle de velocidade)

5.4 Análise dos Resultados

A Tabela 17 apresenta os valores de velocidade de impacto empregados e os deslocamentos máximos obtidos na estrutura de teste. O valor experimental apresentado (X_m) é a média aritmética de 3 valores obtidos pela estrutura de testes (para cada velocidade de impacto), totalizando assim 9 ensaios executados.

Para cada modelo de material empregado, seja obtido pelo controle de taxa, seja por controle de velocidade foram apresentados os valores obtidos de deslocamento máximo e seu respectivo erro (calculado pela Expressão [73]) em relação ao valor experimental.

$$E_{R} = \left(\frac{|X_{m} - X_{n}|}{X_{n}}\right).100$$
(73)

na qual E_R é o erro médio percentual (%), X_m é o valor médio experimental do deslocamento da estrutura de teste (mm), X_n é o valor obtido pela simulação numérica para cada velocidade de teste (mm).

Analisando a Tabela 17 conclui-se que:

- O modelo de J-CM, com controle pela estratégia de controle por taxa de deformação, apresentou-se como o melhor modelo, dentre todos os apresentados, possuindo assim o menor erro percentual.
- 2. O modelo de J-C, com controle pela estratégia de controle por taxa de deformação, se mostrou mais preciso, em geral, na simulação que o modelo J-C com controle pela estratégia de controle por velocidade.
- 3. Os modelos bi-linear e elástico e perfeitamente plástico apresentam grandes valores de erro percentual, pois não levam em consideração o efeito da taxa de deformação em sua formulação matemática.

A vantagem do modelo J-C modificado sobre o modelo tradicional de J-C se resume na sua capacidade de descrever bem melhor a região do patamar de escoamento, uma vez que o segundo modelo só mostrou eficaz a partir de 4-5% de deformação.

Assim a seleção do modelo de comportamento mecânico do material, que é um dado de entrada para um programa de elementos finitos, deve ser cuidadosamente selecionada pelo usuário do *software*. Com isto uma escolha inadequada do modelo do material ou ainda a introdução de constantes que não descrevem bem o material podem até invalidar uma simulação computacional.

Velocidade (m/s)	d _{EXP} (mm)	Bi-linear (mm)	Elástico- perf. Plástico	J-C (ta- xa)	J-C (vel.)	J-CM (taxa)	J-CM (vel.)
			(mm)	(mm)	(mm)	(mm)	(mm)
4,42	41,0	49,1 <i>(19,8%)</i>	58,1 <i>(41,7%)</i>	36,1 <i>(9,5%)</i>	35,4 <i>(11,7%)</i>	40,9 <i>(0,2%)</i>	39,5 <i>(3,6%)</i>
5,42	56,0	77,3 (38,0%)	86,2 (54,0%)	50,3 <i>(10,1%)</i>	50,8 <i>(9,2%)</i>	58,9 (5,1%)	54,0 <i>(3,5%)</i>
5,75	63,0	86,5 (<i>37,3%)</i>	99,1 <i>(57,3%)</i>	57,0 <i>(9,5%)</i>	56,4 <i>(10,4%)</i>	61,4 <i>(0,7%)</i>	61,0 <i>(3,1%)</i>

Tabela 17 – Comparação dos Resultados Experimentais e Numéricos