

Marcelo de Jesus Rodrigues da Nóbrega

Influência da metodologia de medição das propriedades mecânicas dinâmicas na previsibilidade do comportamento de estruturas sujeitas a impactos elastoplásticos.

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Mecânica.

Orientador: Prof. Jaime Tupiassú Pinho de Castro

Rio de Janeiro, outubro de 2010

Marcelo de Jesus Rodrigues da Nóbrega

Influência da metodologia de medição das propriedades mecânicas dinâmicas na previsibilidade do comportamento de estruturas sujeitas a impactos elastoplásticos.

Tese apresentada como requisito parcial para a obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Jaime Tupiassú Pinho de Castro Orientador Departamento de Engenharia de Mecânica – PUC-Rio

> Prof. Mauro Speranza Neto Departamento de Engenharia de Mecânica – PUC-Rio

Prof. Marcos Venicius Soares Pereira Departamento de Engenharia de Materiais – PUC-Rio

> Prof. Fathi Aref Ibrahim Darwish UFF

> > Prof. Paulo Pedro Kenedi CEFET/RJ

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico e Científico – PUC-Rio

Rio de Janeiro, 20 de outubro de 2010.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Marcelo de Jesus Rodrigues da Nóbrega

É Professor Assistente III do CEFET-RJ, lotado no Departamento de Engenharia de Civil, lecionando as disciplinas da área de Mecânica e Matemática. Possui Mestrado em Tecnologia pelo CEFET-RJ, em 2004, Graduado em Engenharia Mecânica também pelo CEFET-RJ em 2002. É Engenheiro de Segurança do Trabalho pela Faculdade Silva e Souza desde 2005. Possui Especialização em Docência do Ensino Superior pela Universidade São Judas Tadeu, em 2002. Possui Licenciatura Plena em Matemática pelo Centro Universitário Augusto Motta, em 2002, sendo também Licenciado em Física pela Universidade Candido Mendes, em 2006.

Ficha Catalográfica

Nóbrega, Marcelo de Jesus Rodrigues da

Influência da metodologia de medição das propriedades mecânicas dinâmicas na previsibilidade do comportamento de estruturas sujeitas a impactos elastoplásticos / Marcelo de Jesus Rodrigues da Nóbrega ; orientador: Jaime Tupiassú Pinho de Castro. – 2010.

177 f. : il.(color.) ; 30 cm

Tese (doutorado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2010.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Modelagem. 3. Ensaio de tração. 4. Controle. 5. Ajuste de curvas. 6. Elementos finitos. I. Castro, Jaime Tupiassú Pinho de. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título. PUC-Rio - Certificação Digital Nº 0521498/CA

Para Maria Georgina de Jesus Rodrigues da Nóbrega e Beatriz Martins Teixeira.

Agradecimentos

A Maria Georgina de Jesus Rodrigues da Nóbrega, pelo incentivo a minha formação acadêmica. (*in memorian*)

A Beatriz Martins Teixeira - Doutoranda, pelo amor verdadeiro e apoio, nestes 12 anos de caminhada juntos. Na esperança que nossa trajetória seja retomada.

Ao Professor Jaime Tupiassú Pinho de Castro - Ph.D., pela ajuda, rigor acadêmico, orientação e amizade

Ao Professor Mauro Speranza Neto - D.Sc, pela orientação, constante incentivo e amizade.

Aos Professores membros da banca, pelos comentários e sugestões feitas.

Ao colega que chamo carinhosamente de Jaiminho, aluno de engenharia, que muito me ajudou na parte experimental.

Aos Professores do Departamento de Engenharia Mecânica da PUC-Rio, em especial ao Professor Márcio da Silveira - D.Sc, na qualidade de coordenador do Departamento de Pós-Graduação de Engenharia Mecânica, pelo total incentivo a meu ingresso como aluno na PUC-Rio.

Aos meus amigos e colegas do Departamento de Engenharia Mecânica da PUC-Rio, em especial a Gilvania Terto Alves - Doutoranda e Jorge Passinho -Doutorando, pelos momentos de convivência e superação juntos.

À CAPES, pelo auxílio concedido, sem o qual este trabalho não poderia ter sido realizado.

Ao CEFET-RJ, a NUCLEP e a PUC-Rio pelo apoio fornecido, sem o qual este trabalho não poderia ter sido realizado.

Em especial ao Coordenador de Licenciamento Ambiental da Secretaria de Meio Ambiente da Prefeitura do Rio de Janeiro, Arq. Eduardo Luis Rodrigues - M.Sc., por estimular e valorizar a formação do quadro técnico e pela compreensão nos momentos difíceis. Ao Eng. Airton Melgaço Lima - M.Sc., pelo apoio, incentivo e convivência como chefe imediato. A Eng. Elena Quevedo - M.Sc. que soube ser paciente comigo.

Resumo

Nóbrega, Marcelo de Jesus Rodrigues da; Castro, Jaime Tupiassú Pinho de. Influência da metodologia de medição das propriedades mecânicas dinâmicas na previsibilidade do comportamento de estruturas sujeitas a impactos elastoplásticos. Rio de Janeiro, 2010. 177p. Tese de Doutorado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Efeitos da taxa de deformação nas propriedades mecânicas podem ser significativos na simulação do comportamento dinâmico de estruturas deformadas plasticamente, e o objetivo deste trabalho é avaliá-los através de duas tarefas complementares: (i) desenvolver e qualificar uma metodologia apropriada para a medição de propriedades mecânicas dinâmicas, incluindo os requisitos necessários para medir e ajustar da melhor forma possível os dados experimentais, quantificando a incerteza a eles associada; e (ii) verificar a influência da estratégia de medição das propriedades mecânicas na previsibilidade do comportamento de estruturas sujeitas a impactos. Os modelos que descrevem o comportamento mecânico dinâmico são baseados na taxa de deformação de/dt, mas freqüentemente seus parâmetros são medidos em testes controlados pela velocidade do carregamento. Todavia, a taxa $d\epsilon/dt$ não permanece constante nos testes feitos sob velocidade fixa, o que aumenta a incerteza das previsões baseadas nos parâmetros assim medidos. Para avaliar quantitativamente a influência das estratégias de controle nas propriedades mecânicas, primeiro foi estabelecido um procedimento estatístico apropriado para determinar o número de corpos de prova necessários para medir propriedades dinâmicas dentro de um nível de confiança desejado. Todos os dados foram medidos em duplicata, controlando as taxas de deformação ou a velocidade de carregamento imposta nos corpos de prova, numa larga faixa, $10^{-4} \le d\epsilon/dt \le 10/s$, em testes particularmente feitos com cuidado. A aquisição e tratamento dos dados foram feitos através de um programa desenvolvido em Labview. Um programa desenvolvido em Mathcad foi usado para otimizar os parâmetros dos diversos modelos estudados ao conjunto de dados medidos via um algoritmo Levenberg-Marquardt. A partir deste estudo é proposto um novo modelo que descreve adequadamente o patamar de escoamento, e minimiza os erros de ajuste na região de transição elastoplástica, de grande importância na análise estrutural. Um pórtico simples foi escolhido para verificar o efeito das propriedades dinâmicas nas simulações numéricas feitas no programa LS-DYNA, tradicionalmente usado para modelar impactos elastoplásticos. Vários destes pórticos foram submetidos a impactos numa máquina de queda livre (dropweight), para induzir deformações plásticas variáveis em função das velocidades de impacto. As deformações medidas foram comparadas com as previstas usando as propriedades obtidas sob as duas estratégias de controle, e ajustadas pelos diversos modelos estudados. Desta forma pode-se finalmente quantificar a influência da metodologia de medição das propriedades mecânicas dinâmicas na previsibilidade do comportamento de estruturas sujeitas impactos a elastoplásticos.

Palavras-chave

Modelagem; Ensaio de Tração; Controle; Ajuste de Curvas; Elementos Finitos.

Abstract

Nóbrega, Marcelo de Jesus.Rodrigues da; Castro, Jaime Tupiassú Pinho de (Advisor).**Dynamical Mechanical Properties Measurement Methodology Influence on the Prediction of the Behavior of Structures Submitted to Elastic-Plastic Impacts.** Rio de Janeiro, 2010. 177p. D.Sc Thesis – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The strain rate effects in the mechanical properties can be significant in the simulation of the dynamic behavior in plastic deformed structures, this work has the objective to evaluate these effects through two complementary tasks: (i) to develop and qualify an appropriate methodology for the measurement of dynamic mechanical properties, including the requirements necessary to measure and to adjust of the best possible way the experimental data, quantifying the uncertainty they associated; and (ii) to verify the influence of the strategy of measurement of the mechanical properties in the prediction of the behavior of structures submitted to impacts. The models that describe the dynamic mechanical behavior are based on the strain rate de/dt, but usually its parameters are measured in controlled tests by the speed of loading. However, the rate $d\epsilon/dt$ does not remain constant in the tests realized with fixed speed, which it increases the uncertainty of the predictions based on the measured parameters. For a quantitative evaluation of the influence of the control strategies in the mechanical properties, was first established a appropriated statistical procedure to determine the number of specimens necessary to measure dynamic properties with a acceptable level of reliability. All the data were measured twice, controlling the strain rate or the loading speed imposed in the specimens, in a wide range, $10^{-4} \leq d\epsilon/dt \leq 10/s$, in tests particularly realized with care. The acquisition and data processing were made through a program developed in Labview. A program developed in Mathcad was used to optimize the parameters of the diverse models studied to the data set measured by a Levenberg-Marquardt algorithm. From this study is proposed a new model that describes the yieldind adequately, and minimizes the errors of fitting in the region of transition elasto-plastic, that plays a great role in the structural analysis. A simple porch was chosen to verify the effect of the dynamic

properties in the numerical simulations made in program LS-DYNA, used traditionally to simulate elasto-plastics impacts. Several of these porches had been submitted to impacts in a machine of free fall (drop-weight), to induce variable plastic strains in function of the impact speeds. The measured strains were compared with the predicted ones using the properties obtained with the two strategies of control, and adjusted by the diverse studied models. In such way the influence of measurement methodology of the dynamic mechanical properties in the prediction of the behavior of structures submitted to elasto-plastics impacts can be quantified.

KeyWords

Modelling; Tensile Test; Controlling; Curve Fitting; Finite Elements.

Sumário

1. Introdução	24
1.1. Motivação e Objetivos	25
1.2. Estrutura da Tese	25
1.3. Revisão da Literatura	25
1.3.1. Influência da máquina de tração nas propriedades mecânicas	28
1.3.2. Aplicação do fator de correção de velocidade para alguns	
materiais	29
1.3.3. Modelos constitutivos	34
1.3.4. Modelos viscoelasto-plásticos	39
2. Procedimentos para Ajuste e Tratamento	48
Estatístico de Dados Experimentais	48
2.1. Introdução	48
2.2. Metodologia de Ajuste de Dados Experimentais	54
2.3. Tratamento Estatístico de Dados Experimentais	54
2.3.1. Determinação no Número de Corpos de Prova	54
2.3.2. Critério de Avaliação dos Resultados	55
3. Resultados dos Ensaios de Tração	58
3.1. Introdução	58
3.2. Estratégias de controle do ensaio de tração	60
3.3.1. Estudo Semi-Qualitativo	62
3.3.2. Liga de alumínio	62
3.3.3. Aço AISI 1020	65
3.3.4. Aço AISI 4340	68
3.3.5. Aço Inox 304	70
3.3.6. Latão	73
3.4. Estudo Quantitativo.	74
3.4.1. Geometria do Corpo de Prova	74
3.4.2. Caracterização do Material.	75

3.4.3. Avaliação Estatística	76
3.4.3.1. Determinação do número de corpos de prova	76
3.4.4. Estratégia de Controle por Taxa de Deformação	77
3.4.4.1. Caso 1 – Taxa de 0,01%/s	77
3.4.4.2. Caso 2 – Taxa de 0,1%/s	77
3.4.4.3. Caso 3 – Taxa de 1%/s	78
3.4.4.4. Caso 4 – Taxa de 10%/s	78
3.4.4.5. Caso 5 – Taxa de 100%/s	79
3.4.4.6. Caso 6 – Taxa de 1000%/s	79
3.4.4.7. Digrama Tensão versus Deformação Real.	80
3.4.5. Estratégia de Controle por Velocidade do Pistão	81
3.4.5.1. Caso 1 – Velocidade de 0,002 mm/s	81
3.4.5.2. Caso 2 – Velocidade de 0,02 mm/s	81
3.4.5.3. Caso 3 – Velocidade de 0,2 mm/s	82
3.4.5.4. Caso 4 – Velocidade de 2 mm/s	82
3.4.5.5. Caso 5 – Velocidade de 20 mm/s	82
3.4.5.6. Caso 6 – Velocidade de 200 mm/s	83
3.4.5.7. Digrama Tensão versus Deformação Real.	83
3.5. Avaliação dos Resultados dos Ensaios de Tração	84

4. Ajuste de Modelos Mecânicos	90
4.1. Introdução	90
4.2. Modelos Selecionados	90
4.2.1. O Modelo de Johnson Cook	91
4.2.1.1 Ajuste dos dados obtidos por controle de taxa	91
4.2.1.2 Ajuste dos dados obtidos por controle de velocidade	95
4.2.2. O Modelo de Johnson Cook Modificado	99
4.2.2.1 Ajuste dos dados obtidos por controle de taxa	101
4.2.2.2 Ajuste dos dados obtidos por controle de velocidade	104
4.2.3. O Modelo de YU <i>et al</i> (2009)	107
4.2.3.1 Ajuste dos dados obtidos por controle de taxa	107
4.2.3.2 Ajuste dos dados obtidos por controle de velocidade	112
4.3. Comparação dos Modelos.	117

5. Simulação Numérica e Validação Experimental	118
5.1. Introdução	118
5.2. Procedimento Experimental	118
5.2.1. Determinação da velocidade de impacto	122
5.3. Simulações Computacionais	122
5.3.1. Modelos Mecânicos Empregados na Simulação	123
5.4. Análise dos Resultados	133
6.Conclusões e Sugestões de Trabalhos Futuros	135
6.1. Conclusões	135
6.2. Sugestões de Trabalhos Futuros	137
7. Bibliografia	139
Apêndice A Modelagem de Acidentes Veiculares	144
Apêndice B Similaridade Aplicada ao Impacto	157
Apêndice C Programas desenvolvidos	169
Anexo I	
I.1 – Resultados da Análise Química e Metalografia	171

Lista de figuras

Figura 1 – Resistência à tração do Cu em função da	
taxa de deformação e da temperatura (Dieter, 1981)	27
Figura 2 – Corpo de prova padrão ABNT NBR 6892 (2002)	29
Figura 3 – Corpo de prova padrão fabricado numa máquina CNC	29
Figura 4 – Máquina CNC para fabricar os CP testados neste	
trabalho	30
Figura 5 – Fator de correção de velocidade para vários materiais	31
Figura 6 – Máquina instron 5500 R e o CP de tração com uma	
bela fratura copo-cone.	31
Figura 7 – Força versus tempo (sob controle de velocidade	
do travessão)	31
Figura 8 – Deslocamento do travessão versus tempo (sob	
controle de velocidade do travessão)	32
Figura 9 – Deformação do CP versus tempo (sob controle	
da taxa de deformação)	32
Figura 10 – Deslocamento do travessão versus tempo (sob	
controle da taxa de deformação)	33
Figura 11 – Força versus tempo (sob controle de taxa de	34
deformação)	
Figura 12 – Modelos reológicos básicos para deformação plástica.	35
Figura 13 – Modelo reológico com resposta elástica com	
endurecimento não-linear	35
Figura 14 – Representação simplificada dos elementos	
básicos e suas combinações: (a) Mola (b) Amortecedor	
(c) Kelvin (d) Maxwell	36
Figura 15 – Modelo de sólido linear padrão	37
Figura 16 – Modelo viscoso com três parâmetros.	38
Figura 17 – Modelo generalizado de Kelvin.	38
Figura 18 – Modelo generalizado de Maxwell.	39
Figura 19 – Análise do comportamento dinâmico de um material.	40
Figura 20 – Comparação dos modelos de J-C original e J-C	
modificado.	42

Figura 21 – Curva σ - ϵ para um aço de baixo carbono	43
Figura 22 – Curva σ - ϵ para um aço de médio carbono	43
Figura 23 – Tensão versus taxa de deformação para alguns	
materiais usuais em engenharia	44
Figura 24 – Distância de um ponto (x_i, y_i) à reta $y = a + bx$	49
Figura 25 – Fluxograma simplificado para o desenvolvimento	
do algoritmo L-M	52
Figura 26 – Ajuste de dados para o aço 300M	53
Figura 27 – Ajuste de dados para o aço API 5L-X60	53
Figura 28 – Distribuição <i>t-student</i> .	56
Figura 29 – Tipos de teste de hipótese	57
Figura 30 – Região Crítica	57
Figura 31 – Máquina servo hidráulica instron 8504	59
Figura 32 – Corpo de prova de aço AISI 1020, com <i>clip gage</i>	
montado	59
Figura 33 – Estratégias de controle dos ensaios de tração	60
Figura 34 – Esquema básico de controle de uma máquina servo-	
hidráulica.	60
Figura 35 – Tela de acompanhamento dos ensaios de tração	
em tempo real.	61
Figura 36 – Controle da taxa de deformação para os	
casos: (a) taxa média;(b) taxa alta;	62
Figura 37 – Curva σ - ϵ (convencional) para o alumínio	62
Figura 38 – Controle da taxa de velocidade de deformação	
para os casos: (a) velocidade alta; (b) velocidade alta e	
(c) velocidade média.	63
Figura 39 – Curva σ-ε (convencional) para o alumínio	64
Figura 40 – Controle da taxa de deformação para os casos:	
(a) taxa baixa; (b) taxa média e (c) taxa baixa	65
Figura 41 – Curva σ-ε (convencional) para o aço AISI 1020	65
Figura 42 – Controle da velocidade de deslocamento para	
os casos: (a) velocidade alta e (b) velocidade média.	66
Figura 43 – Curva σ - ϵ (convencional) para o aço AISI 1020	66

Figura 44 – Controle da taxa de deformação para os casos:	
(a) taxa média; (b) taxa alta e (c) taxa baixa	67
Figura 45 – Curva σ - ϵ (convencional) para o aço AISI 4340	68
Figura 46 – Controle da velocidade de deslocamento para os	
casos: (a) velocidade alta e (b) velocidade média.	68
Figura 47– Curva σ - ϵ (convencional) para o aço AISI 4340	69
Figura 48 – Controle da taxa de deformação para os casos:	
(a) taxa média; (b) taxa alta, (c) taxa baixa e (d) taxa alta.	70
Figura 49 – Curva σ - ϵ (convencional) para o aço inox 304	71
Figura 50 – Controle da velocidade de deformação para os	
casos: (a) velocidade média e (b) velocidade alta.	71
Figura 51 – Curva σ - ϵ (convencional) para o aço inox 304	72
Figura 52 – Controle da velocidade de deformação para os casos:	
(a) taxa baixa (b) taxa média (c) taxa alta.	72
Figura 53 – Curva σ - ϵ (convencional) para o latão	73
Figura 54 – Controle da velocidade de deformação para os casos:	
(a) velocidade alta e (b) velocidade média.	73
Figura 55 – Curva σ - ϵ (convencional) para o latão	74
Figura 56 – Corpos de prova segundo a norma ASTM E08-M.	74
Figura 57 – Microestrutura de ferrita e perlita, com tamanho	
de grão ferrítico nº 9,0	75
Figura 58 – Resistência ao escoamento em função do tamanho	
de grão	76
Figura 59 – Valores de obtidos de dɛ/dt e V/L₀	77
Figura 60 – Valores de obtidos de dɛ/dt e V/L₀	78
Figura 61 – Valores de obtidos de dε/dt e V/L₀	78
Figura 62– Valores de obtidos de dɛ/dt e V/L₀	79
Figura 63 – Valores de obtidos de dε/dt e V/L₀	79
Figura 64 – Valores de obtidos de dɛ/dt e V/L₀	80
Figura 65 – Curvas σ-ε	80
Figura 66 – Valores de obtidos de dɛ/dt e V/Lo	81
Figura 67 – Valores de obtidos de dɛ/dt e V/L _o	81
Figura 68 – Valores de obtidos de dɛ/dt e V/L₀	82

Figura 69 – Valores de obtidos de dε/dt e V/L ₀	82
Figura 70 – Valores de obtidos de dε/dt e V/L₀	83
Figura 71 – Valores de obtidos de dε/dt e V/L ₀	83
Figura 72 – Curvas σ-ε	84
Figura 73 – Correlação entre dɛ/dt e V/L₀	88
Figura 74 – Ajuste J-C para taxa 1	91
Figura 75 – Ajuste J-C para taxa 2	92
Figura 76 – Ajuste J-C para taxa 3	92
Figura 77 – Ajuste J-C para taxa 4	93
Figura 78 – Ajuste J-C para taxa 5	93
Figura 79 – Ajuste J-C para taxa 6	94
Figura 80 – Ajuste J-C para as 6 taxas	95
Figura 81 – Ajuste J-C para taxa 1 real	96
Figura 82 – Ajuste J-C para taxa 2 real	96
Figura 83 – Ajuste J-C para taxa 3 real	97
Figura 84 – Ajuste J-C para taxa 4 real	97
Figura 85 – Ajuste J-C para taxa 5 real	98
Figura 86 – Ajuste J-C para taxa 6 real	98
Figura 87 – Ajuste J-C para as 6 taxas reais	99
Figura 88 – Resistência ao escoamento e taxa de deformação	
(controle de taxa)	100
Figura 89 – Resistência ao escoamento e taxa de deformação	
(controle por velocidade)	101
Figura 90 – Ajuste J-C modificado para a taxa 1	101
Figura 91 – Ajuste J-C modificado para a taxa 2	102
Figura 92 – Ajuste J-C modificado para a taxa 3	102
Figura 93 – Ajuste J-C modificado para a taxa 4	103
Figura 94 – Ajuste J-C modificado para a taxa 5	103
Figura 95 – Ajuste J-C modificado para a taxa 6	104
Figura 96 – Ajuste J-C modificado para a taxa 1 real	104
Figura 97 – Ajuste J-C modificado para a taxa 2 real	105
Figura 98 – Ajuste J-C modificado para a taxa 3 real	105
Figura 99 – Ajuste J-C modificado para a taxa 4 real	106

Figura 100 – Ajuste J-C modificado para a taxa 5 real	106
Figura 101 – Ajuste J-C modificado para a taxa 6 real	107
Figura 102 – Ajuste YU <i>et al</i> (2009) para a taxa 1	108
Figura 103 – Ajuste YU <i>et al</i> (2009) para a taxa 2	108
Figura 104 – Ajuste YU <i>et al</i> (2009) para a taxa 3	109
Figura 105 – Ajuste YU <i>et al</i> (2009) para a taxa 4	109
Figura 106 – Ajuste YU <i>et al</i> (2009) para a taxa 5	110
Figura 107 – Ajuste YU <i>et al</i> (2009) para a taxa 6	110
Figura 108 – Ajuste YU <i>et al</i> (2009) para as 6 taxas	111
Figura 109 – Ajuste YU <i>et al</i> (2009) para as 6 taxas	112
Figura 110 – Ajuste YU <i>et al</i> (2009) para a taxa 1 real	113
Figura 111 – Ajuste YU <i>et al</i> (2009) para a taxa 2 real	113
Figura 112 – Ajuste YU <i>et al</i> (2009) para a taxa 3 real	114
Figura 113 – Ajuste YU <i>et al</i> (2009) para a taxa 4 real	114
Figura 114 – Ajuste YU <i>et al</i> (2009) para a taxa 5 real	115
Figura 115 – Ajuste YU <i>et al</i> (2009) para a taxa 6 real	115
Figura 116 – Ajuste YU <i>et al</i> (2009) para as 6 taxas reais	116
Figura 117 – Ajuste YU <i>et al</i> (2009) para as 6 taxas reais	116
Figura 118 – Modelo geométrico empregado na simulação	
computacional tipo Crash Test.	118
Figura 119 – Absorção de energia em diferentes partes de um	
veículo	119
Figura 120 – Detalhes geométricos da estrutura selecionada	119
Figura 121 – Ensaios de impacto: (a) Pêndulo Charpy,	
(b) Máquina <i>Drop Weight</i>	120
Figura 122 – Adaptador fabricado da base da máquina de	
Drop Weight para fixação da estrutura.	121
Figura 123 (a) – Estrutura de teste instrumentada antes	
e depois da colisão. Laboratório de Ensaios Mecânicos	
da NUCLEP – Nuclebrás Equipamentos Pesados S.A.	121
Figura 123 (b) – Taxa de deformação obtida no ensaio	
da estrutura de teste	122
Figura 124 – Elemento SOLID 164	123

Figura 125 – Modelagem Computacional em Elementos	
Finitos – LS-DYNA	123
Figura 126 – Deslocamento previsto da estrutura com o	
uso do modelo de bi-linear	125
Figura 127 – Deslocamento previsto da estrutura com o	
uso do modelo de elástico e perfeitamente plástico	125
Figura 128 – Deslocamento previsto da estrutura com o uso	
do modelo de J-C (com dados obtidos por controle de	
taxa de deformação)	126
Figura 129 – Deslocamento previsto da estrutura com o uso do	
modelo de J-C (com dados obtidos por controle de velocidade)	126
Figura 130 – Deslocamento previsto da estrutura com o uso do	
modelo de J-C modificado (com dados obtidos por controle	
de taxa de deformação)	127
Figura 131 – Deslocamento previsto da estrutura com o uso do	
modelo de J-C modificado (com dados obtidos por controle de	
velocidade)	127
Figura 132 – Deslocamento previsto da estrutura com o uso do	
modelo de bi-linear	128
Figura 133 – Deslocamento previsto da estrutura com o uso do	
modelo de elástico e perfeitamente plástico	128
Figura 134 – Deslocamento previsto da estrutura com o uso do	
modelo de J-C (com dados obtidos por controle de taxa de	
deformação)	129
Figura 135 – Deslocamento previsto da estrutura com o uso do	
modelo de J-C (com dados obtidos por controle de velocidade)	129
Figura 136 – Deslocamento previsto da estrutura com o uso do	
modelo de J-C modificado (com dados obtidos por controle	
de taxa de deformação)	130
Figura 137 – Deslocamento previsto da estrutura com o uso do	
modelo de J-C modificado (com dados obtidos por	
controle de velocidade)	130
Figura 138 – Deslocamento previsto da estrutura com o uso do	
modelo de bi-linear.	131

Figura 139 – Deslocamento previsto da estrutura com o uso do	
modelo de elástico e perfeitamente plástico	131
Figura 140 – Deslocamento previsto da estrutura com o uso do	
modelo de J-C (com dados obtidos por controle de taxa de	
deformação)	132
Figura 141 – Deslocamento previsto da estrutura com o uso do	
modelo de J-C (com dados obtidos por controle de velocidade)	132
Figura 142 – Deslocamento previsto da estrutura com o uso do	
modelo de J-C modificado (com dados obtidos por controle de	
taxa de deformação).	133
Figura 143 – Deslocamento previsto da estrutura com o uso do	
modelo de J-C modificado (com dados obtidos por controle de	
velocidade)	133
Figura A.1 – Fases de carregamento e descarregamento de dois	
veículos.	144
Figura A.2 – Exemplo da colisão frontal de dois veículos.	145
Figura A.3 – Fases de carregamento e descarregamento de	
dois veículos.	147
Figura A.4 – Ajuste da curva aos dados experimentais de	
uma colisão veicular	148
Figura A.5 – Comparação das curvas dos veículos utilizados na	
simulação da colisão	149
Figura A.6 – Influência da rigidez na determinação da incerteza	
da força em uma colisão veicular	153
Figura A.7 – Erro na determinação da incerteza da força como	
função somente da incerteza da rigidez	154
Figura A.8 – Influência da rigidez na determinação da incerteza	
da energia em uma colisão veicular.	154
Figura A.9 – Erro na determinação da incerteza da energia como	
função somente da incerteza da rigidez	155
Figura A.10 – Influência da rigidez na determinação da velocidade	
da força em uma colisão veicular.	155
Figura A.11 – Erro na determinação da incerteza da velocidade	
como função somente da incerteza da massa.	156

Figura B.1 – Esquema de uma máquina Charpy.	164
Figura B.2 – Escala de tensão versus taxa de deformação	166
Figura B.3 – Escala de tensão versus escala geométrica.	166
Figura I.1 – Análise química do latão.	172
Figura I.2 – Análise química do alumínio.	173
Figura I.3 – Análise química do aço inoxidável 304.	174
Figura I.4 – Análise química do aço AISI 1020 .	175
Figura I.5 – Análise química do aço AISI 4340.	176
Figura I.6 – Micrografia do aço AISI 1020	177

Lista de tabelas

Tabela 1 – Estatísticas envolvendo tipos de colisões diferentes.	24
Tabela 2 – Classificação das técnicas de testes de acordo com	
a taxa de deformação, adaptado de MEYERS (1994).	26
Tabela 3 – Classificação das técnicas de testes de acordo com	
a taxa de deformação, adaptado de Dieter (1981).	26
Tabela 4 – Propriedades físicas de metais comuns, adaptado de	
Juvinal e Marshek (2000)	30
Tabela 5 – Constantes Constitutivas para vários materiais	
$(\varepsilon_0 = 1 \text{ s}^{-1})$	41
Tabela 6 – Constantes Constitutivas para os materiais ensaiados	41
Tabela 7 – Constantes ajustadas por L-M.	53
Tabela 8 – Valores críticos associados ao grau de confiança	
na amostra	54
Tabela 9 – Composição do aço AISI 1020 testado	75
Tabela 10 – Resultados para a Taxa 1 – 0,01 %/s	85
Tabela 11 – Resultados para a Taxa 2 – 0,1 %/s	85
Tabela 12 – Resultados para a Taxa 3 – 1 %/s	86
Tabela 13 – Resultados para a Taxa 4 – 10 %/s	86
Tabela 14 – Resultados para a Taxa 5 – 100 %/s	87
Tabela 15 – Resultados para a Taxa 6 – 1000 %/s	87
Tabela 16 – Resumo da avaliação dos modelos	117
Tabela 17 – Comparação dos Resultados Experimentais e Numéricos	134
Tabela A.1 – Parâmetros empregados e incertezas estimadas.	152
Tabela B.1 – Grandezas físicas envolvidas em uma colisão.	162
Tabela B.2 – Influência da taxa de deformação nas escalas	165

Lista de símbolos

 E_R – Erro médio percentual (%)

 X_m – Valor médio experimental do deslocamento da estrutura de teste

(mm)

- X_n Valor obtido pela simulação numérica para cada velocidade de teste (mm)
- g- Aceleração da gravidade local (m/s²)
- h- Altura da massa de impacto (m)
- v- Velocidade no momento do impacto (m/s)
- V- Velocidade do travessão (m/s)
- t-Tempo (s)
- σ-Tensão (Pa)
- L Comprimento do CP (m)
- E Módulo de elasticidade (Pa)
- ε_p Deformação plástica (m/m)
- P Carga aplicada(N)
- K Rigidez da máquina (N/m)
- σ Tensão (Pa);
- σ_{o} Tensão para fase elástica (Pa);
- α , *m* Constantes do material;
- E1 e E2 Módulo de elasticidade e coeficiente de encruamento
- A, B, m, C, D, F- constantes do material
- ε− deformação (m/m)
- $\dot{\varepsilon}$ taxa de deformação (/s)
- \overline{R} Coeficiente de determinação
- y_i Valor da variável dependente
- x_i Valor da variável independente
- n Número de pares ordenados (x_i; y_i)
- S Soma dos desvios quadráticos entre valores medidos e os calculados em cada ponto
- p- Valores iniciais

e(p) – Erro calculado para cada valor de p

$$f(x_i - p)$$
– função que minimiza S

 $\frac{da}{dN}$ – taxa de propagação de trinca.

 A_{f} , m_{f} , p_{f} , α_{f} - constantes a serem determinadas

 ΔK – Variação do fator intensidade de tensão;

- K_c Tenacidade à Fratura
- Knáx: Fator de Intensidade de Tensões máximo
- ΔK_{th} Limiar da propagação
- R- Relação entre a tensão mínima e a máxima
- H_o hipótese que a média dos resultados obtidos em ambas as amostras são iguais.
- H_1 hipótese que a média dos resultados obtidos em ambas as amostras não são iguais.
- μ_1 Média obtida na amostragem 1
- μ_2 Média obtida na amostragem 2

t_{cal} - valor tabelado para distribuição t-student em função do número de

graus de liberdade e do nível de significância.

 $\overline{x}_1, \overline{x}_2$ – valores médios amostrais

- n_1, n_2 número de amostras para cada experimento
- S_p- desvio-padrão combinado
- ε_o deformação no início do patamar de escoamento (m/m)
- a,b,B*,C Constantes do material
- H,h Parâmetros da equação de Ramberg-Osgood