

Paula Elias Benedetti

Caracterização Geoambiental dos Sedimentos da Lagoa de Jacarepaguá - RJ

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Civil.

> Orientador: Prof. José Tavares Araruna Júnior Co-orientador: Patrício José Moreira Pires

Rio de Janeiro, Setembro de 2011

Paula Elias Benedetti

Caracterização Geoambiental dos Sedimentos da

Lagoa de Jacarepaguá - RJ.

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Civil. Aprovada pela Comissão Examinadora abaixo citada.

> Prof. José Tavares Araruna Júnior Orientador Departamento de Engenharia Civil – PUC-Rio

> > Patrício José Moreira Pires Co-orientador

UFES

Prof. Michéle Dal Toé Casagrande Departamento de Engenharia Civil - PUC-Rio

> Prof. Maria Cláudia Barbosa UFRJ

Prof. Antônio Roberto Martins Barboza de Oliveira Departamento de Engenharia Civil – PUC-Rio

> Prof. Renato da Silva Carreira Departamento de Química – PUC-Rio

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 30 de Setembro de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Paula Elias Benedetti

Graduou-se em Engenharia Ambiental, pela Pontifícia Universidade Católica do Rio de Janeiro, em 2008. Durante a graduação, atuou nas áreas de resíduos sólidos urbanos, geotecnia experimental e investigação e remediação de solos e águas subterrâneas contaminados por hidrocarbonetos do petróleo. Após, dedicou-se a área de investigação de áreas contaminadas. Ingressou no curso de mestrado em Engenharia Civil (Geotecnia) no ano de 2009, atuando na área de geotecnia ambiental. Desenvolveu pesquisa na Lagoa de Jacarepaguá, com a classificação dos tipos de sedimentos e suas características geotécnicas e com a contaminação dos mesmos.

Ficha Catalográfica

Benedetti, Paula Elias

Caracterização geoambiental dos sedimentos da Lagoa de Jacarepaguá - RJ / Paula Elias Benedetti ; orientador: José Tavares Araruna Júnior ; co-orientador: Patrício José Moreira Pires. – 2011.

235 f. : il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2011.

Inclui bibliografia

1. Engenharia civil – Teses. 2. Lagoa de Jacarepaguá. 3. Sedimento. 4. Batimetria. 5. Caracterização. 6. Geotecnia. 7. Análises químicas. I. Araruna Júnior, José Tavares. II. Pires, Patrício José Moreira. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

Aos meus pais, com muito amor.

"Há uma força motriz mais poderosa que o vapor, a eletricidade e a energia atômica: a vontade." (Albert Einstein)

Agradecimentos

Agradeço aos meus pais, Rita de Cássia e Aloysio, pelo amor, dedicação e apoio, não só durante o mestrado, mas por toda a minha vida.

Ao meu melhor amigo, Ricardo Froitzheim, que depois de muitos anos de amizade se transformou no melhor namorado! Por sempre estar ao meu lado nos momentos bons e ruins, pela cumplicidade, pelo carinho e amor.

Ao meu orientador Prof. José Tavares Araruna Júnior, agradeço pelos ensinamentos compartilhados durante esse período.

Ao meu co-orientador Patrício José Moreira Pires, um grande profissional e amigo. Pelas ajudas nos trabalhos de campo, por sempre fazer tudo ser mais simples, pelas risadas, pelos conselhos e muitas conversas.

Agradeço ao professor, amigo, conselheiro, Antonio Roberto, por quem tenho grande admiração. Pelas conversas, conselhos, amizade, respeito e atenção.

À Professora Michèle Dal Toé Casagrande pelo apoio nos momentos difíceis dos últimos meses de Dissertação.

Ao Professor Tácio Mauro de Campo por sempre estar disponível e disposto a ajudar, independente da natureza do assunto.

À Mônica Moncada por estar sempre disponível e disposta a ajudar, resolver problemas e tirar minhas dúvidas quanto aos ensaios realizados no Laboratório de Geotecnia.

Ao Rogério Ross pelo bom humor, pelas histórias engraçadas, pela amizade e não menos importante, pela ajuda nos trabalhos de campo e na realização dos ensaios no laboratório.

Agradeço ao Amaury e ao Josué, técnicos do Laboratório de Geotecnia, pela ajuda na realização dos ensaios, sempre com muito bom humor.

Aos professores do departamento de Engenharia Civil da PUC-Rio pelos conhecimentos transmitidos ao longo do curso de mestrado e de graduação.

Ao amigo, Rafael Nunes, pelo auxílio no programa ArcGIS.

Ao meu amigo-irmão, Thiago Carnavale, por ser uma fonte de inspiração quando o assunto é superação! Pela grande amizade, pelas risadas e infinitas conversas.

Agradeço aos amigos da Família Ambiental, Gabriel Góes, Letícia Freire, Aline Guidry, Branca Delmonte, Marcio Belleti, Antonio Sant'Anna, Luiz Lobo, Flavio Molina, Olivia Julianelli, Ricardo Vitalino, Raphael Rieboldt, Thiago Pessoa e Alexandre Conti, que mesmo de longe, ajudaram muito!

Às amigas, Thais Monnerat e Maria Luiza Burdman, que mesmo sendo de áreas completamente diferentes, sempre tiveram paciência e interesse para ouvir minhas explicações sobre geotecnia.

Às amigas do primeiro período da graduação, Priscila Chami e Luise Ribeiro, que me acompanham desde o início.

Aos amigos da 614, pelas viagens, risadas e principalmente pela ajuda nos estudos.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela bolsa concedida.

Enfim, agradeço a todos aqueles que de algum modo contribuíram para a realização deste trabalho.

Resumo

Benedetti, Paula Elias; Araruna Jr., Jose Tavares (orientador); Pires, Patrício José Moreira (co-orientador). **Caracterização Geoambiental dos Sedimentos da Lagoa de Jacarepaguá – RJ**. Rio de Janeiro, 2011. 235p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

A presente dissertação tem como objetivo realizar um levantamento sobre o relevo de fundo, o tipo de material e a qualidade dos sedimentos quanto a contaminação, da Lagoa de Jacarepaguá, Rio de Janeiro, para auxiliar os programas ambientais de revitalização do Complexo Lagunar da Baixada de Jacarepaguá, que estão sendo desenvolvidos na área, focando as Olimpíadas de 2016. Na primeira etapa realizou-se a batimetria da Lagoa. Foram adquiridas profundidades georreferenciadas em campo e gerados modelos batimétricos em 2 e 3 dimensões, nos quais foram identificadas cavidades e um platô de baixa profundidade no interior da Lagoa. Na segunda etapa foram coletadas amostras de sedimentos da Lagoa, em variadas profundidades, para os ensaios da caracterização geotécnica. Com estes resultados identificou-se a presença predominante de 2 tipos de sedimentos, arenosos localizados no platô raso e siltosos nas cavidades, e alto teor de matéria orgânica e baixa densidade nas amostras siltosas. Complementarmente, foram ensaiadas duas amostras arenosas para determinação dos parâmetros de permeabilidade e de resistência ao cisalhamento, visando gerar dados adicionais para possível aproveitamento deste material como aterro, caso dragado. Na terceira, e última etapa, foi realizada uma nova coleta de sedimentos, para análise química dos metais Bário, Cádmio, Chumbo, Cobre, Cromo, Ferro, Manganês, Mercúrio, Níquel e Zinco e Hidrocarbonetos Policíclicos Aromáticos (HPA's), cujos resultados indicaram uma acumulação de alguns metais na área de influência de deságüe do Arroio Pavuna. Concatenando os resultados obtidos nas 3 etapas, considerase necessário e emergencial o cessamento das descargas de efluentes, nos rios afluentes à Lagoa, e a dragagem do sedimento arenoso localizado no platô, resultando em um canal central mais profundo, um aumento da coluna d'água que implicará no melhoramento do fluxo de troca de água entre a Lagoa e o mar, acelerando a recuperação do ecossistema lagunar de uma forma geral.

Palavras-chave

Lagoa de Jacarepaguá; Sedimento; Batimetria; Caracterização; Geotecnia; Análises Químicas.

Abstract

Benedetti, Paula Elias; Araruna Jr., Jose Tavares (advisor); Pires, Patrício José Moreira (co-advisor). **Geoenvironmental Characterization of Jacarepaguá Lagoon Sediments - RJ**, Rio de Janeiro, 2011. 235p. M.Sc. Dissertation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The present dissertation aims at conducting a survey on the bottom morphology, the material type and quality of sediment contamination, in the Jacarepaguá Lagoon, Rio de Janeiro, to assist the environmental programs working on the revitalization the Lagoon area, focusing on the 2016 Olympics. In the first stage the bathymetry of the Lagoon was executed. Georeferenced depth measurements were acquired in the field and bathymetric models in 2 and 3 dimensions were generated, where cavities and a shallow plateau inside the Lagoon were identified. In the second stage, sediment samples of the Lagoon were collected - from varied depths - for the geotechnical characterization tests. Based on the results, the presence of two predominant types of sediments was identified, sandy sediments located on the shallow plateau and silty sediments on the cavities, as well as high content of organic matter and low density in silty samples. In addition, two sandy samples were tested to determine the permeability and shear strength parameters in order to gather additional data for possible use of this material in civil construction (if dredged). In the third and final stage new sediment samples were collected for chemical analysis of the metals Barium, Cadmium, Lead, Copper, Chromium, Iron, Manganese, Mercury, Nickel and Zinc as well as Polycyclic Aromatic Hydrocarbons (PAH's). The results indicated an accumulation of some metals in the drainage area of the Pavuna Creek. Concatenating the results obtained in these three stages, it is considered necessary and urgent to stop the effluent discharges into the Lagoon's tributary rivers as well as to dredge the sandy sediment located in the plateau, that would result in a deeper central channel, an increase of water column leading to an improved flow of water exchange between the Lagoon and the sea, accelerating the recovery of the Lagoon's ecosystem in general.

Keywords

Jacarepaguá Lagoon; Sediment; Bathymetry; Characterization; Geotechnical; Chemical Analysis.

Sumário

1 Introdução	24
1.1. Organização do Trabalho	28
2 Caracterização da Área de Estudo	30
2.1. Localização	30
2.2. Formação da Planície Costeira de Jacarepaguá	32
2.3. Cursos d'água contribuintes	36
2.4. Crescimento Populacional	37
3 Batimetria	42
3.1. Equipamentos Utilizados	43
3.1.1. Veículo Anfíbio	43
3.1.2. Global Position System - GPS	44
3.1.2.1. Descrição do Sistema GPS	44
3.1.2.2. Utilização do Sistema GPS neste trabalho	46
3.1.2.2.1. Calibração do Sonar	48
3.2. Metodologia em Campo	50
3.3. Margem da Lagoa	51
3.4. Resultados	52
3.4.1. Tratamento dos Dados no Excel	52
3.4.2. Tratamento dos Dados no Programa RockWorks 14	54
3.4.2.1. Modelo Batimétrico em 3D	57
3.4.2.2. Modelo Batimétrico em 2D	59
3.4.3. Variação do Nível D'água	61
3.4.4. Discussão dos Resultados	64
4 Caracterização Geotécnica dos Sedimentos	66
4.1. Metodologias	66
4.1.1. Amostragem	66
4.1.2. Preparação das amostras para realização dos ensaios	69
4.2. Ensaios realizados	71
4.2.1. Matéria Orgânica	71
4.2.2. Densidade Relativa dos Grãos	72
4.2.3. Umidade Higroscópica	72

4.2.4. Granulometria	72
4.2.5. Limites de Atterberg	72
4.3. Resultados	73
4.3.1. Discussão dos resultados	79
4.4. Ensaios complementares	83
4.4.1. Finalidade: Aterro hidráulico	84
4.4.1.1. Preparação das amostras	84
4.4.1.1.1. Índice de vazios máximo (e _{máx})	85
4.4.1.1.2. Índice de vazios mínimo (e _{mín})	85
4.4.1.2. Resistência ao cisalhamento	86
4.4.1.3. Permeabilidade	97
4.4.2. Finalidade: Agregado para concreto	101
4.4.3. Discussão dos resultados	102
5 Análise da Qualidade dos Sedimentos	104
5.1. Legislação Específica para Qualidade de Sedimentos	104
5.2. Parâmetros analisados	105
5.2.1. Estudos Anteriores	106
5.2.1.1. Junho de 1992	106
5.2.1.2. Maio de 1996	108
5.2.1.3. Outubro de 1996	110
5.2.1.4. Dezembro de 1998	112
5.2.1.5. Janeiro de 2011	114
5.2.2. Atividades presentes no entorno da Lagoa de Jacarepaguá	116
5.2.3. Metais	118
5.2.4. Hidrocarbonetos Policíclicos Aromáticos (HPA's)	127
5.3. Metodologia de amostragem	131
5.4. Resultados	134
5.4.1. Discussão dos Resultados	143
6 Conclusões e Sugestões	148
6.1. Conclusões	148
6.2. Sugestões	150
7 Referências Bibliográficas	152
APÊNDICE I	158

APÊNDICE II	180
APÊNDICE III	186
APÊNDICE IV	217
APÊNDICE V	231

Lista de Figuras

Figura 1.1 - Projeto do sistema de coleta do esgoto sanitário elaborado pela
CEDAE (Jornal O Globo, 2010)26
Figura 1.2 - Processo de eutrofização na Lagoa de Jacarepaguá ocasionada
pelo crescimento de algas microscópicas. (a) Vista W-E, ponte sobre o Rio
Marinho (SOS Rios do Brasil, 2008) e (b) Vista SW-NE (SOS Rios do Brasil,
2009)27
Figura 1.3 - Despejo de esgoto sanitário na Lagoa de Jacarepaguá pelo Rio
Pavuninha (Jornal O Globo, 2011)27
Figura 2.1 – Mapa de Localização do Complexo Lagunar de Jacarepaguá a partir
de imagens do Google Earth31
Figura 2.2 - Bacia Hidrográfica do Complexo Lagunar de Jacarepaguá e suas
sub-bacias (Prefeitura do Rio de Janeiro, 2011)32
Figura 2.3 – Perfil esquemático da Baixada de Jacarepaguá (Roncarati e Neves,
1975)
Figura 2.4 - Estágio 1: 7.000 a 5.000 anos BP - Estabelecimentos da primeira
ilha-barreira e da primeira zona lagunar (adaptado de Maia <i>et al</i> ., 1984)34
Figura 2.5 - Estágio 2: Regressão de 5.100 a 3.000 anos BP - Construção da
primeira zona de progradação (adaptado de Maia <i>et al</i> ., 1984)
Figura 2.6 – Estágio 3: Máximo de 3.500 anos BP – Estabelecimento da segunda
ilha-barreira e da segunda laguna (adaptado de Maia <i>et al</i> ., 1984)35
Figura 2.7 - Estágio 4: Regressão de 3.500 até o presente - Construção da
segunda zona de progradação (adaptado de Maia <i>et al</i> ., 1984)
Figura 2.8 - Croqui de Lucio Costa para os eixos do Plano Piloto da Baixada de
Jacarepaguá (Cardoso, 1989 <i>apud</i> Silva, 2006)
Figura 2.9 - Foto do Complexo Lagunar da Baixada de Jacarepaguá em 1980
(Castro e Custódio, 2005)40
Figura 2.10 – Foto do Complexo Lagunar da Baixada de Jacarepaguá em 2002.
(Araruna, 2008)40
Figura 2.11 - Imagem do Google Earth do Complexo Lagunar da Baixada de
Jacarepaguá em 200941
Figura 3.1 – Esquema de funcionamento do ecobatímetro (Wikipédia, 2011)42
Figura 3.2 – Veículo Anfíbio com (a) capota fechada e (b) capota aberta43
Figura 3.3 - Vista traseira do anfíbio com a base para o motor de popa (a)
levantada e (b) abaixada44

Figura 3.4 - Fusos, Bandas e Zonas do Sistema de Coordenadas UTM
(adaptado de Friedmann, 2009)45
Figura 3.5 - Segmentos do Sistema GPS (adaptado de Friedmann, 2009)46
Figura 3.6 - Monitor do GPS e Sonar modelo A50D 5" Chartplotter/ Fishfinder. 47
Figura 3.7 - (a) Monitor do GPS acoplado ao painel do veículo e (b) Sonar
instalado na traseira do veículo47
Figura 3.8 – Imagem da tela do GPS48
Figura 3.9 – Instrumento de medição manual da profundidade48
Figura 3.10 – Gráfico da leitura manual vs leitura do sonar da profundidade49
Figura 3.11 – Imagem do Google Earth com a divisão das áreas e a indicação do
limite da área de estudo50
Figura 3.12 – Gráfico latitude vs longitude dos pontos da Área 1
Figura 3.13 – Gráfico latitude vs longitude dos pontos da Área 2. Elaborado no
programa <i>excel</i> 53
Figura 3.14 – Gráfico latitude vs longitude dos pontos da Área 3
Figura 3.15 – Gráfico latitude vs longitude dos pontos da Área 454
Figura 3.16 – Modelo batimétrico 3D da Lagoa de Jacarepaguá com o seu limite
em .dxf (30V:1H)57
Figura 3.17 – Modelo batimétrico 3D da Lagoa de Jacarepaguá com o seu limite
em .dxf (30V:1H)58
Figura 3.18 – Vista lateral do lado norte do modelo batimétrico 3D da Lagoa de
Jacarepaguá (50V:1H)58
Figura 3.19 - Vista lateral do lado sul do modelo batimétrico 3D da Lagoa de
Jacarepaguá (50:1)59
Figura 3.20 – Modelo batimétrico em 2D60
Figura 3.21 - Modelo batimétrico 2D com coordenadas em UTM com datum
WGS8460
Figura 3.22 – Modelo batimétrico 2D visualizado no Google Earth61
Figura 3.23 – Medidor de nível d'água61
Figura 3.24 - Imagem do Google Earth com a indicação dos pontos de medição
do nível d'água62
Figura 3.25 – Medição do nível d'água no (a) Rio Pavuna e na (b) ligação com a
Lagoa do Camorim62
Figura 3.26 – Gráfico da variação do nível d'água nos dois pontos64
Figura 4.1 – Imagem do Google Earth da Lagoa de Jacarepaguá com os pontos
de amostragem de sedimentos para a caracterização geotécnica68
Figura 4.2 – Draga Van Veen, (a) fechada e (b) aberta

Figura 4.3 - Procedimento para a coleta das amostras de sedimento: (a)
lançamento da draga, (b) transferência da amostra para o saco plástico e
(c) amostra de sedimento coletado acondicionada no saco plástico69
Figura 4.4 - Amostras acondicionadas nas caixas plásticas ao chegarem ao
laboratório. (a) pontos A1-P2 e A1-P3 e (b) pontos da Área 270
Figura 4.5 - Amostras secas ao ar, antes de serem destorroadas: (a) ponto A2-
P1 e (b) ponto A2-P370
Figura 4.6 - Amostra do ponto A3-P2: (a) antes da secagem ao ar e (b) após a
secagem70
Figura 4.7 - Limites de Atterberg correspondentes as mudanças de estado de
consistência (adaptado de Pinto, 2006)73
Figura 4.8 – Curvas granulométricas das amostras analisadas da Área 176
Figura 4.9 – Curvas granulométricas das amostras analisadas da Área 276
Figura 4.10 – Curvas granulométricas das amostras analisadas da Área 3 77
Figura 4.11 – Curvas granulométricas das amostras analisadas da Área 477
Figura 4.12 – Curvas granulométricas de todas as amostras analisadas78
Figura 4.13 - Modelo batimétrico 2D com pontos de amostragem de matriz
arenosa79
Figura 4.14 - Modelo batimétrico 2D com pontos de amostragem de matriz
siltosa80
Figura 4.15 - Identificação dos 2 principais tipos de sedimento presentes na
Lagoa de Jacarepaguá82
Figura 4.16 - Representação do máximo índice de vazios em um solo granular
com partículas perfeitamente esféricas (Almeida, 2005)85
Figura 4.17 - Representação do mínimo índice de vazios em um solo com
partículas perfeitamente esféricas (Almeida, 2005)86
Figura 4.18 - Mecanismos de resistência ao cisalhamento (Adaptado de
Gerscovich, 2010)86
Figura 4.19 – Representação gráfica do critério de ruptura de Mohr-Coulomb87
Figura 4.20 – Esquema do equipamento do ensaio de cisalhamento direto com
deformação controlada (Gerscovich, 2010)88
Figura 4.21 – Gráfico da tensão cisalhante (KPa) vs o deslocamento horizontal
(mm) da amostra A2-P390
Figura 4.22 – Gráfico do deslocamento vertical (mm) vs o deslocamento
horizontal (mm) da amostra A2-P391
Figura 4.23 - Gráfico do critério de ruptura Mohr-Coulomb com os dados de
ruptura dos 3 ensaios realizados da amostra A2-P3.

Figura 4.24 - Gráfico da tensão cisalhante (KPa) vs o deslocamento horizontal
(mm) da amostra A3-P594
Figura 4.25 - Gráfico do deslocamento vertical (mm) vs o deslocamento
horizontal (mm) da amostra A3-P595
Figura 4.26 - Gráfico do critério de ruptura Mohr-Coulomb com os dados de
ruptura dos 3 ensaios realizados da amostra A3-P5.
Figura 4.27 – Esquema do ensaio de permeabilidade a carga constante98
Figura 4.28 - Gráfico do tempo (s) vs leitura (g) dos ensaios para a amostra
A2-P3
Figura 4.29 - Gráfico do tempo (s) vs a leitura (g) dos ensaios para a amostra
A3-P5
Figura 5.1 - Mapa de localização dos pontos de amostragem das análises
químicas realizadas em junho de 1992 (adaptado de Fernandes et al.,
1994)
Figura 5.2 - Mapa de localização dos pontos de amostragem das análises
químicas realizadas em maio de 1996 (adaptado de Fernandes, 1997)108
Figura 5.3 - Mapa de localização dos pontos de amostragem das análises
químicas realizadas em dezembro de 1996 (adaptado de COPPETEC,
1996)
Figura 5.4 - Mapa de localização dos pontos de amostragem das análises
químicas realizadas em dezembro de 1998 (adaptado de COPPETEC,
1998)
Figura 5.5 - Mapa de localização dos pontos de amostragem das análises
químicas realizadas em janeiro de 2011. Imagem do Google Earth115
Figura 5.6 - Esquema do fracionamento da matéria orgânica no solo (adaptado
de Sparks, 1995)126
Figura 5.7 - Esquema dos possíveis caminhos percorridos pela MO no ambiente
(adaptado de Sparks, 1995)127
Figura 5.8 - Estrutura dos 16 HPA's analisados (adaptado de Vieira, Soares e
Jardim, 2007)131
Figura 5.9 - Imagem do Google Earth com a localização dos pontos de
amostragem de sedimentos para análise química132
Figura 5.10 – Gráfico dos resultados de metais para o ponto RM137
Figura 5.11 – Gráfico dos resultados de metais para o ponto C1137
Figura 5.12 – Gráfico dos resultados de metais para o ponto C2138
Figura 5.13 – Gráfico dos resultados de metais para o ponto LJ1138
Figura 5.14 – Gráfico dos resultados de metais para o ponto LJ2

Figura 5.21 – Gráfico dos resultados de metais para o ponto LJ3.142 Figura 5.23 – Pontos com concentrações acima do Nível 1 para Cádmio......144 Figura 5.24 – Pontos com concentrações acima do Nível 1 para Cobre.144 Figura 5.25 – Pontos com concentrações acima do Nível 1 para Chumbo. 144 Figura 5.26 – Pontos com concentrações acima do Nível 1 para Níquel.........144 Figura 5.27 – Pontos com concentrações acima do Nível 1 para Zinco.145 Figura 5.27 – Modelo batimétrico em 2D e com os pontos de amostragem que obtiveram concentrações acima do limite Nível 1 para pelo menos um dos parâmetros analisados......147 Apêndice II 1 – Vista do ponto localizado no Rio Marinho (RM)......180 Apêndice II 3 – Casa localizada à margem do Rio Marinho. Detalhe para a saída de uma tubulação ao lado desta casa na Lagoa de Jacarepaguá......181 Apêndice II 4 – Ponto de coleta C1 (Córrego 1)......181 Apêndice II 6 – Comunidade à margem da Lagoa de Jacarepaguá, próxima ao Rio Pavuninha (RPi)......182 Apêndice II 8 – Ponto de coleta Rio Pavuna (RP)......182 Apêndice II 9 – Detalhe da margem do Rio Pavuna vista da ponte na Avenida Apêndice II 10 – Ponto de coleta Lagoa do Camorim (LC). Vista da ciclovia sobre Apêndice II 11 – Saída de uma tubulação na Lagoa de Jacarepaguá. Detalhe para a cor escura do líquido que saía da mesma......184 Apêndice II 12 – Ponto de coleta Córrego 3 (C3)......184 Apêndice II 13 – Ponto de coleta Córrego 4 (C4)......185 Apêndice V 1 – Gráfico dos resultados de Ba para os pontos amostrados.231 Apêndice V 2 – Gráfico dos resultados de Ca para os pontos amostrados.....232 Apêndice V 3 – Gráfico dos resultados de Pb para os pontos amostrados. 232

Apêndice V 4 – Gráfico dos resultados de Cr para os pontos amostrados...... 233 Apêndice V 5 – Gráfico dos resultados de Cu para os pontos amostrados..... 233 Apêndice V 6 – Gráfico dos resultados de Fe para os pontos amostrados..... 234 Apêndice V 7 – Gráfico dos resultados de Mn para os pontos amostrados..... 234 Apêndice V 8 – Gráfico dos resultados de Ni para os pontos amostrados..... 235 Apêndice V 9 – Gráfico dos resultados de Zn para os pontos amostrados..... 235

Lista de Tabelas

Tabela 2.1 – Área de lâmina d'água e cursos d'água contribuintes às lagoas do
Complexo Lagunar de Jacarepaguá (adaptado de FEEMA, 2006)37
Tabela 2.2 - Crescimento populacional na Área de Planejamento 4 (adaptado de
Cezar, 2002)
Tabela 3.1 – Leituras manuais e do sonar da profundidade49
Tabela 3.2 - Informações dos trabalhos de campo para o mapeamento
batimétrico51
Tabela 3.3 – Coordenadas em UTM e datum SAD69 dos pontos nos quais foram
realizadas as medições do nível d'água da Lagoa de Jacarepaguá62
Tabela 3.4 – Dados da variação da altura do nível d'água nos dois pontos 63
Tabela 3.5 – Média das profundidades65
Tabela 4.1 – Dados específicos dos pontos de amostragem do sedimento67
Tabela 4.2 – Pontos amostrados e caracterizados tátil-visualmente71
Tabela 4.3 – Resultados dos ensaios realizados nas amostras da Área 174
Tabela 4.4 – Resultados dos ensaios realizados nas amostras da Área 274
Tabela 4.5 – Resultados dos ensaios realizados nas amostras da Área 374
Tabela 4.6 – Resultados dos ensaios realizados nas amostras da Área 475
Tabela 4.7 – Classificação das amostras segundo o SUCS75
Tabela 4.8 - Significado de cada sigla utilizada na classificação dos sedimentos.
Tabela 4.9 – Níveis de Plasticidade (adaptado de Caputo, 1998)81
Tabela 4.10 - Classificação do nível de plasticidade das amostras de sedimento
com de granulometria fina da Lagoa de Jacarepaguá81
Tabela 4.11 – Informações das amostras A2-P3 e A3-P584
Tabela 4.12 - Dados dos ensaios de cisalhamento direto realizados na amostra
A2-P3
Tabela 4.13 - Dados de tensão normal e tensão cisalhante nos pontos de
ruptura dos 3 ensaios realizados da amostra A2-P3
Tabela 4.14 – Parâmetros de resistência ao cisalhamento da amostra A2-P393
Tabela 4.15 - Dados dos ensaios de cisalhamento direto realizados na amostra
A3-P594
Tabela 4.16 - Dados de tensão normal e tensão cisalhante nos pontos de
ruptura dos 3 ensaios realizados da amostra A3-P596
Tabela 4.17 – Parâmetros de resistência ao cisalhamento da amostra A3-P597

Tabela 4.18 - Resultado do ensaio de permeabilidade para a amostra A2-P3.100 Tabela 4.19 – Resultado do ensaio de permeabilidade para a amostra A3-P5.101 Tabela 4.20 – Ensaios especiais para agregado miúdo (ABNT NBR 7211, 2009). Tabela 4.22 – Valores típicos da condutividade hidráulica dos solos saturados (adaptado de Das, 2007)......103 Tabela 4.23 - Discriminação das frações dos tipos de areia das amostras ensaiadas......103 Tabela 5.1 – Nível de classificação química do material a ser dragado (CONAMA, 2004)......105 Tabela 5.2 – Resultados da análise de metais pesados nos sedimentos da Lagoa de Jacarepaguá e rios afluentes a esta lagoa - junho de 1992 (adaptado de Tabela 5.3 – Resultados da análise de metais pesados nos sedimentos da Lagoa de Jacarepaguá e rios afluentes a esta lagoa - maio de 1996 (adaptado de Fernandes, 1997)......109 Tabela 5.4 – Resultados da análise de metais pesados nos sedimentos da Lagoa de Jacarepaguá e rios afluentes a esta lagoa - dezembro de 1996 (adaptado de COPPETEC, 1996). 111 Tabela 5.5 – Resultados da análise de metais pesados nos sedimentos da Lagoa de Jacarepaguá e rios afluentes a esta - dezembro de 1998 (adaptado de Tabela 5.6 - Resultados da análise de metais pesados nos sedimentos da Lagoa de Jacarepaguá e rios afluentes a esta lagoa - janeiro de 2011 (adaptado de InterDraga, 2011)......115 Tabela 5.7 – Principais contaminantes de diferentes tipos de atividade (adaptado de EPA, 1999)......117 Tabela 5.8 – Lista de Alguns Metais Carcinogênicos a Humanos (adaptado de Tabela 5.9 – Comparação da colocação dos metais analisados na CERCLA Priority List dos anos de 1997, 1999, 2001, 2003, 2005 e 2007 (adaptado de ATSDR, 1997; ATSDR, 1999; ATSDR, 2001; ATSDR, 2003; ATSDR, 2005 Tabela 5.10 – Uso dos HPA's e meios de exposição industrial (adaptado de Tabela 5.11 – Valores dos coeficientes de sorção de carbono orgânico por

Tabela 5.12 - Classes de meia vida (horas) sugeridos a HPA's (adaptado de
Mackay <i>et al.</i> ,1992 <i>apud</i> IPCS,1998)129
Tabela 5.13 - Classes de meia vida dos compostos de HPA's em variados
compartimentos ambientais (adaptado de Mackay <i>et al.</i> ,1992 <i>apud</i>
IPCS,1998)
Tabela 5.14 - Comparação da colocação do grupo dos HPA's em 1997, 1999,
2001, 2003, 2005 e 2007 (adaptado de ATSDR, 1997; ATSDR, 1999;
ATSDR, 2001; ATSDR, 2003; ATSDR, 2005 e ATSDR, 2007)130
Tabela 5.15 - Informações dos pontos de amostragem de sedimentos para
análise química132
Tabela 5.16 – Relação entre os pontos amostrados
Tabela 5.17 – Resultados das análises químicas para metais (mg/kg)
Tabela 5.18 - Resultados das análises químicas para HPA's das amostras
coletadas dentro da Lagoa (mg/kg)136

Lista de Abreviaturas e Siglas

2D	2 dimensões
3D	3 dimensões
ABGE	Associação Brasileira de Geologia de Engenharia
ABNT	Associação Brasileira de Normas Técnicas
AP	Área de Planejamento
ATSDR	Agency for Toxic Substances e Disease Registry
BP	Before Present
BTEX	Benzeno, Tolueno, Etilbenzeno e Xileno
C1	Córrego 1
C2	Córrego 2
C3	Córrego 3
C4	Córrego 4
CBF	Confederação Brasileira de Futebol
CEDAE	Companhia Estadual de Águas e Esgotos
CERCLA	The Comprehensive Environmental Response, Compensations and Liability Act
CONAMA	Conselho Nacional do Meio Ambiente
COPPETEC	Coordenação de Projetos, Pesquisas e Estudos Tecnológicos
CPT	Cone Penetration Test
CR	Compacidade Relativa
DR	Densidade Relativa
EPA	Environmental Protection Agency
ETE	Estação de Tratamento de Esgoto
FEEMA	Fundação Estadual de Engenharia do Meio Ambiente – RJ
GPS	Global Position System
HPA	Hidrocarbonetos Policíclicos Aromáticos
HS	Humic Substances
IBGE	Instituto Brasileiro de Geografia Estatística
INEA	Instituto Estadual do Ambiente – RJ
IP	Índice de Plasticidade
IPCS	International Program on Chemical Safety
LabGIS	Laboratório de Geoprocessamento
LAMMA	Laboratório de Avaliação, Monitoramento e Mitigação Ambiental
LC	Lagoa do Camorim
LD	Limite de Detecção

LJ1	Lagoa de Jacarepaguá 1
LJ2	Lagoa de Jacarepaguá 2
LJ3	Lagoa de Jacarepaguá 3
LJ4	Lagoa de Jacarepaguá 4
LQ	Limite de Quantificação
MO	Matéria Orgânica
NBR	Norma Brasileira
NHS	Non-humic Substances
ОН	Silte orgânico – pelo SUCS
PAH	Polyciclic Aromatic Hydrocarbons
PCB	Polychlorinated Biphenyls
PUC-Rio	Pontifícia Universidade Católica do Rio de Janeiro
RC	Rio Camorim
RM	Rio Marinho
RP	Região Administrativa
RP	Arroio Pavuna
RPi	Rio Pavuninha
SAD69	South American Datum de 1969
SIG	Sistema de Informação Geográfica
SM	Areia Siltosa – pelo SUCS
SMAC	Secretaria Municipal de Meio Ambiente
SP-SM	Areia Mal Graduada com Silte – pelo SUCS
SPT	Standart Penetration Test
SUCS	Sistema Unificado de Classificação dos Solos
SW-SM	Areia Bem Graduada com Silte
UFRJ	Universidade Federal do Rio de Janeiro
UTM	Universal Tranversa de Mercator
VOC	Compostos Orgânicos Voláteis
VS	Versus
WGS84	World Geodetic System de 1984
WL	Limite de Liquidez
W _P	Limite de Plasticidade

Lista de Símbolos

А	Área
Ва	Bário
с	Coesão
Cd	Cádmio
Cr	Cromo
Cu	Cobre
е	Índice de Vazios
e _{máx}	Índice de Vazios Máximo
e _{mín}	Índice de Vazios Mínimo
G	Densidade Relativa dos Grãos
Н	Alta Plasticidade – pelo SUSC
Hg	Mercúrio
i	Gradiente Hidráulico
k	Condutividade Hidráulica ou Coeficiente de Permeabilidade
Μ	Silte – pelo SUSC
m	Massa
Mn	Manganês
Ni	Níquel
0	Orgânico – pelo SUSC
Р	Mal graduado – pelo SUSC
Pb	Chumbo
Q	Vazão
S	Areia – pelo SUSC
V	Volume
w	Umidade Higroscópica
W	Bem graduado – pelo SUSC
Zn	Zinco
$ ho_g$	Massa Específica dos Grãos
ρ _s	Massa Específica Seca
σ	Tensão Normal
т	Tensão Cisalhante
φ	Ângulo de Atrito
k _{oc}	Coeficientes de sorção de carbono orgânico