

Marcelo da Cruz Pereira

Dinâmica de sistemas pendulares e giroscópicos por atuação interna de controles não lineares

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título Doutor em Engenharia Mecânica.

Orientador: Prof. Hans Ingo Weber

Rio de Janeiro, Agosto de 2016

Marcelo da Cruz Pereira

Dinâmica de sistemas pendulares e giroscópicos por atuação interna de controles não lineares

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Hans Ingo Weber Orientador Departamento de Engenharia Mecânica - PUC-Rio

> Prof. Rubens Sampaio Filho Departamento de Engenharia Mecânica - PUC-Rio

> Prof. Mauro Speranza Neto Departamento de Engenharia Mecânica - PUC-Rio

> > Prof. Maurício Gruzman Instituto Militar de Engenharia - IME

Prof. Marcelo Amorim Savi Universidade Federal do Rio de Janeiro – UFRJ

Prof. José Manoel Balthazar Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP

Prof. Marcio da Silveira Carvalho Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 1 de agosto de 2016

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Marcelo da Cruz Pereira

Graduou-se em Engenharia Elétrica com ênfase em Eletrônica na Pontifícia Universidade Católica em Jul/2009, elaborando um projeto na área de controle de um quadricóptero. Terminou o Mestrado em Engenharia Mecânica na própria instituição em Set/2011, elaborando um projeto sobre controle de um pêndulo planar. Durante os estudos de Doutorado publicou junto com seu orientador três artigos sobre o tema desta dissertação.

Ficha Catalográfica

Pereira, Marcelo da Cruz Dinâmica de sistemas pendulares e giroscópicos por atuação interna de controles não lineares / Marcelo da Cruz Pereira ; orientador: Hans Ingo Weber. – 2016. 119 f. : il. color. ; 30 cm Tese (doutorado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2016. Inclui bibliografia 1. Engenharia Mecânica – Teses. 2. Sistema dinâmico. 3. Pêndulo. 4. Giroscópio. 5. Controle nãolinear. 6. Centro de massa. I. Weber, Hans Ingo. II. Pontifícia Universidade Católica do Rio de Janeiro.

Departamento de Engenharia Mecânica. III. Título.

CDD: 621

PUC-Rio - Certificação Digital Nº 1212854/CA

Dedico esse trabalho à minha mãe, Léa Regina.

Agradecimentos

Gostaria de agradecer a todas as pessoas que tornaram esse trabalho possível e a todos que me apoiaram durante todo esse período de Doutorado:

Ao professor Hans Ingo Weber por toda confiança depositada em mim, pela paciência ao longo do trabalho e pelo conhecimento transmitido nesse período.

À minha mãe, Léa Regina, pelo apoio, pelo constante incentivo e pelas palavras de sabedoria em horas de dúvida e ansiedade.

Ao meu avô, Carlos, por olhar por mim do céu, ele que sempre me apoiou nos estudos na PUC-Rio enquanto vivo.

À minha namorada, Natalia, que me fez não desistir nesse caminho final, e sempre me incentivou a seguir em frente.

Aos professores do Departamento de Engenharia Mecânica da PUC-Rio, pelo conhecimento transmitido, pelas amizades e por todo apoio.

Aos professores membros banca examinadora, pelos comentários e críticas.

Aos meus colegas do Laboratório de Dinâmica e Vibrações, por todo incentivo, pela amizade e pela paciência.

Ao grande amigo Wagner Epifânio da Cruz do Laboratório de Dinâmica e Vibrações, por todo suporte e paciência no desenvolvimento e montagem de peças para tornar esse projeto possível.

À PUC-Rio e a CAPES, pelos auxílios concedidos durante esses quatro anos e meio de Doutorado, sem os quais a conclusão desse trabalho não seria possível.

Resumo

Pereira, Marcelo da Cruz; Weber, Hans Ingo. **Dinâmica de sistemas pendulares e giroscópicos por atuação interna de controles não Lineares.** Rio de Janeiro, 2016. 119p. Tese de Doutorado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Esta tese apresenta o estudo dinâmico de três sistemas pendulares e de um sistema de corpo livre no espaço com 3 graus de liberdade. O primeiro sistema pendular consiste de um pêndulo acoplado ao centro de uma roda, que rola sem escorregar na direção horizontal, enquanto o segundo, se baseia num pêndulo simples, porém com comprimento variável, que ao mudar seu tamanho consegue ganhar/perder energia para aumentar/diminuir a amplitude de seu movimento e finalmente o terceiro está baseado num pêndulo duplo que, a despeito de restrições impostas ao movimento consegue inserir/retirar energia do sistema de forma similar ao segundo. O modelo de corpo livre no espaço está baseado na suspensão cardânica de um giroscópio e se utiliza de um modelo didático real de um giroscópio para observação das características dinâmicas. A partir destes exemplos estudou-se formas de controle não-linear para movimentar os sistemas de maneira a utilizar-se da mudança de posição interna do centro de massa para injetar e retirar energia dos sistemas. Foram gerados modelos matemáticos simulados no Simulink valendo-se do Matlab para análise, e geradas animações também com o Matlab para melhor observação dos efeitos. Em paralelo, para dois destes sistemas foram construídos em bancada experimentos para comprovação dos resultados numéricos, e os resultados são comparados em cada caso, analisando as diferenças. Ao final, todas as observações sobre os estudos foram analisadas, e comentários feitos baseados nos resultados, além de sugerir trabalhos futuros.

Palavras-chave

Sistema Dinâmico; Pêndulo; Giroscópio; Controle Não-Linear; Centro de Massa; Inércia; Sistema Caótico; Matlab.

Abstract

Pereira, Marcelo da Cruz; Weber, Hans Ingo (Advisor). **Dynamics of pendulum and gyroscopic systems with inner actuation by a non-linear controller.** Rio de Janeiro, 2011. 119p. Doctorate Thesis - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

This thesis presents the study of the dynamics of three pendulum systems and a 3DoF free body in space. The first pendular system is based on a simple pendulum coupled to the center of a wheel that translates horizontally without slip; while the second system is based on a simple pendulum, with variable length, which is able to acquire/lose energy to grow/diminish the amplitude of its movement; and finally the third one is based on a double pendulum that, in spite of movement restrictions, can as well inject/drop energy like the second system. The free body in space is based on a real gyroscope for didactical use, which is helpful for the observation of the dynamic characteristics of the motion. Using these examples a non-linear control was designed to drive the system by using the property that changing the internal position of the center of mass it is possible to inject or to subtract energy from the systems. Mathematical models were simulated with Simulik software, Matlab was used for the analysis, and animations were created also with Matlab for a better sight of the effects. In parallel, there were developed 2 test rig systems for verification of the numerical results. In the conclusions all the considerations about the study were analyzed, and comments made on the results, as well also future developments are suggested.

Keywords

Dynamic System; Pendulum; Gyroscope; Non-linear Control; Center of Mass; Inertia; Chaotic System; Matlab

Sumário

1 Introdução	20
1.1. De satélites para pêndulos, de pêndulos para satélites	22
1.2. O que é o caos?	23
1.3. Revisão Bibliográfica	25
1.4. Terminologia	26
1.4.1. Vetores e Matrizes	26
1.4.2. Sistema de referencia	27
1.4.3. Matriz de Transformação de Coordenadas	27
1.4.4. Matriz de Orientação e Velocidade Angular	28
1.5. Motivação e objetivos	29
1.6. Descrição da tese	30
2 Modelos Estudados	32
2.1. Pêndulo inserido em uma roda	32
2.1.1. Modelo do sistema roda-pêndulo	32
2.1.2. Controle usado para o modelo roda-pêndulo	37
2.2. Pêndulo auto alongável	39
2.2.1. Modelo do sistema de pêndulo auto alongável	40
2.2.2. Controle usado para o modelo do pêndulo auto alongável	44
2.2.3. Atuando com outros parâmetros	50
2.3. Pêndulo duplo com restrições	52
2.3.1. Modelo do sistema de pêndulo duplo com restrição	53
2.3.2. Controle do sistema	59
2.3.3. Simulações no pêndulo duplo	61
2.3.4. Outros parâmetros	65
3 Projetos experimentais	67
3.1. Pêndulo Auto Alongável	69
3.1.1. Primeira comparação	70
3.1.2. Segunda comparação	71
3.1.3. Relatório das comparações	72
3.2. Pêndulo Duplo	73

3.2.1. Primeira comparação	74
3.2.2. Segunda comparação	76
3.2.3. Relatório das comparações	77
4 Rotações no espaço	78
4.1. Equacionamento do corpo em suspensão cardânica	78
4.1.1. Corpo achatado	89
4.1.2. Corpo alongado	91
4.1.3. Corpo com rotação instável	93
4.2. Controle desenvolvido	94
4.2.1. Primeiro controle desenvolvido – não linear simples	95
4.2.2. Segundo controle desenvolvido – não linear composto	100
4.2.3. Terceiro controle desenvolvido – não linear cruzado	108
4.3. Análise dos resultados	109
5 Conclusões e trabalho futuros	111
5.1. Conclusões	111
5.2. Trabalhos futuros	113
Referências bibliográficas	115

Lista de figuras

Figura 1.1 – Imagem do filme Le Voyage Dans La Lune,	
curta-metragem de 1902 de Georges Miélès, inspirado no livro	
de Julio Verne, Da Terra À Lua.	22
Figura 1.2 – De pêndulo para giroscópio e vice-versa	22
Figura 1.3 – Giroscópio de Magnus, da PHYWE	30
Figura 2.1 – Detalhe da barra inseria na roda	32
Figura 2.2 – Diagrama de forças na roda	33
Figura 2.3 – Diagrama de forças na barra	33
Figura 2.4 – Visualização criada no MATLAB	35
Figura 2.5 – Roda com o pêndulo sem aplicação de torque	36
Figura 2.6 – Roda com o pêndulo com torque constante	36
Figura 2.7 – Sistema com controle PID	38
Figura 2.8 – Deslocamento da roda ao longo da simulação	39
Figura 2.9 – Trajetória da ponta do pêndulo com controle	
proposto no livro	40
Figura 2.10 – Modelo do pêndulo auto alongável	41
Figura 2.11 – Nova trajetória da ponta do pêndulo alterando a	
equação de controle	45
Figura 2.12 – Esquema de controle simplificada	46
Figura 2.13 – Gráficos da rotina de rotação continua do pêndulo	47
Figura 2.14 – Gráficos da rotina de aumento e diminuição do	
movimento do pêndulo	48
Figura 2.15 – Plano fase da rotina de aumento e diminuição do	
movimento do pêndulo	49
Figura 2.16 – Gráfico da rotina da diminuição do movimento do	
pêndulo por atrito	49
Figura 2.17 – Plano fase da rotina da diminuição do movimento	
do pêndulo por atrito	50
Figura 2.18 – Representação de várias simulações	51
Figura 2.19 – Corte do gráfico tridimensional em c = 0,015	52

Figura 2.20 – Comparação entre o sistema anterior e o novo sistema	53
Figura 2.21 – Modelo estudado	53
Figura 2.22 – Diagrama de corpo livre do corpo 1	54
Figura 2.23 – Diagrama de corpo livre do corpo 2	56
Figura 2.24 – Projeção do pêndulo externo sobre o interno	60
Figura 2.25 – Gráficos da rotina de rotação continua, com k = 0,28	62
Figura 2.26 – Gráficos da rotina de rotação continua, com k = 0,2	63
Figura 2.27 – Gráficos da rotina de rotação continua, com k = 0,35	63
Figura 2.28 – Gráficos da rotina de rotação continua e	
desaceleração, com k = 0,28	64
Figura 2.29 – Gráficos da rotina de rotação continua e	
desaceleração, com k = 0,20	65
Figura 2.30 – Representação de várias simulações	66
Figura 3.1 – Estrutura de ferro para suportar os projetos	67
Figura 3.2 – Base da estrutura fixada pelo grampo	68
Figura 3.3 – Detalhe do encoder na estrutura	68
Figura 3.4 – Placa de aquisição de dados	68
Figura 3.5 – Modelo real do pêndulo auto alongável	69
Figura 3.6 – Detalhe do servo no pêndulo	70
Figura 3.7 – Comparação de ângulo e velocidade do sistema	
teórico e prático para o primeiro teste do pêndulo alongável	71
Figura 3.8 – Comparação de ângulo e velocidade do sistema	
teórico e prático para o segundo teste do pêndulo alongável	72
Figura 3.9 – Modelo real do pêndulo duplo	73
Figura 3.10 – Detalhe do servo preso na haste	73
Figura 3.11 – Detalhe da barra de alumínio com CM podendo variar	74
Figura 3.12 – Comparação de ângulo e velocidade do sistema	
teórico e prático para o primeiro teste	75
Figura 3.13 – Comparação de ângulo e velocidade do sistema	
teórico e prático para o segundo teste	76
Figura 4.1 – Nome das partes do giroscópio	79
Figura 4.2 – Esquema de torques e o eixo do quadro externo	80
Figura 4.3 – Esquema dos torques e o eixo do quadro interno	81
Figura 4.4 – Torque e eixo do rotor	82

Figura 4.5 – Pontos do quadro externo	84
Figura 4.6 – Pontos do quadro interno	85
Figura 4.7 – Visualização criada no MATLAB	88
Figura 4.8 – Teste do corpo achatado com condições iniciais	
nulas, exceto a velocidade do rotor	90
Figura 4.9 – Teste do corpo achatado com condição inicial de	
$\dot{\beta}_0 = 0,1 \text{ rad/s}$	90
Figura 4.10 – Teste do corpo achatado com condição inicial de	
$\dot{\beta}_0 = 1 \text{ rad/s}$	91
Figura 4.11 – Teste do corpo alongado com condição inicial	
$\dot{\beta}_0 = 1 \text{ rad/s.}$	92
Figura 4.12 – Teste do corpo alongado com condição inicial	
$\dot{\beta}_0 =$ 7 rad/s.	92
Figura 4.13 – Teste do corpo criticamente instável com condição	
inicial $\dot{\beta}_0 = 0,1 \text{ rad/s}$	93
Figura 4.14 – Teste do controle em α e condição inicial $\dot{\alpha}_0$ = 1 rad/s	
e $\dot{\beta}_0 = 0$ rad/s	96
Figura 4.15 – Teste do controle em α e condição inicial $\dot{\beta}_0$ = 1 rad/s	
e $\dot{\alpha}_0 = 0$ rad/s	97
Figura 4.16 – Teste do controle em β e condição inicial $\dot{\alpha}_0$ = 1 rad/s	
e $\dot{\beta}_0 = 0$ rad/s	98
Figura 4.17 – Teste do controle em β e condição inicial $\dot{\beta}_0$ = 1 rad/s	
e $\dot{\alpha}_0 = 0$ rad/s	99
Figura 4.18 – Teste do controle não linear composto, atuando em 2s	101
Figura 4.19 – Teste do controle não linear composto, atuando em 8s	102
Figura 4.20 – Teste do controle não linear composto, atuando em 12s	102
Figura 4.21 – Energias nos quadros e no rotor ao longo	
da simulação (sem atuação)	103
Figura 4.22 – Velocidade final do rotor atuando em um	
determinado instante	104

Figura 4.23 – Energia total do rotor atuando em um	
determinado instante	104
Figura 4.24 – Teste do controle não linear composto,	
atuando em 22 s	105
Figura 4.25 – Energia no sistema e trabalho dos atuadores,	
atuando em 22 s	106
Figura 4.26 – Velocidade final do rotor atuando em um	
determinado instante, com $\dot{\alpha}_0$ = 2 rad/s	107
Figura 4.27 – Energia final do rotor atuando em um	
determinado instante, com $\dot{\alpha}_0$ = 2 rad/s	107
Figura 4.28 – Velocidade e ângulos no corpo criticamente	
instável com atuação em 15 s e condição inicial $\dot{eta}_{_0}$ = 0,1	108

Lista de tabelas

Tabela 2.1 – Parâmetros usados para o primeiro modelo	35
Tabela 2.2 – Parâmetros usados para as simulações	46
Tabela 2.3 – Parâmetros para simulação	61
Tabela 3.1 – Valores de comparação do sistema prático	70
Tabela 3.2 – Valores de comparação do sistema prático	75
Tabela 4.1 – Parâmetros do modelo do giroscópio	89
Tabela 4.2 – Condições iniciais dos testes	95
Tabela 4.3 – Condições iniciais dos testes	100

Lista de símbolos

Símbolos Romanos

a _{Gx}	Aceleração do ponto G na direção x.
a _{Gy}	Aceleração do ponto G na direção y.
a	Vetor de aceleração angular.
СМ	Centro de massa.
CM _{res}	Centro de massa resultante.
c	Coeficiente de atrito viscoso.
e(t)	Erro no controle PID.
F _{at}	Força de atrito.
F _x	Força na direção x.
F _y	Força na direção y.
G	Ponto de centro de massa.
g	Aceleração da gravidade.
Н	Vetor de quantidade de momento angular.
I	Matriz de inércia.
k	Constante de ganho no controle.
k _p	Constante proporcional do controle PID.
k _i	Constante integral do controle PID.
k _d	Constante derivativa do controle PID.
1	Tamanho da haste no sistema roda-pêndulo.
l ₁	Distância do ponto fixo até o centro de massa fixo no
	sistema do pêndulo alongável e tamanho do ponto fixo até o
	ponto de articulação como corpo 2 do pêndulo duplo.
l_2	Comprimento do corpo 2 do pêndulo duplo.
$l_2(t)$	Distância até o centro de massa variável no sistema do
	pêndulo alongável em um instante de tempo.
1 _{min}	Tamanho mínimo do pêndulo alongável.

1 _{max}	Tamanho máximo do pêndulo alongável.
l _c	Tamanho de uma ponta fixa da haste até seu centro de
massa.	
m	Massa da haste, no sistema roda-pêndulo.
m ₁	Massa da parte fixa no sistema de pêndulo alongável e
	massa do corpo 1 no pêndulo duplo.
m ₂	Massa da parte variável no sistema de pêndulo alongável e
	massa do corpo 2 no pêndulo duplo.
Μ	Massa da roda, no sistema roda-pêndulo.
Μ	Vetor de momentos.
\mathbf{M}_{0}	Momento resultante no ponto O do pêndulo duplo.
\mathbf{M}_{1}	Momento resultante no ponto A do pêndulo duplo.
\mathbf{M}_{Ay}	Componente do momento em A na direção y.
\mathbf{M}_{Az}	Componente do momento em A na direção z.
\mathbf{M}_{Bx}	Componente do momento em B na direção x.
$M_{\scriptscriptstyle Bz}$	Componente do momento em B na direção z.
M _{Cx}	Componente do momento em C na direção x.
\mathbf{M}_{Cy}	Componente do momento em C na direção y.
Ν	Força normal.
\mathbf{N}_0	Força normal no ponto O do pêndulo duplo.
N_1	Força normal no ponto A do pêndulo duplo.
0	Origem do sistema de coordenadas.
r	Raio da roda.
r	Vetor de tamanho.
SR	Sistema de referência.
S ₁	Tamanho do ponto fixo até o centro de massa do corpo 1 no
	sistema do pêndulo duplo.
s ₂	Tamanho do ponto A até o centro de massa do corpo 2 no
	sistema do pêndulo duplo.
${}^{F}\mathbf{T}^{\mathcal{Q}}$	Matriz de transformação de coordenadas de F para Q

${}^{Q}\mathbf{T}^{R}$	Matriz de transformação de coordenadas de Q para R
$^{R}\mathbf{T}^{S}$	Matriz de transformação de coordenadas de R para S
Т	Torque.
Т	Vetor de torques.
T ₀	Torque no ponto O do pêndulo duplo.
T ₁	Tração no ponto A do pêndulo duplo.
T ₀₁	Torque entre o quadro externo e o solo, no giroscópio.
$\overline{\mathrm{T}}_{_{01}}$	Expressão adimensional do torque $T_{\!\scriptscriptstyle 01}$ normalizado pela
	inércia do rotor na direção z.
T ₁₂	Torque entre o quadro externo e o interno, no giroscópio.
\overline{T}_{12}	Expressão adimensional do torque ${\rm T}_{\rm l2}$ normalizado pela
	inércia do rotor na direção z.
T ₂₃	Torque entre o quadro interno e o rotor, no giroscópio.
$\overline{\mathrm{T}}_{_{23}}$	Expressão adimensional do torque ${\rm T}_{\rm 23}$ normalizado pela
	inércia do rotor na direção z.
t	Tempo.
u(t)	Saída do controle PID.

Símbolos Gregos

α_0	Condição inicial do ângulo a.
α	Ângulo de rotação.
ά	Velocidade angular.
ä	Aceleração angular.
β _o	Condição inicial do ângulo β .
β	Ângulo de rotação.
β	Velocidade angular.
β	Aceleração angular.
γ_0	Condição inicial do ângulo y .
γ	Ângulo de rotação.

γ̈́	Velocidade angular.
Ϋ	Aceleração angular.
φ	Ângulo de rotação.
φ	Velocidade angular.
φ̈́	Aceleração angular.
ω	Elemento linear de velocidade angular.
ω	Vetor de velocidades angulares.
õ	Matriz antissimétrica associada ao vetor de velocidades
	angulares $\boldsymbol{\omega}$.
$\mu_{\rm E}$	Termo adimensional de inércia do quadro externo do
	giroscópio normalizado pela inércia do rotor na direção z.
μ_{A}	Termo adimensional de inércia do quadro interno do
	giroscópio normalizado pela inércia do rotor na direção z.
μ_1	Termo adimensional de inércia na direção x do giroscópio
	normalizado pela inércia do rotor na direção z.
μ_2	Termo adimensional de inércia na direção y do giroscópio
	normalizado pela inércia do rotor na direção z.

PUC-Rio - Certificação Digital Nº 1212854/CA

"Nós adoramos o caos, porque adoramos produzir ordem"

M.C. Escher