

Martha Lissette Sánchez Cruz

Caracterização física e mecânica de colmos inteiros do bambu da espécie *Phyllostachys aurea*: Comportamento à flambagem

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestrado pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio. Área de concentração: Estruturas.

Orientador: Prof. Khosrow Ghavami

Rio de Janeiro Agosto de 2002

Martha Lissette Sánchez Cruz

Caracterização física e mecânica de colmos inteiros do bambu da espécie *Phyllostachys aurea* : Comportamento à flambagem

> Dissertação apresentada como requisito parcial para obtenção do grau de Mestrado pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> > **Prof. Khosrow Ghavami** Orientador Departamento de Engenharia Civil – PUC-Rio

> > > Prof. Normando Perazzo Barbosa

Universidade Federal da Paraíba

Prof. Paulo Batista Gonçalves Departamento de Engenharia Civil – PUC-Rio

> Prof. Felipe José da Silva Pesquisador IME

> Prof. Clelio Thaumaturgo

Prof. Ney Augusto Dumont Coordenador Setorial do Centro Técnico Científico – PUC-Rio Rio de Janeiro, 05 de agosto de 2002 Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Martha Lissette Sánchez Cruz

Graduou-se em Engenharia Hidráulica na Faculdade de Engenharia Civil do Instituto Superior Politécnico José Antonio Echeverria , Cidade da Havana, Cuba, em 1989. Em 1994 cursou Obras Estruturais. Desenvolveu projetos hidráulicos e de saneamento ambiental na Cidade da Havana.

Ficha Catalográfica

Sánchez Cruz, Martha Lissette

Caracterização física e mecânica de colmos inteiros do bambu da espécie *Phyllostachys aurea* : Comportamento à flambagem / Martha Lissette Sánchez Cruz; orientador: Khosrow Ghavami. – Rio de Janeiro : PUC, Departamento de Engenharia Civil, 2002.

[20], 114 f. : il. ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

Engenharia civil – Teses. 2. Bambu. 3.
 Propriedades físicas. 4. Propriedades mecânicas. 5.
 Propriedades mesoestruturais. 6. *Phyllostachys aurea*.
 Flambagem. 8. Carga crítica. I. Ghavami, Khosrow.
 II. Pontifícia Universidade Católica do Rio de Janeiro.

PUC-Rio - Certificação Digital Nº 0025026/CA

A meu filho Ariel

AGRADECIMENTOS

Ao professor Khosrow Ghavami, por ter me dado a possibilidade de trabalhar com ele, pela orientação, e pela bibliografia cedida para a realização deste trabalho.

Ao Sr Luiz Carlos pela doação dos colmos utilizados nesta pesquisa.

Aos meus pais, pelo carinho e dedicação com que cuidaram de meu pequeno filho, durante estes dois anos de estudos.

Ao meu esposo e amigo Gil, por ter compartilhado comigo os momentos difíceis, e por sua inigualável ajuda, compreensão e amor.

Ao meu filho Ariel, por ter aceitado com saúde e inteligência a separação.

A minha família, pelo apoio emocional e por contribuir para a educação de meu filho. A minha falecida avó Ana, por ter acreditado sempre em min.

Ao professor Sidnei, pela colaboração na utilização do Processamento Digital de Imagens.

Aos professores Clelio Thaumaturgo e Felipe José da Silva pelas imagens obtidas no LME do IME.

A Albanise Barbosa Marinho, pela amizade, ajuda e bibliografia cedida ao longo desta pesquisa. Aos amigos Consuelo e Jesus, pelo apoio e ajuda oferecidos na conclusão do trabalho. A Sylvia Pecegueiro, pelo interesse mostrado no desenvolvimento de minha pesquisa.

A Conrado de Souza, pela ajuda oferecida no processamento das imagens. Ao Marcelo do Laboratório de Microscopia Ótica, pela colaboração na preparação das amostras.

Aos técnicos do LEM, José Zenilson, Euclides, Evandro e Haroldo, pela ajuda nos trabalhos experimentais e pelos momentos compartilhados no Laboratório. Aos técnicos do ITUC, em especial ao Luciano e Ubiratan, pela ajuda na realização dos ensaios mecânicos. Ao Edson, do Van der Graff, pela elaboração das peças para os testes de flambagem.

A todos os professores do DEC- Estruturas, pelos conhecimentos adquiridos durante o curso. A Ana Roxo e a Fátima, pela atenção e ajuda.

A CAPES, pela ajuda financeira, que possibilitou minha estada no Brasil, durante estes dois anos de estudos.

RESUMO

Sánchez Cruz, Martha Lissette; Ghavami, Khosrow. Caracterização física e mecânica de colmos inteiros de bambu da espécie *Phyllostachys aurea*: Comportamento à flambagem. Rio de Janeiro, 2002. 136p. Dissertação de Mestrado - Departamento de Engenharia Civil, Área Estruturas. Pontificia Universidade Católica do Rio de Janeiro.

Para o uso do bambu como material de engenharia é necessário realizar uma análise estatística completa das propriedades físicas, mecânicas e mesoestruturais dos colmos. Desde 1979, no Departamento de Engenharia Civil da PUC-Rio foram desenvolvidos, sob a orientação do professor Khosrow Ghavami, vários programas de investigação para o emprego do bambu e fibras vegetais na construção de edificações de baixo custo, substituindo produtos de asbesto cimento e de materiais poluentes e não renováveis.

Como parte desta linha de pesquisa, pretende-se continuar os estudos para estabelecer as propriedades dos bambus apropriados para serem utilizados na construção civil. O presente trabalho concentra-se na caracterização da espécie *Phyllostachys aurea*, tão utilizada no mundo do artesanato e arquitetura pela sua beleza, porem tão pouco estudada no campo de engenharia, para que os resultados obtidos possam contribuir para a valorização desta espécie, incentivando seu uso na construção civil.

Esta dissertação tem como objetivos principais: caracterizar as propriedades físicas, mecânicas e mesoestruturais dos colmos inteiros de bambu da espécie *Phyllostachys aurea*, analisando a influência das imperfeições geométricas iniciais no comportamento à flambagem . A determinação experimental das propriedades mecânicas dos colmos de bambu submetidos a ensaios de tração, cisalhamento e compressão são apresentadas, analisando-se a influência dos tratamentos preservativos na resistência mecânica dos colmos.

Palavras-chave

Bambu, propriedades mecânicas, propriedades físicas, propriedades mesoestruturais, *Phyllostachys aurea*, flambagem, carga critica.

ABSTRACT

Sánchez Cruz, Martha Lissette; Ghavami, Khosrow (Advisor). **Physical** and mechanical characteristics of the entire bamboo *Phyllostachys aurea*: **Buckling behavior**. Rio de Janeiro, 2002. 136p. MSc Dissertation -Departamento de Engenharia Civil, Área Estruturas. Pontificia Universidade Católica do Rio de Janeiro.

The use of bamboo in civil construction requires a thorough analysis of its physical, mechanical and mesostructural properties. For this purpose several investigations have been carried out in the Civil Engineering Department at PUC-Rio since 1979. Other vegetal fibers have been studied as well for their feasibility to be used as low cost building materials in order to substitute asbestos cement products in addition to non-renewable and polluting materials such as steel and aluminum.

This present study is the continuation of the investigation to establish the engineering properties of the bamboo's appropriate for civil construction. This work concentrates on the bamboo species *Phyllostachys aurea* which is utilized frequently in the interior design and architectural project, and in general in civil construction about which there is very little scientific information in the available national and international literature.

The principal objectives of this study were to establish the physical, mechanical and mesostructural characteristics of the whole culms of the bamboo species *Phyllostachys aurea* and to analyze how its specific geometric imperfections influence the buckling behavior of the culm. The experimental analysis of the bamboo culm, concerning the static tensile, shear and compressive properties is presented as well as the influence of preservative treatments on their performance.

Key words:

Bamboo, mechanical properties, physical properties, mesoestructural properties, *Phyllostachys aurea*, buckling, critical load.

SUMÁRIO

1. Introdução

1.1. O problema da habitação popular	22
1.2. Vantagens do bambu	22
1.3. Usos na engenharia e arquitetura	24
1.4. Objetivos e estrutura do trabalho	27

2. Revisão Bibliográfica

2.1. Introdução	28
2.2. Morfologia do bambu	29
2.3. Desenvolvimento e crescimento	30
2.4. Características dos colmos	30
2.4.1. Estrutura dos nós	34
2.5. Características químicas	35
2.6. Características físicas	36
2.7. Características mecânicas	40
2.7.1. Resistência à tração	41
2.7.2. Resistência à compressão	42
2.7.3. Resistência ao cisalhamento	43
2.7.3.1. Resistência ao cisalhamento interlaminar	44
2.7.3.2. Resistência ao cisalhamento transversal	45
2.8. Estabilidade de cascas cilíndricas	46
2.8.1. Condições de contorno e deformações de pré-flambagem	48
2.8.2. Teoria fundamental de colunas	49
2.8.3. Teoria do módulo tangencial	53
2.8.4. Flambagem de colunas de bambu	54
2.9. Considerações finais	56

3. Determinação das propriedades físicas, mecânicas e mesoestruturais do bambu da espécie *Phyllostachys aurea*

3.1. Introdução	57
3.2. Tratamentos preservativos	57
3.3. Determinação das propriedades físicas	58
3.3.1 Metodologia empregada no mapeamento das propriedades	
físicas	58
3.3.2. Resultados do mapeamento das propriedades físicas	59
3.4. Análise da mesoestrutura do colmo da bambu da espécie	
Phyllostachys aurea	62
3.5. Determinação das propriedades mecânicas	66
3.5.1. Determinação da resistência à tração	67
3.5.2. Resistência ao cisalhamento	74
3.5.3. Resistência à compressão	82
3.6. Considerações finais	88

4. Flambagem de colunas de bambu

4.1.Introdução	89
4.2. Conceitos básicos para o acompanhamento dos testes	89
4.3. Principais características dos elementos ensaiados	91
4.4. Determinação experimental das imperfeições geométricas	91
4.5. Resultados do mapeamento das características geométricas	94
4.5.1. Determinação das características geométricas de	
um corpo de prova de 1800 mm de comprimento	94
4.6. Ensaio de flambagem para o elemento CP-2	98
4.6.1. Determinação da carga crítica a partir do trecho linear do	
diagrama de Southwell	100
4.6.2. Cálculo das imperfeições iniciais do diagrama de Southwell	101
4.6.3. Determinação da carga crítica a partir da fórmula de Euler	101
4.6.4. Determinação das deformações máximas durante o ensaio	
de flambagem	102

4.6.5. Determinação da curva teórica de flambagem do colmo	
de bambu	107
4.7. Resultados obtidos para os corpos de prova de comprimentos	
variáveis entre 800 e 1400 mm	111
4.7.1. Resumo das características geométricas determinadas a	
partir do mapeamento	111
5. Conclusões e sugestões para trabalhos futuros	121
6. Referencias Bibliográficas	123

Apêndice A: Imagens obtidas através de microscopia eletrônica de varredura

A.1	Microscopia de corpo de prova ensaiado à tração.	127
A.2	Microscopia de corpo de prova ensaiado ao cisalhamento	129

Apêndice B: Fotos dos Ensaios de Flambagem

B.1. Amostras de 800 mm de comprimento	130
B.2. Amostras de 1200 mm de comprimento	131
B.3. Amostras de 1400 mm de comprimento	133
B.4. Amostras de 1800 mm de comprimento	134

LISTA DE FIGURAS

Figura 1.1. Interior do Memorial Indígena em Campo Grande – MS	24
Figura 1.2. Casa de bambu em Itanhangá – RJ	24
Figura 1.3. Ponte de bambu em Stuttgart, Alemanha	25
Figura 1.4. Ponte de bambu na Colômbia	25
Figura 1.5. Vistas frontal e interna da Catedral construída em bambu	
na Colômbia	25
Figura 1.6. Vista frontal da Boate Cozumel na Lagoa em fase de	
construção e revestimento com barro	26
Figura 1.7. Vista frontal da Boate Cozumel concluída	26
Figura 2.1. Seção transversal do colmo de bamboo	31
Figura 2.2. Variação da fração volumétrica das fibras na espessura	
do colmo de bambu	32
Figura 2.3. Gráfico da variação do volume de fibras ao longo da espessura	
de uma amostra extraída de um colmo da espécie	
Phyllostachys heterocycla pubescens (Mosó).	33
Figura 2.4. Gráfico da variação do volume de fibras ao longo da espessura	
de uma amostra extraída de um colmo da espécie	
Dendrocalamus giganteus	33
Figura 2.5. Anastomose do nó	35
Figura 2.6. Variação do comprimento internodal de colmos de bambu	38
Figura 2.7. Variação do diâmetro externo ao longo do comprimento	
dos colmos	39
Figura 2.8. Variação da espessura da parede ao longo do comprimento	
dos colmos de bambu	39
Figura 2.9. Dimensões dos corpos de prova para ensaio de	
cisalhamento interlaminar	44
Figura 2.10. Trajetórias de equilíbrio das cascas cilíndricas	47
Figura 2.11. Comportamento da casca cilíndrica com imperfeições iniciais	48
Figura 2.12. Colunas com excentricidade e imperfeição inicial	49
Figura 2.13. Curva carga - deflexão de colunas com imperfeição inicial	50
Figura 2.14. Momento desenvolvido numa coluna rígido plástica.	52

Figura 2.15. Curva carga - deflexão de uma coluna rígido plástica	53
Figura 2.16. Diagrama carga vs. deslocamento obtido a partir de	
ensaio de flambagem para a espécie Dendrocalamus	
giganteus	55
Figura 3.1. Comprimento internodal médio ao longo do colmo inteiro	
de bambu da espécie Phyllostachys aurea	59
Figura 3.2. Diâmetro exterior médio ao longo do colmo inteiro de	
bambu da espécie Phyllostachys aurea	60
Figura 3.3. Espessura média ao longo do colmo inteiro de bambu	
da espécie Phyllostachys aurea	60
Figura 3.4. Variação da distribuição das fibras ao longo da espessura	
do colmo de bambu Phyllostachys aurea	63
Figura 3.5. Variação do volume de fibras ao longo da espessura da	
parede da região basal	64
Figura 3.6. Variação do volume de fibras ao longo da espessura	
parede da região intermediária	64
Figura 3.7. Variação do volume de fibras ao longo da espessura da	
parede do topo	65
Figura 3.8. Variação do volume de fibras ao longo do comprimento	
do colmo	66
Figura 3.9. Forma e dimensões do corpo de prova	67
Figura 3.10. Corpos de prova para ensaio de tração	68
Figura 3.11. Colocação do corpo de prova na INSTROM 500	69
Figura 3.12. Curvas tensão - deformação obtidas durante o ensaio	
de tração. Amostras sem nó	69
Figura 3.13. Curvas tensão – deformação obtidas durante o ensaio	
de tração. Amostras com nó	70
Figura 3.14. Rupturas ocorridas em ensaio de tração	72
Figura 3.15. Modo de ruptura à tração de amostra extraída da região	
internodal do colmo de Phyllostachys aurea	72
Figura 3.16. Microestrutura de corpo de prova ensaiado à tração	73
Figura 3.17. Dimensionamento dos cortes transversais com respeito	
ao eixo de simetria	75

Figura 3.18. Posição da amostra na INSTRON 500	76
Figura 3.19. Ruptura do corpo prova	76
Figura 3.20. Modo de ruptura das fibras no ensaio de cisalhamento	
interlaminar	80
Figura 3.21. Dimensões dos corpos de prova para ensaio de	
cisalhamento transversal	81
Figura 3.22. Peças de aço para fixação dos corpos de prova na AMSLER	81
Figura 3.23. Ensaio de cisalhamento transversal	81
Figura 3.24. Dimensões dos corpos de prova	83
Figura 3.25. Ruptura de corpo de prova	83
Figura 3.26. Curvas tensão - deformação obtidas no ensaio à compressão.	
Amostras sem nó	86
Figura 3.27. Curvas tensão - deformação obtidas no ensaio à compressão.	
Amostras com nó	86
Figura 4.1. Mapeamento das imperfeições iniciais	92
Figura 4.2. Leitura com paquímetro digital	92
Figura 4.3. Anel de aço para posicionamento dos LVDT	93
Figura 4.4. Posição dos LVDT no ensaio	93
Figura 4.5. Rótulas utilizadas no ensaio	93
Figura 4.6. Posição do corpo de prova na AMSLER	93
Figura 4.7. Perfil do raio externo no corpo de prova	96
Figura 4.8. Perfil da espessura no corpo de prova	96
Figura 4.9. Perfil de área em corpo de Prova de $L = 1800 \text{ mm}$	97
Figura 4.10. Perfil de inércia geométrica em corpo de prova de L=800 mm	97
Figura 4.11. Perfil de inércia física em corpo de prova de $L = 1800 \text{ mm}$	97
Figura 4.12. Curva carga – deslocamento para o elemento CP-2	99
Figura 4.13. Diagrama de Southwell para elemento de $L = 1800 \text{ mm}$	99
Figura 4.14. Trecho linear do diagrama de Southwell	100
Figura 4.15. Deformação no eixo comprimido em L/2	102
Figura 4.16. Deformação no eixo tracionado em L/2	103
Figura 4.17. Posição dos strain gages no corpo de prova	103
Figura 4.18. Ensaio de flambagem para corpo de prova de L=1800 mm	104
Figura 4.19. Deflexão total do elemento inicialmente mais deformado	105

Figura 4.20. Deformações ocorridas no CP-1 durante o ensaio de	
flambagem. Eixo côncavo	105
Figura 4.21. Deformações ocorridas no CP-1 durante o ensaio de	
flambagem	106
Figura 4.22. Deformações ocorridas no CP-1 durante o ensaio de	
flambagem. Eixo convexo	106
Figura 4.23. Deformações ocorridas no CP-1 durante o ensaio de	
flambagem	107
Figura 4.24. Primeira componente da tensão crítica	108
Figura 4.25. Segunda componente da tensão crítica	109
Figura 4.26. Terceira componente da tensão crítica	109
Figura 4.27. Quarta componente da tensão crítica	110
Figura 4.28. Curva tensão – esbeltez determinada experimentalmente	111
Figura 4.29. Curvas carga – deslocamento dos testes de flambagem	112
Figura 4.30. Trecho linear do diagrama de Southwell	113
Figura 4.31. Esmagamento progressivo das fibras	114
Figura 4.32. Colapso do elemento	114
Figura 4.33. Deformações limites ocorridas durante o ensaio de CP-7	115
Figura 4.34. Deformações ocorridas no eixo côncavo do elemento	115
Figura 4.35. Deformações do elemento no eixo comprimido	116
Figura 4.36. Deformações do elemento no eixo tracionado	117
Figura 4.37. Posição dos strain gages na proximidade do nó	117
Figura 4.38. Ensaio de flambagem para corpo de prova de 1400 mm	118
Figura 4.39. Posição dos strain gages nas proximidades do nó	
Corpo de prova de $L = 1400 \text{ mm}$	119
Figura A.1. Microscopia de corpo de prova ensaiado à tração.	
Escala 10 µm. Fator de ampliação x 1300	127
Figura A.2. Microscopia de corpo de prova ensaiado à tração.	
Escala 100 µm. Fator de ampliação x 200	127
Figura A.3. Microscopia de corpo de prova ensaiado à tração.	
Escala 50 µm. Fator de ampliação x 300	128
Figura A.4. Microscopia de corpo de prova ensaiado à tração.	
Escala 100 µm. Fator de ampliação x 100	128

Figura A.5. Microscopia de corpo de prova ensaiado ao cisalhamento	
interlaminar. Escala 50 µm. Fator de ampliação x 350	129
Figura A.6. Microscopia de corpo de prova ensaiado ao cisalhamento	
interlaminar. Escala 20 µm. Fator de ampliação x 750	129
Figura B.1. Posicionamento do elemento na AMSLER	130
Figura B.2. Com aumento da deflexão os LVDT saiam da posição	130
Figura B.3. Ensaio de flambagem de elemento de 800 mm de comprimento	131
Figura B.4. Ensaio do elemento CP- 5	131
Figura B.5. Colocação dos strain gages na proximidade do nó	132
Figura B.6. Deflexão ocorrida durante o teste	132
Figura B.7. Ensaio de flambagem de elemento de 1400 mm de comprimento	133
Figura B.8. Deflexões ocorridas em L/2	133
Figura B.9. Flambagem de elemento de 1800 mm de comprimento	134
Figura B.10. Após retirada a carga o elemento volta a seu estado inicial	134

LISTA DE TABELAS

Tabela 1.1. Relação energia de produção – unidade de tensão para	
materiais de construção	23
Tabela 1.2. Relação resistência à tração – peso específico	23
Tabela 2.4.1. Dimensões das fibras para diferentes espécies de bambu	34
Tabela 2.5.1. Propriedades mecânicas da celulose sob tração	36
Tabela 2.6.1. Características físicas de diferentes espécies de bambu	
estudadas na PUC-Rio	38
Tabela 2.7.1. Resistência mecânica da espécie Phyllostachys bambusoide	40
Tabela 2.7.2. Tensão à tração das partes basal, intermediário e topo	
do bambu Dendrocalamus giganteus	41
Tabela 2.7.3. Resistência à compressão das partes basal, intermediária	
e topo do bambu <i>Dendrocalamus giganteu</i> s	43
Tabela 2.7.4. Resistência ao cisalhamento interlaminar do bambu	
Dendrocalamus giganteus	45
Tabela 2.7.5. Resistência ao cisalhamento transversal às fibras.	
Valores obtidos para a parte basal, intermediária e topo	
da espécie Dendrocalamus giganteus	46
Tabela 3.3.2.1. Comparação dos valores médios de comprimento	
internodal, diâmetro exterior e espessura de parede, medidos	
experimentalmente para diferentes espécies de bambu	61
Tabela 3.3.2.2. Equações obtidas a partir da análise de regressão que	
caracterizam o comportamento físico da espécie	
Phyllostachys aurea	62
Tabela 3.4.1 Equações para determinação do volume de fibras ao	
longo da espessura do colmo	65
Tabela 3.5.1. Resultados obtidos no ensaio à tração do bambu	
Phyllostachys aurea em função do tipo de tratamento	71
Tabela 3.5.2. Comparação da resistência à tração da espécie Phyllostachys	
aurea com outras espécies estudadas na PUC-Rio	74
Tabela 3.5.3. Resistência ao cisalhamento interlaminar do bambu	
Phyllostachys aurea. Tipo de tratamento: Secagem ao ar	77

Tabela 3.5.4. Resistência ao cisalhamento interlaminar do bambu	
Phyllostachys aurea. Tipo de tratamento: Secagem ao fogo	78
Tabela 3.5.5. Resistência ao cisalhamento interlaminar do bambu	
Phyllostachys aurea. Tipo de tratamento: Banho quente	79
Tabela 3.5.6. Resultados dos ensaios de cisalhamento interlaminar	
da espécie Phyllostachys aurea	80
Tabela 3.5.7. Resistência ao cisalhamento transversal da espécie	
Phyllostachys aurea	82
Tabela 3.5.8. Resultados obtidos nos ensaios à compressão do bambu	
Phyllostachys aurea	84
Tabela 3.5.9. Comparação da resistência à compressão da espécie	
Phyllostachys aurea com outras espécies estudadas na	
PUC-Rio	85
Tabela 3.5.10. Diferenças entre a resistência à tração e à compressão para	
colmos inteiros de bambu da espécie Phyllostachys aurea	87
Tabela 4.5.1.1. Características geométricas determinadas	
experimentalmente em corpo de prova de $L = 1800 \text{ mm}$	95
Tabela 4.5.1.2. Características físicas determinadas a partir dos	
resultados obtidos no mapeamento	95
Tabela 4.6.1. Resumo do deslocamento durante o teste de flambagem	98
Tabela 4.6.5.1. Valores de tensão e esbeltez obtidos nos testes de	
flambagem	110
Tabela 4.7.1.1. Comportamento médio dos parâmetros geométricos	
para corpos de prova ensaiados em flambagem	112
Tabela 4.7.1.2. Resultados dos ensaios de flambagem	113

LISTA DE SIMBOLOS

ROMANOS

А	- área da seção transversal [mm ²]
b	- largura de coluna com seção retangular [mm]
c	- distância desde o eixo neutro da seção transversal ao extremo da superfície [mm]
d	- comprimento de coluna com seção retangular [mm]
D	- diâmetro externo [mm]
e	- excentricidade da carga no ensaio de flambagem [mm]
Е	- módulo de elasticidade [GPa]
Ec	- módulo de elasticidade do compósito [GPa]
Ef	- módulo de elasticidade da fibra [GPa]
EL	- módulo de elasticidade no sentido longitudinal à fibra [GPa]
Em	- módulo de elasticidade da matriz [GPa]
E _{South}	- módulo de elasticidade longitudinal calculado a partir do diagrama de
	Southwell [GPa]
Et	- módulo de elasticidade no sentido transversal à fibra [GPa]
E _T	- módulo tangencial [GPa]
E_1	- módulo de elasticidade do extremo com menor seção transversal
	[GPa]
G	- módulo de elasticidade transversal [MPa]
Ι	- momento de inércia [mm ⁴]
I_{f}	- inércia física [mm ⁴]
Ig	- inércia geométrica [mm ⁴]
I _{média}	- momento de inércia médio [mm ⁴]
I_1	- momento de inércia do extremo com menor seção transversal [mm ⁴]
k	- fator de gradiente de densidade [adimensional]
L	- comprimento do elemento [mm]
M _c	- momento fletor [N-mm ²]
M _p	- momento plástico de colunas rígido plásticas [N-mm ²]
N	- número de interno [adimensional]
Р	- carga de compressão aplicada nos testes de flambagem [kN]

P _{CR}	- carga máxima obtida em ensaio de compressão de cilindro curto [kN]
\mathbf{P}_{E}	- carga crítica de Euler [kN]
P _{EXP}	- carga crítica determinada no ensaio de flambagem [kN]
P _{máx}	- máxima carga aplicada nos testes de resistência mecânica [N]
P _{média}	- carga média aplicada em ensaios mecânicos [kN]
\mathbf{P}_{\min}	- carga mínima aplicada em ensaios mecânicos [kN]
P _{SOUTH}	- carga crítica de Southwell [kN]
P _{Teo}	- carga crítica determinada teoricamente [kN]
Py	- carga de escoamento [kN]
r	- raio de giração [mm]
R	- raio externo [mm]
R^2	- coeficiente de correlação [adimensional]
t	- espessura da parede do colmo [mm]
$V_{\rm f}$	- volume de fibras [%]
Х	- leitura efetuada com paquímetro no mapeamento [mm]

GREGOS

δ	- deflexão na metade da altura da coluna [mm]
$\delta_{\rm L}$	- deflexão lateral [mm]
δ_{T}	- deflexão total [mm]
$\delta_{\rm v}$	- deslocamento vertical da prensa [mm]
δ_0	- imperfeição geométrica inicial [mm]
δ_{0Sout}	- imperfeição inicial determinada a partir do diagrama de Southwell
	[mm]
3	- deformação do material [adimensional]
ν	- coeficiente de Poisson [adimensional]
η	- coeficiente tomado em função da esbeltez da coluna [adimensional]
$\sigma_{cmáx}$	- resistência à compressão máxima [MPa]
σ_{cmin}	- resistência à compressão mínima [MPa]
σ_{e}	- tensão média da seção transversal para coluna com imperfeição
	inicial [MPa]
$\sigma_{\rm E}$	- tensão critica de Euler [MPa]

σ_{M}	- tensão devido ao momento fletor [MPa]
$\sigma_{\rm N}$	- tensão de flexão [MPa]
σ_{S}	 tensão média da seção transversal para coluna com carregamento excêntrico [MPa]
$\sigma_{tm\acute{a}x}$	- resistência à tração máxima [MPa]
$\sigma_{tmédia}$	- resistência à tração média [MPa]
σ_{tmin}	- resistência à tração mínima [MPa]
σ_y	- tensão de escoamento da coluna [MPa]
λ	- esbeltez da coluna [adimensional]
τ	- tensão a cisalhamento [MPa]
$\tau_{m\acute{e}dia}$	- tensão de cisalhamento média [MPa]