
Georges Miranda Spyrides

Branch-cut-and-price approach for Process
Discovery

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Marcus Vinicius Soledade Poggi de Aragão

Rio de Janeiro
March 2019

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Georges Miranda Spyrides

Branch-cut-and-price approach for Process
Discovery

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
undersigned Examination Committee.

Prof. Marcus Vinicius Soledade Poggi de Aragão
Advisor

Departamento de Informática – PUC-Rio

Prof. Hélio Côrtes Vieira Lopes
Departamento de Informática – PUC-Rio

Prof. Silvio Hamacher
Departamento de Engenharia Industrial – PUC-Rio

Rio de Janeiro, March 28th, 2019

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

All rights reserved.

Georges Miranda Spyrides

Bachelor’s in Industrial Engineering (2013) at the Federal
University of Rio de Janeiro (UFRJ). Worked for EloGroup
as business consultant from 2013 to 2016. Since 2017 works
at GALGOS, former ATD-Lab, at PUC-Rio.

Bibliographic data
Spyrides, Georges Miranda

Branch-cut-and-price approach for Process Discovery /
Georges Miranda Spyrides; advisor: Marcus Vinicius Soledade
Poggi de Aragão. – Rio de janeiro: PUC-Rio, Departamento
de Informática, 2019.

v., 130 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Descoberta de processos. 2. Mineração de processos.
3. Programação Inteira. 4. Geração de coluna. I. Aragão,
Marcus Vinicius Soledade Poggi. II. Pontifícia Universidade
Católica do Rio de Janeiro. Departamento de Informática. III.
Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Acknowledgments

This work would not be possible without the help and support by many
special persons.

To my old friends, thanks for the patience in my absence and in my
presence, when I was absorbed by all the abstract ideas present in this work.

To my new friends, thank you for turning PUC into a second home. The
extended group from Galgos provided an excellent environment for discussing
new subjects while sharing a particular kind of humor. In special, I want to
thank Rafael, Guilherme, and Beatriz for helping me out in different parts of
the implementation of this work.

To all the professors in PUC’s Departamento de Informatica, thank you
for presenting an extensive collection of new exciting ideas. To Poggi, an ad-
visor that always made possible crossing my research roadblocks through ou-
trageously implausible paths, thanks for the opportunity of working together.

To my family, thanks for all the affection and for providing the means
during my formation and especially during this work.

Finally, this work would not be possible without the unconditional
support from my beloved Helen. Thank you, dear.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) Finance Code 001 and in part by
Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Abstract

Spyrides, Georges Miranda; Aragão, Marcus Vinicius Soledade
Poggi (Advisor). Branch-cut-and-price approach for Process
Discovery. Rio de Janeiro, 2019. 130p. Dissertação de mestrado –
Departamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.

Process Discovery amounts to determine a process model from an
event log of a business process. Many process discovery algorithms try
to synthesize a Petri net representing the log by finding places and arcs
that relate the event classes. Bergenthum et al. (2007) and van der Werf
et al. (2008) propose formulations for this problem discover one place at
a time, in which each basic solution of the set of inequalities represents
a candidate place. We propose a global integer programming formulation
that, given a log, determines all places and arcs defining a Petri net. This
model simplifies the selection of places but has an efficiency problem due to
a large number of integer variables used. We also propose a decomposition
method for the global ILP model to treat each place and their associated
constraints as a separate sub-problem. We can run the algorithm on large
synthetic instances, which is unprecedented for this kind of process miner.

Keywords
Process Discovery; Process Mining; Integer Programming; Co-

lumn generation.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Resumo

Spyrides, Georges Miranda; Aragão, Marcus Vinicius Soledade Poggi.
Uma abordagem para Mineração de Processos usando gera-
ção de colunas e cortes. Rio de Janeiro, 2019. 130p. Dissertação
de Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Descoberta de Processo significa determinar um modelo de processo
a partir de um registro histórico de eventos de um processo de negócios.
Muitos algoritmos de descoberta de processos tentam sintetizar uma rede
de Petri que representa o registro localizando locais e arcos que relacionam
as classes de eventos. Bergenthum et al (2007) e van der Werf et al. (2008)
propõem formulações para este problema descobrir um place de cada vez,
em que cada solução básica do conjunto de desigualdades representa um
lugar candidato. Propomos uma formulação global de programação inteira
que, dado um registro histórico, determina todos os places e arcos que
definem uma rede de Petri de uma só vez. Este modelo é uma alternativa
a seleção de locais, mas tem um problema de eficiência devido à grande
quantidade de variáveis inteiras usadas. Também propomos um método
de decomposição para o modelo ILP global para tratar cada place e suas
restrições associadas como um subproblema separado. Conseguimos então
executar o algoritmo em instâncias sintéticas grandes, o que é inédito para
esta classe de mineradores de processo.

Palavras-chave
Descoberta de processos; Mineração de processos; Programação

Inteira; Geração de coluna.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Table of contents

1 Introduction 14
1.1 Motivation and Research questions 18
1.2 Structure of this work 19

2 Basic concepts and definitions 21
2.1 Process mining 21
2.2 Linear Programming Formulation with Parikh vectors 22
2.3 Base formulation for a single place 23
2.4 Challenges of measuring conformance 25

3 Analysis and interpretation of the classic formulation 28
3.1 Unimodularity 28
3.2 Alphabet filtering 32
3.3 Susceptibility to outlier logs 34

4 Global Integer Programming - the compact model 36
4.1 The global model 36
4.2 Global Formulation’s auxiliary ideas 39
4.3 Global ILP Experiments 41
4.4 Results 47

5 Branch-Cut-and-Price Global formulation 49
5.1 Place oracle (Column Generation) 51
5.2 Alternative place oracles 55
5.3 Column generation stabilization 57
5.4 Cut generation 59
5.5 Branch and bound 59
5.6 Experimental setup 60
5.7 Results 67

6 Risk-prone generation of places 73
6.1 Cardinality constrained Robust Model 74
6.2 Experiments 77
6.3 Results 78

7 Discussion 81
7.1 Findings and contributions 81
7.2 Limitations and future research 82

Bibliography 85

A BCP model computational experiment detailed 89

B Risk-prone model computational experiment detailed 92

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

C Process models generated using the Branch-Cut-and-Price Model 95

D Process models generated using the Risk-Prone model 115

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

List of figures

Figure 1.1 An illustrated representation of a firing in a given Petri
net. In this Petri net it is possible to fire the sequences 〈A,B,D〉
and 〈A,C,D〉. Notice that there is an implicit Xor relationship
between B and C, because they consume tokens from the same
place. 15

Figure 1.2 Another pictorial representation of firing in a given
Petri net. In this Petri net it is possible to fire the sequences
〈A,B,C,D,E〉, 〈A,D,B,C,E〉 and even 〈A,B,D,C,E〉. Observe that
there is an implicit AND relationship between B and D because
A produces two tokens that allow each of the branches to
execute independently. Furthermore, the two places arriving at
E represent the wait to finish each of the parallel branches of
the process. Parallelism manifests itself as permutations in the
set of possible firing sequences. 16

Figure 2.1 An example of the solution. We represent with the
variables xi and yj the presence or absence of an arc incoming
or going to a transition respectively 24

Figure 2.2 Viable solutions of the classic formulation using a single
sequence language 〈A,B,C〉. Observe that there are many places
that satisfy the constraints from the model. Also observe that
imposing a minimal number of arcs yield the most simple place
candidates. 24

Figure 2.3 An example of the star model from (Rozinat2007). Every
sequence of every length is possible using the transitions that
have incoming and ongoing arcs to the same place. 26

Figure 2.4 An example of a linear enumeration model from
(Rozinat2007) . We can simply build linear models using the
language and an exclusive choice at the beginning to achieve
maximum fitness and maximum precision. We have also to take
into cnsideration the simplicity of the model as a function of the
number of arcs and transitions of the same symbol used. 27

Figure 2.5 An example of a balanced petri net from (Rozinat2007).
It does not achieve maximum fitness or precision, but it is
simple. The consequence of balancing is a model in which the
connections denote parallelism, decisions and other behaviors
useful for a business process analyst clearly. 27

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Figure 3.1 Prefixes transform into the left-hand side of the con-
straint inequalities. If the set is a closure of prefixes, we can
guarantee that for each sequence with length above one symbol
will have its immediate prefix within the closure. By immediate
prefix we mean the sequence with just the last symbol missing
of a giving sequence. Thus, if the last symbol of the sequence
σ1 is ai+1 and the last symbol of its immediate preffix sequence
σ2 is ai, we expect the left-hand side of the inequality associ-
ated to σ1 be the same as the inequality associated to σ2 added
+xai

− yaa+1 . 30
Figure 3.2 Many heuristics could be used to factor the left-hand

side matrix of the formulation. The proof we have given based
on immediate prefixes is the alternative example at the bottom
of this picture. 32

Figure 4.1 Graphical representation of the layers imagined for the
global formulation. Here the original xki and ykj variables are
depicted as a lower level in which we search for a place k.
The upper layer is a direct network between events, connecting
directly an event i to another j represented by wij variables.
Then there is the middle layer in which translates xki and ykj
into a direct connection aij between transition i that goes to
place k and transitions j that arrive from place k. The problem
becomes to cover all wij using available aij. 38

Figure 4.2 Results table. It compares the outcomes of each of the
14 small synthetic instances to 9 variant setups. It is possible to
deduce that the auxiliary ideas in the formulation do not help
much and that the intrinsic difficulty lies within the instance
itself. 47

Figure 4.3 Execution times of the experiments in seconds. Across
variants, the experiment without fixing initial variables took
much longer. The degree of freedom in the wij network increases
severely the execution times. 48

Figure 5.1 Graphical representation of the Global Model non-zeros
of the formulation. The main idea was to replicate the classi-
cal formulation k times and to enforce cohesion using general
constraints on a direct network linking events to events. A block-
structure like this with linking constraints suggests the oppor-
tunity to apply the Dantzig Wolfe decomposition method for
efficiency gain. 50

Figure 5.2 Branch-cut-and-price algorithm schematics. A recursive
procedure controls the branching of different fixations made to
the relaxed master. There is a linear solver which verifies the
reduced cost to call the pricing subproblem and the minimum
cut in the wij network graph. 50

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Figure 5.3 An example of partitioning the alphabet to form smaller
subproblems. The SCC is the first step in good implementations
of the Inductive Miner algorithm. We take the advantage that
this first step separates the alphabet into subalphabets parti-
tions that envelop inside difficult characteristics such as paral-
lelism and cycles. Each of these strongly connected components
can generate pricing problems using the filtered approach de-
scribed in 3 56

Figure 5.4 Example of the reproduction of a single log 〈a,b,d,e,g〉
in a process model. During the execution, we maintain counters
for C, P, M and R. Notice that the process model is flawed to a
point where “b” and “g” are not even transitions in the process.
Even with this characteristic we carry on forcibly activating the
transitions which do belong to the model. 63

Figure 5.5 Example of a Petri net simulation tree adapted from
Adriansyah’s paper on Measuring precision (Adriansyah2015).
The internal nodes in white represent prefixes in the simulation
of the Petri net which are present in the original event log.
In red are the leaving arcs, which mean prefixes that can be
generated by the Petri net but are not found in the event log.
The approximation of the precision measure is the unweighted
version, which is the simple division of internal nodes by the
sum of internal nodes and leaving arcs of the tree. 65

Figure 5.6 Table showing characteristics of each of the tested in-
stances and he evaluation of the best solution found by our al-
gorithm. We evaluated our algorithm by leaving arcs precision,
token replay fitness, integrality gap and execution time of the
algorithm. 68

Figure 5.7 Elapsed time by optimization milestone. Before the
algorithm starts branching, it finds a root solution. Then when
the branching starts, it finds an integer solution (Petri net) and
continues branching until it has tested all possibilities of fixating
the root solution. Notice that the first solution the algorithm
finds serves as bound for the branching procedure, and then the
algorithm will only search for branches and solutions promising
Petri nets with better objective function value. 69

Figure 5.8 A scatter plot showing the relationship between the
integrality gap and the fitness measure. The algorithm will
find integer solutions with lower and lower objective function
values relative to the root objective function. Therefore, we can
visually interpret this chart as time flowing to the right as the
algorithm progresses narrowing the integrality gap, notice that
the right corner means gap equal to zero. The formulation for
this problem seems to have a low standard integrality gap, and
the objective functions seem disconnected to the fitness measure. 70

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Figure 5.9 A scatter plot showing the relationship between the
integrality gap and the precision measure. Notice that as the
gap reduces, the objective function reduces and so the number of
arcs used to connect the Petri nets. The algorithm may eliminate
the production of unnecessary tokens that enable regions not
present in the log. 71

Figure 5.10 A scatter plot showing the relationship between the
fitness measure and the precision measure. Once we find a
solution, it does not seem to be substituted by an extremely
better one. In most of the cases, the Petri nets generated seem
to be always close in terms of results to one another. 72

Figure 6.1 Example of the additions made to the previous sub-
problem in the branch-cut-and-price schema. For each prefix
constraint belonging to the same variant, we add a binary
variable that relaxes the problem whenever its value changes
from one to zero. An additional constraint is added to control
which of the new relaxation binary variables can assume the
value 0. The idea is to allow rare variants to be more likely to
be shut down. In this particular example, we only allow for the
constraints associated with 〈A,D,E〉 to be relaxed. 76

Figure 6.2 Table showing the execution time and Objective function
for the execution of the algorithm using different values for eta.
Notice that the execution time peaks at an η = 0.7. Also, our
objective function decreases 10 units when a model has one
less arc relative to the others. We observe that the opportunity
to reduce the quantity of arcs is relatively little by decreasing
values from η (eta). 77

Figure 6.3 Fitness and Precision measures of the 12 instances as η
decreases. An η (eta) of 100% on the left is analogous to results
obtained in section 5. We can observe the progressive relaxation
of η as the lines of the chart move to the right. A counter-
intuitive result: generating places and arcs allowing the model
to ignore a large amount of history can yield better precision
while maintaining high fitness. 79

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

If you can keep your head when all about you
Are losing theirs and blaming it on you,
If you can trust yourself when all men doubt you,
But make allowance for their doubting too;
If you can wait and not be tired by waiting,
Or being lied about, don’t deal in lies,
Or being hated, don’t give way to hating,
And yet don’t look too good, nor talk too wise:

If you can dream—and not make dreams your master;
If you can think—and not make thoughts your aim;
If you can meet with Triumph and Disaster
And treat those two impostors just the same;
If you can bear to hear the truth you’ve spoken
Twisted by knaves to make a trap for fools,
Or watch the things you gave your life to, broken,
And stoop and build ’em up with worn-out tools:

If you can make one heap of all your winnings
And risk it on one turn of pitch-and-toss,
And lose, and start again at your beginnings
And never breathe a word about your loss;
If you can force your heart and nerve and sinew
To serve your turn long after they are gone,
And so hold on when there is nothing in you
Except the Will which says to them: ‘Hold on!’

If you can talk with crowds and keep your virtue,
Or walk with Kings—nor lose the common touch,
If neither foes nor loving friends can hurt you,
If all men count with you, but none too much;
If you can fill the unforgiving minute
With sixty seconds’ worth of distance run,
Yours is the Earth and everything that’s in it,
And—which is more—you’ll be a Man, my son!

Rudyard Kipling, .

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

1
Introduction

A process is a transformation phenomenon that manifests itself through a
sequence of activities and events seeking a specific goal. There are also decisions
made through this process that affects the flow of events. The understanding
of a process as a complex system of flow and decision is the first step to its
improvement, and, thus, achieving desired goals more efficiently.

It is usual for organizations to record the execution of its activities in
logs of events and activities. Complex service industries such as healthcare,
insurance, and banking are heavy-users of enterprise resource systems which
log activities performed by workers at all times. These event logs contain traces
of the execution of hundreds of formal and emerging processes. This work aims
to create an algorithm that extracts process rules and logic flow of events from
these logs. The name of this problem is Process Discovery.

The main task executed by Process Discovery algorithms is to reconstruct
a representation of a business process from its event log, which can re-enact
the event sequences back through simulation. Then, the task of discovery is the
reverse of simulating: the user wants to discover the rules from the sequences
observed. Noisy data or complex flow structures are difficult to express with
simplicity. The presence of outlier sequences and some structures such as loops
and parallel streams present in the same process are examples.

The primary challenge of process discovery algorithms is to obtain
a process model which is reasonably replayable by machines, readable by
humans. These mined models should be representative of all and only the
sequences of activities present in the event log. Therefore it is usual to think
of process representations as a graph or as a flowchart.

Many representations of business processes are possible. The solution
strategy of some process discovery algorithms relies heavily on how they encode
the process. Some examples of structures used by these algorithms are process
trees, C-nets, BPMN flowcharts, and Petri nets.

Petri nets are particular graphs with two kinds of nodes: places and
transitions. The arcs of this graph can go from a place to a transition or from
a transition to a place. Each place can carry activation tokens, any number of
them. Transitions can fire. When they fire, they consume tokens from each of

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 1. Introduction 15

the places which have incoming arcs to the transition and produce tokens to
every place which have incoming arcs from the transition. For this work, we
will consider a subvariant of Petri nets which consume and produce only one
token for each arc.

In a simulation, a transition can only fire if the places that go to it have
at least one token, that means the transition is enabled. It is possible to carry
a simulation of a Petri net by randomly firing any enabled transition and
stopping when no transition is longer available.

Notice that after a transition fires, they modify the state of the Petri
net: the count of tokens in each arc. Thus, after the firing, the set of enabled
transitions also change until it is empty. Therefore a given fixed Petri net has
an enumerable deterministic set of possible firing sequences. Furthermore, if
the Petri net has cycles, this set is possibly infinite.

Figure 1.1: An illustrated representation of a firing in a given Petri net. In this
Petri net it is possible to fire the sequences 〈A,B,D〉 and 〈A,C,D〉. Notice that
there is an implicit Xor relationship between B and C, because they consume
tokens from the same place.

The Petri net describes behavior based on how places and transitions
are connected. Some examples are: places that have arcs going to multiple
transitions describe an exclusive decision behavior, transitions that have arcs
going to multiple places describe the opening of parallel flow, transitions that

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 1. Introduction 16

have multiple arcs coming from different places describe a relationship of
multiple pre-requisites for firing that specific transition.

Figure 1.2: Another pictorial representation of firing in a given Petri net. In
this Petri net it is possible to fire the sequences 〈A,B,C,D,E〉, 〈A,D,B,C,E〉 and
even 〈A,B,D,C,E〉. Observe that there is an implicit AND relationship between
B and D because A produces two tokens that allow each of the branches to
execute independently. Furthermore, the two places arriving at E represent the
wait to finish each of the parallel branches of the process. Parallelism manifests
itself as permutations in the set of possible firing sequences.

Formally, we also can see the Petri net as a directed bipartite graph
containing a set of transitions and a set of places that connect one to another.
For readers interested in deepening their understanding, we refer to Reisig’s
excellent explanations on (Reisig2013).

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 1. Introduction 17

Algorithms using Petri nets already have the set of transitions and
their firing sequences, then they try to propose places and their respective
connections to the given set of transitions in order to synthesize a Petri net.
These algorithms usually rely on heuristics built upon the theory of regions
to find the set of places and how they connect with the set transitions. In the
context of this research, we are interested in obtaining a Petri net from an
event log.

One of the landmarks in the field of process mining is the α-algorithm.
This algorithm uses a greedy strategy to propose places and their respective
connections iteratively. It begins preprocessing the logs into a matrix composed
of the precedence frequency of activities. For instance, in all the log if the
activity A was followed five times by activity B the element fAB of the
frequency matrix F is equal to 5.

Then it builds a set of pairs of activities (or edges) which are exclusively
sequential, that is, a pair of activities (i, j) is included if fij > 0ANDfji = 0.
From this set, a subroutine searches for subsets of edges (pairs of activities)
which form a complete bipartite subgraph.

Bergenthum et al (Bergenthum2007) proposes a formulation using the
Parikh vectors over a prefix-closed language associated with the event log.
They also discuss how the polyhedron defined by a system of inequalities
derived with the theory of regions approach has its vertices (basic solutions)
related to a place in the process to be synthesized as a Petri net. Moreover,
they discuss procedures to eliminate redundant places synthesized in the Petri
net.

The same approach is further developed by van der Werf et
al. (VanDerWerf2008) and (VanDerWerf2009). They present the formula-
tion of the ILP Miner and advances the previous work proposing methods to
search for a final marking. Thus, the formulation proposed returns a single
candidate place for each optimization step. The resulting algorithm constructs
a Petri net by repeatedly solving the ILP in search of additional places. Since
then, ILP is used as a benchmark method, because it has useful properties.
Properties such as its formal guarantee of perfect fitness and dealing efficiently
with big event logs, assuming they do not deal with a wide variety of activities
(VanZelst2015).

We will show in this article a new way of approaching the problem
based on the decomposition of this formulation. We will also show that the
formulation is totally unimodular and that after a few row operations we
can always arrive at a specific formulation in which we can understand the
differences of all algorithms exploiting the theory of regions to find places.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 1. Introduction 18

Generally speaking, the ILP answer to the process discovery has still
a great practical use. However, even with the stunning improvement of the
efficiency of commercial solvers for integer programs, the resolution of ILPs
may be prohibitive for some problems structures and huge sizes.

Often, researchers in the area address the scalability problem with a large
variety of events not just with the ILP method. Verbeek, in (Verbeek2017) and
(Verbeek2014), addresses the scaling problem. In both articles, the authors
explore the efficiency problem by subdividing logs into chunks. Then, the miner
finds solutions significant less time.

The same approach is used in different settings in (Carmona2010)
and (Ekanayake2013). In (Carmona2010), Carmona uses the identification of
groups through PCA and firing sequence causalities then using intra- and inter-
group constraint formulation. In (Ekanayake2013), Ekanayake uses hierarchi-
cal trace clustering to identify subprocesses. Van der Aalst in (VanZelst2015)
makes another attempt at simplifying the model. It tries to solve differently,
proposing a hybrid of formulations using a more robust formulation only when
cycles are present. Therefore, they reduce the number of integer variables
needed in previous ILP formulations.

We advance in a way to treat the cohesion between places as a mathemat-
ical programming model. This advance allows future research to fuse algorith-
mic ideas used in other methods, by providing the flexibility of modeling these
ideas as mathematical programs. Our motivation is to give the global formula-
tion the needed efficiency to justify its use in practice. Therefore, we propose a
decomposition method that exploits the block-structured characteristic of the
problem.

1.1
Motivation and Research questions

The central questions that guided this work was: “How to derive the
whole Petri net from a single integer formulation?”. Previous attempts used a
formulation that returned just a single place and relied on other strategies to
choose among these places to form a Petri net. We were able to devise a global
formulation, but it was not time-efficient for medium- and large-sized problem
instances. Compared to other process discovery algorithms, this approach is
very time-consuming.

Also, algorithms based on places generated by Bergenthum’s formulation
tend to return process models with high fitness, uncontrolled precision and very
unreadable by humans due to their complexity. That means, process models
generated in this family of algorithms tend to represent well the observed

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 1. Introduction 19

history, but they can represent many other things not observed in history.
Therefore, a sequence of research questions emerged during our research.

The list of questions is:

– How to derive the whole Petri net from a single integer formulation?
(Chapter 4)

– Is it possible to handle larger instances with an integer optimization
approach in a time-efficient manner? (Chapter 5)

– How can we combine different algorithms into the ILP Miner approach?
(Chapter 5)

– How can we trade-off the natural high replay-fitness yield by the ILP-
based algorithms to obtain simpler and more precise process models?
(Chapter 6)

1.2
Structure of this work

This dissertation explores three major algorithmic ideas onto the stan-
dard ILP Miner algorithm. We present some theoretical background on the
following two chapters, present each of the three ideas in their own experimen-
tal chapter, and discuss all results in a final chapter. Thus, we dedicate chapter
2 to delving into some common definitions and nomenclature, and some previ-
ous results in the literature that will be used later in this dissertation. Chapter
3 presents some theoretical discoveries and interpretations on the classic model
which set the stage for developing the main algorithmic ideas in the following
experimental chapters.

The subsequent chapters explore algorithmic advances with experimental
setups. Chapter 4 presents the global formulation which allows getting a whole
connected Petri net in a single run of the mathematical model. In this chapter,
we test several versions of the formulation in toy problems that are intended
to reproduce the conventional problems process discovery algorithms face on a
small scale. This chapter serves as a proof-of-concept for further development
in later chapters.

In Chapter 5 we present a way of decomposing the global integer model
in a Branch-Cut-and-Price schema. The global compact model has to handle
a large number of flow-inducing cuts and a large number of binary variables.
Therefore, we propose a way of lazily introducing variables and flow inducing
cuts to solve the optimization problem efficiently. We test this algorithm by
mining instances present on the 2016 and 2017 Process discovery contest and

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 1. Introduction 20

measuring the conformance of the models generating using measures of replay
fitness and precision.

We observe in Chapter 5 that usually the models we obtain tend to have
very high replay-fitness and very poor precision. This tendency means they
represent the models can reproduce the observed event log, but also many other
sequences not observed. Moreover, visually speaking, the models generated by
the algorithm described in chapter 5 tend to be very hard for humans to
understand, due to the complexity of connections.

Therefore, we present a way of navigating in this trade-off in Chapter 6.
By giving up a small amount of replay fitness, we observed that it is possible to
have a substantial gain in precision and simplicity (readability) in some of the
instances. The downside is the large amount of extra computation required.

Finally, in Chapter 7, we discuss significant findings, limitations of the
present work and future research. We believe that this approach is still vastly
unexplored and could bring about powerful algorithms for the process discovery
problem in the future.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

2
Basic concepts and definitions

2.1
Process mining

Common notation Let A be a set of elements, each element represents an
activity or an event in a log. For instance, set A below contains activities a,
b, c and d, i.e. A = {a, b, c, d}. A sequence, or a trace is a string of elements
in A which describes the flow of a case throughout the business process. Each
element in a trace is associated to the order of occurrence of each activity in
the business process case. A sequence σ, as represented below, indicates that
the activities a,b and d occurs in the following order d,a,b,a and d. Traces of
a log are sequences of events, in this case σ = 〈d, a, b, a, d〉 Sequences can also
be concatenated as in the following example.

σ1 · σ2 = 〈d, a〉 · 〈b, a, d〉 = 〈d, a, b, a, d〉

A set of sequences is a log:

X1 = {〈a, b〉, 〈d, a, c〉, 〈b, b, c, a〉}

The set of all possible sequences in the set A is represented by A∗.

Bag-of-traces and prefix-closed Language: A bag is different from a set
since it attributes quantities for each element or sequence, according to whether
it is a bag of elements or a bag of sequences. A bag B containing the sequences
〈a, b〉 once, 〈d, a, c〉 three times and 〈b, b, c, a〉 four times is represented as
follows:

B1 = {〈a, b〉1, 〈d, a, c〉3, 〈b, b, c, a〉4}

A log of activities or an event log can be represented as a bag of sequences,
each sequence being a trace and the quantity representing the number of times
that trace occurs in the log. Given a set of sequences X its prefix-closure X is
the set of every sequence σ that belongs to X and all sequences σ1 that are a

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 2. Basic concepts and definitions 22

prefix of σ, i.e. σ1 is such that σ1.σ2 = σ, we write:

X = {σ1 ∈ A∗|∃σ2∈A∗(σ1 · σ2 ∈ X)}

Petri net: We can define a Petri net as a bipartite directed graph. The two
disjoint sets are T , the set of transitions, and P , the set of places. The set of
arcs (or links) F is a subset of {(T × P) ⋃(P × T)}. We denote this bipartite
graph as G = (P, T, F).

The simulation of a Petri net uses markings, i.e., tokens present at the
places of the net. A marking m specifies the number of tokens at each place in
P , and this configures a state of the Petri net. A Petri net at any given state
can be entirely described by P, T, F and m; a marked Petri net.

A transition t is enabled when all the places p that are predecessors of t
in G have at least one token. As a result, the transition fires, and one token
at each of t’s predecessors is consumed, generating an extra token at each of
t’s successors.

Firing sequence: Given a marked Petri net P, T, F andm0, a sequence σ over
T , i.e. σ ∈ T ∗ is a firing sequence of this Petri net if there exists a sequence
of markings m1,m2, . . . ,m|σ| such that for σ = 〈t1, . . . , t|σ|〉, transition tj is
enabled by marking mj−1 resulting in marking mj, for j = 1, . . . , |σ|.

Observe that the set of transitions T of a Petri net corresponds to the
set of activities/events A in the process discovery context. One firing sequence
of a Petri net corresponds to a trace in an activity log. The set of all firing
sequences of a Petri net, therefore, should correspond to the activity log of
the business process it models. Metrics relating the original log and the one
produced by the Petri net indicate how well it represents the business process.

2.2
Linear Programming Formulation with Parikh vectors

The Process Discovery problem seeks a business model that corresponds
to a meaningful representation of a process that generated a given log. We
propose an integer linear programming (ILP) formulation that, given a log,
outputs values to its variables that correspond to a Petri net. We search for
Petri nets with a minimum number of links, connections between two activities,
or a minimum number of places. We formalize the proposed ILP model for the
Process Discovery problem.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 2. Basic concepts and definitions 23

Input An alphabet A, a set of sequences L on elements of A. A contains
two special symbols ∗ and # that correspond to the start and the end of all
sequences in L, respectively. ∗ and # only appear once in any sequence σ in
L.

Output A Petri net with a set of transitions A such that it produces
approximately L, minimizing some structural property of the Petri net (i.e.,
number of places, number of “links”).

In van der Werf (VanZelst2015), the author presents an integer linear
programming (ILP) formulation that finds one place of a Petri net at each
optimization step. This formulation captures candidate places of the Petri net
as a basic solution of the optimization problem.

The method in van der Werf (VanDerWerf2009) then inserts new con-
straints that cut the solution space to push the solution of the integer program
to a new optimal place. Iteratively, the algorithm finds places to construct the
Petri net and terminates.

The ILP model in van de Werf et al. (VanDerWerf2009). It follows the use
of Language-Based Theory of Regions in Bergethum et al. (Bergenthum2007)
and in Lorenz and Juhás (Lorenz2007HowTS). While (Bergenthum2007) pro-
poses algorithms that obtain several places through the resolution of an integer
program and strives to eliminate redundant places, (VanDerWerf2009) makes
use of objective functions and additional constraints that control this effect.

In a loose sense, the intuition behind these models is that adding a place,
together with its connections, to a Petri net, reduces the set of sequences
it generates. Therefore, previous ILP based approaches solve several integer
programs in order to obtain places that assemble the desired Petri net. We
proceed in this section presenting the formulation for a single place, as in
(VanDerWerf2009), (Bergenthum2007).

2.3
Base formulation for a single place

The way to represent a region is through determining the activities with
arcs entering and leaving the region. Since a region cannot block any sequence
of the language defined by the log, each prefix of each sequence is used to
determine the base constraints of the model. Let, for q ∈ A, yq be binary
variables that indicate there is an arc leaving the region to activity q and let
xq indicates that the region has an arc leaving to activity q. The sequence

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 2. Basic concepts and definitions 24

Figure 2.1: An example of the solution. We represent with the variables xi
and yj the presence or absence of an arc incoming or going to a transition
respectively

〈a, b, c〉 in the activity log implies constraints:

x∗ − ya ≥ 0 < a >

x∗ − ya + xa − yb ≥ 0 < a, b >

x∗ − ya + xa − yb + xb − yc ≥ 0 < a, b, c >

Suppose that, for each trace, for each prefix of this trace s, the sum of
arcs that goes out of the prefix to a Petri net place must be at least the number
of arcs that come from a Petri net place to s. The main constraint set of ILP
formulations generating one place at a time is the one above. We build our
complete Petri net formulation on this constraint set. The rest of this work
will refer to this formulation as the base formulation, classic formulation or
Bergenthum’s formulation.

Figure 2.2: Viable solutions of the classic formulation using a single sequence
language 〈A,B,C〉. Observe that there are many places that satisfy the con-
straints from the model. Also observe that imposing a minimal number of arcs
yield the most simple place candidates.

Formally, we can define that an observed event log X is enlarged to a
prefix-closed language X. We can represent this operation with a line above

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 2. Basic concepts and definitions 25

the variable that represents the set.

X = {σ1 ∈ A∗|∃σ2∈A∗(σ1 · σ2 ∈ X)}

In words, the prefix closure operation over an event log X creates a set
in which every element σ1 is a sequence made from symbols of the alphabet A
that when concatenated with another sequence σ2 made from symbols of the
alphabet A generates a sequence already in the event log X.

Each of these prefixes σ1 present in X will originate an inequation over
binary variables xi and yj that represent incoming and outgoing arcs of a
solution place.

xk∗ − ykq + ∑
j∈σ1

(xkj − ykj) ≥ 0 ∀σ1, q | ∃σ ∈ S and σ2, σ = ∗.σ1.q, .σ2, ∀k

(2-1)
Notice that this formulation obtains a single feasible place. Usually,

algorithms tend to enumerate feasible solutions to this model. Later, algorithm
designers need to implement a strategy to filter and to guarantee cohesion
between this list of places.

Our intention of proposing this new formulation is to take advantage
of the power and flexibility of modeling problems in terms of mathematical
programming and obtain the whole Petri net using a formulation.

We believe that a formulation that addresses the whole process may be
interesting to bring options for a process modeler to control global properties
of a Petri net such as token throughput and cohesion between places.

2.4
Challenges of measuring conformance

Measuring objectively how good is a model remains an open question
in the field. It is possible to obtain process models that have artificially good
characteristics, but in practice do not encode process characteristics such as
flow diversity, loops and kinds of decisions.

Common metrics used in the field are precision and replay fitness. Replay
fitness is closely related to the concept of recall in other fields. A model is
fit whenever it can reproduce a large amount of the behavior observed in
history. Precision, as a complementary metric, should express how economical
our model is. Of all possible behavior produced by the model, how much it is
in the observed history. As opposed to fitness, a model has low precision if it
expresses many other behaviors not expressed in history. A model is precise if
it encodes only behavior observed in history.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 2. Basic concepts and definitions 26

Even though these concepts seem enough to derive sufficient metrics to
determine whether models are good, they are not. To illustrate this, we will
present two examples of ways of obtaining models that in a way c̈heatöbjective
metrics.

The first one is the star model. This model obtains high fitness because
it can express any sequence of the activities in its substructure in any quantity
and any order. Unless the log has all possible permutations of a given sequence,
this model should have very low precision, because it can reproduce all possible
sequences using the alphabet.

Figure 2.3: An example of the star model from (Rozinat2007). Every sequence
of every length is possible using the transitions that have incoming and ongoing
arcs to the same place.

Another way of exploiting these metrics unfairly is to build linear Petri
nets according to the given sequences. Then we put at the start and finish of
the model an place to produce an effect of exclusive choice. Notice that this
model will represent correctly the model and only the model. Therefore, it does
not matter which metric we use to measure its fitness and precision; it should
score high.

According to Aalst in (VanDerAalst2016), an acceptable process model
should then balance four aspects of the process discovery task: fitness, preci-
sion, simplicity, and generalization. Simplicity is defined as how complicated
is a model. If the model has a graphical representation, a simple model would
use a few connections and would have a streamlined morphology instead of
entangled connections.

In this work we will use in Chapter 4 a simple binary go/no-go indicator
for toy problems to which we have the expected Petri nets. However, we deal
with complex logs in Chapters 5 and 6, and the binary inidcator is no longer
meaningful. Therefore, we present in Chapter 5 ways of measuring fitness
and precision detailed in (VanDerAalst2016), (Adriansyah2015), (Munoz2010),
(Carmona2018).

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 2. Basic concepts and definitions 27

Figure 2.4: An example of a linear enumeration model from (Rozinat2007) .
We can simply build linear models using the language and an exclusive choice
at the beginning to achieve maximum fitness and maximum precision. We have
also to take into cnsideration the simplicity of the model as a function of the
number of arcs and transitions of the same symbol used.

Figure 2.5: An example of a balanced petri net from (Rozinat2007). It does
not achieve maximum fitness or precision, but it is simple. The consequence
of balancing is a model in which the connections denote parallelism, decisions
and other behaviors useful for a business process analyst clearly.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

3
Analysis and interpretation of the classic formulation

This section is about the enabling theoretical aspects of our approach.
The classic formulation has a set of inequalities which describe place candidates
as the basic solutions. We first show that the left-hand side coefficient matrix is
Totally Unimodular. Consequently, any basic solution to this set of inequalities
can be solved by any linear solvers with a guarantee of finding an integer
solution given an integer right-hand side and integer objective.

Then the problem of finding one place candidate falls into a particular
category in which can be solved efficiently. Usually, problems with the unimod-
ularity property have deep connections to other combinatorial optimization
problems. Hence this may be a new path to building reliable heuristics to the
process discovery problem.

Additionally, recent advances in other algorithms may have implications
for the ILP’s classic formulation. For instance, in multiple string comparison
and in outside-in process discovery algorithms, it is usual to use an auxiliary
graph, called directly-follows. Algorithm designers use this graph to prove that
there are tightly connected subsets of the alphabet which could be solved
separately.

In the end, we present some intuition on how ILP is susceptible to outlier
logs. Also, we conjecture a search for places which do not attend

3.1
Unimodularity

First, we prove that the left-hand side matrix of the classic formulation
using the prefix closed language Parikh vectors is totally unimodular. Total
unimodularity is an important property for Integer Programming, because it is
possible to use linear solvers to obtain integer solutions, given that coefficients
in the right-hand side are integers. Therefore, the problem of finding one place
candidate reduces to P .

As an overview, in the book (Conforti2014), Conforti, Cornuéjols and
Zambelli prove and enlist a set of matrix operations which preserve total uni-
modularity. Therefore, if a classic total unimodular matrix, such as the node-

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 3. Analysis and interpretation of the classic formulation 29

arc matrix description of a directed graph, could be obtained by unimodularity
preserving operations, this matrix would also be totally unimodular.

Then, the formulation is totally unimodular because the it is defined from
a prefix-closed set. Using the immediate prefix, we always can find a way of
obtaining through unimodularity preserving operations a typical bipartite flow
matrix which is totally unimodular.

Lemma 3.1 (Unimodularity preserving matrix operations) The fol-
lowing matrix operations, called unimodular operations, preserve the unimod-
ularity property from an already unimodular matrix:

1. Interchange two columns

2. Add an integer multiple of a column to another column

3. Multiply a column by −1

4. Transpose

Proof. For items, 1 through 3 please see (Conforti2014). For item 4, by the
definition of totally unimodular matrices, all determinants of non-singular
square submatrices must be ∈ {−1, 0, 1}. The transposition of a matrix also
transposes all submatrices. Additionally, transposition does not affect the
determinant of a matrix. Therefore, if all determinants of submatrices were
already ∈ {−1, 0, 1}, they will not change by the transposition, and the matrix
will remain Totally Unimodular. �

Corollary 3.2 Since transposing preserves unimodularity, we can also per-
form the same operations described for columns and apply them to rows pre-
serving the matrix unimodularity, by concatenating transposition operations
before and after column operations.

Lemma 3.3 (From Identity to Unimodularity) Matrices obtained from
the identity through a series of unimodular operations are also unimodular.

Proof. Once more we refer to the first chapter of Conforti and Conrnuéjol’s
book (Conforti2014). �

For example, the encoding of a directed bipartite graph in a node-
arc fashion is always totally unimodular, because one can always find a
way to exploit the particular structure of a matrix to arrive at an Identity
concatenated with a matrix of zeros.

Theorem 3.4 (ILP Formulation’s Total Unimodularity) Any matrix
composed of the application of a Parikh vector function over a prefix-closed
set of sequences (or Language) set is totally Unimodular.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 3. Analysis and interpretation of the classic formulation 30

Figure 3.1: Prefixes transform into the left-hand side of the constraint inequal-
ities. If the set is a closure of prefixes, we can guarantee that for each sequence
with length above one symbol will have its immediate prefix within the closure.
By immediate prefix we mean the sequence with just the last symbol missing
of a giving sequence. Thus, if the last symbol of the sequence σ1 is ai+1 and the
last symbol of its immediate preffix sequence σ2 is ai, we expect the left-hand
side of the inequality associated to σ1 be the same as the inequality associated
to σ2 added +xai

− yaa+1 .

Proof. Each observed variant(VanDerAalst2013) in history generates a set of
prefixes, and each prefix of this set originates an inequality. The union of all
set of prefixes generates a prefix-closed language L̄. With this property, for all
non-single sequences in the Language L̄ there is an immediate prefix present
on the set.

The sequence σip is the immediate prefix of a given original sequence σo
if it just needs a concatenation with just one element a to equal σo.

immediate_prefix(σo) = σip ⇐⇒ σip· < a >= σo

Therefore, aside from sequences composed of the artificially inserted
beginning element and one valid element, the immediate prefix of every
sequence of the language is also an element in the set.

Then, if we subtract the rows of coefficients of between any sequence and
their immediate prefix, we get a row composed by all zeros and one entries 1
and other -1. The transpose of this resulting matrix always has the particular
form of a node-arc incidence of a bipartite graph which is totally unimodular.
�

Furthermore, after the procedure, columns related to the y variables have
only 0 or -1 entries, whereas columns related to the x variables have only 0
or 1. This fact suggests that the transpose is not only a node-arc incidence
matrix of a regular graph, it is of a bipartite graph.

To conclude with an example, consider the log L =
< A,B,C >,< A,D,C >. First, we add the artificial events of start ′∗′

and finish ′#′ and build the prefix closed language set of sequences L̄.
We encode L̄ as a matrix by computing in each row the parikh vector

for each sequence. For instance, the sequence/prefix < ∗, A,B > is associated
with the inequality x∗ − yA + xA − yB ≥ 0.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 3. Analysis and interpretation of the classic formulation 31

With the alphabet (set of all possible activities) A = {A,B,C,D} the
variables created are x∗ − yA + xA − yB + xB − yC + xC − yD + xD − y#. If
we establish this as an ordering of variables, we can use it to define a Parikh
function −→p (σ) to encode the prefixes as a vector of coefficients (Parikh vector).

Finally, the sequence < ∗, A,B > produces the row
[1,−1, 1,−1, 0, 0, 0, 0, 0, 0]. Alternatively, formally:

−→p (< ∗, A,B >) = [1,−1, 1,−1, 0, 0, 0, 0, 0, 0]

The prefix-closed language is guaranteed to have the immediate prefix of
every non-trivial sequence always. Therefore, if we observe < ∗, A,B >, there
must be < ∗, A > in L̄ as well. Additionally:

−→p (< ∗, A >) = [1,−1, 0, 0, 0, 0, 0, 0, 0, 0]

and finally:

−→p (< ∗, A,B >)−−→p (< ∗, A >) = [0, 0, 1,−1, 0, 0, 0, 0, 0, 0]

.
Thus, we always can operate row subtractions and additions to arrive

at the transpose of a typical directed node-arc incidence matrix. Then, this
formulation is Totally Unimodular.

Below, we present a full example of achieving the transpose of a directed
node-arc incidence matrix.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 3. Analysis and interpretation of the classic formulation 32

Figure 3.2: Many heuristics could be used to factor the left-hand side matrix
of the formulation. The proof we have given based on immediate prefixes is
the alternative example at the bottom of this picture.

In the example we suggest two paths to go from matrix 0 to the matrix
5. The matrix 0 is the coefficient matrix that we want to prove is Totally
Unimodular. Matrix 5 is the transpose of a directed node-arc incidence matrix,
which is known to be Totally Unimodular.

3.2
Alphabet filtering

All constraints of the classic formulation enforce that the Parikh function
over X and Y variables must be at least zero. Suppose a situation where the
process analyst has reason to believe that places are using only a sub-alphabet
A′, a subset of the alphabet A.

He or she could fix all variables related to events not in A′ to zero and re-
execute the solver to generate a place. Once the solver generates a new place,
it will attribute to variables related to the events in A′ values 0 or 1. Since the
constraints over these variables enforce them to be greater than zero, if the
solver finds an optimal solution to this new problem with fixed variables, this
solution would also be feasible in the original formulation.

Alternatively, it is possible to build a new optimization model only
filtering the event log, creating what we will call sublog. For instance, imagine
the event log: {< A,B,C,D >,< A,C,B,D >}, imagine that we want to

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 3. Analysis and interpretation of the classic formulation 33

focus on just the events C and D. Thus we filter the event log into the sublog:
{< B,C >,< C,B >}. Now please observe what happens if we construct the
formulation for both the given log and the resulting filtered sublog:

For the event log {< A,B,C,D >,< A,C,B,D >}:

x∗ − yA ≥ 0 < A >

x∗ − yA + xA − yB ≥ 0 < A,B >

x∗ − yA + xA − yB + xB −yC ≥ 0 < A,B,C >

x∗ − yA + xA − yB + xB −yC + xC − yD ≥ 0 < A,B,C,D >

x∗ − yA + xA −yC ≥ 0 < A,C >

x∗ − yA + xA − yB −yC + xC ≥ 0 < A,C,B >

x∗ − yA + xA − yB + xB −yC + xC − yD ≥ 0 < A,C,B,D >

For the filtered sublog: {< B,C >,< C,B >}

x∗ ≥ 0 <>

x∗ − yB ≥ 0 < B >

x∗ − yB + xB −yC ≥ 0 < B,C >

x∗ −yC ≥ 0 < C >

x∗ − yB −yC + xC ≥ 0 < C,B >

Both set of inequalities are equivalent if we fix yA = xA = yD = 0, which
are the variables related to the events A and D outside the subalphabet A′.

Theorem 3.5 The basic solutions of the classic formulation applied to unfil-
tered log contains the set of all basic solutions of the classic formulation applied
to the filtered sublogs.

Proof. By construction, the resulting set of inequalities from the sublog have the
same coefficients for the variables associated with events in the sub-alphabet.

As argued before, fixating the variables related to events which are not in
the subalphabet A′ to zero, will have a similar effect of not optimizing them at
all. The constraints enforce the sum to be more than zero. If they are more than
zero using fewer variables, they will also be feasible if we fixate the variables
not considered to zero.

Therefore, if we remove the variables, not in the subalphabet and call
the solver for the remaining variables associated with the sub-alphabet, we can
reinsert this solution into the original problem and fill the remaining variables
with the value zero and get a feasible basis in the original subproblem.

Therefore, if all basis in this reduced problem with a subalphabet can be
inserted into the main program to obtain a feasible basis, then all basis in the

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 3. Analysis and interpretation of the classic formulation 34

filtered subproblem are translatable to a feasible basis in the original problem.
�

Then it is possible as a heuristic to create alternative place generators
using the classic formulation over a filtered set of prefix-closure. We can benefit
from the reduced amount of integer variables needed.

3.3
Susceptibility to outlier logs

The original set of inequalities express the constraints that a place must
comply in order to respect the observed history. We transform the set of
inequalities into a linear program forcing the solver to return a place without
any nonessential arcs.

In a real setting, capturing the data or the process itself is subject
to abnormalities. The observations may be affected from time to time. For
instance, an unobserved sequence in the past may occur, or a sequence observed
may not occur again.

In an algebraic sense, one translate each observed sequence of activities
to an inequality which describes a semi-space. Considering all generated in-
equalities, we have the intersection of all semi-spaces which is a polyhedron.
In each vertex of these polyhedra lie the basic solutions for the set of inequal-
ities, representing valid place candidates. Since the problem is unimodular, its
relaxation always has integer basis for a vector of zeros in the right-hand side.

In the formulation, such unobserved event sequence would generate a
new set of inequalities, consequently could "cut" out of the space of feasible
places, a lot of good candidates, whereas the absence of a sequence, could mean
the relaxation of the related inequalities and augmenting the space of feasible
places.

In other words, this polyhedron could be enlarged or shortened, and
therefore the catalog of valid places will vary accordingly. Therefore the set
of feasible places available to form the Petri net would change according to
observations in each point in time.

One common way to mitigate these effects is to filter out infrequent
behavior. This approach tries to reach one unique polyhedron which would
be static throughout time. It supposes that the sequences observed at least a
certain number of times would always be observed again whereas the infrequent
logs would deviate freely without entering the analysis. The problem with this
approach is that it does not take into consideration similar behavior among
infrequent logs. The case in which all traces occurred just once is an example
in which this strategy would not succeed.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 3. Analysis and interpretation of the classic formulation 35

An alternative would be to enlarge the set of places taken into considera-
tion. We could build multiple polyhedra, considering different sets of sequences.
In other words, from the original polyhedron, we could create larger polyhe-
drons by selectively turning on and off constraints related to infrequent logs
and consider all the places relative to all vertices in these resulting polyhedra.

For instance, we could build all sets of inequalities in which describe
for than X% of the history. Therefore, each of these polyhedra formed by
different combinations of the original inequalities would form a different
scenario representing a different manifestation of the sequences of events. This
concept is at the heart of the risk-prone model that we show in section 6 of
this dissertation.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

4
Global Integer Programming - the compact model

The goal of this section is to propose an integer linear program that
returns a full Petri net representation of the business process as output. The
initial idea is to build a direct network from event to event while trying to
cover this network using places generated by the classic formulation presented
before. To control this covering, we must translate the places generated into
bicliques of symbols.

4.1
The global model

We devise the proposed model applying the following three building
blocks: (1) replication of the basic program for an arbitrary number of
candidate places, (2) creation of integer variables to allow or prohibit flow
between transitions of the Petri net, (3) force flow through through the Petri
net, from the dummy start transition ∗ to the dummy ending transition #.

The model we devise finds simultaneously several places while imposing
constraints on the resulting Petri net, i.e., the one induced by the set of places
obtained. Mainly, these constraints say that the Petri net must correspond to
a connected graph and that the Petri net should balance the generation and
the consumption of tokens.

The way the model address the problem of drawing the full Petri net,
finding all the places, is considering up to K candidate places and K input
and K output variables for each activity. In a log with activities a, b, c, these
variables are xka, xkb , xkc , yka , ykb and ykc , being K a hyper-parameter. The upper
bound on the number K of candidate places is arbitrarily defined. We then
replicate the base formulation for these K places. Additional variables and
constraints are then introduced to force cohesion among the K places.

The model has four variables sets. Variables xkj and ykj for j ∈ A and
k = 1, . . . , K, as described above, and variables zki,j, with k = 1, . . . , K, and
wi,j, for all pairs (i, j) of activities. While variables aki,j represent a directed
connection between two activities i, j by the place k, variables wi,j are set to
one whenever a place k connects the pair of activities (i, j).

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 4. Global Integer Programming - the compact model 37

Trace constraints: Correspond to the constraints for obtaining a place
replicated for K candidate places. It writes:

xk∗ − ykq + ∑
j∈σ1

(xkj − ykj) ≥ 0 ∀σ1, q | ∃σ ∈ S and σ2, σ = ∗.σ1.q, .σ2, ∀k

(4-1)
where q is the last activity in the prefix considered of the sequence in the log.

Transition connectivity: A connection linking transition i to transition j is
induced by place k when both xki and ykj are set to one. In other words, Activity
i has an arc leaving to place k, which has an arc leaving to activity j. The
resulting constraints can be written:

akij ≤ xki ∀(i, j) ∈ A× A, k = 1, . . . , K (4-2)

akij ≤ ykj ∀(i, j) ∈ A× A, k = 1, . . . , K (4-3)

akij ≥ xki + ykj − 1 ∀(i, j) ∈ A× A, k = 1, . . . , K (4-4)
Variables wij indicate the Petri net contains a link from activity i to j,

this is true if at least one place induces this link. The constraints below link
variables a with variables w.

– If the Petri net links i to j, then at least one place must induce this
connection: K∑

k=1
akij ≥ wij ∀(i, j) ∈ A× A (4-5)

– If at least one place induces the link from i to j, then the Petri net has
this link:

wij ≥ akij ∀(i, j) ∈ A× A ∧ ∀k ∈ K (4-6)

There is a more general interpretation of this formulation. The blocks of
X and Y variables describe respectively incoming arcs to places k and outgoing
arcs from place k. The original arcs either connect events to candidate place
k or the other way.

The global program creates a family of arcs that link events directly to
other events. This new network has a different nature from the original arcs.
Arcs of the Petri net can either connect a transition to a place or a place to
a transition. However, at this point in the execution of the algorithm, we can
only enumerate transitions linked to the types of events in the alphabet.

To connect the two worlds of arcs W and the original X and Y , we
propose a translation variable A. The idea behind A is to transform the feasible
candidate place described in X and Y to direct connections. For instance if
place k = 3 has x3

A = x3
B = y3

C = y3
D = 1 and the remaining X3 and Y 3 equal

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 4. Global Integer Programming - the compact model 38

to zero, then place 3 has incoming arcs from events A and B and outgoing arcs
to event C and D.

In this example, we translate the X and Y variables to A in the following
manner: A3

AC = A3
AD = A3

BC = A3
BD = 1. The Akij variables represent the

multiplication of Xk
i and Y k

j or if place k connects events i and j. Therefore
we can use the presented Fortet linearized multiplication (Fortet1960).

We translate the place to a biclique. In the former example, the place 3
is a biclique from the bipartite (A,B) → (C,D) and the variables A denote
the arcs from event to event present in this biclique.

Finally, using all the K candidate places generated this way, we want to
cover the graph ofW variables using the bicliques described by the A variables.

Figure 4.1: Graphical representation of the layers imagined for the global
formulation. Here the original xki and ykj variables are depicted as a lower
level in which we search for a place k. The upper layer is a direct network
between events, connecting directly an event i to another j represented by wij
variables. Then there is the middle layer in which translates xki and ykj into a
direct connection aij between transition i that goes to place k and transitions j
that arrive from place k. The problem becomes to cover all wij using available
aij.

Petri net connectivity: Let G = (A,W) be the support graph of a Petri net
where the set of activities A is the vertex set and W = {(i, j)|wij = 1} is the
arc set. Since all traces in the log start with activity ∗ and ends with activity #,
and all activities in set A appear at least in one trace of the log, the supporting
graph of the Petri net G = (A,W) must be connected. In particular, G must
have at least one path from ∗ to # passing through every other activity in

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 4. Global Integer Programming - the compact model 39

A. This graph connectivity addresses the Petri net soundness as defined by
(VanDerAalst2016).

We formulate these directed connectivity requirements of the Petri net
supporting graph by imposing the any cut defined by D ⊂ A of the graph
containing activity ∗ and not containing # must have at least one arc leaving.
Alternatively, cuts for D containing activity # and not containing ∗ must have
at least one entering arc. These cut constraints can be written:∑

(i∈D)

∑
(j∈A−D)

wij ≥ 1 ∀D ⊂ A, ∗ ∈ D (4-7)

It consists of an objective function subject to constraints (4-1) - (4-7).
Two straightforward objective functions lead to minimal Petri nets: minimize
the number of links and minimize the number of places or arcs used by the
places. Our tests balance those elements assigning weights to the use of the
variables. Therefore:

GILP :

minW1
∑

(i,j)∈A×A
wij +W2

K∑
k=1

∑
i∈A

(xki + yki)

s.t.

(4− 1)− (4− 7)
x, y, z, w binary

4.2
Global Formulation’s auxiliary ideas

In the previous sections the core ideas and the basic GILP formulation
were presented, in this section auxiliary ideas are presented, some of them
correspond to heuristic elements to improve the solution of the model. The
auxiliary ideas are:

– Use trace suffixes in addition to trace prefixes

– Parallelism prohibition

– Fixing of starting and finish activities through wij
– Imposing token handling symmetry

Trace suffixes: As supplementary constraint, we may consider the suffix
instead of the prefix. Its validity is based on the same arguments for the
prefix constraints from the language based theory of regions. The trace 〈a, b, c〉
induces the following set of suffix constraints:

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 4. Global Integer Programming - the compact model 40

xkc − yk# ≥ 0 < c >

xkb − ykc + xkc − yk# ≥ 0 < b, c >

xka − ykb + xkb − ykc + xkc − yk# ≥ 0 < a, b, c >

(4-8)

While prefix constraints enforce places that connect transitions that
are enforced by the beginning of the traces, suffix constraints enforce places
that are induced by the end of the traces. Intuitively, assuming the all
traces describe expected behaviors along the business process they should be
redundant. On the other hand, when there are traces with anomalies in the log
the use of both of these constraint types are expected to allow the methodology
to find Petri nets.

Non-related constraints: Consider a pair of activities appearing in sequence
in a trace of the activity log. We count the number of appearances of each
possible ordered pair of activities. Let f denote this counting function, i.e.:

f : (A× A)→ N (4-9)

Three types of possible activity relation can be extracted from f :

– Parallel Activities - Says that if a pair of activities i, j appear consecu-
tively in a trace as ij and as ji, then there should not be a connection
from i to j and neither from j to i.

P = {(i, j)|f(i, j) > 0 ∧ f(j, i) > 0}

– Non related Activities - Says that if a pair of activities (transitions)
i, j never appear consecutively in the whole log, there should not be a
connection from i to j.

¬R = {(i, j)|f(i, j) = 0 ∧ f(j, i) = 0}

These sets are discussed thoroughly in van der Aalst(2016) (VanDerAalst2016).
They are the basic elements for the alpha miner algorithm in the process dis-
covery theory. In this work, the non-relating and the parallel set of activities
are used to fix the initial status of the integer program variables. We con-
figure them as hyperparameters to better understand the impact in the ILP
resolution time and the Petri net output of the proposed integer programming
model. In other words, we set:

wij = 0 ∀(i, j) ∈ (P ∪ ¬R)

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 4. Global Integer Programming - the compact model 41

Force start and end: The proposed ILP model also allows fixing the initial
and the final activities appearing in the traces of the activity log. We do so by
setting variable w∗i to one if i the the first activity of some trace in the event
log. Also, wj# is set to one if j when the last activity of some trace in the
event log. We define set S as the set containing all activities that start a trace
and the analogous set E containing all activities ending traces. Conversely, we
set to zero the w variables associated to activities that in no trace appears as
first activity or last activity. Therefore:

w∗i = 1 ∀i ∈ S; w∗i = 0 ∀i /∈ S

wi# = 1 ∀i ∈ E ; wi# = 0 ∀i /∈ E

Token Symmetry: Another constraint we use to increase the chance of
producing sound Petri nets. We refer to the symmetry constraint that forces
that the numbers of arcs going out of the overall set of places to be equal to
the number of arcs arriving in the same place. We may write:

K∑
k=1

∑
i∈A

xki =
K∑
k=1

∑
i∈A

yki (4-10)

As mentioned above, the constraints described in this section may or may
not be part of the formulation. Their use is to provide elements to be activated
when searching for a sharper and more efficient formulation.

4.3
Global ILP Experiments

We demonstrate the behavior of the proposed ILP formulation as a
discovering processes tool under several conditions. Our experiment uses 14
artificial and small logs that reproduce some common issues for process
discovery algorithms, in particular for those which rely on finding places of
the resulting Petri net. One test log is a simple sequence of activities; other
has a decision; another contains a cycle. Also, we test the GILP model using
nine experiment setups, defined by different uses of the constraints from the
auxiliary ideas.

We devised 14 small logs to reproduce common situations faced by
process discovery algorithms. Their heterogeneity allowed us to observe the
strengths and weaknesses of this new method.

Log 1 - Linear: Simple linear process. First, we provide a simple baseline to
observe the algorithm’s effectiveness.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 4. Global Integer Programming - the compact model 42

* A B C #
Log 1:

– 〈A, B, C〉

Log 2 - Skip/loop: Process with a skip or optional simple loop. This example
introduces one of the first difficulties in modeling. Once we work with a few
different traces, we may model this process as a single loop or as a skip.

Our formulation does not handle τ transitions yet. But it is still inter-
esting to observe the answers that each tested variant can return. We present
different forms of modeling the log. Logs with skips and cycles have a vari-
ety of ways of representing, depending on the level of fidelity and readability
required.

* A

B

C #

Log 2:

– 〈A, B, C〉,

– 〈A, C〉

* A B

τ

C #

Log 3 - OR-open: Process with decision without closing. This log tests the
ability to capture OR-gates without closing the flow.

* A B

C

#

Log 3:

– 〈A, B〉,

– 〈A, C〉

Log 4 - asym. OR-open Process with decision without closing 2. This log
tests the capability of capturing OR-gates without closing the flow with a slight
asymmetry.

* A B

D

C #

Log 4:

– 〈A, B, C〉,

– 〈A, D〉

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 4. Global Integer Programming - the compact model 43

Log 5 - AND-open/close: Process with parallelism. In this log, we test
the algorithm’s capability of identifying all the multiple places that represent
parallel flows. Traces in the log vary between themselves by changing the order
of activities. Therefore, the algorithm must be capable of identifying parallel
and consecutive activities to form different streams.

* A B

D

C #

Log 5:

– 〈A, B, D, C〉,

– 〈A, D, B, C〉

Log 6 - OR-open/close: Process with decision with closing. Here, we test
whether the model can capture a pair of OR-gates used for opening and closing
different streams.

* A B

D

C #

Log 6:

– 〈A, B, C〉,

– 〈A, D, C〉

Log 7 - 2OR-open/close: Process with two decisions with closing. This log
scales up the previous log testing decisions to two consecutive decisions. This
model contains four places which have more than one entering arc or more
than one leaving arc.

* A B

D

C G

H

E #

Log 7:

– 〈A, B, C, G, E〉,

– 〈A, B, C, H, E〉,

– 〈A, D, C, G, E〉,

– 〈A, D, C, H, E〉

Log 8 - Choice-relation: Long-term choice relationship. This log is similar to
the last one, but a more correct models bounds the decisions made in different
points in the flow of the process.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 4. Global Integer Programming - the compact model 44

This means, there are two new places added to the last model to force a
trace passing through B to pass through G later and, similarly, another place
bounds D to H.

* A B

D

C G

H

E #

Log 8:

– 〈A, B, C, G, E〉,

– 〈A, D, C, H, E〉

Log 9 - Asym. AND: Asymmetric parallelism. Just like the previous log,
this one tests the ability of perceiving parallelism with slight scaling. This
example introduces the difficulty of perceiving the consecutive relationship
between activities B and C.

* A B

D

C E #

Log 9:

– 〈A, B, C, D, E〉,

– 〈A, B, D, C, E〉,

– 〈A, D, B, C, E〉

Log 10 - Nested 2OR: Nested decisions. This log increases the difficulty of
previous decisions. It also has an interesting place with three entering arcs.

* A B

E

C

D

F #

Log 10:

– 〈A, B, C, F〉,

– 〈A, B, D, F〉,

– 〈A, E, F〉

Log 11 - Oblig. Loop: Loop with at least one passage. This log represents
a process with loop that must be executed at least one. It is different from
the variant previously presented, where there was an option not execute the
activity B.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 4. Global Integer Programming - the compact model 45

* A B

τ

C #

Log 11:

– 〈A, B, C〉,

– 〈A, B, B, C〉,

– 〈A, B, B, B, C〉

Log 12 - Oblig. Loop large; Larger loop with at least one passage. This log
scales the concept introduced in the last one.

* A B

τ

C E #

Log 12:

– 〈A, B, C, E〉,

– 〈A, B, C, B, C, E〉

Log 13 - Optional loop: Larger optional loop. This log allows flow to ignore
the loop.

* A

B C

E #

Log 13:

– 〈A, E〉,

– 〈A, B, C, E〉,

– 〈A, B, C, B, C, E〉

Log 14 - Nested loop: Nested loops or loop with skip. This log can
be modeled with many other representations. We present below a simple
alternative, which can lead to logs not stated in the log.

* A B

τ

C

E #

Log 14:

– 〈A, E〉,

– 〈A, B, E〉,

– 〈A, B, C, B, E〉

The primary goal of this section is to test the new formulation and
some minor variations of it. Demonstrating all combinations of variants would
be impossible. Therefore, we established a base case and some variants to
better understand the final effect of the formulation onto the process Petri
nets discovered.

We keep some aspects of the mathematical model in all variants. These
aspects are:

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 4. Global Integer Programming - the compact model 46

– The objective function is always a minimization of a weighted sum,
although different variants use different weights.

– All variants have the constraints that define variables akij (consecutive
connection between activities i and j in place k) and variables wij

(consecutive connection between activities i and j in at least one place).

– We suppose a fixed number k of places to all variants. They are modeled
to return with zero entering and leaving arcs when they are not used.

– All Variants define constraints on X and Y based on the log’s prefix
closed language (the set of all traces and respective prefixes)

Base case - Variant zero Corresponds to the GILP formulation above with
W1 = 5 and W2 = −1. Additionally, we consider: no trace suffixes constraints,
parallelism prohibition using wij as above, fixing of start and end, and token
handling symmetry

Variant 1 - OF:W objective function keeps weight 5 in wij but gives zero
weight for xki and yki variables;

Variant 2 - OF:XY objective function keeps weight -1 for xki and yki vari-
ables but gives zero weight for wij variables;

Variant 3 - OF:XYZ objective function with zero weight for wij variables,
weight of 5 for the zkij variables and keeps weight -1 for xki and yki

variables;

Variant 4 - Suffixes include suffixes constraints;

Variant 5 - XY parallel. constraining parallelism using xki and yki variables
instead of the wij variables;

Variant 6 - w/o W fix. exclude Start and Finish fixing on the wij variables;

Variant 7 - token sym. forcing token symmetry;

Variant 8 - w/o flow forcing exclude constraints (4-7).

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 4. Global Integer Programming - the compact model 47

Figure 4.2: Results table. It compares the outcomes of each of the 14 small
synthetic instances to 9 variant setups. It is possible to deduce that the
auxiliary ideas in the formulation do not help much and that the intrinsic
difficulty lies within the instance itself.

4.4
Results

Abbreviations used in the table above:

– ok - places found by the algorithm were expected;

– wrong - the algorithm found at least one wrong place;

– dup - some places found were duplicate;

– missing - the algorithm found some correct places but not all;

– infeasible - integer program generated does not have a feasible solution;

– wrong* - specifically in Log 8, there were two places that all algorithms
have difficulties in finding. These tests did not find those special places.

Variant 8 showed that turning off the graph connectivity (flow forcing)
constraints makes the model find only the start and finish places. Therefore,
the correctness of all models relies on this set of constraints. Unfortunately, this
may be a problem for large instances, because the size of this set of constraints
grows exponentially relation to the alphabet.

Additionally, the algorithms and its variants found wrong places in logs
with AND-gates (parallelism). In Logs 5 and 9, the algorithm could find the
places that form an AND-gate opening but closed the parallel streams with an
OR-gate.

Logs which we predicted the need for a τ transition were all wrong. The
formulation still does not provide a way to model τ . However, the Petri nets
obtained keep their ability to replay in exchange for its soundness.

The example below shows the state in the Petri net after the second firing
of transition B in log 11. Although this workflow creates tokens indefinitely in

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 4. Global Integer Programming - the compact model 48

the place before C, violating the proper completion property of the Petri net,
the Petri net still can replay the log but is not sound.

* A B C #

Log 11:

– 〈A, B, C〉,

– 〈A, B, B,
C〉,

– 〈A, B, B,
B, C〉

Log 2 has a double nature. It can be either modeled with a simple cycle
or using tau. Variant 2 was able to capture the intricate place that handles the
sequence and the loop.

Some cycles of more significant size can make the model infeasible. It
happened to the experiments in log 12. Nevertheless, the optimization model
was feasible in variants 6 and 8 which are have significantly less constrained
than the others. However, log 13 was captured by all Variants correctly.

Figure 4.3: Execution times of the experiments in seconds. Across variants,
the experiment without fixing initial variables took much longer. The degree
of freedom in the wij network increases severely the execution times.

The table above shows the execution time in seconds of the optimizers.
In terms of computing times, the only model that did poorly was the one
without fixing the start and end activities. The Logs that had a significantly
worse time-efficiency were Logs 7 and 8. Interestingly, those have a greater
variety of activities, which translate to more variables in the optimization
model. (VanDerAalst2011)

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

5
Branch-Cut-and-Price Global formulation

The global ILP formulation introduces the idea of using classical solvers
for mixed integer linear programming to select places of the Petri net. Other
approaches tested in the literature include greedy heuristic strategies, and
solutions filtering after a round of solutions (places) enumerations.

Using integer linear programming also for place selection has the advan-
tage of using the flexibility of the mixed integer linear programming modeling
language to introduce cohesion or other desired aspects for selecting places.

As discussed in the last section, the global formulation in its compact
version was only capable of handling small problems. However, the formulation
has two exploitable characteristics from an integer programming decomposition
standpoint. Firstly, the large number of constraints which enforce flow are not
all needed for all of them to be feasible. Therefore, we can establish an oracle
for selecting testing constraints and introducing them lazily into the solution.

For larger problem instances, it is possible to observe a combinatorial
explosion of feasible places. Just a few of these are relevant to forming the
final Petri net though. Therefore, if we were to replicate the subproblem a
large number of times, it would build-up to a problem size of untractable
proportions. We also can apply the same principle as to the constraints and
use a variation of the classic formulation as place/variable oracle and introduce
them lazily to the main program.

We then divide the algorithm into three modules: a Master, a place
pricer and a flow-enforcing separator. The Master searches for a viable integer
solution guaranteeing cohesion between places and calls the other modules
whenever necessary.

A recursive procedure controls the branching of different fixations made
to the relaxed master for each binary wij. Whenever the solution from a
specialized linear solver for the relaxed master is within ε of every binary
variable being an integer, the branching procedure saves a new Petri net
solution and calls the procedure that evaluates it.

There is a linear solver which verifies the reduced cost to call the pricing
subproblem and the minimum cut in the wij network graph. Is calls a standard
solver to solve the relaxed master. Then verifies both: (1) if there are negative

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 50

Figure 5.1: Graphical representation of the Global Model non-zeros of the for-
mulation. The main idea was to replicate the classical formulation k times
and to enforce cohesion using general constraints on a direct network linking
events to events. A block-structure like this with linking constraints suggests
the opportunity to apply the Dantzig Wolfe decomposition method for effi-
ciency gain.

Figure 5.2: Branch-cut-and-price algorithm schematics. A recursive procedure
controls the branching of different fixations made to the relaxed master. There
is a linear solver which verifies the reduced cost to call the pricing subproblem
and the minimum cut in the wij network graph.

reduced costs through a pricing problem indicating that there are columns to
be generated (new place candidates) and (2) whether the min-cut algorithm
has objective function below one, which would indicate that there is at least one

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 51

flow-enforcing constraint that needs to be added to the problem. This linear
solver loops until the reduced cost are within an approximation parameter ε,
and the min-cut procedure indicates that there is no new cut to be added.

The Place oracle and flow oracle will be presented separately in the
following sections.

5.1
Place oracle (Column Generation)

The global integer formulation presented in the previous section repli-
cates the original subproblem k times in order to produce up to k candidate
places to form a Petri net. Although, in some cases, the event log is so complex
that the model will only be feasible using a great amount of replicated pro-
grams into a single program creating an intractable amount of integer variables
for any modern solver to work efficiently. As a proof of concept, we wanted to
test how the GILP model behaved in toy problems that expressed minimally
the known problems that all process discovery algorithms allegedly face.

For larger instances, we propose a Dantzig-Wolfe decomposition of the
GILP model presented in the last section. This decomposition is useful for
problems with many called separable constraints and a large number of
variables.

Suppose a subset of the problem constraints does not constrain all
variables. An even stronger supposition would be whole blocks of constraints
just constraint their own subset of variables, and no single constraint acts
upon variables from different blocks. In this situation, one could break the
optimization problem into subproblems that use each a subset of variables for
each block separately and then sum the objective functions.

A problem arises when there are constraints which connect variables
which belong to different blocks. We call them complicating constraints. The
value of the decision variables to each subproblem solved separately would not
necessarily be feasible by the complicating constraint (Conejo2006). However,
it is possible to use the phenomenon of complementary slackness to solve
the problem efficiently. Strong duality theory (Chvátal1983) describes the
phenomenon of two dual programs having an optimal solution of equal value
and for each pair of primal variable and dual constraint or each pair of dual
variable and primal constraint will have either value zero and non zero slackness
or non zero value and zero slackness.

Usually many decision variables in a standard linear programming prob-
lem have their optimal value equals to zero. The geometric interpretation of
linear programming gives us a glimpse of it. If we imagine that we have an

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 52

objective function as a direction to go in a convex constrained space, the final
destination of the walk will be a constraining corner. The boundaries form-
ing this optimal corner will have slackness zero whereas all others will have
slackness different than zero.

In the space of the dual program, dual variables associated with con-
straints that are tight (zero slackness) will have a nonzero value. Roughly, the
dual variables can be interpreted as partial derivatives of the objective function
or the expected gain of relaxing the constraint by one unit.

If we could guess which of the variables have some probability of
having a non-trivial (above zero) optimal value, we could solve the problem
without even considering trivial variables. When there is a large set of block
separable constraints, we could try to identify which of the variables have
negative associated reduced cost, which means that they could reduce our
minimization objective function. Then it would be possible to reinsert them
into a master program containing the original objective function and the
original complicating constraints.

With the dual variable’s value obtained solving this master program can
be used to generate a function of the reduced cost contribution using the
variables in each block (Ford1958). Therefore, the block subprograms can use
this function of the reduced cost to find which variables of each block would
have minimal reduced cost and therefore the chance of actively contributing
to reducing the value of the Objective function in the master program.

First, the GILP compact formulation is comprised of the replication of
many subprograms with the original formulation and the Fortet’s transforma-
tion of the places into bicliques. Therefore, at the core of our algorithm lies
solving a master program comprised of GILP’s objective function and compli-
cating constraints and a subproblem comprised of the original trace constraints,
the Fortet transformation and a surrogate objective function which minimizes
the master’s reduced cost.

Practically, we think of the program as two separate objects. The master
program tries to cover the event-to-event network described by W variables
using the bicliques which now will be generated by the subproblem. The dual
variables form the reduced cost that informs the subproblem where to generate
more places. Moreover, the subproblem uses the dual information to identify
all possible places that may be selected by the master program to form the
optimal Petri net, then the candidate places identified with negative reduced
cost are reinserted in the master program encoded as bicliques described with
the appropriate A variables. We solve both of them until the minimum reduced
cost is within an ε approximation of zero.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 53

Formally, the Dantzig-Wolfe procedure prices variables using a pricing
subproblem (Dantzig1960). This place pricer amounts to solving one place at
a time by using the classic formulation similar to in the base case described
by (Bergenthum2007), (VanDerWerf2008), and (VanDerWerf2009).

We present then the decomposition of the GILP formulation into a master
relaxed problem and a subproblem that finds places minimizing the masters
reduced cost as an objective function.

Master Formulation

min W1
∑

(i,j)∈A×A
wij +W2

∑
p∈P

λp +W3
∑
p∈P

dpλp (5-1)∑
i∈D

∑
j∈A−D wij ≥ 1 ∀D ⊂ A, ∗ ∈ D, # /∈ D (5-2)

(dual : πij)
∑
p∈P

(apijλp)− wij ≥ 0 ∀(i, j) ∈ A× A (5-3)

(dual : πij) M.wij −
∑
p∈P

(apijλp) ≥ 0 ∀(i, j) ∈ A× A (5-4)

(dual : γ) ∑
p∈P

λp ≤ k (5-5)

(dual : β) ∑
p∈P

bpλp = 0 (5-6)

We leave in the master formulation the complicating constraints such
as the ones that connect each wij to associated apij. The objective function
5-1 is represented in a generic form, using the constants W1,W2,W3 as
interchangeable costs for future tests. In preliminary tests of the GILP model
we discovered that pricing w variables and x, y worked well. The coefficients
used in the objective function are still an open research question for further
development. By this work, we have tested in the experimental setup using
W1 = 50,W2 = 0,W3 = 10. So, we receive from the subproblem a coefficient
dp that has the information of how many arcs (∑x+∑

y) a place indexed with
p has. We still do not understand how it would affect to define W2 6= 0.

Constraints of the family depicted in 5-2 are too numerous and we will
also add them lazily using a cut generating procedure based on solving a
minimum cut problem using classic algorithm for maximum flow. Equations 5-
3 and 5-4 control the connection between the selection of places using decision
variables λp and the generated column apij and variables wij. For example, if
place p5 is selected, λp5 should be equal to one pushing to one as well all wij
for all ij that place’s p5 biclique (denoted as ap5

ij = 1). So, wij will be pushed
to one whenever there is at least one selected biclique p that has the edge ij.

Constraint 5-5 is not used, we determine an arbitrary bigK so that it will
not interfere with results. It sets a bound on how many places can be selected

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 54

for a Petri net. Future work might use it. Constraint 5-6 would enforce the sum
of x and y to be equal in an attempt of mitigating overproduction of tokens.
We also do not use it and, in practice, we put a slack variable there as an
indicator of how many more arcs there are being produced than consumed.

Acceptable numeric gap

if ∃p | C̄p < 0 (C̄p < ε) ε ≈ 10−3 (5-7)

The master formulation will run using relaxed wij and λp. The fixation
of the values of wij to zero is controlled by the outer loop of branching. This
outer branching procedure calls a relaxed solver, that iteratively solves the
relaxed master and calls the pricing problem below. The pricing problem has
the goal of showing that the master is solved using all variables that have the
potential of reducing further the masters objective.

Whenever there may exist a variable that may reduce the objective
function, the pricing problem should identify it and add to the master problem
(as a new column indexed as p). These variables show themselves by presenting
negative reduced cost calculating using the master’s duals. In practice, we
run the master and the pricing problems multiple times and add minimal
reduced cost columns until the minimum reduced cost is within an epsilon
approximation distance of zero. Only then, we can affirm that there are not
any variables that could further improve the objective.

Subproblem Formulation

min C̄ = W2 − γ +−βb+W3d+
∑

(i,j)∈A×A
[(πij − πij)aij] (5-8)

x∗ − yq +
∑
j∈σ1

(xj − yj) ≥ 0 ∀σ1, q | . . . see description (5-9)

aij ≤ xi ∀(i, j) ∈ A× A (5-10)

aij ≤ yj ∀(i, j) ∈ A× A (5-11)

aij ≥ xi + yj − 1 ∀(i, j) ∈ A× A (5-12)

d =
∑
i∈A

(xj + yj) (5-13)

b =
∑
i∈A

(xj − yj) (5-14)

The remaining constraint of the problems that manifest themselves as
blocks in the GILP formulation presented on section 4 are optimized as the
pricing problem using the reduced cost as objective function 5-8. Constraint 5-

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 55

9 depicts the classic trace constraints where this work all began. For simplicity
purposes, we transfered the indexing of this family of contraints to here:
∀σ1, q | ∃σ ∈ S and σ2, σ = ∗.σ1.q, .σ2. This means that for all prefixes σ1

and last activity q of this prefix σ1 to the observed σ ∈ event log S.
Constraints depicted in 5-10, 5-11 and 5-12 are the Fortet linearized

multiplication that turns the variable aij as a logical AND whenever xi and
yj are set to one. As we presented before, this turns the place generated as a
biclique from event to event, facilitating the selection and covering as we add
aij to the master formulation as new columns of coefficients indexed p.

Constraints 5-13 and 5-14 are just there to inform the master the sum of
arcs used by the place and balance between arcs leaving and entering a given
place.

5.2
Alternative place oracles

Many process discovery algorithms such as the alpha algorithm, heuristics
miner and the ILP miner itself rely on the strategy of finding places that form
a Petri net. They work from an inside-out perspective. Other algorithms, such
as the inductive miner, rely on subdividing the event log into event sublogs
recursively, analogously working from an outside-in perspective.

The Dantzig-Wolfe decomposition of the GILP formulation treats the
Bergenthum formulation and the Fortet/McCormick translation as a place
oracle. However, it is possible using other place oracles alongside the proposed
in the last subsection. Given that several algorithms rely on finding candidate
places, we could use them as a heuristic to generate places for the master
program to use.

The only risk with this approach is generating places that are not feasible
in with the ILP formulation and, thus, reducing the overall quality of the
process because it has at freedom to choose from low-quality places to form the
Petri net. The implementation is as follows: at the beginning of the execution
of the algorithm, we can run any other process mining algorithm that produces
places, fixate the variables of each of these places into a copy of the column
generation procedure and optimize. With the fixation, we expect that some of
the places are going to be feasible in the ILP formulation and, therefore, can
be added as valid columns in the relaxed master procedure. These copies are
used as a place filter.

Another way is to use the outside-in algorithmic approaches to process
discovery. As seen in the previous chapter, the original formulation obligates
a Parikh vector over prefixes multiplicating binary X and Y variables to be

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 56

more than zero. Therefore, fixating any of these variables to zero and solving
the problem will generate feasible solutions to the original subproblem.

For example, the Inductive Miner proposed by Leemans (Leemans2013)
and (Leemans2014) subdivides the Logs into sublogs. These sublogs all have
specific (and disjoint) sub-alphabets. Then, suppose we apply some steps of the
Inductive Miner which separates the Log into four sublogs. Each sublog has its
own subset of the alphabet, therefore, creating a copy of the pricing subproblem
and fixating variables X and Y related to types of events in the alphabet which
are not in the sublog subalphabet should not only reduce the subproblem size
but generate good feasible solutions to the original subproblem.

Figure 5.3: An example of partitioning the alphabet to form smaller subprob-
lems. The SCC is the first step in good implementations of the Inductive Miner
algorithm. We take the advantage that this first step separates the alphabet
into subalphabets partitions that envelop inside difficult characteristics such
as parallelism and cycles. Each of these strongly connected components can
generate pricing problems using the filtered approach described in 3

Furthermore, Leemans also relates how to subdivide the event log into
sublogs through general operators and their relation to an auxiliary directed
graph called the directly follows graph. This directed graph is made using the
alphabet as nodes and then add all edges (i, j) whether there is in the event

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 57

log in some trace the event i is directly followed by event j. The two of the
four examples of operators that Leemans proposes to subdivide the event log
are the sequence operator and the exclusive choice operator.

The sequence operator has the characteristic of identifying in the directly
follows graph groups of nodes in which when going out from the group through
an edge there is no path back. The exclusive choice operator identifies groups
of nodes in which when we are in one is not possible to arrive in the other and
vice versa. All of these cases can be efficiently found using one execution of
the Kosaraju’s two-pass Depth First Search algorithm for identifying strongly
connected components in O(n2) being n the size of the alphabet.

An event log without many large inversions (which usually characterizes
parallelism) or many repetitions of the same event in the same case (which
carry represent cycles) could be broken down into small strongly connected
components and consequently small subpartitions of the alphabet.

Then for each subalphabet related to each strongly connected compo-
nents, we built a smaller pricing subproblem using just the events in this sub-
alphabet. Therefore, we hope to generate valid columns much more efficiently
than using just the original pricing subproblem.

We have shown in section 3 that if the places are feasible for the filtered
subproblem, they are feasible for the original formulation. Furthermore, when
building these smaller programs, we can plug in current duals because the
variables do not change, because we suppose that the filtered log approach is
entirely equivalent to fixating variables not associated with the sub-alphabet
to zero.

5.3
Column generation stabilization

Just as an implementation note, the introduction of heuristic columns
at an early point of an algorithm experienced numerical instability in early
undocumented tests. Although some cases experienced a significant reduction
of execution time due to the introduction of these columns, other cases have
experienced columns which have reduced cost near the ε constant used for
numerical approximations.

The beginning of the execution of the algorithm, the places introduced
to the model have huge calculated reduced cost and are composed of almost
all arcs. We conjecture if early executions of the algorithm used these places
and their associated columns introduced to the primary model as responsible
for constraining the dual of the master relaxed problem. The introduction of
the heuristic columns at the beginning of the execution increased the perceived

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 58

instability and execution times.
The two approaches used for mitigating this problem were: delaying the

introduction of the heuristic columns and the use of weighted duals strategy
for the pricing problem as described by Wentges in (Wentges1997). The first
strategy yielded immediate results. We have set up a global counter for columns
generated by the full pricing problem, and when a certain threshold is achieved,
we add all columns produced by the alpha algorithm which are feasible by the
Bergenthum’s formulation and we allow the strongly connected components
filtered pricing problem to run before the original pricing problem. This way,
we believe that the dual of the master has enough constraints associated with
the columns generated to stabilize.

The other strategy is to interactively run the pricing problem in many
stabilization rounds dissolving the aggressiveness of the current dual by
weighting it to a fixed feasible dual. In our problem, we know by the formulation
that zero values are always feasible for the dual variables β, γ, π̄ij, π¯ij

.
Therefore, we choose a weight of α (we settled for 0.7) and build the

pricing objective function using a weighted expression of the duals with a
feasible one.

βweighted ← αβcurrent + (1− α)βfeasible (5-15)

γweighted ← αγcurrent + (1− α)γfeasible (5-16)

π̄ij,weighted ← απ̄ij,current + (1− α)π̄ij,feasible (5-17)

π
¯ij,weighted ← απ

¯ij,current + (1− α)π
¯ij,feasible (5-18)

The column generation procedure runs until the reduced cost is zero.
This stabilization scheme introduces an outer loop of stabilization rounds to
this original loop. For a predetermined number of rounds (we use 2 or 3 due
to low chance of instability) we run the pricing loop with the weighted duals
for calculating the reduced cost.

Whenever the stabilization round is through, we update our feasible duals
to be the values of the weighted duals in the previous round. So, from going
to stabilization round r to round r + 1 we update the feasible duals:

βfeasible ← βweighted (5-19)

γfeasible ← γweighted (5-20)

π̄ij,feasible ← π̄ij,weighted (5-21)

π
¯ij,feasible ← π

¯ij,weighted (5-22)

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 59

In this way, the feasible duals get closer to where the current duals stand,
and, consequently, the newly weighted duals will be closer to the current.

5.4
Cut generation

Besides the combinatorial number of feasible places, there is also an
exponential number of possible constraints for enforcing flow through the
global network described by the W variables. We want every event to have
at least one incoming and one outgoing W edge to every transition of the
Petri net. Thus we enforce the “flow” from the artificial silent initial activity
∗ to all combinations of events to be at least one and also the flow from all
combinations of events to the final silent activity # to be at least one.

The main idea is that it is not necessary to add all the approximately
2n constraints to enforce this flow. Most of the times, these constraints tend
to have an overlapped effect. Thus, to avoid packing more non-zeros than
necessary into the relaxed master, we chose also to relax these constraints and
create a subroutine that checks if all cuts in this graph have at least one unit
of flow going in and going out.

Remembering, these relaxed contraints have the following form:
∑

(i∈D)

∑
(j∈A−D)

wij ≥ 1 ∀D ⊂ A, ∗ ∈ D (5-23)

In this equation, all subsets of events D contained in A which have the
initial artificial event * must have the sum of outgoing arcs greater than 1.
By outgoing arcs, we mean an arc that goes from an event in D to an event
outside D.

Every time we solve the relaxed master, we can use the values that the
solver found for the W variables, and build a flow network in which these
values are the associated capacity of the edges. Then we use a Maximum
flow/Minimum cut specialized algorithm as a black box in order to find which
of these subsets of events D has the minimum cut value. The minimum cut
value below one will indicate that there are some subsets D of activities which
do not hold. Then, until the minimum cut value of the network has value one,
this subroutine produces a round of cuts and adds them to the relaxed master
and resolve the relaxed master.

5.5
Branch and bound

The branching is performed in a simple manner of fixating W variables
to one and then to zero. We first select the W variable closest to 0.5 and fixate

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 60

them to 1. Recursively, we solve the linear problem once more and choose
among the remaining variables the closest to one for fixation.

The recursion path is analogous to performing a depth-first search on a
tree with a branching factor of two. In each of the nodes, we call the procedure
that solves the relaxed master. This procedure guarantees that the minimum
cut of the solution is at least one (which mean the cutting problem is solved)
and that the minimum reduced cost among candidate places is zero (pricing
problem is solved) (Vanderbeck2005).

At a certain point into the deep dive of fixations, the algorithm obtains
a first solution in which all W variables are either above 1− ε or below 0 + ε.
In this situation, we consider having mined an integer solution in W . We then
save the objective function value, and the associated Petri net by looking at
which of the λp associated with generated places are above 0.1. Almost always
the λp variables are an integer as well as the W , and, in the rare cases in
which there are fractional λp they are just two or three very similar places. We
decided to include all fractional places in these sporadic cases.

With a feasible integer solution in hands, we can use its objective as an
upper bound for pruning the recursion tree before going too deep to get integer
solutions. As we present in the following subsections, the first integer solution
is usually so good that the procedure only finds one to five better solutions.

5.6
Experimental setup

The decomposed formulation yields an algorithm capable of handling
complex instances. Therefore, we decided to experiment with its performance
against one of the most difficult synthetic instances available: the Process
Discovery Contest 2016 and 2017.

During the execution of the algorithm, every integer solution which has an
evaluated objective function better than the last produces a new PNML (Petri
net XML) file, and we measure their replay fitness. This measure theoretically
tries to measure how much of the behavior does the Petri net can reproduce
from the given log.

Experiment indicators Our primary objective is synthesizing expressive
models, which means: readable by humans and re-enactable by machines. Our
chosen model is the Petri net. Unfortunately, it is possible to obtain process
models that have artificially good characteristics, but in practice do not encode
process characteristics such as flow diversity, loops and kinds of decisions.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 61

Therefore, to measure how good a model remains an open question in the
field.

As stated in Chapter 2, Aalst in (VanDerAalst2016) proposes that an
acceptable process model should then balance four aspects of the process
discovery task: fitness, precision, simplicity, and generalization. Simplicity
is defined as how complicated is a model. If the model has a graphical
representation, a simple model would use a few connections and would have a
streamlined morphology instead of entangled connections.

Simplicity is an aspect of difficult measure objectively. What we can
guarantee to impose a minimum standard of simplicity is that our algorithm:

– produces models which use only one transition for each symbol of the
alphabet;

– we do not make use of silent transitions in the middle of the model,
besides from one at the beginning and one at the end;

– our objective function penalizes the use of the arcs, so we should
expect the most economical arrangement of valid places which minimally
connect the Petri net.

As to the definitions of Fitness and Precision, we will use metric proposed
by recent work by Aalst, Carmona, Munhoz-Gama in (VanDerAalst2016),
(Carmona2018), (Adriansyah2015).

Token-Replay Fitness There are some alternatives to measuring fitness, the
simplest one is the percentage of the sequences that can be correctly replayed
in the model. As we discussed in the compact global model, this formulation
still has limitations. For instance, it does not make use of silent activities and,
consequently, cannot reproduce some basic behaviors as we observed with the
small artificial cases in the last section. Additionally, processes themselves can
be regionally good or bad. Therefore, this measure can be deceptive by rejecting
an imperfect process with good regions.

A more flexible way of measuring Petri nets is proposed in chapter 7.2
of Aalst more recent book on process mining (VanDerAalst2016). We conduct
the replay of every sequence onto the log, and we track the behavior of tokens
through the activations of activities of the log using four measures. That is,
during the replay of all sequences in the log, we update four counting variables:

– C - for the number of tokens consumed;

– P - for the number of tokens produced;

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 62

– M - for the number of missing tokens at the time an activity should be
able to fire;

– R - for the number of tokens remaining at the end of the replay of each
sequence.

With these counters, we derive indicators which roughly measure two
undesired effects. Firstly, if we divide M by C, we can measure how many of
the necessity of token consumption is not supplied. Also, the division of R by P
denotes the percentage of produced tokens which are left after the simulation
of the sequences. The smaller these percentages are, the fitter is the model to
the log.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 63

Figure 5.4: Example of the reproduction of a single log 〈a,b,d,e,g〉 in a process
model. During the execution, we maintain counters for C, P, M and R. Notice
that the process model is flawed to a point where “b” and “g” are not even
transitions in the process. Even with this characteristic we carry on forcibly
activating the transitions which do belong to the model.

This alternative measure of fitness used throughout this dissertation
combines them both. We then define this measure as a function of the replay
procedure of the log L over the Petri net P :

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 64

replay-fitness(L, P) = 1
2(1− M

C
) + 1

2(1− R

P
)

The fitness measure is the average of the complement of these indicators
of undesired effects. We use the complement in order to make the score closer
to 100% mean a perfect process and a 0% score the contrary.

Leaving-Arcs Precision For the precision, the recent book on conformance
checking by Carmona ((Carmona2018)) demonstrates the difficulty of measur-
ing precision and enumerates two significant approaches for measuring them.
The approach used in this work is the leaving arcs approach. As explained in
Munhoz-Gama’s papers (Adriansyah2015) and (Munoz2010), an approxima-
tion is possible by exploring a tree of possible prefixes generated by a mined
model iteratively checking the observed history. Therefore, the algorithm sim-
ulates sequences of activations possible by the Petri net building a tree until
the Petri net reaches a final state or the algorithm prunes the search. The al-
gorithm prunes the search whenever it recognizes a subsequence not present in
the observed history. The generation of this simulation tree has internal nodes
equal to prefixes observed in history and leaves that are connected to a final
state of the Petri net or to leaving arcs, which mean, arcs that would lead to
states not observed in history.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 65

Figure 5.5: Example of a Petri net simulation tree adapted from Adriansyah’s
paper on Measuring precision (Adriansyah2015). The internal nodes in white
represent prefixes in the simulation of the Petri net which are present in
the original event log. In red are the leaving arcs, which mean prefixes that
can be generated by the Petri net but are not found in the event log. The
approximation of the precision measure is the unweighted version, which is the
simple division of internal nodes by the sum of internal nodes and leaving arcs
of the tree.

They argue that a function over the internal nodes and the leaving arcs
can be used as an approximation of the precision. They offer a variety of ways
of measuring it and demonstrate in an experimental setup that all choices of
functions achieve similar results. Therefore we have chosen the most straight-
forward unweighted version. Our precision measure is simply calculated as:

precision (L, P) = n
n+l

Where n stands for valid prefixes found in the recursion and l stands for
leaving arcs.

Hardware and software used in inexperiment We did all the implementa-
tion of the preprocessing, modeling and the control of the algorithm in Python
3.6. We used as an all-purpose LP solver for the relaxed master and MIP solver

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 66

for the subproblems the Gurobi suite 8.0.1 with an academic license and their
respective API package for modeling problems in Python called “gurobipy”.
Some standard packages were used in preprocessing as we such as Numpy and
Pandas. Finally, we also used the NetworkX package for solving the maximum
flow problem in the interface between the controller of the relaxed master and
the cut oracle.

Also, we allowed the algorithm to process an instance for 24 hours. We
interrupted the execution of the algorithm after this time limit.

The computer we ran the experiments is running the Kubuntu 16.04 OS.
It has the Intel(R) Core(TM) i7-4790 CPU at 3.60GHz capacity and width 64
bits. Additionally, the memory of this computer has 31 GB of capacity.

Instances The problem instances we used for this problem are synthetic,
created for the Process Discovery Contest proposed by the University of
Eindhoven and available at (PDC2016) and (PDC2017). In each 2016 and 2017,
they created ten process models that each reproduced different complicated
aspects of the task of process discovery. Then they generated from these models
some simulations in the form of sequences of events and provided only these
sequences to the contestants.

The contestants were invited to submit process models in any language
that captured the behavior of these sequences to be evaluated against traces
generated by the process (not present in the data of training) and against
traces not generated by the model (which the submitted models should not
allow reproduction).

Each of these models contained at least two of the following characteris-
tics:

– Loops Certain parts of the model can be repeated an arbitrary number
of times.

– Optional Activities Certain activities are optional and can be skipped
in certain runs of the process.

– Inclusive Choices Within the process, multiple sets of activities are
optional, i.e., at least one set should be executed, but multiple sets of
activities are also allowed. The difference with an exclusive choice resides
on the fact that, in an exclusive choice, exactly one branch is activated;
conversely, in an inclusive choice, more than one branch can be activated.

– Recurrent activities Activities can be executed in multiple non-
subsequent points during runs of the process.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 67

– Long-term dependencies A decision made at one point in the process
can restrict the possibilities at subsequent decision points. For example,
at the beginning of a process, a choice is made between an activity A
and an activity B. When activity A is chosen, later during any run, an
activity C cannot be executed; if activity B is chosen, activity C can still
be executed. In the Petri net terminology, this corresponds to Petri nets
with non-free-choice constructs.

– Exclusive choices can be characterized by balanced or unbalanced
paths. If an exclusive-choice is characterized by being balanced, in any
run of the process, each mutually exclusive set of activities as an equal
probability of being chosen. If conversely, it is unbalanced, one set has a
90% probability of being chosen and the other sets, together, have 10%,
with each of them having the same probability.

– Incompleteness Especially the instances of 2017 contained five pro-
cesses with unfinished traces. In practice, this is a common feature be-
cause usually there are still cases in the middle of their processing when
we extract a batch of data for mining.

The detailed comments of what characteristic each of the instances
carried are in the results table in figure 5.6 we present next.

5.7
Results

The summary of the results is below. Each entry of this table shows
details of each of the 20 instances and the performance of the final response of
the algorithm.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 68

Figure 5.6: Table showing characteristics of each of the tested instances and
he evaluation of the best solution found by our algorithm. We evaluated our
algorithm by leaving arcs precision, token replay fitness, integrality gap and
execution time of the algorithm.

Instances have at least two characteristics that usually adds difficulty to
the process discovery task. The time of executing the algorithm is either very
low or very high. Some instances have not finished the branching procedure
after 24 hours running straight. Some instances after 24 hours have not even
explored the first branch of depth ten entirely. So, after 24 for hours, the
algorithm was still searching inside approximately 1/1000 of the search space.

The algorithm showed an overall consistency in producing high-fitness
processes. Nevertheless, the precision is still a problem. Almost all instances
had a remarkably low precision, denoting that the process models generated
can produce much more behavior than what is necessary for the logs.

Each run of the algorithm produces multiple integer solution solutions,
even though it is a small number. It seems to us that there are various
possibilities of Petri nets with the same objective function using our proposed
model because it does not matter how is the first path the branching explores,
it always finds a good first solution quickly. The chart in figure 5.7 denotes the
main milestones and the time it took to achieve that milestone.

Some instances in the chart in figure 5.7 have not finished but were still
able to find the first solution. This behavior appears to be the only constant is
that the algorithm can quickly find a valid Petri net and it takes a long time
to finish. Also, the integrality gap being so low limits the maximum number of
improvements possible, and also the expectation of finding new solutions with
fewer arcs.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 69

Figure 5.7: Elapsed time by optimization milestone. Before the algorithm starts
branching, it finds a root solution. Then when the branching starts, it finds
an integer solution (Petri net) and continues branching until it has tested all
possibilities of fixating the root solution. Notice that the first solution the
algorithm finds serves as bound for the branching procedure, and then the
algorithm will only search for branches and solutions promising Petri nets
with better objective function value.

Also, we want to explore the relationship between the advances in the
integrality gap, the precision measure and fitness measure. To accomplish this,
we build three scatter plots that show how the relation two-by-two of them. We
also wanted to show all of the solutions found, not just the last; then it would
be easier to conjecture the effects of improvements in the objective function
and its reflection on the replay fitness and leaving arcs precision.

Firstly, we explore the relationship between the integrality gap and
fitness. The integrality gap is how much the integral solution is away from
the relaxed linear solution. So as long as the algorithm is running, it tries to
close that gap. We observe in the chart of the figure 5.8, that as the algorithm
progresses, the fitness measure seems to either stay at the same level or to

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 70

collapse at some random point for all instances.
Please notice the scale of each axis. They reveal that: the fitness measure

always stays high for every solution we find and that every solution found has
an integrality gap of less than 2.5%.

Figure 5.8: A scatter plot showing the relationship between the integrality gap
and the fitness measure. The algorithm will find integer solutions with lower
and lower objective function values relative to the root objective function.
Therefore, we can visually interpret this chart as time flowing to the right as
the algorithm progresses narrowing the integrality gap, notice that the right
corner means gap equal to zero. The formulation for this problem seems to have
a low standard integrality gap, and the objective functions seem disconnected
to the fitness measure.

For precision, this effect is a little different as we show in figure 5.9. As
the algorithm progresses closing the gap, the precision measure seems to either
stay the same or to improve slightly in some instances. We conjecture whether
the improvement in reducing the number of arcs also reduces the ability of the
Petri net to produce tokens that would give way for leaving arcs. We explore
these effects further in the experimentation of section 6, that explains the
risk-prone method.

Either way, most instances also seem to have very low precision.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 71

Figure 5.9: A scatter plot showing the relationship between the integrality
gap and the precision measure. Notice that as the gap reduces, the objective
function reduces and so the number of arcs used to connect the Petri nets.
The algorithm may eliminate the production of unnecessary tokens that enable
regions not present in the log.

Finally, we present the relationship between precision and fitness. As
already observed, with few exceptions, instances seem to have high fitness and
low precision scores. What is more important is that they do not deviate much
from the first solution found in terms of precision and fitness. That means,
they seem to have a low expectation of improving after the algorithm finds a
first solution.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 5. Branch-Cut-and-Price Global formulation 72

Figure 5.10: A scatter plot showing the relationship between the fitness
measure and the precision measure. Once we find a solution, it does not seem
to be substituted by an extremely better one. In most of the cases, the Petri
nets generated seem to be always close in terms of results to one another.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

6
Risk-prone generation of places

The original Bergenthum’s formulation includes all prefixes of all ob-
served variants into the model, without considering their frequency. Empiri-
cally, algorithms derived from this original formulation tend to be overfitting
and difficult to read. Our result shown in section 5 presented the same problem.

Usually, in process discovery, we do not try to make sense from complete
random sequences. There are real processes, industries, practices generating
them. Therefore, we can make an assumption there is an unknown distribution
generating these sequences and this distribution may not be stationary through
time.

Filtering rare variants is a common strategy to avoid taking into consider-
ation infrequent behavior. This approach is flawed. Maybe there are instances
in which various infrequent variants carry essential patterns. Maybe all variants
occur just once.

The formulation takes the observed history to describe candidate places
which are feasible for all observed history. The process model generated with
these places usually is going to serve as an analysis tool or as the model for
the process automation for future executions. However, probably all variants
observed in history is not observed again in the next period of time.

In the geometrical sense, each variant (distinct sequence) generates a set
of its prefixes, which in turn are translated into inequalities. These inequalities
are half-spaces in a space described by xi and yj variables. The union of all these
half-spaces describes a polyhedron. Place candidates form bases for the convex
set, in the vertices of this polyhedron described by all inequalities generated.

Therefore, suppose that we observe the occurrence of sequences and
variants in an online setting. Since we do not expect to observe every possible
variant every period of time, the facets of this polyhedron may or may not
occur from time to time. Thus, every facet in the polyhedron should carry a
measure of uncertainty of their manifestation.

Then all set of constraints associated with a given variant should have
a probability of not being taken into considerations. In this new setting,
considering that each variant could be manifest itself or not, instead of
searching for basic solutions in one polyhedron, we would have to search for

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 6. Risk-prone generation of places 74

basic solutions in a higher number of polyhedra. If there are n variants, and
each could be "turned on" or "turned off", the number of polyhedra could be
as large as 2n being n the number of variants.

Finally, we suppose that there is an unknown global distribution which
generates the sequences. The observed log is just a sample from this unknown
distribution. Consequently, we could establish a probability measure of that
specific variant of manifesting itself again proportional to their observed
frequency.

6.1
Cardinality constrained Robust Model

The subproblem’s feasible set has subsets of inequalities generated by
prefixes of the sequences. Each observed case generates a set of inequalities
so that the place generated as a solution obeys all of the observed histories.
However, what if there are abnormalities in the process, or the data capture
itself. Some places can become infeasible whereas other places turn feasible.

In the robust framework, we can model problems with the manifesta-
tion of uncertainty in their feasible set (the polyhedron described by the con-
straints). The robust framework tries to navigate the space of solutions in
which there is uncertainty in the feasible boundaries of the problem, being
aware of the trade-off between the probability of a solution being feasible and
the chance of improving the objective function.

An entirely risk-averse approach would consider all possible constraints
conceivable to solve the problem and guarantee that whatever the solution, it
is always feasible. This approach frequently produces over-protective solutions.
In our problem, a cluttered problem (sequences with many inversions) often
produces places with an unpractical number of arcs.

Bertsimas and Sim in (Bertsimas2004) argue for a new kind of modeling
uncertainty in the feasible set, imagining a theoretical game played with an
adversary. In our case, the simplest and most natural way of modeling is an
adversary who has to choose to generate a fixed number of sequences from the
unknown distribution. The modeling changes that we need to guarantee that
the solution produced should be able to be feasible for at least η percent of
the sequences of events observed in history.

Under these assumptions, we deem the original model of the trace
constraints to be too risk-averse. In a sense, if there is a possibility of some
outlier occurring, probably it does not repeat itself. Additionally, if there are
new outliers sequences produced, they probably are different from previous
outliers. Therefore, we should provide the model with some flexibility to ignore

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 6. Risk-prone generation of places 75

a percentage of the observed history.
We have a log L composed of n sequences/variants σi(∀i ∈ [n]). We define

as notation an over-line upon the variable as denoting the prefix-closed set of
it:

σi = {σj|∃σk ∈ A∗|σj · σk = σi}

or the union of the prefix-closed sets of its components:

L = {σ1 ∈ A∗|∃σ2 ∈ A∗|(σ1 · σ2 ∈ L)} = {σ1 ∪ σ2 ∪ · · · ∪ σn}

.
The equivalent formulation must allow for the program the flexibility to

shut on and shut off for navigating different execution of scenarios. In order
to do that, we introduce additional binary variables si ∈ {0, 1} for each of the
variants σi. We want to model them as indicators of whether we are exploring
trace σi or not. Then we define as a convention that if the value of si is
1, we consider the associated inequalities generated by the variant σi and,
alternatively, we relax these same constraints if si ever has value zero.

In order to do that, we introduce additional binary variables si ∈ {0, 1}
for each of the variants σi. We want to model them as indicators of whether we
are exploring trace σi or not. Then we define as a convention that if the value
of si is 1, we consider the associated inequalities generated by the variant σi
and, alternatively, we relax these same constraints if si ever has value zero.

And to each trace constraint we add a term M(1 − si) as to relax
the constraint whenever the si associated with the σi that generated that
constraint. We will denote by −→p (σ,X,Y) as the function that produces the
expression used in the inequality related to the sequence/prefix σ

−→p (σj,X,Y) +M(1− si) ≥ 0 ∀σj ∈ σi

For this relaxation to be efficient, we set up a tight big M , equal to the
number of variables already in the original inequality. In this manner, whenever
the binary variable si has value zero, the inequality is relaxed by the forced
introduction of a big M as a slack.

Each sequence σi has a frequency of observation f(σi). This means that
for a bag of traces B(L) = {σf1

1 , σ
f2
2 , . . . , σ

fn
n } with the sequences σi and

their respective frequencies of observation fi we want a model that allows
for generated places to be infeasible for some few infrequent variants. Then in
the formulation of the sub-problem we add the following constraint:

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 6. Risk-prone generation of places 76

n∑
i=1

fisi ≥ η.
n∑
i=1

fi (6-1)

This constraint that the only valid values for the si values are just for
the ones which consider a combination of variants with frequencies above an η
proportion of the overall number of cases. This constraint reinforces the search
into a space of

To further clarify, please consider the example below.

Figure 6.1: Example of the additions made to the previous sub-problem in the
branch-cut-and-price schema. For each prefix constraint belonging to the same
variant, we add a binary variable that relaxes the problem whenever its value
changes from one to zero. An additional constraint is added to control which of
the new relaxation binary variables can assume the value 0. The idea is to allow
rare variants to be more likely to be shut down. In this particular example, we
only allow for the constraints associated with 〈A,D,E〉 to be relaxed.

This model factors in a previously not used information: the frequency
of observations. Depending on the choice of η, new configurations of the si
values are feasible and, thus new possibilities of shutting off infrequent become
feasible.

Finally, we must remember a rather obvious result that has practical
implications. When we find a solution for a problem with a specific η1, this
solutions is also feasible for any η2 such that η2 ≤ η1. Observe that in equation
6-1, the right-hand side is a constant one we define the data set and desired η.
If in the middle of the execution we diminish η, all previous solutions are still
feasible. That means, if η1 ≥ η2, then by transitivity:

n∑
i=1

fisi ≥ η1.
n∑
i=1

fi ≥ η2.
n∑
i=1

fi (6-2)

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 6. Risk-prone generation of places 77

Therefore, we are allowed to use lower values of η during the execution
of the algorithm. Then we can use already found columns with higher η’s to
solve smaller η experiments.

6.2
Experiments

The experimentation is very similar to what we did in section 5. We
perform the same tests on the same instances and evaluate the leaving-arcs
precision and token-replay fitness. Although, in a preliminary attempt of the
tests we perceived that the relaxation of η increases the time of executing the
sub-problem by a large factor. For example, some instances that took less than
20 minutes using all the constraints, could take days to finish the search for
integer solutions.

We observed that solving the problems for η ∈ [0.7, 0.9] increases
execution times for the procedure dramatically. Depending on the instance it
peaks in execution time in different values for η. Just for illustration purposes,
we present some of the early tests using the event log 7 of the Process Discovery
contest of 2017 (PDC2017) in figure 6.2.

Figure 6.2: Table showing the execution time and Objective function for the
execution of the algorithm using different values for eta. Notice that the
execution time peaks at an η = 0.7. Also, our objective function decreases
10 units when a model has one less arc relative to the others. We observe that
the opportunity to reduce the quantity of arcs is relatively little by decreasing
values from η (eta).

Additionally, we observed that once we find a solution in a particular
experiment, we expect the following solutions to achieve no significant im-
provement. Therefore, since our objective is to observe the effects of decreasing
η in the fitness and precision measures, we set up the experiment such that
we test using decreasing η values ∈ {0.9999, 0.9, 0.8, 0.7, 0.6, 0.5} using 12 in-

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 6. Risk-prone generation of places 78

stances that were able to finish in less than 90 minutes the branching in the
last chapter.

The order of the values for η is decreasing such that solving the master
model is faster and more stable using the columns already generated for higher
values of η. Also, we define a time limit of 120 minutes or two hours for each
η, to be able to test all values for η in all the 12 instances.

The 12 instances are: 2017.02, 2017.04, 2017.06, 2017.07, 2017.08,
2017.09, 2017.10, 2016.03, 2016.04, 2016.08, 2016.09, 2016.10.

6.3
Results

We present the results in figure 6.3. As expected, the time limit prevented
to find solutions in some instances. However, our objective is to see a trend in
fitness and precision subject to different values of η decrease, that is, become
more risk-prone.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 6. Risk-prone generation of places 79

Figure 6.3: Fitness and Precision measures of the 12 instances as η decreases.
An η (eta) of 100% on the left is analogous to results obtained in section 5.
We can observe the progressive relaxation of η as the lines of the chart move
to the right. A counter-intuitive result: generating places and arcs allowing
the model to ignore a large amount of history can yield better precision while
maintaining high fitness.

Also, the models tend to be easier to read. Since the objective function
guides the search for solutions with fewer arcs, we expect that relaxing the
problem would yield simpler Petri nets. In Appendix B, we can observe the
processes rendered.

By looking at them, we observer that some instances have a significant

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 6. Risk-prone generation of places 80

gain in visual simplicity as the parameter η declines. Even in the instances in
which this gain is subtle, the addition of new places substitute some cycles and
parallelism by a more streamlined version of a specific part of the process.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

7
Discussion

7.1
Findings and contributions

As expected the model does not handle situations which silent (τ)
activities are required. However, we noticed that the process model could still
play-out the log, although the process model is not sound. This means that
tokens are left in intermediary places after the Petri net finishes its execution.

In the compact global model, the algorithm did not seem to handle
well parallelism. The main problem with all the wrong tests was that the
model bifurcates streams correctly using an AND-gate, but it closes them
using an OR-gate, which may cause problems with the Petri net’s soundness.
The constraint which obligated the sum of all leaving arcs to be equal to the
sum of entering arcs for all intermediary places seemed to work well in these
cases.

Cases in which there were only OR-gates, all variants seemed to perform
well. All the cases, 3, 4, 6, 7 and 10 returned the right answer consistently. One
particular characteristic of the OR-gate is that it does not change the total
amount of tokens when activated.

Variants that try different schemes for objective function had a great
sensibility in the correctness of the result. Among the base case and variants
1, 2 and 3, the variants using mixed weights in both W and XY or Z and XY
families got the best results. Just as in the ILP case, there is still room for
further research on the balance of objective function weights.

In the Branch-cut-and-price algorithm, the gains in performance were
vast. It was possible to handle larger instances that were created intentionally
cluttered. Also, we do not need to guess a K to make the problem faster or
slower; it is adaptable. Furthermore, the lazy introduction of place candidates
reduces in a great deal the number of combinatorial interactions that integer
variables from different blocks should handle.

We observed that there is not a steady gain of waiting for the branching
to terminate. Solutions usually remain with the same characteristics of the
first solution found. Also, the current master objective does not seem to

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 7. Discussion 82

promote substantial improvements in the fitness measure. On the contrary for
the precision measure, the algorithm while finding solutions with fewer arcs
seems to improve significantly precision. When we further allowed the search
for places to ignore part of the history, theoretically we relaxed the problem
in a way that it could find solutions with an even lower objective function,
thus fewer arcs. This strategy yielded Petri nets with a substantial gain in the
precision metric without losing too much on the fitness metric.

Finally, we observed that the relaxation in the production of places could
yield simpler preciser processes. However, there is a significant increase in
the search space for a solution, so that the MIP solver used a considerable
additional time to solve the subproblem. The remaining process models can be
found in the appendices of this dissertation or here in the Dropbox folder. We
invite the reader to check the perceived gain in simplicity in other instances.

For example, we compare results for instances in Log6 and Log7 from
the Process Discovery Contest of 2017 for η = 0.9999 and η = 0.6. The
gains in perceived simplicity were very noticeable. However, the gain in the
precision metric was high only with Log6. This shows that the gain in perceived
simplicity is possible even when the gain in other metrics was not present.
Also, we can observe that structures inducing exclusive decisions substitute
many substructures that generate parallelism. This may be the motive for the
observed gain in precision.

7.2
Limitations and future research

We believe this algorithm to be a work in progress. We showed in this
work that there is potential to achieve versions of this algorithm that could
compete against other state-of-the-art algorithms. The current limitations of
the algorithm, still to be worked upon, are:

– disconnection of the objective function and the improvement of measures
such as fitness and precision;

– model makes assumptions such as not generating duplicates of transitions
that generate the same symbol when firing and not using silent τ activi-
ties, these assumptions reduce the capacity of the chosen representation
(Petri nets) to be fully expressive;

– there is also a considerable integrality gap and need for branching that
slows the algorithm;

– the relaxation of the place generation in the risk-prone modeling can
have a big toll on the processing time of the subproblem.

https://www.dropbox.com/sh/6jvgxj7ni51pa1z/AADvEuV0IxTXE6vN7K9M1GbZa?dl=0
DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 7. Discussion 83

Therefore, to mitigate the enlisted problems, we believe that future re-
search could work on: a better Global model, better polyhedral understanding
of the global model, new search strategies for integer solutions, using the in-
formation obtained evaluating and simulating intermediary solutions obtained.
We detail these next.

We need to better understand how the constraints and the proportions of
weights in the objective function may affect other aspects of the process models
we did not approach in this work such as soundness of the model. Moreover,
we observed that fixing the start and finish reducing the optimization time.
We believe that there are opportunities in discovering heuristics that allow the
model at the to fix more variables, especially the set of wij variables.

The model could also be further improved to use silent activities τ .
Silent transitions would be useful for modeling skips, some nested cycles, and
compositions of gates such as AND-gates followed by OR-gates. Any advance
on this sense could improve the representational power of this new approach,
and further gains in precision.

We have an original formulation which generates candidates of places for
Petri nets that a Master program connects. Since the most basic version of the
formulation is totally unimodular, we believe that there is an opportunity for
developing a primal-dual algorithm for generating batches of feasible places.
The fast generation could yield a strategy of adding a large number of columns
from the start to avoid the depth of branching.

Additionally, the token-replay fitness metric and the leaving arcs preci-
sion can be broken-down as regional indicators of nonconformity to direct us
to subsets of variables which still have to improve. Maybe that there is an op-
portunity to use this information for intensification in a meta-heuristic search
for new place alternatives.

There are lots of opportunities to study the branch-cut-and-price algo-
rithm using classic column-generation algorithm strategies. Adaptive column
generation stabilization, new branching strategies (i.e., leaf branches enumer-
ation), strong branching, reduced cost fixation, to name a few.

The integrality gap between 1% and 5% shows that there may be an
opportunity for studying the master polytope and proposing specialized valid
cuts to approximate the linear relaxation of the master to the integer solutions.
Then we can improve the Cutting oracle aspect of the algorithm in order to
reduce the depth needed for the branching.

Additionally, we showed that the relaxation of the η parameter tends to
significantly improve the time to solve. Our current approach of finding an
optimal reduced cost in the sub-problem may be flawed. We should solve for

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Chapter 7. Discussion 84

all feasible combinations and add all the places of all feasible combinations of
turning on and off constraints using the added integer variables si. Just finding
the most negative solution of all possible combinations, and there are a lot of
possible combinations, is inefficient.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Bibliography

[Adriansyah2015] ADRIANSYAH, A.; MUNOZ-GAMA, J.; CARMONA, J.; VAN
DONGEN, B. F. ; VAN DER AALST, W. M.. Measuring precision of
modeled behavior. Information systems and e-Business Management,
13(1):37–67, 2015.

[Bergenthum2007] BERGENTHUM, R.; DESEL, J.; LORENZ, R. ; MAUSER, S..
Process mining based on regions of languages. In: INTERNATIONAL
CONFERENCE ON BUSINESS PROCESS MANAGEMENT, p. 375–383.
Springer, 2007.

[Bertsimas2004] BERTSIMAS, D.; SIM, M.. The price of robustness. Oper-
ations research, 52(1):35–53, 2004.

[Carmona2010] CARMONA, J.; CORTADELLA, J.. Process mining meets
abstract interpretation. In: JOINT EUROPEAN CONFERENCE ON
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES,
p. 184–199. Springer, 2010.

[Carmona2018] CARMONA, J.; VAN DONGEN, B.; SOLTI, A. ; WEIDLICH, M..
Conformance Checking: Relating Processes and Models. Springer,
2018.

[Chvátal1983] CHVATAL, V.; CHVATAL, V. ; OTHERS. Linear programming.
Macmillan, 1983.

[Conejo2006] CONEJO, A. J.; CASTILLO, E.; MINGUEZ, R. ; GARCIA-
BERTRAND, R.. Decomposition techniques in mathematical pro-
gramming: engineering and science applications. Springer Science
& Business Media, 2006.

[Conforti2014] CONFORTI, M.; CORNUÉJOLS, G. ; ZAMBELLI, G.. Inte-
ger programming models. In: INTEGER PROGRAMMING, p. 45–84.
Springer, 2014.

[Dantzig1960] DANTZIG, G. B.; WOLFE, P.. Decomposition principle for
linear programs. Operations research, 8(1):101–111, 1960.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Bibliography 86

[Ekanayake2013] EKANAYAKE, C. C.; DUMAS, M.; GARCÍA-BAÑUELOS, L. ;
LA ROSA, M.. Slice, mine and dice: Complexity-aware automated
discovery of business process models. In: BUSINESS PROCESS
MANAGEMENT, p. 49–64. Springer, 2013.

[Ford1958] FORD JR, L. R.; FULKERSON, D. R.. A suggested computation
for maximal multi-commodity network flows. Management Science,
5(1):97–101, 1958.

[Fortet1960] FORTET, R.. Applications de l’algebre de boole en
recherche opérationelle. Revue Française de Recherche Opérationelle,
4(14):17–26, 1960.

[Leemans2013] LEEMANS, S. J.; FAHLAND, D. ; VAN DER AALST, W. M.. Dis-
covering block-structured process models from event logs con-
taining infrequent behaviour. In: INTERNATIONAL CONFERENCE
ON BUSINESS PROCESS MANAGEMENT, p. 66–78. Springer, 2013.

[Leemans2014] LEEMANS, S. J.; FAHLAND, D. ; VAN DER AALST, W. M.. Dis-
covering block-structured process models from incomplete event
logs. In: INTERNATIONAL CONFERENCE ON APPLICATIONS AND THE-
ORY OF PETRI NETS AND CONCURRENCY, p. 91–110. Springer, 2014.

[Lorenz2007HowTS] LORENZ, R. C.; MAUSER, S. ; JUHÁS, G.. How to
synthesize nets from languages - a survey. 2007 Winter Simulation
Conference, p. 637–647, 2007.

[Munoz2010] MUÑOZ-GAMA, J.; CARMONA, J.. A fresh look at precision
in process conformance. In: INTERNATIONAL CONFERENCE ON
BUSINESS PROCESS MANAGEMENT, p. 211–226. Springer, 2010.

[PDC2016] Process Discovery Contest 2016. https://www.win.tue.nl/
ieeetfpm/doku.phpid=shared:edition_2016. Last accessed: 2019-02-
20.

[PDC2017] Process Discovery Contest 2017. https://www.win.tue.
nl/ieeetfpm/doku.phpid=shared:process_discovery_contest. Last
accessed: 2019-02-20.

[Reisig2013] REISIG, W.. Understanding petri nets: modeling tech-
niques, analysis methods, case studies. Springer, 2013.

https://www.win.tue.nl/ieeetfpm/doku.php id=shared:edition_2016
https://www.win.tue.nl/ieeetfpm/doku.php id=shared:edition_2016
https://www.win.tue.nl/ieeetfpm/doku.php id=shared:process_discovery_contest
https://www.win.tue.nl/ieeetfpm/doku.php id=shared:process_discovery_contest
DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Bibliography 87

[Rozinat2007] ROZINAT, A.; DE MEDEIROS, A. A.; GÜNTHER, C. W.; WEI-
JTERS, A. ; VAN DER AALST, W. M.. Towards an evaluation frame-
work for process mining algorithms. BPM Center Report BPM-07-06,
BPMcenter. org, 123:142, 2007.

[VanDerAalst2011] VAN DER AALST, W. M.. Process discovery: An intro-
duction. In: PROCESS MINING, p. 125–156. Springer, 2011.

[VanDerAalst2013] VAN DER AALST, W. M.. Decomposing petri nets
for process mining: A generic approach. Distributed and Parallel
Databases, 31(4):471–507, 2013.

[VanDerAalst2016] VAN DER AALST, W.. Process Mining: Data Science
in Action. Springer Berlin Heidelberg, 2016.

[VanDerWerf2008] VAN DER WERF, J. M. E.; VAN DONGEN, B. F.; HURKENS,
C. A. ; SEREBRENIK, A.. Process discovery using integer linear
programming. In: INTERNATIONAL CONFERENCE ON APPLICATIONS
AND THEORY OF PETRI NETS, p. 368–387. Springer, 2008.

[VanDerWerf2009] VAN DER WERF, J. M. E. M.; VAN DONGEN, B. F.;
HURKENS, C. A. J. ; SEREBRENIK, A.. Process discovery using
integer linear programming. Fundam. Inf., 94(3-4):387–412, Aug. 2009.

[VanZelst2015] VAN ZELST, S. J.; VAN DONGEN, B. F. ; VAN DER AALST,
W. M.. Avoiding over-fitting in ilp-based process discovery. In:
INTERNATIONAL CONFERENCE ON BUSINESS PROCESS MANAGE-
MENT, p. 163–171. Springer, 2015.

[VanZelst2015] VAN ZELST, S. J.; VAN DONGEN, B. F. ; VAN DER AALST,
W. M.. Ilp-based process discovery using hybrid regions. In:
ATAED@ PETRI NETS/ACSD, p. 47–61, 2015.

[Vanderbeck2005] VANDERBECK, F.. Implementing mixed integer col-
umn generation. In: COLUMN GENERATION, p. 331–358. Springer,
2005.

[Verbeek2014] VERBEEK, H.; VAN DER AALST, W. M.. Decomposed pro-
cess mining: The ilp case. In: INTERNATIONAL CONFERENCE ON
BUSINESS PROCESS MANAGEMENT, p. 264–276. Springer, 2014.

[Verbeek2017] VERBEEK, H.; VAN DER AALST, W. ; MUNOZ-GAMA, J.. Di-
vide and conquer: a tool framework for supporting decomposed

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Bibliography 88

discovery in process mining. The Computer Journal, 60(11):1649–1674,
2017.

[Wentges1997] WENTGES, P.. Weighted dantzig–wolfe decomposition
for linear mixed-integer programming. International Transactions in
Operational Research, 4(2):151–162, 1997.

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix A. BCP model computational experiment detailed 90

A
BCP model computational experiment detailed

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix A. BCP model computational experiment detailed 91

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix B. Risk-prone model computational experiment detailed 93

B
Risk-prone model computational experiment detailed

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix B. Risk-prone model computational experiment detailed 94

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

C
Process models generated using the Branch-Cut-and-Price
Model

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model96

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model97

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model98

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model99

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model100

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model101

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model102

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model103

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model104

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model105

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model106

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model107

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model108

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model109

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model110

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model111

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model112

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model113

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix C. Process models generated using the Branch-Cut-and-Price Model114

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

D
Process models generated using the Risk-Prone model

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix D. Process models generated using the Risk-Prone model 116

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix D. Process models generated using the Risk-Prone model 117

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix D. Process models generated using the Risk-Prone model 118

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix D. Process models generated using the Risk-Prone model 119

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix D. Process models generated using the Risk-Prone model 120

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix D. Process models generated using the Risk-Prone model 121

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix D. Process models generated using the Risk-Prone model 122

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix D. Process models generated using the Risk-Prone model 123

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix D. Process models generated using the Risk-Prone model 124

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix D. Process models generated using the Risk-Prone model 125

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix D. Process models generated using the Risk-Prone model 126

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix D. Process models generated using the Risk-Prone model 127

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix D. Process models generated using the Risk-Prone model 128

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix D. Process models generated using the Risk-Prone model 129

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

Appendix D. Process models generated using the Risk-Prone model 130

DBD
PUC-Rio - Certificação Digital Nº 1712662/CA

	Branch-cut-and-price approach for Process Discovery
	Resumo
	Table of contents
	Introduction
	Motivation and Research questions
	Structure of this work

	Basic concepts and definitions
	Process mining
	Linear Programming Formulation with Parikh vectors
	Base formulation for a single place
	Challenges of measuring conformance

	Analysis and interpretation of the classic formulation
	Unimodularity
	Alphabet filtering
	Susceptibility to outlier logs

	Global Integer Programming - the compact model
	The global model
	Global Formulation's auxiliary ideas
	Global ILP Experiments
	Results

	Branch-Cut-and-Price Global formulation
	Place oracle (Column Generation)
	Alternative place oracles
	Column generation stabilization
	Cut generation
	Branch and bound
	Experimental setup
	Results

	Risk-prone generation of places
	Cardinality constrained Robust Model
	Experiments
	Results

	Discussion
	Findings and contributions
	Limitations and future research

	Bibliography
	BCP model computational experiment detailed
	Risk-prone model computational experiment detailed
	Process models generated using the Branch-Cut-and-Price Model
	Process models generated using the Risk-Prone model

