
6.  

Determination of the optimal constant output feedback 

gains applied to the control of a deck-wings system 

The optimal control of time-invariant systems with respect to a quadratic 

performance criterion is developed next. The problem is posed with the additional 

constraint that the control vector  𝐮 t   is a linear time-invariant function of the 

output vector 𝐲 t  rather than of the state vector 𝐱 t  This formulation has been 

chosen in the case of control of the present deck-wings system because it is 

desirable to generate the control variables directly by taking linear combinations 

of the available output variables. As the original system is time invariant and the 

linear combinations are also constrained to be time-invariant, the design problem 

is to choose an appropriate matrix of feedback gains 𝐊. 

6.1. Formulation 

The optimization problem begins with a time-invariant linear system, whose 

state vector x(t), control vector u(t) and output vector y(t) are related by [ 103 ]: 

 𝐱  t = 𝐀 𝐱 t + 𝐁 𝐮(t) (6.1a) 

 𝐲 t = 𝐂 𝐱 t   (6.1b) 

𝐀 state matrix (14x14) in the present case;  

𝐁u  matrix affecting the signal 𝐮(t);  

𝐱 t  state vector (14 x 1) in the present case;  

𝐮 t =  
u1

u2
  control vector (signal);  

𝐲 t  output vector(6 x 1) in the present case;  

𝐂 [6x8] matrix, relating the output vector  𝐲 t  to the structural states of the state 

vector  𝐱 t .   

The vector 𝐁u  reads (see equation 5.26): 
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 𝐁u =   
𝐌s

−1𝐁s

0
0

 =  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0
0

ωd
2

0
0
0
0
0
0
0
0
0
0
0        

0
0
0

ωd
2

0
0
0
0
0
0
0
0
0
0         

 
 
 
 
 
 
 
 
 
 
 
 
 

  (6.2) 

The output vector y is a vector representing system physical properties that 

can be measured by electronic devices and used for feedback purposes, as the 

deck heave velocity h /B, the pitch velocity α  , the deck heave h/B, and pitch α  

and the winglet rotations δ1 and δ2 .The angular velocity of the winglets was not 

selected for feedback purposes.  

The control must result in small wing pitches. Ostenfeld & Larsen [ 53 ] 

propose to vary the angle of rotation of the winglets in time as a predetermined 

function of the angle of rotation of the girder, so that if the bridge is rotating in a 

sinusoidal motion at a frequency ω, the flap is rotating at the same frequency but 

out of phase, as given by: 

Deck rotation:        α t =  α0 sin  ωt  

Winglet rotation: δω t =  υ α0 sin  ωt + ψ  

where υ controls the amplitude of the winglet and ψ is the out-of-phase angle 

between the movement of the flap and the movement of the girder. These two 

parameters  υ , ψ  govern the movement of the flap and must be defined by the 

designer. The suggested maximum angle of rotation for the winglet is about 150 

(a maximum angle of rotation must be imposed to avoid flow separation in the 

winglet). Thinking in terms of a maximum rotation angle for the deck on the order 

of, say 50, this leaves ψ to vary in the range of 0 <  ψ < 0 . 

The approach followed by Ostenfeld & Larsen [ 53 ] differs from Wilde & Fujino 

[ 96 ] in the sense that the law of movement of the control surfaces is prescribed, 

instead of explicitly addressing the control of winglets using active control theory. 

However, low absolute values for the angle of rotation of the winglets (δ1 and 

δ2 < 15o) seem reasonable whichever version is applied. The matrix C relating 

the output vector y to the structural states of the state vector x is: 
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y1
y2
y3
y4
y5
y6 

 
 
 
 
 

=

 
 
 
 
 
 
1
0
0
0
0
0

  

0
1
0
0
0
0

  

0
0
0
0
0
0

  

0
0
0
0
0
0

  

0
0
1
0
0
0

  

0
0
0
1
0
0

  

0
0
0
0
1
0

  

0
0
0
0
0
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h /B
α 
δ1
 

δ2
 

h/B
α
δ1
δ2  

 
 
 
 
 
 
 

 (6.3) 

                                                 └──────────┘ 

                                                                                   𝐂                                                 

The optimal control of the time-invariant system is performed with respect to a 

quadratic performance criterion, as proposed by Levine and Athans [ 41 ]. The 

problem is posed with the additional constraint that the control vector 𝐮(t) is a 

linear time-invariant function of the output vector 𝐲(t) or : 

 𝐮 t = −𝐊 𝐲(t)  (6.4) 

rather than of the state vector 𝐮 t  . Following Levine and Athans, and as a first 

try at a reasonable performance measure, the following standard infinite time 

quadratic performance criterion is applied : 

 Jt =  
𝟏

𝟐
      𝐱 t ′  𝐐 𝐱 t  + 𝐮 t ′  𝐑  𝐮 t  

∞

0
 dt (6.5) 

Equations (6.1) and (6.5) form an optimization problem for which the optimal 

control can be generated by  𝐮 t = 𝐆 𝐱(t).The feedback matrix can be evaluated 

through the solution of an algebraic Riccatti’s equation, (see Ogata [ 50 ], item 

12-8 - Quadratic Optimal Regulator Systems, for a deduction of the Riccati 

equation applied to the minimization of Jt =  
𝟏

𝟐
       𝐱 t ′  𝐐 𝐱 t  +

∞

0

𝐮 t ′  𝐑  𝐮 t   dt. See also MATLAB’s subroutine “LQR” which returns the 

feedback matrix 𝐆 of a system consisting of matrices 𝐀, 𝐁, 𝐐, 𝐑  by using the 

MATLAB command: " G, S, e = lqr (A, B, Q, R, N)"). 

The present problem is different, though. Suppose that one introduces the 

constraint that the control 𝐮 t  is generated via output linear feedback gains, i. e.: 

 𝐮 t = −𝐊 𝐲(t)  (6.6) 

 𝐮 t = −𝐊 𝐂 𝐱(t)  (6.7) 

where 𝐊 is the feedback gains matrix to be determined. 

Under this constraint, the system (6.1), (6.2) can be rewritten as 

 𝐱  t =  𝐀 − 𝐁 𝐊 𝐂  𝐱 t   (6.8) 
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where  𝐀 − 𝐁 𝐊 𝐂  is the closed loop matrix. It should be clear that 𝐊 is 

regarded as the control for the system (6.8). In addition, 𝐱 t  is given by: 

 𝐱 t = 𝚽 t, 0  .  𝐱 0   (6.9) 

where  𝚽 t, 0  is the fundamental transition matrix for the system (6.9) and  

 𝚽 t, 0 = e A−BKC  t   

Substituting (6.9) in the performance criterion (6.5), gives: 

 J =  𝐱 0 ′      
1

2
   [𝚽 t, 0 ′   𝐐 + 𝐂′  𝐊′  𝐑 𝐊 𝐂    𝚽 t, 0 ] dt

∞

0
    𝐱(0) (6.10) 

Equation (6.10) emphasizes the dependence of the performance criterion 

on both 𝑲 (the control) and 𝒙(0) (the initial state). In order to use the performance 

criterion to find an optimal feedback control 𝑲, it is usually necessary to eliminate 

this dependence on the initial state. Mathematically, a simple way to eliminate the 

dependence on the initial state is to average the performance obtained for a 

linearly independent set of initial states. This is equivalent to assuming the initial 

state 𝒙(0) to be a random variable uniformly distributed on the surface of the n-

dimensional unit sphere. Then, the expected value of the performance criterion 

𝐽 is, according to Levine and Athens: 

 J  =  
𝟏

𝟐𝐧
 tr [𝚽 t, 0 ′   𝐐 + 𝐂′  𝐊′  𝐑 𝐊 𝐂    𝚽 t, 0 ] dt

∞

0
  (6.11) 

Norlander et al. [ 49 ] apply the same procedure to a problem of the aerospace 

industry. 

This average performance J  is independent of the initial state. Equation (6.11) 

can also be interpreted as a completely deterministic performance criterion in 

which the control is 𝐊 and the state is 𝚽 t, 0  , the fundamental transition matrix. 

6.2. Statement of the optimization problem 

The following optimization problem is considered: Given the time-invariant 

linear system  

 𝚽  t, 0 =  𝐀 − 𝐁 𝐊 𝐂  𝚽 t, 0  ,                 𝚽 0,0 = 𝐈 (6.12) 

It is well known that  

 𝚽 t, 0 = exp   ( 𝐀 − 𝐁 𝐊 𝐂   t) (6.13) 

Given the performance criterion (the constant 1 n   has been dropped)  
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 J  =   tr [𝚽 t, 0 ′   𝐐 + 𝐂′  𝐊′  𝐑 𝐊 𝐂    𝚽 t, 0 ] dt
∞

0
 (6.14) 

find that  𝐊  which minimizes the performance criterion (6.14) subject to the 

constraint imposed by the system (6.6). For the sake of completeness: 

𝐀 n x n  = (14 x 14), where n = number of states 

𝐁 n x m  = (14 x 2) 

𝐂 r x p = (6 x 8), where r is the rank of the output variables (= 6 ) 

𝐐 p x p = (8x8), a symmetric positive semi definite real constant matrix. Here 

𝐐 is a diagonal matrix where  p is the number of structural states. 

𝐑 m x m = (2x2) = a diagonal matrix, where m = number of  controls, here 

the controls on the 2 wings. 

𝐊 m x r = (2x6), a real and stable matrix. 

Note that the size of vectors and matrices are specific to the problem under 

consideration and 2 lag terms for the deck and wings. 

6.3. The main result 

The major result arrived at by Levine and Athans is summarized in the 

following theorem: 

Let 𝐊∗ be a real constant m x r (2x6) matrix. Let  

 𝐀𝐜 =  𝐀 − 𝐁 𝐊 𝐂   (6.15) 

Assuming that 𝐀𝐜  is stable, then, in order for 𝐊∗ to be optimal it is necessary 

that   
dJ

dK
 
K∗

= 0. 

which is equivalent to the equation: 

 𝐊∗ =  𝐑−1𝐁′𝐏 𝐋 𝐂′ [𝐂 𝐋 𝐂′ ]−1 (6.16) 

where 

 𝐏 ≌      exp   𝐀′c  τ   [ 𝐐  + 𝐂′𝐊∗′𝐑 𝐊∗𝐂
∞

0
]     exp   𝐀c  τ   dτ (6.17) 

 𝐋 ≌      exp   𝐀c  σ  
∞

0
exp   𝐀c ′ σ  dσ (6.18) 

where    exp   𝐀c  σ  =  e 𝐀c  σ  and exp   𝐀c  τ  =  e 𝐀c  τ  

Alternatively, assuming that 𝐏, 𝐋, 𝐊∗  are solutions of (6.16) to (6.18) then 𝐏 is 

also a positive semi definite solution of 
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 𝐏𝐀c + 𝐀c
′ 𝐏 + 𝐐 +  𝐂′  𝐊∗′𝐑 𝐊∗𝐂 = 𝟎 (6.19) 

And 𝐋  is a positive definite solution of 

 𝐋 𝐀c
′ + 𝐀c𝐋 + 𝐈  = 𝟎 (6.20) 

The derivation of the results above can be found in Levine and Athens [ 41 ]. 

The solution of (6.16), (6.19) and (6.20) is obtained in the iterative way by the 

following steps: 

Start with a stable initial gain 𝐊∗ . 

Substitute 𝐊∗ in equation (6.19). All variables are known but 𝐏. Hence, 𝐏 is 

determined, (6.19) being a Sylvester equation of the type 𝐀𝐗 + 𝐗𝐁 + 𝐙  = 𝟎, 

where  𝐀𝐗 =  𝐀c𝐋  , 𝐗𝐁 =   𝐋 𝐀c
′   ,    𝐙 = 𝐐 + 𝐂′  𝐊∗′𝐑 𝐊∗𝐂 .   

Substitute 𝐊∗ in equation (6.20) . All variables are known but 𝐋 . Hence, 𝐋 can 

be determined, (6.20) being a Lyapunov equation of the type 𝐗𝐀′ + 𝐀𝐗 + 𝐙 = 𝟎  

Find a new 𝐊∗ by entering 𝐏 and 𝐋 in (6.16). 

The Lyapunov and Sylvester equations can be solved with the MATLAB 

program called “ lyap “, which solves the special and general forms of the 

Lyapunov matrix equation.  

The command “ X= lyap (A, Z) “ solves the Lyapunov equation 𝐗𝐀′ + 𝐀𝐗 + 𝐙 =

𝟎  where 𝐀 and 𝐙  are square matrices of identical sizes. The solution 𝐗 is a 

symmetric matrix if 𝐙 is one. 

The command “ X= lyap (A, B, Z) “ solves the Lyapunov equation 𝐀𝐗 + 𝐗𝐁 +

 𝐙 = 𝟎  The matrices 𝐀, 𝐁, 𝐙  must have compatible dimensions but need not be 

square. 

The MATLAB program “ lqr ” is called by the main program to solve the 

Lyapunov-type equations and perform the optimization of 𝐊∗ ⟶ 𝐊∗
opt  through 

loop commands and tolerance settings.The main difficulty in these procedures is 

to define a stable initial gain matrix 𝐊∗ in order to obtain the optimum 𝐊∗
opt  . 

According to Levine and Athans [ 41 ], the following lemma provides the basis 

for a computer algorithm which may converge to 𝐊∗ . 

Let  

 𝐏𝐧[𝐀 − 𝐁𝐊𝐧−𝟏𝐂] +  𝐀 − 𝐁𝐊𝐧−𝟏𝐂 ′𝐏 + 𝐐 + 𝐂′  𝐊𝐧−𝟏
′𝐑 𝐊𝐧−𝟏𝐂 = 𝟎 (6.22) 

 𝐋n−1 𝐀 − 𝐁𝐊𝐧−𝟏𝐂 ′ +  𝐀 − 𝐁𝐊𝐧−𝟏𝐂  𝐋𝐧−𝟏 + 𝐈 = 𝟎 (6.23) 
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Then, assuming that 𝐐 > 𝟎  and [𝐀 − 𝐁𝐊𝐧−𝟏𝐂] are stable, a unique and positive 

definite  𝐊𝐧  exists. Furthermore, assuming there exists a positive definite 𝐋𝐧−𝟏  

which satisfies equation (6.23), then trace  𝐏n  ≤ trace  𝐏n−1  , where trace  𝐏n , 

trace  𝐏n−1 , are the sum of the diagonal elements of the matrices 𝐏n  , 𝐏n−1.The 

lemma does not prove that the algorithm will converge. It only shows that 𝐏n  is 

better than 𝐏n−1 provided that some fairly strong hypotheses are satisfied. 

6.4. Applications for aerodynamic control 

  

𝐪 
𝐪 
𝐱 a

 =   
𝐌s

−1 −𝐂s + 𝐒 𝐀1
s  𝐌s

−1 −𝐊s + 𝐒 𝐀0
s  𝐌s

−1𝐃s  
𝐈 𝟎 𝟎
𝟎 𝐆s −𝐅s

   
𝐪 
𝐪
𝐱a

 + 

                  └──┘   └──────────────────────────┘ └──┘   

                      𝐱                                                    𝐀                                                         𝐱                   

                                              +  
𝐌s

−1𝐁s

𝟎
𝟎

 𝐮 +  
𝐌s

−1𝐁s

𝟎
𝟎

 𝐅buf  

                                                 └────┘       └────┘         (6.24) 

                                                          𝐁u                  𝐁buf  

The Matrix 𝐀  in the equation (6.24) is a function of mean wind speed. Thus, 

application of the conventional output feedback design requires in the first place 

the selection of a design wind velocity U𝐝 , then computation of the system matrix 

for this U𝐝 and determination of the associated gain matrix K. Finally, the 

performance of the controller can be verified for the desired range of wind 

velocities.  

The geometrical and dynamic characteristics as well as the rational model of 

unsteady forces due to structural motions in the fluid are consistent with the 

parameters given in the previous section. The chord length of the control 

surfaces corresponds to 10% of the bridge deck width, and the position of the 

surfaces is chosen as e1 =  e2 = B/2  in Figure 5-1. 

The dynamic characteristics of the equation governing the relative motion of 

the control surfaces due to the control signal  𝐮 (t) are selected as fδ = 6 Hz and 

ξδ = 70%. The measurements available for feedback are chosen as: 
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 y =  

 
 
 
 
 
 
h B 
α

h B 
 

α
δ1

δ2

 
 
 
 
 
 
 

 (6.25) 

The variation of the open-loop system properties, i.e., modal frequencies and 

damping ratios with wind speed for the deck-wing system without control is 

presented in item 5.3. The flutter wind speed corresponds to the point where the 

damping of the dominant mode (the pitching) becomes null. This occurs for the 

wind speed Ucrit  = 10.663 m/s, as shown in Chapter 5. Note that the flutter wind 

speed of the deck with stationary control surfaces is about 5 % higher compared 

to the deck alone (without wings), equal to 10.2 m/s. At the flutter wind velocity, 

the frequencies of heaving and pitching modes of the system with stationary 

wings become almost identical, as in the classical case of flutter of two degrees 

of freedom systems. For the increase of wind speed beyond Ucrit , the damping of 

pitching mode decreases markedly and the bridge becomes highly unstable.  

The geometrical and dynamic characteristics of the deck-wind system 

correspond to a section model of Akashi Strait Bridge, in the scale 1:150, as 

reported by Wilde & Fugino [ 96 ]. The mass matrix was not mentioned there, but 

could be deduced from equation (28) of this same article. 

6.5. Closed-loop systems 

The objective of the control design for this bridge model with active surfaces is 

to suppress flutter up to a wind velocity of 21 m/s. 

The feedback gain matrix 𝐊 and the closed-loop eigenvalues and eigenvectors 

are determined by the optimization criterion: 

 Jt =  
𝟏

𝟐
       𝐱 t ′  𝐐 𝐱 t  + 𝐮 t ′  𝐑  𝐮 t  

∞

0
 dt (6.25) 

or, in other words, by choice of the matrices 𝐐 on the state vector and 𝐑  on the 

controls signals. The variation of weights 𝐑 on the control signals are assumed to 

be:  

 𝐑  =[  ρr(Ud )] 𝐈 (6.26) 

where 𝐈 is the identity matrix [2x2] and [ρr(Ud)] is a scalar constant adjusted for 

each Ud . If ρr  is large, the control gains achieve their smallest possible 

magnitudes and so the utilized magnitude of relative motion of the surfaces is 
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small. Small motions of the control surfaces are one of the desired properties of 

the feedback control, as already mentioned. Formula (6.27) assumes equal 

weights on both leading and trailing surfaces. Thus, the resulting gain tends to 

keep the same magnitude of relative motion of both wings. One must remember 

that the adequate wing pitch is limited to 15o , as already pointed out in item 6.1. 

The weighing matrix 𝐐 on the state vector is a diagonal matrix with constant 

coefficients. The first four diagonal terms are assigned to velocities and the next 

four diagonal terms to displacements, i.e., to the components of the state vector. 

The selection of weights for different design velocities can be simplified by 

varying the weight ρr  over the displacement of the heaving mode alone. The deck 

mass and stiffness matrices are chosen as the terms of the 𝐐 matrix because 

part of the minimization of the performance index J is in fact the minimization of 

𝐱′  𝐐  𝐱 (or the minimization of kinetic energy ½. m.v2) plus  the minimization of 

 𝐊𝛅 ′  𝐑  𝛅 (or the minimization of work done by  stiffness forces  ½ (k . δ) . δ ), or, 

in matrix form: 

 ½  [ h /B  α  ]  
m B 0

0 Iα
  h /B

α 
  (6.27a) 

which is a kinetic energy, plus 

 ½  [ h/B  α]  
kh  B 0

0 kα
  

h/B
α 

  (6.27b) 

which is the work done by the stiffness forces.  

Hence, in order to obtain a consistent gains matrix for a chosen wind velocity, 

the terms Qi,   i=1,2,3,4,5,6,7,8  are chosen as follows: 

 Q =  diag. matrix  mB Iα     Iδ Iδ      ρq(kh  B) kα      kw Bw kw Bw    

Note that the aerodynamic terms were discarded, because no controls are 

assigned to them. By the same token, the Iδ  and kw Bw  terms can also be 

discarded, leaving: 

 Q =  diag. matrix  mB Iα     0 0     ρq(kh  B) kα      0 0   

Substituting  mB = 0.559 , Iα = 0.00191,   kh B = 3.4707   kα =  1.21462 in the 

equation above, equation (6.28a) is obtained: 

  Q = diag. matrix  0.559 0.00191    0 0    ρq(3.4707) 1.21462    0   0    

Another choice for 𝐐 would be to vary the weight ρq  over the pitching mode 

exclusively. Then, matrix 𝐐 would be selected as in equation (6.28b) below: 
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 Q = diag. matrix  0.559 0.00191    0 0    3.4707 ρq(1.21462)    0   0    

From a preliminary point of view, this choice would be hardly better than the 

previous one, because the lifting forces on the wings tend to stabilize the torsion 

of the deck, while they have little effect on the heaving displacements. Thus, 

putting weight on pitching would probably not increase the flutter velocity.  

The computation of gains was performed for several wind velocities included in 

the design range from 9 to 21 m/s. The features of the control laws determined 

for different values of Ud  can be explained by analyzing gains associated with 

wind speed close to the flutter velocity, namely ρq  = 11 m/s, and gain designed 

for high wind speed,  Ud  = 19 m/s. The numerical values of these gains are shown 

below. Matrices 𝐊 for  Ud  = 11 m/s and 𝐊  for  Ud  = 19 m/s are printed in [ 96 ], 

while 𝐊 for  Ud  = 9 m/s and 𝐊  for  Ud  = 15 m/s were taken from Wilde [ 95 ]. 

KUd =9 m/s =  
−0.093 0.094 −0.377
0.019 −0.045 0.114

     
0.420 0.461 −0.250
0.188 −0.222 0.155

  (6.29) 

KUd =11 m/s =  
−0.076 0.116 −0.576
0.044 −0.086 0.380

     
0.758 0.569 −0.005

−0.222 −0.443 0.124
  (6.30) 

KUd =15 m/s =  
−0.011 0.140 −0.322
−0.018 −0.081 0.221

    
1.687 1.052 −0.042

−0.794 −0.357 −0.050
  (6.31) 

KUd =19 m/s =  
−0.062 0.172 −0.386
−0.019 −0.095 0.243

    
3.721 2.349 0.034

−1.349 −0.605 0.114
  (6.32) 

The next figures show the variation of the damping ratio and mode frequencies 

of the closed-loop system with gain designed for  Ud  = 9,  Ud  = 11,  Ud  = 15,  Ud  = 

19
 
m/s as a function of wind speed. The associated ρq  and  ρr are : 

For   Ud  = 9 m/s ρq = 1 ρr = 5 

For   Ud  = 11 m/s ρq = 5 ρr = 30 

For   Ud  = 15 m/s ρq = 10 ρr = 300 

For   Ud  = 19 m/s ρq = 20 ρr = 500 

  (6.33) 

The changes of damping ratios in these cases are comparable to the variations 

of the damping factors in the open-loop system. Instability occurs when the 

damping ratio of either the pitching or the heaving mode becomes negative for 

the following velocities: 
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For   Ud  = 9 m/s Ucrit = 11.9 m/s 

For   Ud  = 11 m/s Ucrit = 12.7 m/s 

For   Ud  = 15 m/s Ucrit = 23.0 m/s 

For   Ud  = 19 m/s Ucrit = 30.7 m/s 

  (6.34) 

6.6. Results 

6.6.1. Analysis of the plots of frequencies and damping ratios 

The state matrix 𝐀c = 𝐀 − 𝐁𝐊𝐂  is assembled for increasing wind velocities. 

The eigenvalues, damping ratios and frequencies are determined for the 

assemble state matrix, until the critical velocity is reached and beyond. Plots of 

the damping ratios and frequencies versus wind velocities are drawn. The critical 

velocity, the state matrix assembled with the critical velocity, as well as its 

eigenvalues, damping ratios and frequencies, are printed.  

In order to define which mode causes the instability of the controlled structure, 

plots of damping ratios and frequencies can be consulted in conjunction with the 

computer output, according to the following explanations. By definition, the 

damping ratios are ξ h  = 0.0011 (heaving) and ξ α  = 0.010 (pitching) at t = 0. 

Hence, after t = 0, the ξ h  curve runs always above ξ α , as in the open loop 

system. (cf. Figure 5-3) Likewise, the initial pitching and heaving frequencies are 

known. Hence, the entire trajectory of ξ h  , ξ α  and ωh , ωα   can be traced from U = 

0 to the end of the curves of damping ratios and frequencies versus wind velocity, 

including the domain close to the critical velocity.  

The mode that reaches instability is the one whose damping ratio crosses the ξ 

axis from a positive to a negative value. Once the mode of interest is identified, 

the computer output is consulted to complement the analysis of the plots. The 

state matrix 𝐀c  for the critical velocity of 30.67 m/s, shown in Table 6-7, is taken 

as example. A complex eigenvalue analysis of the state matrix 𝐀c is performed 

by the MATLAB subroutine [Ome,Ksi] = damp (Ac). Its 14 eigenvalues and the 

corresponding frequencies and damping ratios are shown in the first three 

columns of Table 6-8. The eigenvalue and the frequency corresponding to zero 
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damping ratios are respectively 3.11e-004+4.44e+001i and 44.4 rad/s. The 

eigenvalue, damping ratio and frequency of the second mode of interest are -

7.66e-001+1.14e+001i , 0.00671 and 11.4 rad/s.  

With this information available, the trajectory of damping ratios and frequencies 

of heaving and pitching can be identified in the plots, for all four cases in 

question. 

In order to calculate the amplitudes h =  h0eiωt and 𝛼 =  α0ei(ωt+φ) and the 

phase difference φ, the diagonal matrix of the eigenvalues and the corresponding 

eigenvectors must be known. Through the statement [Eigenvec , Eigenvalue] = 

eig (Ac), where eig (Ac) is a MATLAB subroutine, it is possible to identify the (i,i) 

and (j,j) eigenvalues of the pitching and heaving modes and the corresponding ith, 

jth columns of the 14x14 matrix of eigenvectors. 

In the example studied, the eigenvalue 3.11e-004+4.44e+001i corresponding 

to zero damping ratio is the (7,7) term of the diagonal matrix of the eigenvalues. 

Hence, the amplitude ratio is obtained as the ratio of the eigenvectors moduli of 

the 5th (h B)  and 6th (α) rows, belonging to the column 7 of the matrix of the 

eigenvectors : 

 h0eiωt  α0ei(ωt+φ)  = 
 −1.8943 e−003 2+[ 4.9899 e−003 i]2

 −4.6135 e−005 2+[ 5.4820 e−003 ]i2 =
5.3374e−003

5.4822e−003
=0.97358  

Likewise, the phase difference  can be calculated from the 6th and 5th rows of 

column 7 of the eigenvectors as: 

 φ=tan-1(5.482e-03/-4.6135e-05)-tan-1(4.9899e-03/-1.8943e-03)=19.290.  

6.6.2. Impulse responses 

The impulse responses are obtained with the MATLAB subroutine “lsim”, which 

simulates LTI (linear, time-invariant) model responses to arbitrary inputs. When 

invoked with left-hand arguments, [y,t,x] = lsim(sys,u,t,x0) refers to state-space 

models with initial state x0. It returns the output response y, the time vector t 

used for simulation, and the state trajectories x, which signify in the present case 

the amplitudes of velocities and displacements, represented by the vector 

 
h 

B
  α    δ 1   δ 2  

h

B
  α   δ1   δ2   ′. 

In the present case, the subroutine “lsim” was called by the statement 

[Yres_c,x_res_c] = lsim(Ac,B,C,D,Uext,T,X0), where “sys” is the state space 
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model constituted by matrices Ac, B, C, D (D=0), u = Uext , t = T and x0 = X0. 

The important fact here is that the matrix Ac is the Laplace transformed state 

matrix assembled for a certain wind velocity. 

The initial state is represented by a velocity impulse   
dα

dt
=  

1

Iα
  in the center of 

the deck : x0 =  0 
1

Iα
 0  0  0  0  0  0  0  0  0  0  0  0 .  

Vector T in lsim(Ac,B,C,D,Uext,T,X0) varies from 0 to 1 second in intervals of 

0,001 seconds.  

Graphs of the amplitudes of h/B and  of the uncontroled system and 

 
h

B
  α   δ1   δ2   

h 

B
  α    δ 1   δ 2 ′ of the controlled system are shown in the next 

sections. 
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6.7. Results of the closed loop system for 𝐔𝐠 = 𝟗 𝐦 𝐬 , 𝛒𝐪 = 𝟏, 𝛒𝐫 = 𝟓. 

6.7.1. Numerical data 

The state matrix corresponding to the critical velocity of 11.910 m/s is 

presented in Table 6-1. 

 

Table 6-1- State Matrix 𝐀c = 𝐀 − 𝐁𝐊𝐂 for Ucrit = 11.910 m/s. 

The results of the complex eigenvalue analysis are shown in Table 6-2. 

 

Table 6-2- Eigenvalues, damping ratios, frequencies and eigenvectors of interest 
obtained from the complex eigenvalue analysis of the state matrix 𝐀c . 

The amplitude ratio is  

 h0eiωt  α0ei(ωt+φ)  = 
 1.9079 e−005 2+[ 3.4058 e−002 i]2

 1.8099 e−002 2+[ 2.8639 e−002 ]i2 = 1.0053 

The phase difference φ is  

 φ = tan-1(0.028639/0.018099)-tan-1(0.034058/-0.019079e-003)=147.67620.  

Plots of frequencies and damping ratios versus wind velocities follow. Curves 

representing frequencies other than heaving and pitching modes are without 

practical importance. 

-4.8291 -2.7269 -0.0188 -0.0188 -158.2000 -205.6000 -20.7960 -20.7960 -161.0200 -151.6400 -31.3620 -9.9548 -31.3620 -9.9548

7.9097 -3.8757 0.0759 -0.0831 139.2200 -351.2600 92.3540 -83.5590 334.7600 339.2500 139.2700 44.2080 -126.0100 -39.9980

132.3200 -134.9000 -52.7790 0.0000 536.4300 -597.2800 -2076.4000 355.7200 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

-27.3550 64.1910 0.0000 -52.8670 -163.0400 -268.5900 317.2400 -1647.9000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 -0.5887 3.1809 0.0000 0.0000 -7.7795 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 -9.3767 10.5610 0.0000 0.0000 0.0000 -30.4250 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 -0.1158 0.5448 0.4869 0.0000 0.0000 0.0000 -13.7310 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 -142.0900 128.9600 57.9110 0.0000 0.0000 0.0000 0.0000 -80.8460 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 -0.1158 0.4290 0.0000 0.4869 0.0000 0.0000 0.0000 0.0000 -13.7310 0.0000

0.0000 0.0000 0.0000 0.0000 -142.0900 -13.1330 0.0000 57.9110 0.0000 0.0000 0.0000 0.0000 0.0000 -80.8460

Eigenvalues Damping
Frequency 

(rad/s)

Diagonal Matrix of the 

Eigenvalues

State 

Vector

Column 5 - Matrix of the 

Eigenvectors

Column 9 - Matrix of the 

Eigenvectors

 9.96e-003 + 1.78e+001i -0.00056 17.8 (dh/dt)/B -6.05E-01 -5.0166e-002 -5.5829e-002i

9.96e-003 - 1.78e+001i -0.00056 17.8 (d/dt) -5.0892e-001 +3.2203e-001i 2.1965e-001 +1.2026e-001i

-1.5 1 1.5 (dd1/dt) 1.8745e-001 -3.6939e-001i 8.52E-01

-11.7 1 11.7 Term (9,9) (dd2/dt) -2.0962e-001 -2.1969e-001i -4.4252e-001 -7.6205e-002i

-13.7 1 13.7  -2.6941e+001 +1.4357e+001i h/B -1.9079e-005 +3.4058e-002i 5.9019e-004 +2.3868e-003i

-14.9 1 14.9   9.9582e-003 +1.7777e+001i  1.8099e-002 +2.8639e-002i -4.4970e-003 -6.8605e-003i

-1.79e+001 + 3.55e+001i 0.45 39.8 Term (5,5) d1 -2.0774e-002 -1.0556e-002i -2.4633e-002 -1.3127e-002i

-1.79e+001 - 3.55e+001i 0.45 39.8 d2 -1.2365e-002 +1.1785e-002i 1.1619e-002 +9.0204e-003i

-2.58e+001 + 2.70e+001i 0.691 37.4  x1 4.5438e-003 -1.2483e-003i -9.1972e-005 +1.1433e-003i

-2.58e+001 - 2.70e+001i 0.691 37.4  x2 4.4457e-003 -3.1516e-003i -7.0848e-003 +1.9741e-003i

h/B -2.69e+001 + 1.44e+001i 0.883 30.5 xw11 2.2272e-004 +1.8635e-004i 1.1118e-004 +9.0859e-004i

-2.69e+001 - 1.44e+001i 0.883 30.5 xw12 8.8167e-003 -2.3673e-002i -4.5362e-002 -2.4725e-002i

-78.1 1 78.1 xw21 5.4344e-004 +3.2182e-004i -8.2794e-005 -1.7874e-004i

-80.4 1 80.4 xw22 -2.2977e-002 -5.1009e-002i 1.2487e-002 +1.7451e-003i
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6.7.2. Plots of frequencies and damping ratios for 𝐔 = 𝟗 𝐦 𝐬 . 

Figure 6-1 - Variations of damping rations and frequencies of closed-loop system with 
gain design for Ug = 9 m/s versus wind speed. 

The damping ratio of the pitching mode approaches zero as the wind speed 

approaches the critical speed, 11.91 m/s.Therefore, pitching still leads to the 

instability of the system, as in the uncontrolled system. 
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6.7.3. Impulse responses 

 

Figure 6-2 - Impulse response of closed loop system with gain calculated for Ug= 9 m/s at 

U = 9 m/s. 

Note that the impulse input to the system was: 

 x0 =  0 
1

Iα
 0  0  0  0  0  0  0  0  0  0  0  0 =   0 516.93 0  0  0  0  0  0  0  0  0  0  0  0   

The responses to these initial conditions (t=0) in the controlled system are 

shown in Figure 6-2. The stability of the system is assured for Ug = 9 m s . at 

U = 9 m s . 
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Figure 6-3 - Impulse response of closed-loop system with gain calculated for Ug= 9 m/s at 

U = 11.7 m s  (near the critical 11.91m/s) 

Note that the impulse input to the system was: 

 x0 =  0 
1

Iα
 0  0  0  0  0  0  0  0  0  0  0  0 =   0 516.93 0  0  0  0  0  0  0  0  0  0  0  0   

The amplitude responses of the uncontroled system tend to grow indefinitely. 

The amplitude responses in the two lower pictures of Figure 6-3  show the initial 

conditions for t=0 in the controlled system. The stability of the system for for 

Ud = 9 m s  at U = 9 m s  is endangered as the wind velocity approaches the 

critical one, i.e., Ucrit= 11.91 m/s. 
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6.8. Results of the closed loop system for 𝐔𝐠 = 𝟏𝟏 𝐦 𝐬 , 𝛒𝐪 = 𝟓, 𝛒𝐫 = 𝟑𝟎.  

6.8.1. Numerical data 

The state matrix corresponding to the critical velocity of 12.7 m/s is presented 

in Table 6-3 

The results of the complex eigenvalue analysis are shown in Table 6-4. 

 

Table 6-3 - State Matrix BKCAAc   for Ucrit=12.7 m/s. 

 

Table 6-4- Eigenvalues, damping ratios, frequencies and eigenvectors of interest 
obtained from the complex eigenvalue analysis of the state matrix Ac. 

The amplitude ratio is  

 h0eiωt  α0ei(ωt+φ)  = 
 4.84 e−006 2+[ 3.692 e−002 i]2

 −1.66 e−002 2+[ 2.7275 e−002 ]i2 = 1.1563 

The phase difference φ is  

 φ = tan-1(0.027275/-0.0166)-tan-1(0.03692/0.0484e-004)=- -148.66560.  

Plots of frequencies and damping ratios versus wind velocities follow. Curves 

representing frequencies other than heaving and pitching modes are without 

practical importance. 

-5.1483 -2.9078 -0.020049 -0.020049 -171.38 -233.78 -23.647 -23.647 -183.09 -172.42 -35.66 -11.319 -3.57E+01 -1.13E+01

8.43E+00 -4.13E+00 8.10E-02 -8.86E-02 1.58E+02 -3.13E+02 1.05E+02 -9.50E+01 3.81E+02 3.86E+02 1.58E+02 5.03E+01 -1.43E+02 -4.55E+01

1.09E+02 -1.65E+02 -5.28E+01 0 8.19E+02 -1.08E+03 -2.23E+03 7.48E+00 0 0 0 0 0 0

-6.28E+01 1.24E+02 0 -5.29E+01 -5.43E+02 3.17E+02 6.32E+02 -1.60E+03 0 0 0 0 0 0

1.00E+00 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1.00E+00 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1.00E+00 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1.00E+00 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -6.28E-01 3.39E+00 0 0 -8.30E+00 0 0 0 0 0

0 0 0 0 -1.00E+01 1.13E+01 0 0 0 -3.24E+01 0 0 0 0

0 0 0 0 -1.23E-01 5.81E-01 5.19E-01 0 0 0 -1.46E+01 0 0 0

0 0 0 0 -1.52E+02 1.38E+02 6.18E+01 0 0 0 0 -8.62E+01 0 0

0 0 0 0 -1.23E-01 4.57E-01 0 5.19E-01 0 0 0 0 -1.46E+01 0

0 0 0 0 -1.52E+02 -1.40E+01 0 6.18E+01 0 0 0 0 0 -8.62E+01

Eigenvalues Damping
Frequency 

(rad/s)

Diagonal Matrix of the 

Eigenvalues

State 

Vector

Column 5 - Matrix of the 

Eigenvectors

Column 9 - Matrix of the 

Eigenvectors

h/B 2.32e-003 + 1.77e+001i -1.31E-04 1.77E+01 (dh/dt)/B 0.65385 -3.9398e-002 -2.1252e-002i

2.32e-003 - 1.77e+001i -1.31E-04 1.77E+01 (d/dt) 4.8300e-001 +2.9407e-001i 1.8916e-001 +7.4729e-002i

-2.57E+00 1.00E+00 2.57E+00 (dd1/dt) -3.2158e-001 -2.4323e-001i 8.25E-01

-1.23E+01 1.00E+00 1.23E+01 Term (5,5) (dd2/dt) 2.6481e-001 -1.0980e-001i -5.2236e-001 -2.6364e-002i

-1.25e+001 + 3.65e+001i 3.23E-01 3.86E+01   2.3214e-003 +1.7710e+001i h/B 4.8394e-006 +3.6920e-002i 7.6907e-004 +1.0044e-003i

-1.25e+001 - 3.65e+001i 3.23E-01 3.86E+01 Term (9,9)  -1.6601e-002 +2.7275e-002i -4.0090e-003 -4.1185e-003i

-14.6 1.00E+00 1.46E+01  -3.2273e+001 +1.4514e+001i d1 1.3732e-002 -1.8160e-002i -2.1256e-002 -9.5597e-003i

-15.6 1.00E+00 1.56E+01 d2 6.2020e-003 +1.4952e-002i 1.3157e-002 +6.7342e-003i

-2.71e+001 + 2.88e+001i 6.85E-01 3.96E+01 x1 -4.4320e-003 -1.1031e-003i 1.6003e-004 +7.0578e-004i

-2.71e+001 - 2.88e+001i 6.85E-01 3.96E+01 x2 -3.6370e-003 -3.8959e-003i -3.9296e-003 +3.5943e-003i

 -3.23e+001 + 1.45e+001i 9.12E-01 3.54E+01 xw11 -1.3207e-004 -3.2811e-005i 2.4689e-004 +6.2750e-004i

-3.23e+001 - 1.45e+001i 9.12E-01 3.54E+01 xw12 -9.1989e-003 -3.6279e-002i -4.0328e-002 -1.3414e-002i

-8.27E+01 1.00E+00 8.27E+01 xw21 -6.4728e-004 +2.8818e-004i -1.2432e-004 -1.8676e-004i

-8.58E+01 1.00E+00 8.58E+01 xw22 1.8394e-002 -5.4828e-002i 1.4498e-002 +2.0566e-003i
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6.8.2. Plots of frequencies and damping factors for 𝐔𝐠 = 𝟏𝟏 𝐦 𝐬 . 

Figure 6-4 -Variations of damping ratios and structural frequencies of the closed-loop 
system with gain design for Ug = 11 m/s versus wind speed. 

 

Note that the damping of the heaving mode approaches zero as the wind 

speed approaches the critical speed, 12.7 m/s. The plot shows that the pitching 

mode is controlled, and heaving is the critical mode, differently from the previous 

case, cp. Figure 6-1.  
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6.8.3. Impulse responses of the system for  𝐔𝐠 = 𝟏𝟏 𝐦 𝐬 . 

 

Figure 6-5 - Impulse response of closed-loop system with gain calculated for Ug =11 m/s 
at U = 9m/s. 

Note that the impulse input to the system was: 

 x0 =  0 
1

Iα
 0  0  0  0  0  0  0  0  0  0  0  0 =   0 516.93 0  0  0  0  0  0  0  0  0  0  0  0   

The responses in the two lower figures shows these initial conditions (t=0) in 

the controlled system. The stability of the system is assured for Ud = 11 m s  at 

U = 9 m s . 
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Figure 6-6 - Impulse response of the closed loop system with gain calculated for Ug = 11 
m/s at U=11.5m/s. 

Note that the impulse input to the system was: 

 x0 =  0 
1

Iα
 0  0  0  0  0  0  0  0  0  0  0  0 =   0 516.93 0  0  0  0  0  0  0  0  0  0  0  0   

The responses in the two lower pictures of Figure 6-6 show these initial 

conditions (t = 0) in the controlled system. The stability of the system is still 

assured at U = 11 m/s, although it takes longer to reach stability, compared to the 

behavior at 9 m/s (cp. Figure 6-5 and Figure 6-6). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-40

-20

0

20

40
response - no control : Amplitudes = heaving and pitching for U = 11

A
m

p
lit

u
d
e
s
 (

y
/B

),
 a

lf
a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-40

-30

-20

-10

0

10

20

30
response - with control : Amplitudes = heaving, pitching, wing 1, wing 2 for U = 11

A
m

p
lit

u
d
e
s
 (

y
/B

),
 a

lf
a
, 

d
e
lt
a
1
, 

d
e
lt
a
2
  

  
  

  
  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

-500

0

500

1000
response - with control : Velocities for U = 11

Time  (sec)

d
(y

/B
)/

d
t,

 d
(a

lf
a
)/

d
t 

d
(d

e
lt
a
1
)/

d
t,

 d
(d

e
lt
a
2

 

 

y/B alfa delta1 delta2

DBD
PUC-Rio - Certificação Digital Nº 0611865/CA



95 

 

 

 

Figure 6-7 - Impulse response of closed-loop system with gain calculated for U g
=

11 m s  and U = 12.7 m s . 

 

The uncontrolled and the controlled systems are clearly unstable at 12.7 m/s. 
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-9.37E+00 -5.30E+00 -3.65E-02 -3.65E-02 -4.25E+02 -7.77E+02 -7.86E+01 -7.86E+01 -6.08E+02 -5.73E+02 -1.18E+02 -3.76E+01 -1.18E+02 -3.76E+01

1.54E+01 -7.49E+00 1.48E-01 -1.62E-01 5.26E+02 4.17E+02 3.49E+02 -3.16E+02 1.26E+03 1.28E+03 5.26E+02 1.67E+02 -4.76E+02 -1.51E+02

1.69E+01 -2.00E+02 -5.28E+01 0 4.58E+02 -2.40E+03 -2.92E+03 6.02E+01 0 0 0 0 0 0

2.58E+01 1.15E+02 0 -5.29E+01 -3.15E+02 1.13E+03 5.10E+02 -1.35E+03 0 0 0 0 0 0

1.00E+00 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1.00E+00 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1.00E+00 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1.00E+00 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -1.14E+00 6.18E+00 0 0 -1.51E+01 0 0 0 0 0

0 0 0 0 -1.82E+01 2.05E+01 0 0 0 -5.91E+01 0 0 0 0

0 0 0 0 -2.25E-01 1.06E+00 9.46E-01 0 0 0 -2.67E+01 0 0 0

0 0 0 0 -2.76E+02 2.51E+02 1.13E+02 0 0 0 0 -1.57E+02 0 0

0 0 0 0 -2.25E-01 8.34E-01 0 9.46E-01 0 0 0 0 -2.67E+01 0

0 0 0 0 -2.76E+02 -2.55E+01 0 1.13E+02 0 0 0 0 0 -1.57E+02

6.9. Results of the closed loop system for 𝐔𝐠 = 𝟏𝟓 𝐦 𝐬 , 𝛒𝐪 = 𝟏𝟎, 

𝛒𝐫 = 𝟑𝟎𝟎. 

6.9.1. Numerical data 

The state matrix corresponding to the critical velocity of 23.15 m/s is presented 

in Table 6-5. 

The results of the complex eigenvalue analysis are shown in Table 6-6. 

 

 

 

 

 

 

Table 6-5 - State Matrix  𝐀c = 𝐀 − 𝐁𝐊𝐂 for Ucrit = 23.15 m/s. 

 

Table 6-6- Eigenvalues, damping ratios, frequencies and eigenvectors of interest 
obtained from the complex eigenvalue analysis of the state matrix 𝐀c   . 

The amplitude ratio is  

 h0eiωt  α0ei(ωt+φ)  = 
 5.85 e−008 2+[ 6.7129 e−002 i]2

 1.36 e−002 2+[ 5.3233 e−003 ]i2 = 4.6014 

The phase difference φ is  

 φ = tan-1(0.0053233/0.0136)-tan-1(0.067129/0.0585e-006)= 111.40060.  

Plots of frequencies and damping ratios versus wind velocities for Ug = 15 m s  

follow. Curves representing frequencies other than heaving and pitching modes 

are without practical importance.  

Eigenvalues Damping

Frequency 

(rad/s)

Diagonal Matrix of the 

Eigenvalues

State 

Vector

Column 9 - Matrix of the 

Eigenvectors

Column 7 - Matrix of the 

Eigenvectors

h/B 1.19e-005 + 1.36e+001i -8.71E-07 1.36E+01 (dh/dt)/B 9.16E-01 -7.2761e-002 -2.0558e-002i

1.19e-005 - 1.36e+001i -8.71E-07 1.36E+01 (d/dt) 7.2613e-002 -1.8528e-001i -1.8498e-001 -3.8266e-002i

-5.56e+000 + 4.52e+001i 1.22E-01 4.56E+01 (dd1/dt) -4.3801e-002 +1.8288e-001i 8.44E-01

-5.56e+000 - 4.52e+001i 1.22E-01 4.56E+01 Term (9,9) (dd2/dt) 1.6100e-001 +1.7400e-001i -4.7035e-001 -1.5876e-001i

-1.65E+01 1.00E+00 1.65E+01 1.19e-005 + 1.36e+001i h/B 5.8471e-008 -6.7129e-002i 6.4272e-004 -1.5297e-003i

 -1.69e+001 + 2.65e+001i 5.38E-01 3.15E+01 Term (7,7)  -1.3583e-002 -5.3233e-003i 1.3291e-003 -3.9265e-003i

-1.69e+001 - 2.65e+001i 5.38E-01 3.15E+01 -1.69e+001 + 2.65e+001i d1 1.3407e-002 +3.2111e-003i -2.2601e-003 +1.8373e-002i

-1.96E+01 1.00E+00 1.96E+01 d2 1.2756e-002 -1.1803e-002i 4.7182e-003 -9.8192e-003i

-2.45E+01 1.00E+00 2.45E+01 x1 -1.6181e-003 +4.3630e-003i 5.1026e-004 +5.7603e-005i

-2.74E+01 1.00E+00 2.74E+01 x2 -3.5050e-004 +1.8922e-002i 6.5477e-004 -4.3137e-004i

-6.12e+001 + 1.70e+001i 9.64E-01 6.35E+01 xw11 1.3956e-004 +3.9731e-004i -2.5383e-004 +9.9191e-005i

-6.12e+001 - 1.70e+001i 9.64E-01 6.35E+01 xw12 -2.3408e-003 +1.1199e-001i -3.3212e-003 +8.9473e-003i

-1.53E+02 1.00E+00 1.53E+02 xw21 1.4508e-005 -2.6307e-005i 2.6789e-004 -5.0921e-006i

-1.56E+02 1.00E+00 1.56E+02 xw22 2.0770e-002 +1.0859e-001i 2.9894e-003 -2.9513e-003i
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6.9.2. Numerical data 

 

Figure 6-8 - Variations of modal frequency ω (rd/s) of closed-loop system with gain 

design for Ug = 15 m/s versus wind speed. 

 

Note that the damping of the heaving mode approaches zero as the wind 

speed approaches the critical speed, 23.15 m/s. The plot shows that the pitching 

mode is controlled, and heaving is the critical mode, differently from the case 

shown in Figure 6-1. 
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6.9.3. Impulse responses 

 

Figure 6-9 - Impulse response of closed loop system with gain calculated for Ud=15m/s at 

9 m/s. 

The impulse input to the system was: 

 x0 =  0 
1

Iα
 0  0  0  0  0  0  0  0  0  0  0  0 =   0 516.93 0  0  0  0  0  0  0  0  0  0  0  0   

The responses in the two lower pictures of Figure 6-9 show these initial 

conditions (t=0) in the controlled system. The stability of the system is assured for  

Ug = 15 m s  at U = 9 m s . The winglets rotate in opposite directions and must 

change amplitude signs in a very short time during the first second after the 

pulse.  
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Figure 6-10 - Impulse response of closed loop system with gain calculated for Ug=15m/s 
at 15 m/s 

The impulse input to the system was: 

x0 =  0 
1

Iα
 0  0  0  0  0  0  0  0  0  0  0  0 =   0 516.93 0  0  0  0  0  0  0  0  0  0  0  0   

The responses in the two lower pictures of Figure 6-10 show these initial 

conditions (t=0) in the controlled system. The stability of the system is still 

assured at U = 15 m/s, although it takes longer to reach stability. The heaving 
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amplitude doubles compared to the behavior of the system at 11 m/s. The 

winglets behave in the same manner as at 9 m/s (cp Figure 6-5 to Figure 6-6). 

Figure 6-11 - Impulse response of closed loop system with gain calculated for Ug=15m/s 
at 19 m/s 

The stability of the system is still assured at U = 19 m/s, although the 

amplitudes increase, compared to the system behavior at U = 15 m/s. It also 

takes much longer to reach stability. The winglets behave in a similar manner as 

at 9, 11 and 15 m/s. (cp Figure 6-5 to Figure 6-6). The critical velocity is reached 

at U = 23 m/s, according to (6.35). 
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-12.409 -7.023 -0.048 -0.048 -699.590 -1363.600 -137.930 -137.930 -1067.900 -1005.700 -208.000 -66.022 -208.000 -66.022

20.370 -9.906 0.196 -0.214 923.350 1206.700 612.520 -554.180 2220.200 2250.000 923.670 293.200 -835.750 -265.270

88.555 -244.920 -52.779 0.000 549.870 -5288.400 -4760.000 -48.345 0.000 0.000 0.000 0.000 0.000 0.000

28.192 135.980 0.000 -52.867 -346.950 1925.000 864.110 -1589.500 0.000 0.000 0.000 0.000 0.000 0.000

1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 -1.516 8.192 0.000 0.000 -20.035 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 -24.148 27.198 0.000 0.000 0.000 -78.354 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 -0.298 1.403 1.254 0.000 0.000 0.000 -35.362 0.000 0.000 0.000

0.000 0.000 0.000 0.000 -365.920 332.100 149.140 0.000 0.000 0.000 0.000 -208.200 0.000 0.000

0.000 0.000 0.000 0.000 -0.298 1.105 0.000 1.254 0.000 0.000 0.000 0.000 -35.362 0.000

0.000 0.000 0.000 0.000 -365.920 -33.822 0.000 149.140 0.000 0.000 0.000 0.000 0.000 -208.200

6.10. Results of the closed loop system for 𝐔𝐠 = 𝟏𝟗 𝐦/𝐬, 𝛒𝐪 = 𝟐𝟎, 𝛒𝐫 =

𝟓𝟎𝟎. 

6.10.1. Numerical data 

The state matrix corresponding to the critical velocity of 30.67 m/s is presented 

in Table 6-7. The results of the complex eigenvalue analysis are shown in Table 

6-8. 

Table 6-7 - State Matrix for 30.67 m/s. 

 

 

Table 6-8 - Eigenvalues, damping ratios, frequencies and eigenvectors of interest. 

 

The amplitude ratio is  

 h0eiωt  α0ei(ωt+φ)  = 
 −1.8943e−003 2+[ 4.9899 e−003 i]2

 −4.6135e−005 2+[ 5.4820 e−003 ]i2 ~ 1. 

The phase difference φ is  

 φ = tan-1(5.4820e-003/-4.6135e-005)-tan-1(4.9899e-003/-1.8943e-003)~-2.0.  

Plots of frequencies and damping ratios versus wind velocities follow. Curves 

representing frequencies other than heaving and pitching modes are without 

practical importance. 

Eigenvalues Damping
Frequenc

y (rad/s)

Diagonal Matrix of the 

Eigenvalues

State 

Vector

Column 7 - Matrix of the 

Eigenvectors

Column 9 - Matrix of the 

Eigenvectors

 3.11e-004 + 4.44e+001i -7.02E-06 4.44E+01 (dh/dt)/B -2.2147e-001 -8.4076e-002i 0.88141

3.11e-004 - 4.44e+001i -7.02E-06 4.44E+01 (d/dt) -2.4332e-001 -2.0460e-003i 2.0646e-002 -1.3732e-001i

h/B -7.66e-001 + 1.14e+001i 6.71E-02 1.14E+01 (dd1/dt) 6.2371e-001 +9.9618e-002i 2.7290e-002 +3.2782e-001i

-7.66e-001 - 1.14e+001i 6.71E-02 1.14E+01 Term (9,9) (dd2/dt) -6.96E-01 5.5531e-002 +2.2228e-001i

-7.59e+000 + 5.54e+001i 1.36E-01 5.59E+01 -7.6557e-001 +1.1385e+001i h/B -1.8943e-003 +4.9899e-003i -5.1821e-003 -7.7067e-002i

-7.59e+000 - 5.54e+001i 1.36E-01 5.59E+01 3.1138e-004 +4.4384e+001i  -4.6135e-005 +5.4820e-003i -1.2128e-002 -9.9783e-004i

-26.3 1.00E+00 2.63E+01 Term (7,7) d1 2.2445e-003 -1.4053e-002i 2.8503e-002 -4.3135e-003i

-3.25e+001 + 4.56e+000i 9.90E-01 3.28E+01 d2 -1.1009e-007 +1.5692e-002i 1.9109e-002 -6.1623e-003i

-3.25e+001 - 4.56e+000i 9.90E-01 3.28E+01 x1 7.2001e-004 +2.6882e-004i -1.0496e-003 +6.2597e-003i

-36.2 1.00E+00 3.62E+01 x2 5.8642e-004 +3.2887e-005i 8.1235e-004 +2.3517e-002i

-7.97e+001 + 2.38e+001i 9.58E-01 8.31E+01 xw11 -1.2096e-004 -1.7105e-004i 6.6742e-004 +2.4769e-004i

-7.97e+001 - 2.38e+001i 9.58E-01 8.31E+01 xw12 2.5943e-003 -1.0645e-002i 1.7368e-002 +1.3030e-001i

-203 1.00E+00 2.03E+02 xw21 3.3981e-004 +2.5916e-004i 4.3718e-004 +2.6504e-004i

-207 1.00E+00 2.07E+02 xw22 3.5138e-003 +8.3094e-004i 3.1988e-002 +1.2992e-001i
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6.10.2. Plots of frequencies and damping factors for 𝐔𝐠 = 19 m/s. 

Figure 6-12 - Variations of modal frequency ω (rd/s) and damping ratios of closed-loop 
system with gain design for Ug = 19 m/s versus wind speed. 

 

The damping of the pitching mode approaches zero as the wind speed 

approaches the critical speed, 30.672 m/s. The plot shows that the damping 

ratios of heaving and pitching are closer to each other than in the preceding case 

near the critical velocity. As the critical velocity is well beyond the limit of 21 m/s 

for which the performance of the controlled system is designed, the fact that 

pitching is again the unstable mode at 30.672 m/s is not important. 
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6.10.3. Impulse responses 

b 

Figure 6-13 - Impulse response of closed loop system with gain calculated for Ug=19m/s 
at 9 m/s 
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Figure 6-14 - Impulse response of closed loop system with gain calculated for Ug=19 m/s 
at 12 m/s. 
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Figure 6-15 - Impulse response of closed loop system with gain calculated for Ug=19 m/s 
at 15 m/s. 
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Figure 6-16 - Impulse response of closed loop system with gain calculated for Ug=19m/s 

at 19 m/s 

6.11. Conclusions 

The optimal motion of the surfaces is governed by the pitching with some 

phase lead. Optimal control suggests that the most effective generation of the 

stabilizing aerodynamic forces is obtained when the leading surface rotates in the 

opposite direction and the trailing surface in the same direction as the deck. The 
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graphs also show that when the wind speed is lower than 11 m/s, the 

uncontrolled system is stable, and the amplitudes tend to zero in the first second 

after excitation. When the wind blows at 12.5 m/s the uncontrolled system is 

unstable when subjected to an initial impulse dα dt =  1 Iα    , as expected, since 

the gain was calculated for 11 m/s.  

The main stabilizing action is due to the lift forces generated on the control 

surfaces which, multiplied by the arms e1  and e2 , result in large stabilizing 

moments. The simulations of various controllers show that some phase leading of 

the control surface rotation with respect to pitching is very important in the 

aerodynamic control. Control with gains that results in zero phase shift provides 

stability, but the wind speed at which the controlled bridge becomes unstable is 

significantly reduced. The lagging of the surfaces motion behind the pitching 

leads to instability. 

As a simple solution, the application of the standard output gains designed for 

high wind speed may be sufficient. However, it must be remembered that such 

gains are truly optimal only at the design wind speed, and control performance 

may be very poor for different wind conditions. The control law, which is designed 

for a higher wind speed, utilizes the control surfaces excessively in the lower 

wind range. 

The statement above can be noticed in Figure 6-13. In this case the wind blows 

at 9 m/s and the control is designed for a wind velocity much higher. In order to 

bring the structure to a stable state, excessive use of the moving surfaces is 

needed. This can be seen by the amplitudes of the wings rotations versus time, 

especially during the first seconds after the initial impulse. 

Another possibility to control the real structure in low wind ranges if gainsare 

calculated for a high design speed is to reduce the length of the wings. If the 

bridge span is, say, 2.000m, only a half or a third of the wing’s length would be 

forced by the controllers to rotate. 

A third possibility is to let the computer choose the best control law as a 

function of the wind speed, which can be read by Pitot tubes fixed to the deck. 

For example, for U < 8 m/s, the wings remain at rest; for 8 < U < 9, gain is 

designed for Ug = 9m/s; for 9 < U < 11 gain is designed for Ug = 11m/s; for 11 <  

U < 15, gain is designed for Ug = 15 m/s;for 15 < U < 21 m/s, gain is designed for 

Ug = 19m/s.The fourth alternative is to adopt a variable-gain output feedback 

control, which is the subject of Chapter 7. 
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