4.

Applications to single bridge decks

4.1. Introduction

In order to obtain a time-domain modeling of bridge deck flutter, the frequency dependent aerodynamics self-excited forces were approximated in the Laplace domain by rational functions. A matrix formulation of the rational functions using Karpel's "minimum state" was applied to aerodynamic data obtained for various bridge decks.

In the example presented below, the critical velocity of a bridge with a 2000 m span and designed with an aerodynamic cross section that may be considered as having the same behavior of a flat plate when subjected to a wind stream is determined. The flutter derivatives were computed through the theoretical formulation of Theodorsen [84] in Chapter 2. The approximation functions were calculated in Chapter 3.

4.2. Calculation of the critical velocity of a bridge deck

One starts with the state-space system equations:

$$
\left[\begin{array}{c}
\ddot{\mathbf{q}} \\
\dot{\mathbf{q}} \\
\dot{x}_{\mathrm{a}}
\end{array}\right]=\mathbf{A} \cdot\left[\begin{array}{c}
\dot{\mathbf{q}} \\
\mathbf{q} \\
\mathbf{x}_{\mathrm{a}}
\end{array}\right]
$$

where \mathbf{A} is the state-space system matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
-\mathbf{M}^{-1}\left[\mathbf{C}-\left(\frac{\mathrm{B}}{\mathrm{U}}\right) \mathbf{V}_{\mathrm{f}} \mathbf{A}_{1}\right] & -\mathbf{M}^{-1}\left[\mathbf{K}-\mathbf{V}_{\mathrm{f}} \mathbf{A}_{0}\right] & \mathbf{M}^{-1} \mathbf{V}_{\mathrm{f}} \mathbf{D} \tag{4.1}\\
\mathbf{I} & 0 & 0 \\
0 & \left(\frac{\mathrm{U}}{\mathrm{~B}}\right) \mathbf{E} & -\left(\frac{\mathrm{U}}{\mathrm{~B}}\right) \mathbf{R}
\end{array}\right]
$$

\mathbf{A} is variable according to the wind velocity. The various terms of \mathbf{A} read:

$$
\begin{align*}
& \mathbf{q}=\left[\begin{array}{c}
\mathrm{h} / \mathrm{B} \\
\alpha
\end{array}\right] \tag{2.47}\\
& \mathbf{V}_{\mathrm{f}}=\left[\begin{array}{cc}
-1 / 2 \rho \mathrm{~B} & 0 \\
0 & 1 / 2 \rho \mathrm{~B}^{2}
\end{array}\right] \tag{2.48}\\
& \mathbf{M}=\left[\begin{array}{cc}
\mathrm{mB} & 0 \\
0 & \mathrm{I}_{\alpha}
\end{array}\right] ; \quad \mathbf{C}=\left[\begin{array}{cc}
\mathrm{c}_{\mathrm{h}} \mathrm{~B} & 0 \\
0 & \mathrm{c}_{\alpha}
\end{array}\right] ; \quad \mathbf{K}=\left[\begin{array}{cc}
\mathrm{k}_{\mathrm{h}} & 0 \\
0 & \mathrm{k}_{\alpha}
\end{array}\right] \tag{2.49}\\
& -\mathbf{M}^{-1}\left[\mathbf{C}-\left(\frac{\mathrm{B}}{\mathrm{U}}\right) \mathbf{V}_{\mathrm{f}} \mathbf{A}_{1}\right]=-\left[\begin{array}{cc}
\mathrm{mB} & 0 \\
0 & \mathrm{I}_{\alpha}
\end{array}\right]^{-1}\left\{\left[\begin{array}{cc}
\mathrm{c}_{\mathrm{h}} \mathrm{~B} & 0 \\
0 & \mathrm{c}_{\alpha}
\end{array}\right]-\right. \\
& \left.\left(\frac{B}{U}\right)\left[\begin{array}{cc}
-1 / 2 \rho B & 0 \\
0 & 1 / 2 \rho B^{2}
\end{array}\right]\left[\begin{array}{cc}
\mathrm{A}_{1_{11}} & \mathrm{~A}_{1_{12}} \\
\mathrm{~A}_{1_{21}} & \mathrm{~A}_{1_{22}}
\end{array}\right]\right\} \tag{4.2}\\
& -\mathbf{M}^{-1}\left[\mathbf{K}-\mathbf{V}_{\mathrm{f}} \mathbf{A}_{0}\right]=-\left[\begin{array}{cc}
\mathrm{mB} & 0 \\
0 & \mathrm{I}_{\alpha}
\end{array}\right]^{-1}\left\{\left[\begin{array}{cc}
\mathrm{k}_{\mathrm{h}} \mathrm{~B} & 0 \\
0 & \mathrm{k}_{\alpha}
\end{array}\right]-\right. \\
& \left.\left[\begin{array}{cc}
-1 / 2 \rho B & 0 \\
0 & 1 / 2 \rho B^{2}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{A}_{0_{11}} & \mathrm{~A}_{0_{12}} \\
\mathrm{~A}_{0_{21}} & \mathrm{~A}_{0_{22}}
\end{array}\right]\right\} \tag{4.3}\\
& \mathbf{M}^{-1} \mathbf{V}_{\mathrm{f}} \mathbf{D}=-\left[\begin{array}{cc}
\mathrm{mB} & 0 \\
0 & \mathrm{I}_{\alpha}
\end{array}\right]^{-1}\left[\begin{array}{cc}
-1 / 2 \rho \mathrm{~B} & 0 \\
0 & 1 / 2 \rho^{2}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{D}_{11} & \mathrm{D}_{12} \\
\mathrm{D}_{21} & \mathrm{D}_{22}
\end{array}\right] \tag{4.4}\\
& \frac{U}{B} \mathbf{E}=\frac{U}{B}\left[\begin{array}{ll}
E_{11} & E_{11} \\
E_{11} & E_{11}
\end{array}\right] \tag{4.5}\\
& -\frac{U}{B} \mathbf{R}=-\frac{U}{B}\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \tag{4.6}
\end{align*}
$$

The equations above are written for 2 lag terms, i.e., $\mathrm{n}_{\mathrm{L}}=2$. For $\mathrm{n}_{\mathrm{L}}>2$,

$$
\begin{gathered}
\mathbf{E}=\left[\begin{array}{cc}
\mathrm{E}_{11} & \mathrm{E}_{12} \\
\mathrm{E}_{21} & \mathrm{E}_{22} \\
- & - \\
- & - \\
\mathrm{E}_{\mathrm{n}_{\mathrm{L}}} \mathrm{E}_{\mathrm{n}_{\mathrm{L}}}
\end{array}\right] \\
\mathbf{D}=\left[\begin{array}{l}
\mathrm{D}_{11} \mathrm{D}_{12}--\mathrm{D}_{1 n_{\mathrm{L}}} \\
\mathrm{D}_{21} \mathrm{D}_{22}--\mathrm{D}_{2 \mathrm{n}_{\mathrm{L}}}
\end{array}\right] \\
\mathbf{R}=\left[\begin{array}{ccccc}
\lambda_{11} & 0 & 0 & 0 & 0 \\
0 & \lambda_{22} & 0 & 0 & 0 \\
0 & 0 & - & 0 & 0 \\
0 & 0 & 0 & - & 0 \\
0 & 0 & 0 & 0 & \lambda_{n_{\mathrm{L}} \mathrm{n}_{\mathrm{L}}}
\end{array}\right]
\end{gathered}
$$

where m is the mass of the bridge deck per meter and I_{α} the torsional mass moment of inertia per meter, B is the deck width and $\mu=m / \rho B^{2}$ represents the dimensionless relation between the inertial forces of the bridge deck and the forces exerted by the fluid. Introducing all variables in A, a complex eigenvalue analysis of the system matrix for increasing wind velocity is performed. The critical velocity is found when one eigenvalue of \mathbf{A} has a positive real part.

4.3. Numerical example

Wilde [95] proposes to find the critical velocity of a bridge with a 2000 m span whose properties are stated in Table 4-1.

Notation	Variable	Input
ro_a	Air density in $\mathrm{kgf} . \mathrm{s}^{2} / \mathrm{m}^{4}$	0.125
Bd	Deck width in m	0.2927
m	Mass in kgf.s ${ }^{2} / \mathrm{m}^{2}$	0.191
I_a	Mass moment of inertia in kgf.s ${ }^{2}$	0.0019345
delta_h	Logarithmic decrement of h mode	0.007
delta_a	Logarithmic decrement of α mode	0.006
omega_h	Fundamental frequency of h mode in rad/s	7.88
omega_a	Fundamental frequency of α mode in rad/s	25.06
a0	$\begin{aligned} & \text { AO }(1,1) \\ & \text { A0 }(1,2) \\ & \text { A0 }(2,1) \\ & \text { A0 }(2,2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.30 \mathrm{E}+00 \\ & 3.53 \mathrm{E}+00 \\ & 3.35 \mathrm{E}-01 \\ & 8.74 \mathrm{E}-01 \\ & \hline \end{aligned}$
a1	A1 $(1,1)$ A1 $(1,2)$ A1 $(2,1)$ A1 $(2,2)$	$\begin{gathered} \hline 3.38 \mathrm{E}+00 \\ 2.36 \mathrm{E}+00 \\ 7.99 \mathrm{E}-01 \\ -1.88 \mathrm{E}-01 \\ \hline \end{gathered}$
d	$\begin{aligned} & \hline \mathrm{D}(1,1) \\ & \mathrm{D}(1,2) \\ & \mathrm{D}(2,1) \\ & \mathrm{D}(2,2) \end{aligned}$	$3.47 \mathrm{E}+00$ $0.3266975 \mathrm{E}+01$ $0.8526074 \mathrm{E}+00$ $0.8640608 \mathrm{E}+00$
e	$\begin{aligned} & E(1,1) \\ & E(1,2) \\ & E(2,1) \\ & E(2,2) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-1.45 \mathrm{E}-02 \\ 7.82 \mathrm{E}-02 \\ -2.30 \mathrm{E}-01 \\ 2.60 \mathrm{E}-01 \\ \hline \end{gathered}$
lamb	lamb1 lamb2	$\begin{aligned} & \hline 0.1911883 \mathrm{E}+00 \\ & 0.7477236 \mathrm{E}+00 \end{aligned}$

Table 4-1 - Data for a 2-DOFs 2000m bridge

Figure 4-1- Fluxogram 1

4.4. Method to determine the critical velocity of a bridge

In order to calculate the critical velocity of the 2000 m bridge, a complex eigenvalue analysis is performed as shown by the fluxogram in Figure 4-1.

The sequence is:
Define the characteristics of the bridge, as in Table 4-1.
Start with the velocity $\mathrm{U}=\mathrm{U} 0$.
Assemble the state matrix A .
Calculate the eigenvalues of A.
If one eigenvalue of A has a positive real part, print A and $\mathrm{U}=$ Ucritical.
If no eigenvalue of A has a positive real part, increase U by ΔU and enter the loop again.

Results of the program "Main_Program_GIBRALTAR.m" written for Wilde's example are show in Table 4-2. Plots of heaving and pitching frequencies versus wind velocity are presented in Figure 4-2, where all real frequencies were suppressed as being meaningless.

For a small positive real eigenvalue ($5.84 \mathrm{e}-004$) the damping ratio approaches zero (-3.29e-005). The critical frequency is $17.8 \mathrm{rad} / \mathrm{s}$. The ratio of amplitudes is the ratio of eigenvectors $|0.010691-0.027685 i| /|1.5697 \mathrm{e}-006-0.047727 \mathrm{i}|=$ 0.62182 . The phase angle is 21.113^{0}.

Notation	Variable	Result					
U	Critical Velocity	$10.21 \mathrm{~m} / \mathrm{s}$					
A	State Matrix for $10.21 \mathrm{~m} / \mathrm{s}$	-3.3273	-2.3057	-106.5900	-120.5500	-118.3600	-111.4600
		6.6090	-1.5991	96.8000	-375.8200	246.0600	249.3700
		1.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		0.0000	1.0000	0.0000	0.0000	0.0000	0.0000
		0.0000	0.0000	-0.5047	2.7272	-6.6697	0.0000
		0.0000	0.0000	-8.0391	9.0545	0.0000	-26.0850
K	Reduced frequency	$0.293 \times 17.8 \mathrm{rd} / \mathrm{s} / 10.21 \mathrm{~m} / \mathrm{s}=0.51$					
Results of the complex eigenvalue analysis		Eigenvalue		Damping		Frequency ($\mathrm{rad} / \mathrm{s}$)	
		$5.84 \mathrm{e}-004+1.78 \mathrm{e}+001 \mathrm{i}$		-3.29E-05		$1.78 \mathrm{E}+01$	
		$\begin{gathered} 5.84 \mathrm{e}-004-1.78 \mathrm{e}+001 \\ -2.24 \mathrm{E}+00 \end{gathered}$		-3.29E-05		$1.78 \mathrm{E}+01$	
		$1.00 \mathrm{E}+00$	$2.24 \mathrm{E}+00$				
		$-7.11 \mathrm{e}+000+9.54 \mathrm{e}+00 \mathrm{i}$	$5.98 \mathrm{E}-01$		$1.19 \mathrm{E}+01$		
		$-7.11 \mathrm{e}+000-9.54 \mathrm{e}+00 i$	$5.98 \mathrm{E}-01$		$1.19 \mathrm{E}+01$		
		$-2.12 \mathrm{E}+00$	1.10E+01		$2.12 \mathrm{E}+00$		

Table 4-2- Results of the complex eigenvalue analysis.

Figure 4-2 - Variation of frequencies and damping ratios versus wind velocity

The frequencies 11.9 and $17.8 \mathrm{rad} / \mathrm{s}$ correspond to the critical velocity of 10.21 m / s. The flutter wind velocity corresponds to the point where the damping ratio of pitching changes sign.

