Applications to single bridge decks

4.1. Introduction

In order to obtain a time-domain modeling of bridge deck flutter, the frequency dependent aerodynamics self-excited forces were approximated in the Laplace domain by rational functions. A matrix formulation of the rational functions using Karpel's "minimum state" was applied to aerodynamic data obtained for various bridge decks.

In the example presented below, the critical velocity of a bridge with a 2000m span and designed with an aerodynamic cross section that may be considered as having the same behavior of a flat plate when subjected to a wind stream is determined. The flutter derivatives were computed through the theoretical formulation of Theodorsen [84] in Chapter 2. The approximation functions were calculated in Chapter 3.

4.2. Calculation of the critical velocity of a bridge deck

One starts with the state-space system equations:

$$\begin{bmatrix} \ddot{\mathbf{q}} \\ \dot{\mathbf{q}} \\ \dot{\mathbf{x}}_a \end{bmatrix} = \mathbf{A} \cdot \begin{bmatrix} \dot{\mathbf{q}} \\ \mathbf{q} \\ \mathbf{x}_a \end{bmatrix}$$

where A is the state-space system matrix

$$\mathbf{A} = \begin{bmatrix} -\mathbf{M}^{-1} \begin{bmatrix} \mathbf{C} - \begin{pmatrix} \frac{B}{U} \end{pmatrix} \mathbf{V}_{f} \mathbf{A}_{1} \end{bmatrix} & -\mathbf{M}^{-1} \begin{bmatrix} \mathbf{K} - \mathbf{V}_{f} \mathbf{A}_{0} \end{bmatrix} & \mathbf{M}^{-1} \mathbf{V}_{f} \mathbf{D} \\ \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \begin{pmatrix} \frac{U}{B} \end{pmatrix} \mathbf{E} & -\begin{pmatrix} \frac{U}{B} \end{pmatrix} \mathbf{R} \end{bmatrix}$$
(4.1)

A is variable according to the wind velocity. The various terms of A read:

$$\mathbf{q} = \begin{bmatrix} \mathbf{h}/\mathbf{B} \\ \alpha \end{bmatrix}$$
(2.47)

$$\mathbf{V}_{\rm f} = \begin{bmatrix} -1/2 \ \rho B & 0\\ 0 & 1/2 \ \rho B^2 \end{bmatrix}$$
(2.48)

$$\mathbf{M} = \begin{bmatrix} \mathbf{mB} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{\alpha} \end{bmatrix} \quad ; \quad \mathbf{C} = \begin{bmatrix} \mathbf{c}_{\mathbf{h}} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{c}_{\alpha} \end{bmatrix} \quad ; \quad \mathbf{K} = \begin{bmatrix} \mathbf{k}_{\mathbf{h}} & \mathbf{0} \\ \mathbf{0} & \mathbf{k}_{\alpha} \end{bmatrix}$$
(2.49)

$$-\mathbf{M}^{-1} \left[\mathbf{C} - \begin{pmatrix} B \\ U \end{pmatrix} \mathbf{V}_{f} \mathbf{A}_{1} \right] = - \begin{bmatrix} mB & 0 \\ 0 & I_{\alpha} \end{bmatrix}^{-1} \left\{ \begin{bmatrix} c_{h}B & 0 \\ 0 & c_{\alpha} \end{bmatrix} - \begin{pmatrix} B \\ U \end{pmatrix} \begin{bmatrix} -1/2 \ \rho B & 0 \\ 0 & 1/2 \ \rho B^{2} \end{bmatrix} \begin{bmatrix} A_{1_{11}} & A_{1_{12}} \\ A_{1_{21}} & A_{1_{22}} \end{bmatrix} \right\}$$
(4.2)

$$-\mathbf{M}^{-1}[\mathbf{K} - \mathbf{V}_{f}\mathbf{A}_{0}] = -\begin{bmatrix} \mathbf{m}B & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{\alpha} \end{bmatrix}^{-1} \left\{ \begin{bmatrix} \mathbf{k}_{h}B & \mathbf{0} \\ \mathbf{0} & \mathbf{k}_{\alpha} \end{bmatrix} - \begin{bmatrix} -1/2 \ \rho B & \mathbf{0} \\ \mathbf{0} & 1/2 \ \rho B^{2} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{0_{11}} & \mathbf{A}_{0_{12}} \\ \mathbf{A}_{0_{21}} & \mathbf{A}_{0_{22}} \end{bmatrix} \right\}$$
(4.3)

$$\mathbf{M}^{-1}\mathbf{V}_{\mathrm{f}}\mathbf{D} = -\begin{bmatrix} \mathbf{m}\mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{\alpha} \end{bmatrix}^{-1} \begin{bmatrix} -1/2 \ \rho \mathbf{B} & \mathbf{0} \\ \mathbf{0} & 1/2 \ \rho \mathbf{B}^{2} \end{bmatrix} \begin{bmatrix} \mathbf{D}_{11} & \mathbf{D}_{12} \\ \mathbf{D}_{21} & \mathbf{D}_{22} \end{bmatrix}$$
(4.4)

$$\frac{U}{B}\mathbf{E} = \frac{U}{B} \begin{bmatrix} E_{11} & E_{11} \\ E_{11} & E_{11} \end{bmatrix}$$
(4.5)

$$-\frac{\mathrm{U}}{\mathrm{B}}\mathbf{R} = -\frac{\mathrm{U}}{\mathrm{B}}\begin{bmatrix}\lambda_1 & 0\\ 0 & \lambda_2\end{bmatrix}$$
(4.6)

The equations above are written for 2 lag terms, i.e., $\rm n_L$ =2. For $\rm n_L>$ 2,

$$\mathbf{E} = \begin{bmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \\ - & - \\ E_{n_L 1} E_{n_L 2} \end{bmatrix}$$
$$\mathbf{D} = \begin{bmatrix} D_{11} & D_{12} - - & D_{1n_L} \\ D_{21} & D_{22} - & - & D_{2n_L} \end{bmatrix}$$
$$\mathbf{R} = \begin{bmatrix} \lambda_{11} & 0 & 0 & 0 & 0 \\ 0 & \lambda_{22} & 0 & 0 & 0 \\ 0 & 0 & - & 0 & 0 \\ 0 & 0 & 0 & - & 0 \\ 0 & 0 & 0 & 0 & \lambda_{n_L n_L} \end{bmatrix}$$

where m is the mass of the bridge deck per meter and I_{α} the torsional mass moment of inertia per meter, B is the deck width and $\mu=m/\rho B^2$ represents the dimensionless relation between the inertial forces of the bridge deck and the forces exerted by the fluid. Introducing all variables in A , a complex eigenvalue analysis of the system matrix for increasing wind velocity is performed. The critical velocity is found when one eigenvalue of A has a positive real part.

4.3. Numerical example

Wilde [95] proposes to find the critical velocity of a bridge with a 2000m span whose properties are stated in Table 4-1.

Notation	Variable	Input		
ro_a	Air density in kgf.s ² /m ⁴	0.125		
Bd	Deck width in m	0.2927		
m	Mass in kgf.s ² /m ²	0.191		
I_a	Mass moment of inertia in kgf.s ²	0.0019345		
delta_h	Logarithmic decrement of h mode	0.007		
delta_a	Logarithmic decrement of α mode	0.006		
omega_h	Fundamental frequency of h mode in rad/s	7.88		
omega_a	Fundamental frequency of α mode in rad/s	25.06		
a0	A0 (1,1) A0 (1,2) A0 (2,1) A0 (2,2)	1.30E+00 3.53E+00 3.35E-01 8.74E-01		
a1	A1 (1,1) A1 (1,2) A1 (2,1) A1 (2,2)	3.38E+00 2.36E+00 7.99E-01 -1.88E-01		
d	D (1,1) D (1,2) D (2,1) D (2,2)	3.47E+00 0. 3266975E+01 0. 8526074E+00 0. 8640608E+00		
e	E (1,1) E (1,2) E (2,1) E (2,2)	-1.45E-02 7.82E-02 -2.30E-01 2.60E-01		
lamb	lamb1 lamb2	0.1911883E+00 0.7477236E+00		

Table 4-1 - Data for a 2-DOFs 2000m bridg	Table 4-1 -	Data for a	2-DOFs	2000m	bridae
---	-------------	------------	--------	-------	--------

Figure 4-1- Fluxogram 1

4.4. Method to determine the critical velocity of a bridge

In order to calculate the critical velocity of the 2000m bridge, a complex eigenvalue analysis is performed as shown by the fluxogram in Figure 4-1.

The sequence is:

Define the characteristics of the bridge, as in Table 4-1.

Start with the velocity U = U0.

Assemble the state matrix A .

Calculate the eigenvalues of A.

If one eigenvalue of A has a positive real part, print A and U = Ucritical.

If no eigenvalue of A has a positive real part, increase U by ΔU and enter the loop again.

Results of the program "Main_Program_GIBRALTAR.m" written for Wilde's example are show in Table 4-2. Plots of heaving and pitching frequencies versus wind velocity are presented in Figure 4-2, where all real frequencies were suppressed as being meaningless.

For a small positive real eigenvalue (5.84e-004) the damping ratio approaches zero (-3.29e-005). The critical frequency is 17.8 rad/s. The ratio of amplitudes is the ratio of eigenvectors |0.010691 - 0.027685i|/|1.5697e-006 - 0.047727i| = 0.62182. The phase angle is 21.113⁰.

Notation	Variable	Result					
U	Critical Velocity	10.21 m/s					
А		-3.3273	-2.3057	-106.5900	-120.5500	-118.3600	-111.4600
		6.6090	-1.5991	96.8000	-375.8200	246.0600	249.3700
	State Matrix for	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	10.21 m/s	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000
		0.0000	0.0000	-0.5047	2.7272	-6.6697	0.0000
		0.0000	0.0000	-8.0391	9.0545	0.0000	-26.0850
К	Reduced frequency	0.293 x 17.8 rd/s / 10.21 m/s = 0.51					
		Eigenvalue		Damping		Frequency (rad/s)	
		5.84e-004+1.78e+001i		-3.29E-05		1.78E+01	
		5.84e-004-1.78e+001		-3.29E-05		1.78E+01	
eigenvalue analysis	-2.24E+00		1.00E+00		2.24E+00		
	-7.11e+	-7.11e+000+9.54e+00i		5.98E-01		1.19E+01	
	-7.11e-	-7.11e+000-9.54e+00i		5.98E-01		1.19E+01	
		-2.12E+00		1.10E+01		2.12E+00	

Table 4-2- Results of the complex eigenvalue analysis.

Figure 4-2 - Variation of frequencies and damping ratios versus wind velocity

The frequencies 11.9 and 17.8 rad/s correspond to the critical velocity of 10.21 m/s. The flutter wind velocity corresponds to the point where the damping ratio of pitching changes sign.