
3.  

Rational function approximation (RFA)  

3.1. Introduction 

The linear dynamic system of the bridge deck subjected to self-excited and 

buffeting wind forces was approximated by the following equations: 

mh +  ch h + kh h = ρU2B   K H1 
∗  k  

h 

U
+  K H2 

∗  k  B
a 

U
+  K2 H3 

∗  k  α + K2 H4 
∗∗ k  

h

B
 - 

 −
1

2
ρU2B [CL

2u

U
+  CL

′ +  CD 
w

U
]   (2.39) 

Iαα +  cαα + kα  h = ρU2B2   K A1 
∗  k  

h 

U
+  K A2 

∗  k  B
a 

U
+ K2 A3 

∗∗ k  α + 

 +K2 A4 
∗∗ k  

h

B
+

1

2
ρU2B2 [CM

2u

U
+ CM

′ w

U
] (2.40) 

In order to solve the equations (2.39) and (2.40), it is required that the air-force 

vector be available in the time domain. This is accomplished if the Laplace 

transform representation of (2.39) and (2.40) with zero initial conditions is used, 

yielding the following equations in matrix form: 

  𝐌 p2 U2

B2 + 𝐂 p 
U

B
+  𝐊 L  𝐪 = [𝐕f]  𝐐  U2

L (𝐪) (2.46) 

where 𝐌 , 𝐂 , 𝐊  are the two by two diagonal mass, damping and stiffness 

matrices, respectively, and [𝐐 t ] represents the air-force vector in the time 

domain. All matrices belonging to (2.46) were presented in (2.47) to (2.50). 

Equation (2.46) is said to represent a finite-state aero elastic system that can 

be converted into a linear, time-invariant, finite-state form to perform stability 

analysis of control system design if each term of the unsteady aerodynamic 

matrix  Q(p)  can be represented by a ratio of polynomials in p. Generally the air 

forces can be determined only for pure oscillatory motion of a structure such as a 

lifting surface. However, since  Q(p)  is analytic for a causal, stable, and linear 

system, it can be directly deduced from  Q(p) , which is obtained from an 

oscillatory theory. This is realized by approximating each term of the generalized 
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air-force matrix  Q(p)  by a rational polynomial in p and then solving for the 

coefficients of the polynomial, which gives the least-square-error fit with tabulated 

oscillatory air forces at given values of the reduced frequency. The transfer 

function matrix  Q(p)  is then obtained by the replacement. 

It is more convenient to use the non-dimensionalized reduced frequency 

k = ωb/U because the oscillatory aerodynamic data are generally available for 

certain reduced frequencies. When this is done, the Laplace variable also 

becomes non-dimensionalized such that p =
sb

U
=  

ωb

U
 i = ki 

There have been many approaches to this direct conversion process, as for 

example Roger [ 56 ] and Abel [ 1 ], who formulated a rational function 

approximation for three-dimensional, subsonic aerodynamics by using a series of 

poles to represent the aerodynamic lags attributable to the wake. The poles are 

chosen to be the same for all elements of the transfer matrix. The success of the 

fit is dependent on the choice of poles, which, in turn, is based on experience. 

This method is known as the conventional least-squares method because the 

parameters in the curve fit are determined by a least-squares technique. 

Tiffany and Adams [ 89] used a non-gradient, non-linear optimizer to select the 

values of lag-parameters in the least-squares formulation, which gave the 

minimum total least-squared fit error with oscillatory data. Another approach, 

similar in many ways to the rational function of Roger [ 56 ] and Abel [ 1 ] is that 

of Dowell [ 12 ]. He used a series of decaying exponentials in the time domain, 

which in the Laplace domain is represented by a series of simple poles. 

Eversman and Tewari [ 15 ] mention in the references of their article many 

important contributions that deal with the problem of representing the unsteady 

aerodynamics by rational functions. The interested reader may consult them for 

further research. 

3.2. Least-squares Rational Function Approximation 

The least-squares approximation uses a rational function represented by a 

second-order polynomial in the Laplace variable with an additional series of 

simple poles for each term of the generalized unsteady aerodynamic matrix 𝐐(s). 

The poles, which denote lag terms in the time domain, are common for all 

elements of 𝐐(s), thereby reducing considerably the number of augmented 

aerodynamic states compared to the case where all (or some) of the elements 
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are allowed to have different poles. This leads to the representation of the 𝐐(s) 

matrix by the following approximation: 

 𝐐  s = q  A0 +  𝐀1 s  
b

U
 + 𝐀2 s2 + (

U

b
)  

𝐀(n +2)

s+(
U

b
)λn

nL
n=1   (3.3) 

In equation (3.3), 𝐐  s  denotes the approximation to 𝐐(s) in equation (2.50), 

s =
pU

B
 , λn   are the n lag parameters, q is the free stream pressure, b is the bridge 

semi-width and  nl   is the number of lag terms. In aeronautical applications the 

approximation function has the term s2 representing the added aerodynamic 

mass and mass torsional moment of inertia. However, in problems of bridge 

aerodynamics this term is neglected and the approximation is restricted to terms 

in s. 

This is the reason why the terms H4
∗ and  A3

∗  

 H4
∗(k) =  −2π   

1

8
+ 

G(k)

4k
   (2.20) 

 A3
∗  k =    F k −

k G k 

2
+ 

k2

8
  

π

16k2  (2.24) 

are simplified to 

 H4
∗(k) =  −2π   

G(k)

4k
    (2.35a) 

 A3
∗  k =    F k −

k G k 

2
  

π

16k2  (2.35b) 

In so doing, the additional matrix 𝐀2 does not need to be considered in the 

approximation operations. The elements of 𝐀0 and 𝐀1  represent stiffness and 

damping respectively. The partial fractions 
𝐀 n +2 

s +  
U

b
  λn

 are commonly called lag 

terms (termos de retardo), because each term represents a transfer function in 

which the output “lags” behind the input and permits an approximation of the time 

delays inherent in unsteady aerodynamics. 

The values of the lag parameters must be positive for the stability of the 

transfer function. The number of lag parameters taken directly influences the fit 

accuracy of the approximate aerodynamic transfer function with the frequency 

domain data because the lag terms account for the lag associated with 

circulation, which is presumably represented exactly only by an infinite number of 

lag terms. When the inverse Laplace transform is applied upon 𝐐 (s), the 

approximate aerodynamic unit impulse response matrix results. 
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3.3. Karpel minimum-state RFA 

The formulation suggested by Karpel [ 25 ], called minimum-state RFA, 

approximates 𝐐(p) to 𝐐 (p) by the following rational equations: 

 Q  p = A0 +  A1 p + D(pI + R)−1E  (3.4) 

where 𝐑 =   
λ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ λnL

    is the diagonal matrix of lag parameters λn  , for  

1 ≤ n ≤ nL  and p =
sb

U
=  

ωb

U
 i = ki . 

The matrices to be approximated are: 

 𝐐 =  
2K2H4

∗ + 2K2H1
∗ i 2K2H3

∗ + 2K2H2
∗  i

2K2A4
∗ +  2K2A1

∗  i 2K2A3
∗ + 2K2A2

∗  i
  (2.51) 

For two degrees of freedom and nL  = 3 , the matrix equation (3.4) can be 

expressed with the size of its terms as: 

 Q  p = A0 2x2 +  A1  2x2  p +  D  2x3 .
1

 

p+λ1 0 0
0 p+λ2 0
0 0 p+λ3

 

. E[3x2] (3.10) 

The resulting state-space equations have the form: 

 Q =  

q 
q 
xa 

 =  

−M−1  C − (
B

U
)VfA1 −M−1 K − VfA0 M−1VfD

I 0 0

0 (
U

B
)E −(

U

B
)R

 .  
q 
q
xa

  (3.11) 

Improvement of the approximation can be achieved by increasing the number 

of lag terms. However, it adversely increases the number of equations required to 

define the aerodynamic system. Minimization of approximation errors can also be 

obtained by imposing constraints on the elements of the transfer functions to 

match the oscillatory data at some values of the reduced frequency, but this 

degrades the fit at other frequencies. Thus, no constraints were imposed on the 

transfer function in the present thesis. 

The augmented state vector contains new terms known as aerodynamic states, 

represented by vector 𝐱𝐚 . In this RFA formulation, the addition of one lag term 

results in the addition of only one new aerodynamic state. The additional 

improvements may be gained by an optimization of the lag parameters. In the 

minimum state formulation (3.10), the numerator coefficients for the lag terms are 

the product elements of 𝐃 and 𝐄, so the two-step iterative linear optimization is 

employed. First, for the selected initial 𝐑 and 𝐃, the matrices 𝐀0 ,  𝐀1 and 𝐄 are 
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obtained through the least-squares optimization such that the total approximation 

error  

    2
i=1   2

j=1 wij eij   (3.12) 

is minimized. The weighing factor is denoted by wij , and the measure of error 

between the approximating curve and the actual tabular data is:  

 ij =
   Q ij (p)−Qij (p) 

24
1

M ij
  (3.13) 

where 

 Mij =
max

n
{1 , Qij iKn  

2
}  (3.14) 

In the next step, for the same 𝐑 and previously determined  𝐄 the matrices  

𝐀0 ,  𝐀1 and new  𝐄 are computed. These steps are repeated till the global 

approximation error (3.13) converges or reaches the stopping criterion of a 

maximum number of iterations. 

The lag parameters λ i  are in the denominator and are found via the nonlinear 

no-gradient optimizer proposed by Nelder & Mead [ 47 ]. The range of variation is 

the range of reduced frequencies in the available tabular data, i.e. 

 0 ≤ Ll  ≤ λi  ≤ Ul (3.15) 

These side constraints are enforced by an inverse sinusoidal transformation of 

the design space [Ll, Ul] onto the real line segment [-1, 1]. The relationship 

between them is: 

 λ i= 
U l−Ll

2
 sin(

π

2
zl)+

U l +Ll

2
 (3.16) 

 -1 ≤ zl  ≤ 1 (3.17) 

This transformation ensures that the side constraints are always satisfied. A 

Fortran program written by Masukawa [ 43 ], to model unsteady aerodynamic 

forces of various bridge decks is used throughout this work. Besides checking the 

modeling matrices 𝐀0 , 𝐀1 , 𝐂 , 𝐃, 𝐑  reported by Wilde [ 96 ] for the case of the 

flat plate, the aerodynamic derivatives of eight different bridge profiles, reported 

by Starossek [ 81 ] will be also modeled, using Masukawa´s program, which in 

fact follows the procedure stated by Nelder and Mead [ 47 ]. 

3.4. Numerical examples 
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The time domain modeling of unsteady aerodynamics of a bridge deck, 

described in the previous chapter, can be applied to any experimentally 

determined flutter derivatives. This was the objective of Masukawa’s Master 

thesis [ 43 ] (in Japanese). Results of rational function approximations of flat and 

bluff decks and trusses and rectangular girder cross section are partially 

presented by Scanlan et al. [ 66 ] and [ 67 ], by Wilde et al. [ 95 ] and [ 99 ], as 

well as in Masukawa’s Master thesis [ 43 ], a copy of which was obtained by the 

library of the Pontifícia Universidade Católica do Rio de Janeiro. 

The program was applied to the modeling of the aerodynamic derivatives of 

eight different profiles reported by Starossek [ 81 ]. The same procedure can be 

repeated by bridge designers to other cross sections, provided the derivatives of 

the profile under investigation are known, as well as the corresponding dynamic 

data. 

The example to be discussed in items 3.4.1 and 3.4.2 is the general case 

where the flutter derivatives are computed by the theoretical formulation of 

Theodorsen [ 84 ], adapted by Scanlan and Tomko [ 66 ], and revised later by 

Simiu and Scanlan [ 67 ] expresses Scanlan derivatives by the following 

formulae, repeated below for reasons of convenience: 

    H1
∗ k = 2πF(k) 4k   ;    A1

∗ k = πF(k) 8k  (2.17),(2.22) 

    H2
∗ k = (π 8k) [1 + 2G k k + F(k)]  (2.18) 

 H3
∗ k =  (2π 8k2 )[F k  – k G(k) 2]  (2.19) 

 H4
∗∗ k =  (−π 4 )(2G k k  ); A4

∗ k = −πG(k) 8k  (2.36a),(2.22) 

    A2
∗ k = (π 32k  [F k − 1 + 2G k k]  (2.23) 

 A3
∗∗ k =  (π 16k2 )[F k  – kG k 2 ] (2.36b) 

Next, these terms are rearranged to produce the 𝐐 matrix: 

 Q =  
2K2H4

∗ + p 2KH1
∗ 2K2H3

∗ + p 2KH2
∗

2K2A4
∗ + p 2KA1

∗ 2K2A3
∗ + p 2KA2

∗   (3.18) 

Matrix Q  p , i.e., the approximation of matrix 𝐐, reads: 

 𝐐  p = 𝐀𝟎[2x2] + 𝐀𝟏[2x2]p + 𝐃[2 x nL]
1

 

p+λ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ p+λn L

 

𝐄[nL  x 2]  
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where nL   is the number of lag terms and 𝐀𝟎, 𝐀𝟏, 𝐃,  p𝐈 + 𝐑 , 𝐄 are obtained 

by Karpel’s minimum state RFA method. Considering two lag terms λ1 , λ2 only, 

the full expressions of Q 11 , Q 12 , Q 21 , Q 22   read:  

 Q 11 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 a011 + a111 . K1. i +

d11 .e11

λ1+K1 .i
 +  

d12 .e21

λ2+K1 .i

a011 + a111 . K2. i +
d11 .e11

λ1+K2 .i
 +  

d12 .e21

λ2+K2 .i

a011 + a111 . K3. i +
d11 .e11

λ1+K3 .i
 +  

d12 .e21

λ2+K3 .i

a011 + a111 . K4. i +
d11 .e11

λ1+K4 .i
 +  

d12 .e21

λ2+K4 .i

a011 + a111 . K5. i +
d11 .e11

λ1+K5 .i
 +  

d12 .e21

λ2+K5 .i

a011 + a111 . K6. i +
d11 .e11

λ1+K6 .i
 +  

d12 .e21

λ2+K6 .i

a011 + a111 . K7. i +
d11 .e11

λ1+K7 .i
 +  

d12 .e21

λ2+K7 .i

a011 + a111 . K8. i +
d11 .e11

λ1+K8 .i
 +  

d12 .e21

λ2+K8 .i

a011 + a111 . K9. i +
d11 .e11

λ1+K9 .i
 +  

d12 .e21

λ2+K9 .i

a011 + a111 . K10 . i +
d11 .e11

λ1+K10 .i
 +  

d12 .e21

λ2+K10 .i 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.19a) 

 

 

  Q 12 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 a012 + a112 . K1. i +

d11 .e12

λ1+K1 .i
 +  

d12 .e22

λ2+K1 .i

a012 + a112 . K2. i +
d11 .e12

λ1+K2 .i
 +  

d12 .e22

λ2+K2 .i

a012 + a112 . K3. i +
d11 .e12

λ1+K3 .i
 +  

d12 .e22

λ2+K3 .i

a012 + a112 . K4. i +
d11 .e12

λ1+K4 .i
 +  

d12 .e22

λ2+K4 .i

a012 + a112 . K5. i +
d11 .e12

λ1+K5 .i
 +  

d12 .e22

λ2+K5 .i

a012 + a112 . K6. i +
d11 .e12

λ1+K6 .i
 +  

d12 .e22

λ2+K6 .i

a012 + a112 . K7. i +
d11 .e12

λ1+K7 .i
 +  

d12 .e22

λ2+K7 .i

a012 + a112 . K8. i +
d11 .e12

λ1+K8 .i
 +  

d12 .e22

λ2+K8 .i

a012 + a112 . K9. i +
d11 .e12

λ1+K9 .i
 + 

d12 .e22

λ2+K9 .i

a012 + a112 . K10 . i +
d11 .e12

λ1+K10 .i
 + 

d12 .e22

λ2+K10 .i 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (3.19b) 

  

Figure 3-1 - Full expressions of  Q 11 , Q 12, as approximations of Q11, Q12. 
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 Q 21 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 a021 + a121 . K1 . i +

d21 .e11

λ1+K1 .i
 + 

d22 .e21

λ2+K1 .i

a021 + a121 . K2 . i +
d21 .e11

λ1+K2 .i
 + 

d22 .e21

λ2+K2 .i

a021 + a121 . K3 . i +
d21 .e11

λ1+K3 .i
 + 

d22 .e21

λ2+K3 .i

a021 + a121 . K4 . i +
d21 .e11

λ1+K4 .i
 + 

d22 .e21

λ2+K4 .i

a021 + a121 . K5 . i +
d21 .e11

λ1+K5 .i
 + 

d22 .e21

λ2+K5 .i

a021 + a121 . K6 . i +
d21 .e11

λ1+K6 .i
 + 

d22 .e21

λ2+K6 .i

a021 + a121 . K7 . i +
d21 .e11

λ1+K7 .i
 + 

d22 .e21

λ2+K7 .i

a021 + a121 . K8 . i +
d21 .e11

λ1+K8 .i
 + 

d22 .e21

λ2+K8 .i

a021 + a121 . K9. i +
d21 .e11

λ1+K9 .i
 + 

d22 .e21

λ2+K9 .i

a021 + a121 . K10 . i +
d21 .e11

λ1+K10 .i
 +  

d22 .e21

λ2+K10 .i 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.20a) 

 Q 22 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 a022 + a122 . K1 . i +

d21 .e12

λ1+K2 .i
 +  

d22 .e22

λ2+K2 .i

a022 + a122 . K1 . i +
d21 .e12

λ1+K2 .i
 +  

d22 .e22

λ2+K2 .i

a022 + a122 . K1 . i +
d21 .e12

λ1+K2 .i
 +  

d22 .e22

λ2+K2 .i

a022 + a122 . K1 . i +
d21 .e12

λ1+K2 .i
 +  

d22 .e22

λ2+K2 .i

a022 + a122 . K1 . i +
d21 .e12

λ1+K2 .i
 +  

d22 .e22

λ2+K2 .i

a022 + a122 . K1 . i +
d21 .e12

λ1+K2 .i
 +  

d22 .e22

λ2+K2 .i

a022 + a122 . K1 . i +
d21 .e12

λ1+K2 .i
 +  

d22 .e22

λ2+K2 .i

a022 + a122 . K1 . i +
d21 .e12

λ1+K2 .i
 +  

d22 .e22

λ2+K2 .i

a022 + a122 . K1 . i +
d21 .e12

λ1+K2 .i
 +  

d22 .e22

λ2+K2 .i

a022 + a122 . K1 . i +
d21 .e12

λ1+K2 .i
 +  

d22 .e22

λ2+K2 .i 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.20b) 

Figure 3-2 - Full expressions of  Q 𝟐𝟏 , Q 𝟐𝟐 , as approximations of Q𝟐𝟏 , Q𝟐. 
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3.4.1 The flat plate case, 0.1 ≤ K ≤ 1.0 or 0.05 ≤ k ≤ 0.5 

Table 2-5 in Chapter 2 shows the variables Qij  for the bridge deck as a flat 

plate, corresponding to the reduced frequencies 0.1 ≤ K ≤ 1.0. 

Wilde [ 95 ] specifies the following matrices for the approximation of Qij  by 

rational functions (valid for 0.1 < K < 1.0): 

 A0 =  
1.3043 3.5334
0.3354 0.8738

  (3.21) 

 A1 =  
3.3842 2.3576
0.7989 −0.1875

  (3.22) 

 D =  
3.4691 3.2670
0.8526 0.8641

  ; E =  
−0.0145 0.0782
−0.2304 0.2595

  (3.23) 

 λ1 = 0.1912; λ2 = 0.7477 (3.24) 

A MATLAB program was written to plot the tabular data corresponding to the 

table “derivatives x reduced frequencies” and the approximation values using the 

rational functions given by equations (3.20) and matrices (3.21) to (3.24). These 

plots are shown in Figure 3-3 . 

 

Figure 3-3 - Plots of exact and approximate values of Q p  for a flat plate using Wilde’s 
results, valid for  0.1 < K < 1.0 and 2 lag terms. 
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3.4.2 The winglets 

The FORTRAN program was used to calculate the approximating functions  

 𝐐  p = 𝐀𝟎[2x2] + 𝐀𝟏[2x2]p + 𝐃[2 x nL]
1

 

p+λ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ p+λn L

 

𝐄[nL  x 2]  

for the winglets (reduced frequencies 0.01 ≤ K ≤ 0.1 or 0.005 ≤ k ≤ 0.05). The 

errors J and ij  were also calculated by this program. The variables Qij  for the 

case of the winglets, i.e., for Qij  corresponding to the reduced frequencies 0.01≤ 

K ≤ 0.1 or 0.005≤ k ≤ 0.05, are calculated in sequence by three EXCEL 

spreadsheets, shown in Table 3-1, Table 3-2 and Table 3-3. Notice that the 

reduced frequencies are one tenth of the reduced frequencies corresponding to 

the flat plate, equal to the width ratio of the winglets to the bridge deck. The 

matrices are shown below, for 2 lag terms 

 A0 =  
0.3834 4.4804
0.0958 1.1201

 ;         A1 =  
4.1688 1.6483
1.0422 −0.3736

   

 D =  
6.7566 2.1447
1.6882 0.5362

 ;          E =  
−0.2845e − 04 0.1197e − 02

−0.03492 0.1423
   

 λ1 = 0.03374564; λ2 = 0.1986877  

 

Table 3-1 - Auxiliary variables for the calculation of the derivatives of a flat plate, valid for  
0 ≤ k ≤ 0.05 , 0 ≤ K ≤ 0.10. 

The overall square root error  is: 

 J =    wijij
n=4
i=1

n=4
j=1   =  0.3752877E-02.  

The errors of each one of the four approximations for n = 10 are: 

 ij =  [Q ij p − Qij (p)]2n
1 Mij   

 ij =  [0.3245 E − 05  0.5276 E − 05  0.2033E − 06  0.5359E − 05]  

K k J0 J1 Y0 Y1 F G

0.0000 0.0000 1.0000 0.0000 -7.4032 -63661.9772 1.0000 -0.0001

0.0100 0.0050 1.0000 0.0025 -3.4468 -127.3334 0.9915 -0.0266

0.0200 0.0100 1.0000 0.0050 -3.0055 -63.6786 0.9824 -0.0457

0.0300 0.0150 0.9999 0.0075 -2.7472 -42.4643 0.9731 -0.0615

0.0400 0.0200 0.9999 0.0100 -2.5640 -31.8598 0.9637 -0.0752

0.0500 0.0250 0.9998 0.0125 -2.4217 -25.4990 0.9543 -0.0872

0.0600 0.0300 0.9998 0.0150 -2.3055 -21.2600 0.9450 -0.0979

0.0700 0.0350 0.9997 0.0175 -2.2071 -18.2333 0.9358 -0.1074

0.0800 0.0400 0.9996 0.0200 -2.1219 -15.9643 0.9267 -0.1160

0.0900 0.0450 0.9995 0.0225 -2.0467 -14.2003 0.9178 -0.1237

0.1000 0.0500 0.9994 0.0250 -1.9793 -12.7899 0.9090 -0.1306
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Table 3-2 - Derivatives of a flat plate, valid for  0 ≤ k ≤ 0.05 , 0 ≤ K ≤ 0.10. 

 

Table 3-3 – Terms Qij for the winglets, valid for 0.005 ≤ k ≤ 0.05 , 0.01 ≤ K ≤ 0.10, to be 

approximated by rational functions 

Plots and are presented in Figure 3-4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4 - Plots of exact and approximate values  of Q(p) corresponding to the reduced 
frequencies 0.01 < K < 0.10  (winglets case). 

 

K k H
*
1 H

*
2 H

*
3 H

**
4 A

*
1 A

*
2 A

**
3 A

*
4

0.00 0.000 157077.16 -834760.39 7.8539E+09 18.2660 3.9269E+04 -2.2833E+05 1.9635E+09 4.57

0.01 0.005 311.49 -680.19 31150.77 8.3660 77.8717 -209.3170 7787.69 2.09

0.02 0.010 154.32 -280.70 7717.71 7.1710 38.5796 -89.8103 1929.43 1.79

0.03 0.015 101.90 -163.06 3398.43 6.4415 25.4761 -53.8554 849.61 1.61

0.04 0.020 75.69 -109.11 1893.75 5.9068 18.9227 -37.0957 473.44 1.48

0.05 0.025 59.96 -78.93 1200.63 5.4814 14.9907 -27.5861 300.16 1.37

0.06 0.030 49.48 -59.99 825.96 5.1267 12.3702 -21.5414 206.49 1.28

0.07 0.035 42.00 -47.17 601.18 4.8222 10.4995 -17.4024 150.29 1.21

0.08 0.040 36.39 -38.03 456.03 4.5554 9.0979 -14.4154 114.01 1.14

0.09 0.045 32.04 -31.24 357.04 4.3179 8.0091 -12.1737 89.26 1.08

0.10 0.050 28.56 -26.05 286.60 4.1043 7.1393 -10.4394 71.65 1.03

H*i , i=1,4  to  A*i , i=1,4 according to (2.17) to (2.25)

K k Q11r Q11i Q12r Q12i Q21r Q21i Q22r Q22i

=2*K2*H4** =2*K2*H1** =2*K2*H3** =2*K2*H2** =2*K2*A4** =2*K2*A1** =2*K2*A3** =2*K2*A2**
 

0.01 0.005 0.0017 0.0623 6.2302 -0.1360 0.0004 0.0156 1.5575 -0.0419

0.02 0.01 0.0057 0.1235 6.1742 -0.2246 0.0014 0.0309 1.5435 -0.0718

0.03 0.015 0.0116 0.1834 6.1172 -0.2935 0.0029 0.0459 1.5293 -0.0969

0.04 0.02 0.0189 0.2422 6.0600 -0.3492 0.0047 0.0606 1.5150 -0.1187

0.05 0.025 0.0274 0.2998 6.0031 -0.3946 0.0069 0.0750 1.5008 -0.1379

0.06 0.03 0.0369 0.3563 5.9469 -0.4319 0.0092 0.0891 1.4867 -0.1551

0.07 0.035 0.0473 0.4116 5.8916 -0.4623 0.0118 0.1029 1.4729 -0.1705

0.08 0.04 0.0583 0.4658 5.8372 -0.4867 0.0146 0.1165 1.4593 -0.1845

0.09 0.045 0.0700 0.5190 5.7840 -0.5061 0.0175 0.1297 1.4460 -0.1972

0.1 0.05 0.0821 0.5711 5.7320 -0.5210 0.0205 0.1428 1.4330 -0.2088
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3.4.3 Eight typical bridge profiles 

The same FORTRAN program was used to calculate the approximating 

functions: 

 𝐐  p = 𝐀𝟎[2x2] + 𝐀𝟏[2x2]p + 𝐃[2 x nL]
1

 

p+λ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ p+λn L

 

𝐄[nL  x 2]  

for the aerodynamic derivatives of the profiles shown in Figure 3-5, reported by 

Starossek [ 81 ] and Starossek et al. [ 75 ]. The complete results are shown in 

item D of the Appendix C. Plots of the unsteady derivatives are shown in item 

3.5. 

It is worth noting that, if the unsteady derivatives behave like those of a flat 

plate, the approximating curves are close to the experimental data. If not, as for 

example the Tacoma profile, the approximating curves functions, represented by 

matrices 𝐀𝟎,𝐀𝟏, 𝐃, 𝐄, 𝐑, do not match well the experimental data.  

This may be explained by the fact that the Tacoma profile does not behave like  

aerodynamic profiles and therefore the Theodorsen functions do not represent 

their physical behavior when subjected to the fluid pressure. 

 

 

Figure 3-5- Investigated profiles of typical bridge decks. 
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3.5. Plots of the unsteady aerodynamic data for eight bridge profiles 

 

Figure 3-6 - Plots of GB unsteady aerodynamic data 

 

Figure 3-7 - Plots of S unsteady aerodynamic data 
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Figure 3-8 - Plots of M unsteady aerodynamic data 

 

Figure 3-9 - Plots of P unsteady aerodynamic data 
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Figure 3-10 - Plots of R unsteady aerodynamic data 

 

Figure 3-11 - Plots of C unsteady aerodynamic data 
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Figure 3-12 - Plots of TC unsteady aerodynamic data 

 

Figure 3-13 - Plots of G unsteady aerodynamic data  
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