
2.  

Aerodynamics and aero elasticity 

2.1. Introduction 

Aero elasticity is the discipline concerned with phenomena wherein the fluid 

(air) and structural motions interact significantly. The forces arising due to the 

structural motions in the fluid are called self-excited or aero elastic. Classified 

distinctly from these are the aerodynamic forces which appear because of the 

physical presence of the structure in the fluid (air) and are not dependent on 

structural motion. 

Any civil engineering structure such as a long-span bridge or a tall building is 

viewed aerodynamically as a bluff body as opposed to a streamlined shape such 

as that of an airfoil. Bluff-body aero elasticity is quite different from airfoil or thin 

plate aero elasticity. For bluff objects of wind engineering applications, it has not 

to date been possible to develop expressions for the aerodynamic derivatives 

starting from basic fluid flow principles. However, according to Scanlan and 

Tomko [ 66 ], for small oscillations, the self-excited forces on a bluff body may be 

treated as linear in heave and pitch motions and their first two derivatives, being 

possible to measure the aerodynamic coefficients by means of specially designed 

wind tunnel tests. Flutter prediction for bridges with bluff cross sections is studied 

by Starossek [ 78 ]. 

The existing bridge state-of-the-art aero elastic response methodology owes its 

origin to the studies made earlier on airfoil or thin plate theory. Even today, these 

studies are useful regarding the format or type of results to be anticipated. As the 

spans of suspension bridges become ultra-long, the bridge cross sections tend to 

become more streamlined, and may be expected to resemble in their behavior to 

that of the airfoil or thin plate, which further emphasizes the importance of the 

latter in the present study. 

The determination of the dynamic air forces acting on a flat plate or on an airfoil 

which oscillates vertically and torsionally in a steady air stream has been treated 
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by several authors in the past. Expressions for the air forces suitable for the 

following investigation were derived by Theodorsen [ 84 ], [ 85 ], [ 86 ], [ 87 ]. 

Equivalent equations have been developed independently by Kasner & Fingado  

[ 26 ] and by Kármán & Sears [ 24 ]. The Theodorsen solution is based on the 

assumption that the vibrating flat plate is infinitely thin and the air flow is two 

dimensional. Under the latter assumption, the equations apply only to cases 

where the object under wind action is sufficiently extended perpendicularly to the 

air flow so that the altered conditions at the ends influence the total effect of the 

air forces only to a negligible degree. This condition is satisfied to a large extent 

in the case of suspension bridges. 

The Theodorsen equations were derived for small harmonic oscillations about 

the position of equilibrium, composed of simultaneous vertical and torsional 

vibrations of constant amplitudes. Consequently, they apply solely to the narrow 

zone of transition from stable to unstable motion, which may be considered a 

sustained harmonic oscillation of constant amplitude. Therefore, the Theodorsen 

expressions for the dynamic air forces suffice to solve the problem of self-

excitation from its practical viewpoint - that is, the determination of the critical 

wind velocity and the characteristics of the motion at that wind speed. 

2.2. Air forces acting on a vibrating flat plate 

Consider a long flat plate having the width B=2b and vibrating vertically and 

torsionally about its position of equilibrium, h being the vertical or bending 

amplitude of the point C , upward displacements being positive; α is the angle of 

rotation, the torsional amplitude, counted positive when the plate rotates 

clockwise. The air forces L and M are expressed as functions of the coordinates 

h , α and their derivatives with respect to time, see Figure 2-1. Forces L and M 

represent the unsteady (or self-excited) aerodynamic lift and moment about the 

rotation axis per unit length. At critical wind velocity vc the two components of the 

coupled motion have the same frequency, but show a difference of their phase 

angles. 

The force components in the vertical direction and around the longitudinal axis 

are represented by the air force vector FL  defined by two components: 

 FL =  
−L
  M

 =   
L1 + L2 + L3

  M1 +
b

2
(L1 − L3

  (2.1) 
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Figure 2-1– Force components experimented by a flat plate under wind flow. 

in which 

 L1 = 2πρb C k  U  Uα + h +
b

2
α   ;   L2 = πρb2h     ;   L3 = πρb2Uα  (2.2a) 

 M1 = −
π

8
ρb4α     (2.2b) 

The circulatory component of the lift force is represented by force L1, acting in 

the leading fourth of the bridge width B. L2 and M1 are the added aerodynamic 

masses in vertical and rotational directions, respectively, acting in the structure 

center of gravity. L3 contains the non-circulatory component which results from 

the moment M.  L3 acts in the trailing fourth of the bridge width B, and represents 

the added aerodynamic mass and added rotational mass moment of inertia 

corresponding to the mass and rotational mass moment of inertia of the 

circumscribed air cylinder having the width B. These are negligible terms 

compared with the inertia force and moment of the vibrating structure, but will be 

included here for reasons of completeness.  

Substituting expressions (2.2) in (2.1), one obtains: 

 𝐅L =  
−L
 M

 =  
πρb2 Uα + h  + 2πρUb C k  (Uα + h + bα 2 )

−πρb2 bUα 2 + b2α 8  + πρUb2 C k  (Uα + h + bα 2 )
  (2.3) 

where C k  is the Theodorsen function, defined as: 

 C k = F k + i G k , (2.4) 

 The variable k =  bω U  is defined as the reduced frequency, a dimensionless 

variable proportional to ω that can be regarded as a modified Strouhal number.  

F(k) and G(k) are composed by Bessel functions of the first and second kind, 

J0 k , J1(k), Y0(k), Y1(k), respectively, i =   −1, ω is the circular frequency of 

oscillation of the airfoil, U is the mean wind velocity, b is the half-chord length of 
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the airfoil or half-width of the plate and ρ is the air density (1.225 kg/m3 in SI units 

or 0.125 kgf.s2.m-4, where 1 kgf = 1 kg x 9.81 m/s2).  

Appendix C shows plots of F(k) and G(k). The critical value of k corresponding 

to the critical velocity Uc , as far as suspension bridges are concerned, lies below 

1. Therefore,  (see Appendix C) presents F(k) and G(k), J0=BESSELJ(k,0), 

J1=BESSELJ(k,1), Y0=BESSELY(k,0) and Y1=BESSELY(k,1), restricted to 

values 0 ≤ k ≤ 1.  

The equations of motion of the vibrating plate are, considering self-excited 

forces: 

 mh + ch h  + kh h = −L (2.7) 

 Iαα + cαh  + kαα =  M (2.8) 

where  

m = mass of bridge deck by unit length;  

Iα= polar mass moment of inertia by unit length;  

ch ,  cα ,  kh ,  kh   = damping and stiffness coefficients.  

h , α = heaving and pitching modes, respectively.  

Various forms for the linear expressions for L and M have been employed. The 

classic theoretical (and some experimental) work has used complex number 

forms based on the representation of the flutter oscillation as having the complex 

form 𝑒𝑖𝜔𝑡 , as for example Klöppel [ 28 ], [ 29 ], [ 30 ] and Starossek [ 76 ], [ 80 ]. 

In the United States, real forms have been preferred, as stated by Scanlan [ 67 ]. 

A new representation convention is also suggested by Zasso [ 104 ]. The real 

and complex number forms will be presented next.  

Considering solutions of the type eiωt, equations (2.7) and (2.8) read:  

 h =  h0 e
iωt  (2.9) 

 α =  α0 e
i(ωt+φ) (2.10) 

The following expressions are derived from equations (2.9) and (2.10): 

 h  = iωh ;    ih = −ωh ;   h ω = ih  (2.11) 

 α  = iωα ;    iα = −ωα ;   α ω = iα (2.12) 

 h = −ω2h (2.13) 
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 α = −ω2α (2.14) 

Substituting equations (2.13) and (2.14) in (2.3) and (2.4), one obtains: 

𝐅L =  
−L
 M

 =  
πρb2 Uα − ω2h + 2πρUb (F k + iG(k)  Uα + h + bα 2  

πρb2 bUα 2 − b2ω2α 8  + πρUb2  F k + iG k   Uα + h + bα 2  
   

  (2.15) 

2.3. Notation of the unsteady forces according to Scanlan 

The imaginary components of the matrix 𝐅L are transformed in real numbers if 

ih is substituted by h ω ; iα is substituted by α ω ; ih  is substituted by −ωh and iα  

is substituted by −ωα in equations (2.15). The result is  

 𝐅L =  
−L
 M

 =  

 

 
 
 
 
 

πρb2 Uα − ω2h + 2πρUb F k   Uα + h + bα 2  

+2πρUb G k   Uα ω − ωh − bωα 2  

πρb2 bUα 2 − b2ω2α 8  + πρUb2 F k   Uα + h + bα 2  

+πρUb2 G k   Uα ω − ωh − bωα 2   
 
 
 
 

 (2.16) 

The right-hand terms of equations (2.16) corresponding to L and M are all real 

numbers. 

The terms in h   in the upper part of (2.16) read: 

2πρUb F k  h =  2πρ
U2

2
2b F k h U  = ρU2 2b (2k 4)  (2πF k k)  h U  = 

= ρU2 (B K 4 ) (2πF k k)  h U =  ρU2 B [K   H1
∗(k)  h U]  

where 

    H1
∗ k = 2πF(k) k  (2.17) 

The terms in α   in the upper part of (2.16) read: 

 πρb2 Uα  + 2πρUb F k  b α 2 + 2πρUb G k  Uα ω  =  

 = ρU2 2b (2k 8) [1 + 2G k k + F(k)] B α U = ρU2 B K H2
∗(k) Bα U   

where 

    H2
∗ k = (π 8k) [1 + 2G k k + F(k)]  (2.18) 

The terms in α in the upper part of (2.16) read: 

 1 2  ρU22b k2 8 [F k  – kG(k) 2](2π 8k2  )α = ρU22b K2 H3
∗ k  α   
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where 

 H3
∗ k =  (2π 8k2 )[F k  – kG(k) 2]  (2.19) 

The terms in h b  in the upper part of (2.16) read: 

 πρb2 ω2h + 2πρUb  G k  ωh  

1 2  ρU22b (K2 4 )[1 2 + G k k] 2π (h b  )] = ρU22b K2 H4
∗ k  (h b)   

where 

 H4
∗ k = −2π [1 8 +  G k 4k]  (2.20) 

The upper part of (2.16) can be written with real numbers as: 

−L = ρU2B KH1
∗ k h U + KH2

∗ k Bα U + K2H3
∗ k α + K2H4

∗ k h B   (2.21a) 

The lower part of (2.16) can be represented similarly as:  

M = ρU2B2 KA1
∗ k h U + KA2

∗ k Bα U + K2A3
∗ k  α + K2A4

∗ k h B   (2.21b) 

where 

    A1
∗ k = πF(k) 8k  (2.22) 

    A2
∗ k = (π 32k  [F k − 1 + 2G k k]  (2.23) 

 A3
∗ k =  (π 16k2 )[F k  – kG k 2 + k2 8 ] (2.24) 

    A4
∗ k = −πG(k) 8k    (2.25) 

The real terms Hi=1,3
∗  and Ai=1,3

∗  were introduced by Scanlan & Tomko [ 66 ] , 

who neglected terms in h  and intentionally omitted air inertial terms in  h   and α . 

Terms with coefficients H4
∗ and A4

∗  are added herein for completeness.  All these 

formulae can be found in Scanlan et al. in [ 62 ], where L and M are expressed as 

functions of k instead of K and b, instead of B. In this case, the full expressions 

for L,  M,  Hi=1,4
#  and Ai=1,4

#  are (as shown in [ 62 ]): 

 −L =
1

2
ρU22b kH1

# k h U + kH2
# k bα U + k2H3

# k α + k2H4
# k h B    

 M =
1

2
ρU2 2b2 kA1

# k h U + kA2
# k bα U + k2A3

# k α + k2A4
# k h b    

where 

    H1
#  k = 2πF(k) k                 A1

#  k = πF(k) k   

    H2
# k = (π k) [1 + 2G k k + F(k)] ;  A2

# k = (π 2k  [F k − 1 + 2G k k]   

 H3
# k = (2π k2 )[F k  – kG k 2] ;    A3

# k = (π k2) [F k − kG k 2 + k2 8 ]   
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 H4
# k = −2π [1 2 +  G k k]            A4

# k = −πG(k) k   

 

Expressions Hi=1,4
∗  [(2.17) to (2.20)] and Ai=1,4

∗  [(2.22) to (2.25)] versus k are 

shown in Table 2-1:  

 

Table 2-1 - Aerodynamic derivatives Hi=1,4
∗  and Ai=1,4

∗ , considering the aerodynamic mass 

2.4. Notation of the unsteady forces according to Klöppel 

According to Klöppel & Thiele [ 28 ] and following Starossek [ 80 ], the air force 

vector 𝐅L  is given by: 

 𝐅L =  
L
M
 =

1

2
ρU22π k2  

chh bchα

bcαh b2cαα
   

h
α
          (2.26) 

The air force coefficients, or aerodynamic derivatives, are complex and are 

given by: 

 chh  k = 1 − (2i k)  C k   ;  chα k = (− 1 k) [i C k + 1 + (2 k)C(k)]      

 cαh k = (i k)  C k    ;  cαα  k = (1 2k)  C k − 1 + (1 k2)C k + 1 8      

  (2.27), (2.28); (2.29), (2.30) 

Substituting C k = F k + iG(k) in the equations above, one obtains: 

 chh  k = 1 − (2i k)   F + iG =  

 =  1 + 2G) k − (2F k)i = (4 π     (H4
∗ + H1

∗i)  (2.31) 

 chα k = − (1 k) [i  C + 1 +  2 k   C] =  

 = [(− 2 k2) (F − kG 2 )] −  (2 k  ( 1 + F) 2 + G k  i =   

 = (8 π )(H3
∗ + H2

∗i) (2.32) 

 cαh k = (1 k)  C =  (1 k)  (F + iG) =  

 = − G k +   F k  i = (8 π) (A4
∗ + A1

∗ i)  (2.33) 

 cαα  k = (1 2k) C − 1 +  1 k2  C +  1 8 =  

H*1= H*2= H*3= H*4= A*1= A*2= A*3= A*4=

2πF/4k π(1+F+2G/k)/8k 2π(F-kG/2)/8k2 =-0.25*π*(1+2*G/k) πF/8k K3-π(1-F-2G/k)/32k π(F-kG/2+k^2/8)/16k2 =-0.125*π*G/k

0 0 1.5708E+05 -8.3476E+05 7.8539E+09 17.4806 3.9269E+04 -2.2833E+05 1.9635E+09 4.5665E+00

0.2 0.1 13.0678 -6.3386 66.0158 1.9211 3.2670 -3.5482 16.5285 0.6766

0.4 0.2 5.7144 -0.3115 14.6564 0.6961 1.4286 -1.0596 3.6886 0.3704

0.6 0.3 3.4818 0.6146 6.0377 0.1535 0.8704 -0.5009 1.5340 0.2347

0.8 0.4 2.4543 0.7855 3.2298 -0.1375 0.6136 -0.2945 0.8320 0.1620

1 0.5 1.8785 0.7815 1.9968 -0.3119 0.4696 -0.1973 0.5238 0.1184

1.2 0.6 1.5153 0.7327 1.3529 -0.4247 0.3788 -0.1441 0.3628 0.0902

1.4 0.7 1.2673 0.6752 0.9761 -0.5017 0.3168 -0.1117 0.2686 0.0709

1.6 0.8 1.0881 0.6199 0.7372 -0.5566 0.2720 -0.0905 0.2089 0.0572

1.8 0.9 0.9528 0.5700 0.5764 -0.5972 0.2382 -0.0757 0.1686 0.0471

2 1 0.8473 0.5258 0.4630 -0.6279 0.2118 -0.0649 0.1403 0.0394

K k
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 = [ 1 k2)  F − kG 2 + 1 8   +  (1 k  ( F − 1) 2 + G k ) i =   

 = (16 π )(A3
∗ + A2

∗ i) (2.34) 

Now, if the cij
′  and cij

′′  derivatives are available, it is possible to calculate 

Scanlan derivatives Hi=1,4
∗  and Ai=1,4

∗  as π–multiples of cij
′  and cij

′′ . The derivatives 

cij
′  and cij

′′  for a flat plate were taken from Thiesemann [ 88 ]. Hi=1,4
∗  and Ai=1,4

∗  

were obtained as π–multiples of cij
′  and cij

′′ , compare Table 2-2 and Table 2-3. 

 

Table 2-2 – Theodorsen derivatives cij
′  , cij

′′  and Hij  
∗ , Aij

∗  obtained as π- multiples of cij
′ . 

2.5. Unsteady forces, disregarding the inertia effect of the aerodynamic 

mass 

 H4
∗ k = −2π [1 8 +  G k 4k]  (2.35a) 

  A3
∗ k =  [F k − kG k 2 + k2 8 ]  (π 16k2 ) (2.35b) 

Are simplified to: 

 H4
∗∗ k = −2π [ G k 4k]  (2.36a) 

  A3
∗∗ k =  [F k − kG k 2] (π 16k2 ) (2.36b) 

The aerodynamic derivatives of a flat plate neglecting the inertia effect of the 

aerodynamic mass are displayed in Table 2-3, for 0.05 ≤ k ≤ 0.5. 

k c'hh c''hh c'αh c''αh c'hα c''hα c'αα c''αα  

0.1 -2.4460 -16.6400 1.7230 8.3190 -168.1000 16.1400 84.1800 -18.0700

0.2 -0.8862 -7.2760 0.9430 3.6380 -37.3200 0.7933 18.7900 -5.3970

0.3 -0.1955 -4.4330 0.5977 2.2170 -15.3700 -1.5650 7.8120 -2.5510

0.4 0.1751 -3.1250 0.4125 1.5620 -8.2250 -2.0000 4.2370 -1.5000

0.5 0.3972 -2.3920 0.3014 1.1960 -5.0850 -1.9900 2.6670 -1.0050

0.6 0.5407 -1.9290 0.2296 0.9647 -3.4450 -1.8660 1.8480 -0.7337

0.7 0.6338 -1.6140 0.1806 0.8068 -2.4860 -1.7190 1.3680 -0.5689

0.8 0.7087 -1.3850 0.1456 0.6927 -1.8770 -1.5790 1.0640 -0.4607

0.9 0.7603 -1.2130 0.1198 0.6066 -1.4680 -1.4510 0.8589 -0.3854

1 0.7995 -1.0790 0.1003 0.5394 -1.1790 -1.3390 0.7146 -0.3306

k H*4 H*1 A*4 A*1 H*3 H*2 A*3 A*2 

= -π/4 .c'hh = -π/4 .c''hh =π/8 .c'αh = π/8 .c''hα = -π/8 .c'hα = -π/8 .c''hα = π/16.c'αα = π/16 . c''αα

0.1 1.9211 13.0690 0.6766 3.2669 66.0127 -6.3382 16.5287 -3.5480

0.2 0.6960 5.7146 0.3703 1.4286 14.6555 -0.3115 3.6894 -1.0597

0.3 0.1535 3.4817 0.2347 0.8706 6.0358 0.6146 1.5339 -0.5009

0.4 -0.1375 2.4544 0.1620 0.6134 3.2299 0.7854 0.8319 -0.2945

0.5 -0.3120 1.8787 0.1184 0.4697 1.9969 0.7815 0.5237 -0.1973

0.6 -0.4247 1.5150 0.0902 0.3788 1.3528 0.7328 0.3629 -0.1441

0.7 -0.4978 1.2676 0.0709 0.3168 0.9762 0.6750 0.2686 -0.1117

0.8 -0.5566 1.0878 0.0572 0.2720 0.7371 0.6201 0.2089 -0.0905

0.9 -0.5971 0.9527 0.0470 0.2382 0.5765 0.5698 0.1686 -0.0757

1 -0.6279 0.8474 0.0394 0.2118 0.4630 0.5258 0.1403 -0.0649

Theodorsen (cij according to Thiesemann, op. cit. , page 266)

Hi, Ai = proporcional to cij
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Table 2-3 - Aerodynamic derivatives of a flat plate, neglecting the aerodynamic mass. 

2.6. Aerodynamic derivatives of various types of bridge decks 

The question of the aerodynamic stability of long-span bridges has been 

pursued by many researchers, since the dramatic failure of the Tacoma Narrows 

Bridge in the fall of 1940. In  the  years  1967  and  1968,  Sabzevari  &  Scanlan 

[ 57 ], [ 58 ], [ 59 ] developed a theoretical and experimental approach for 

assessing the aerodynamic (flutter) forces. The method was based on a 

linearized mathematical model in which the general aerodynamic forces 

employed were obtained in coefficient forms as functions of the reduced velocity 

v = U N. b  (U being the velocity of the wind flow, N the frequency and b some 

characteristic length) from simple wind tunnel tests on bridge deck models. 

These wind tunnel tests would be employed to build up a catalog of 

quantitative characteristics on aerodynamic forces for various box girder cross 

sections. Such tests, together with those on stiffening truss and girder designs in 

time could form the basis for calculations of bridge aerodynamic stability without 

further recourse to the wind tunnel. The same objective was pursued 

independently by Klöppel et al. [ 28 ], [ 29 ], [ 30 ], in a series of articles from 

1963 to 1975. Klöppel wind tests were made in the University of Darmstadt, 

following the procedures laid down by Barbré & Ibing [ 2 ] in 1958, for the Köln-

Rodenkirchen suspension bridge. More than 20 different cross sections were 

investigated regarding their aerodynamic properties. 

2.7. Methods of extraction 

Two experimental methods using section models have generally been 

recognized as standard methods for the extraction of flutter derivatives: (1) the 

use of a free vibration technique and (2) the use of forced oscillation methods. 

The description of these  methods  may  be  found in  Thiesemann [ 88 ],  Sarkar 

H*1 H*2 H*3 H**4 A*1 A*2 A**3 A*4

0.1 0.05 28.5574 -26.0498 286.5997 4.1043 7.1393 -10.4394 71.6499 1.0261

0.2 0.1 13.0678 -6.3386 66.0158 2.7065 3.2670 -3.5482 16.5039 0.6766

0.3 0.15 8.0927 -1.8674 27.4638 1.9526 2.0232 -1.7758 6.8659 0.4881

0.4 0.2 5.7144 -0.3115 14.6564 1.4815 1.4286 -1.0596 3.6641 0.3704

0.5 0.25 4.3514 0.3308 8.9939 1.1639 1.0879 -0.7027 2.2485 0.2910

0.6 0.3 3.4818 0.6146 6.0377 0.9389 0.8704 -0.5009 1.5094 0.2347

0.7 0.35 2.8853 0.7386 4.3152 0.7733 0.7213 -0.3764 1.0788 0.1933

0.8 0.4 2.4543 0.7855 3.2298 0.6479 0.6136 -0.2945 0.8075 0.1620

0.9 0.45 2.1301 0.7935 2.5044 0.5505 0.5325 -0.2380 0.6261 0.1376

1 0.5 1.8785 0.7815 1.9968 0.4735 0.4696 -0.1973 0.4992 0.1184

=-π(1-F-

2G/k)/32k

=π(F-

kG/2+k^2/8)/16k2
=-0.125*π*G/k

k
=2π(F-kG/2)/8k2

=-

0.25*π*(0+2*G/k)
=πF/8k=2πF/4k

=π(1+F+2G/k)/

8k

K
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[ 68 ] and Bergmann [ 4 ]. The literature about derivative extraction is very 

extense and can be looked for in the cited doctoral theses or for example in 

Singh [ 73 ] or Zasso et al. [ 105 ]. Inter-relations among flutter derivatives is 

presented by Scanlan et al. [ 65 ]. Reports by Starossek [ 81 ] and Starossek et 

al. [ 75 ] on flutter derivatives obtained in the hydraulic channel of the University 

of Hamburg are employed in the present work because they are best fit to our 

present purposes. 

2.8. Thiesemann results 

Aerodynamic derivatives of 31 different profiles have been extracted by 

Thiesemann [ 88 ], either experimentally or numerically. The investigated profiles 

are shown in Table 2-4. 

 

Table 2-4 - List of profiles examined by Thiesemann 

Profile group Profile Page Description, reference

GB Page 193 Great Belt Bridge [36, 38]

B2 Page 195 Great Belt Bridge [36]

B3 Page 197 Great Belt Bridge [36]

B4 Page 199 Great Belt Bridge [36]

B5 Page 201 Great Belt Bridge [36]

B6 Page 203 Great Belt Bridge [36]

B7 Page 205 Great Belt Bridge [36]

Trapeze-like sections B8 Page 207 Trapeze cross section

M Page 209 Millau Bridge

B9 Page 211 Tsurumi Bridge

B10 Page 213 Tsing-Ma Bridge

B11 Page 215 Normandie Bridge

B12 Page 217 Tatara Bridge

B13 Page 219 Mexico

B14 Page 221 Plate-like Profile
S Page 223 Severn Bridge

L1 Page 225 Humber Bridge

L2 Page 227 Jiangyin Bridge

L3 Page 229 Messina Bridge

R4 Page 231 Rectangle B:H=4:1

R4 Page 233 Rectangle B:H=8:1

R16 Page 235 Rectangle B:H=16:1

R20v Page 237 Rectangle with a vertical diafragm

P Page 239 Rectangle B:H=25:1

R200 Page 241 Rectangle B:H=200:1

TC Page 243 Tacoma Bridge

T2 Page 245 Tacoma H:B=1:10

C Page 247 Chongqing Bridge

C2 Page 249 Chongqing variant

C3 Page 251 Chongqing without wings

G Page 253 Gibraltar Bridge [35],[37]

 

Trapeze-like sections 

with guide vanes 

Rectangular profiles

Other profiles
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2.9. Buffeting forces 

The quasi-steady buffeting forces (exclusive of the steady part) due to wind 

turbulence are, according to Scanlan & Jones [ 63 ]: 

 Lb = −
1

2
 ρU2B[CL(2u U) +  CL

′ + CD (w U )  (2.37) 

 Mb =
1

2
 ρU2B2[CM(2u U) + CM

′  (w U )  (2.38) 

where CL and CM  are the mean lift and moment coefficients (referred to deck 

width B) of a typical deck section; CL
′= dCL dα  and CM

′= dCM dα  and u = u t ,

w = w t  are wind horizontal and vertical gust components, respectively. These 

gust forces neglect self-induced buffeting effects. Primes denote first derivatives 

with respect to the angle of attack  α  at α = 0.  The variables CL
′= dCL dα  and 

CM
′= dCM dα  for α = 0 are given by Thiesemann [ 88 ] for 31 different profiles. 

For a completely accurate description, these expressions must be modified by 

aerodynamic admittance factors according to Davenport [ 11 ] and Kumarasena   

[ 33 ].  

2.10. Equations of motion of the mechanical system bridge deck - wind 

The linear dynamic system of the bridge deck subjected to self-excited and 

buffeting wind forces is approximated by the following two degrees of freedom 

equation:  

 mh +  ch h + kh h = −ρU2B [ K H1 
∗  k  

h 

U
+  K H2 

∗  k  B
a 

U
+  K2 H3 

∗  k  α +

                                 K2 H4 
∗∗ k  

h

B
] −

1

2
ρU2B [CL

2u

U
+  CL

′ +  CD 
w

U
]   (2.39) 

 Iαα +  cαα + kα h =

ρU2B2 [ K A1 
∗  k  

h 

U
+  K A2 

∗  k  B
a 

U
+ K2 A3 

∗∗ k  α + K2 A4 
∗∗ k  

h

B
+

1

2
ρU2B2]  (2.40) 

Neglecting for the moment the buffeting forces and transforming (2.39) and 

(2.40) into the Laplace domain with zero initial conditions gives: 

 [m s2 + ch  s + kh ]L ( h) = −
1

2
ρU2B [ s 2K H1 

∗  k  
L   h 

U
+  s 2 K H2 

∗  k  B
L   α 

U
+

 2K2 H3 
∗  k  L ( α) + 2K2 H4 

∗∗ k 
L   h 

B
]  (2.41) 

DBD
PUC-Rio - Certificação Digital Nº 0611865/CA



40 

[Iα  s2 + cα  s + kα ]L ( α) =
1

2
ρU2B2 [ s 2K A1 

∗  k  
L   h 

U
+  s 2 K A2 

∗  k  B
L   α 

U
+

 2K2 A3 
∗∗ k  L ( α) + 2K2 A4 

∗∗ k 
L   h 

B
]  (2.42) 

Substituting the dimensionless Laplace variable p = s 
B

U 
 in the above equations 

gives: 

  mB p2 U2

B2 +  ch B  p 
U

B
 + kh B L   

h

B
 = −

1

2
ρU2B [ 2K H1 

∗  k  p L    
h

B
 +

2 K H2 
∗  k  pL   α +  2K2 H3 

∗  k  L   α + 2K2 H4 
∗∗ k L   

h

B
 ] (2.43) 

  Iα  p2 U2

B2 +  cα  p 
U

B
 + kα  L   α =            

1

2
ρU2B2 [ 2K A1 

∗  k  pL ( 
h

B
) +

  2 K A2 
∗  k  pL ( α) +  2K2 A3 

∗∗ k  L (α) +

                                                 2K2 A4 
∗  k L ( 

h

B
)] (2.44) 

Equations (2.43) and (2.44) may be written as:  

   
mB 0

0 Iα
 p2 U2

B2 +  
ch B 0

0 cα
 p 

U

B
+  

kh 0
0 kα 

   
L ( 

h

B
)

L (α)
 =

                                                                     =  
Q11 Q12

Q13 Q14
  
L ( 

h

B
)

L (α)
   (2.45) 

Or, in matrix form: 

  𝐌 p2 U2

B2 + 𝐂 p 
U

B
+  𝐊 L  𝐪 = [𝐕f]  𝐐  U2

L (𝐪) (2.46) 

The matrices that compose equations (2.46) are : 

 𝐪 =   
h/B
α

   (2.47) 

 𝐕f = [
−1/2 ρB 0

0 1/2 ρB2 ]  (2.48) 

 𝐌 =  
mB 0

0 Iα
    ;    𝐂 =  

ch B 0
0 cα

     ;    𝐊 =  
kh 0
0 kα 

  (2.49) 

 𝐐 =  
2K2H4

∗∗ + p 2KH1
∗ 2K2H3

∗ + p 2KH2
∗

2K2A4
∗ + p 2KA1

∗ 2K2A3
∗∗ + p 2KA2

∗   (2.50) 

The unsteady aerodynamic data 𝐐 , obtained from experiments or through 

Theodorsen functions are determined only for purely imaginary terms of the 

dimensionless Laplace variable p = iK. Thus, the approximation is performed for 
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oscillatory motion only. The unsteady aerodynamics are described by (2.50) for  

p = iK. Hence, 

 𝐐 =  
2K2H4

∗∗ + 2K2H1
∗ i 2K2H3

∗ +  2K2H2
∗  i

2K2A4
∗ +  2K2A1

∗  i 2K2A3
∗∗ + 2K2A2

∗  i
  (2.51) 

Note that H4
∗∗ and A3

∗∗ neglect the inertia effects of the aerodynamic mass. 

2.11. Graphs of the aerodynamic data 

In order to obtain solutions on the Laplace domain for both growing and 

decaying motion it is necessary to express the forces as functions of p  in the 

entire non-dimensionalized complex p-plane. The concept of analytic continuation 

is often used, by extending these functions to the entire complex plane. Analytic 

functions agreeing with the aerodynamic forcing function at all values of 

frequency are then sought, see Edwards [ 13 ]. 

The unsteady aerodynamic data are computed for each reduced frequency. 

For the flat plate, see Table 2-5. Plots of Table 2-5 are shown inFigure 2-2. 

 

Table 2-5- Unsteady aerodynamic data for a flat plate, 0.05 ≤ k ≤ 0.5 

  

Q11r Q11i Q12r Q12i Q21r Q21i Q22r Q22i

K k =2*K2*H4** =2*K2*H1** =2*K2*H3** =2*K2*H2** =2*K2*A4** =2*K2*A1** =2*K2*A3** =2*K2*A2**

0.1 0.05 0.0821 0.5711 5.7320 -0.5210 0.0205 0.1428 1.4330 -0.2088

0.2 0.1 0.2165 1.0454 5.2813 -0.5071 0.0541 0.2614 1.3203 -0.2839

0.3 0.15 0.3515 1.4567 4.9435 -0.3361 0.0879 0.3642 1.2359 -0.3197

0.4 0.2 0.4741 1.8286 4.6900 -0.0997 0.1185 0.4572 1.1725 -0.3391

0.5 0.25 0.5820 2.1757 4.4969 0.1654 0.1455 0.5439 1.1242 -0.3514

0.6 0.3 0.6760 2.5069 4.3471 0.4425 0.1690 0.6267 1.0868 -0.3606

0.7 0.35 0.7579 2.8276 4.2289 0.7238 0.1895 0.7069 1.0572 -0.3688

0.8 0.4 0.8293 3.1415 4.1342 1.0054 0.2073 0.7854 1.0335 -0.3770

0.9 0.45 0.8919 3.4507 4.0571 1.2854 0.2230 0.8627 1.0143 -0.3855

1 0.5 0.9469 3.7569 3.9937 1.5631 0.2367 0.9392 0.9984 -0.3946
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Figure 2-2 - Unsteady aerodynamic data corresponding to Table 2-5 
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