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Fluvium ponte jungere.

To throw a bridge over a river.
Langar uma ponte sobre um rio.
Lanzar un puente sobre un rio.
At slaa en bro over en flod.

Eine Bricke Uber einen Flufld zu schlagen.

JNCHEZZRT 5.
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Abstract

Lopes, Gilberto de Barros Rodrigues; Silva, Raul Rosas e. Aerodynamic
Control of Flutter of Suspension Bridges. Rio de Janeiro, 2010. 220p.
Doctor Thesis - Departamento de Engenharia Civil, Pontificia
Universidade Catdlica do Rio de Janeiro.

Long span bridges, with main spans beyond 2.000 m become highly
sensitive to wind action, particularly to flutter. An active aerodynamic control
method of suppressing flutter of very long span bridges is studied in this thesis.
Analytical design techniques for active control of the aeroelastic system
consisting of the bridge deck and two control surfaces are presented. These
techniques are based on a rational approximation of the unsteady aerodynamic
loads in the entire Laplace domain, which yieds matrix equations of motion with
constant coefficientes. The first part of this thesis is dedicated to the matrix
formulation of the rational functions known as “Minimum State” and to
applications to aerodynamic data obtained experimentally for various types of
bridge profiles. The precision of the approximations iscalculated, and plots of
the approximation functions compared to the available tabular data are drawn.
Next, the state-space equations of motion describing the aeroelastic behaviour
of a section of a bridge deck is presented. Given the dynamic data of a bridge
structure (mass, rotational mass moment of inertia, natural frequencies,
stiffness and damping ratios), and assuming that a geometric similitude exists
between the profiles of the full-scale bridge deck and the sectional model from
which the frequency dependent aerodynamic data was extracted, it is possible
to calculate the critical velocity of that particular bridge. This part of the thesis
shows that it is possible to build up a catalog of several profiles, characterized
by frequency dependent aerodynamic data and the corresponding rational
functions. The second part is dedicated to the formulation of the state-space

equations of motion describing the aeroelastic behaviour of the entire system
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consisting of the bridge deck and control surfaces. The resulting equation
includes new aerodynamic states which model the air flow influence on the
moving deck. The equation of motion is a function of the mean velocity of the
incoming wind. The dependence of the equation of motion on the wind velocity
motivated the application of a constant and a variable-gain feedback concept to
the problem of flutter suppressing, which are presented separatelly. The output
variable-gain approach is formulated in terms of minimizing a performance
index dimensionally proportional to the sum of the work done by the rotating
control surfaces and the kinetic energy of the heaving velocity. A sistematic
method to determine the matrix of variable control gains is shown in detail, as
applied to the hypothethical case of Gibraltar bridge. Application of the variable-
gain feedback concept was found to be very effective in suppressing flutter of
the bridge deck. Different geometric and dynamic characteristics can be
introduced in the MATLAB programs included in this work, in order to obtain the
critical velocities of a bridge deck alone, a bridge deck with stationary wings

and a bridge with moving wings activelly controled.

Keywords

Aerodynamics; Aeroelasticity; Approximations with rational functions;
Active control of flutter; Control surfaces; Long-span suspension bridges;

Optimal feedback control; Critical velocity.
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Resumo

Lopes, Gilberto de Barros Rodrigues; Silva, Raul Rosas e. Controle
Aerodindmico de Tabuleiros de Pontes com Uso de Superficies
Ativas. Rio de Janeiro, 2010. 220p. Tese de Doutorado - Departamento
de Engenharia Civil, Pontificia Universidade Catdlica do Rio de Janeiro.

Pontes com vaos superiores a 2.000 m tornam-se muito sensiveis a acao
do vento, particularmente ao drapejamento. Nesta tese é estudado um método
para a supressao do drapejamento em pontes de grandes vaos através de um
controle aerodinamico ativo. Apresentam-se técnicas analiticas de projeto para
o controle ativo do sistema aero elastico constituido pelo tabuleiro e por duas
superficies de controle. Estas técnicas sdo baseadas em aproximacoes
racionais das cargas aerodinamicas nao permanentes (ou auto-excitadas) no
dominio Laplaciano, no qual as equagdes de movimento sdo representadas
por equacdes matriciais de coeficientes constantes. A primeira parte da tese é
dedicada a formulacdo matricial das funcbes racionais conhecida como
“Minimum State”, assim como a aplicacbes a dados aerodindmicos obtidos
experimentalmente para varios tipos de secbes transversais de pontes. A
precisdo das aproximacdoes ¢é calculada. Desenhos dos derivativos
aerodinamicos, dados sob forma de tabelas, e das respectivas aproximacoes,
sdo elaborados para fins de comparagdo. Em seguida, sao apresentadas as
equacdes em espaco de estado descrevendo o comportamento aeroelastico
de uma segdo transversal de ponte. A partir dos dados geométricos e
caracteristicas dinamicas de uma determinada ponte, (massa, momento de
inertia polar, frequéncias naturais e fatores de amortecimento), e assumindo a
semelhanca geométrica entre as sec¢des transversais da ponte em verdadeira
grandeza e do modelo em escala do qual os derivativos aerodindmicos foram
extraidos, é possivel calcular a velocidade critica desta ponte, utilizando os

programas em linguagem MATLAB apresentados no corpo deste trabalho.
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Esta parte da tese mostra ser possivel construir um catalogo com varios perfis
de pontes, caracterizados por derivativos aerodindmicos variaveis em fungao
de frequéncias reduzidas adimensionais, e das fungbes racionais
correspondentes. A segunda parte é dedicada a fomulagcdo das equacdes de
movimento em espaco de estado, descrevendo o comportamento aeroelastico
do sistema “tabuleiro - superficies de controle”. As equacdes resultantes séo
ampliadas com novos estados aerodindmicos responsaveis pela modelagem
da influéncia do fluxo de ar sobre o tabuleiro e sobre as superficies de controle
em movimento. As equagdes de movimento séo fungao da velocidade média
do vento incidente. A dependéncia da equagcdo de movimento a velocidade do
vento motivou a aplicagdo dos conceitos de realimentagdo de ganhos,
constante e variavel, ao problema da supressao do drapejamento, 0os quais séo
apresentados separadamente em dois capitulos.O enfoque de ganho variavel
de saida é formulado em termos de minimizagao de um indice de desempenho
dimensionalmente proporcional a soma do trabalho realizado pelas superficies
de controle e da energia cinética proporcional a velocidade vertical do
tabuleiro. Apresenta-se também em detalhe um método sistematico para
determinar a matriz de controle de ganhos variavel, aplicada ao caso hipotético
da ponte de Gibraltar. Neste caso, o conceito de realimentagdo de ganhos
variavel mostrou-se muito efetivo em suprimir o drapejamento do tabuleiro da
ponte. Diferentes caracteristicas geométricas e dindmicas de outras pontes
podem ser introduzidas nos programas MATLAB apresentados no Apéndice,
para obtencdo da velocidade critica nos casos de tabuleiros isolados,
tabuleiros com asas estacionarias e tabuleiros com asas giratérias ativamente

controladas, para supresséo do drapejamento do tabuleiro.

Palavras-chave

Aerodinamica; Aeroelasticidade; Aproximagdes com funcdes racionais;
Controle ativo de drapejamento; Superficies de controle; Pontes suspensas de

grandes vaos; Controle 6timo de realimentagao; Velocidade Critica.
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Notation

A(U) state-space coefficient matrix.
A. state-space closed-loop system matrix.
Ay, A;, D, E R coefficient matrices of rational function approximations.
a;, b; upper and lower limits of parameter p;
B, b=B/2 bridge deck width, half width.
By, Buw1, Bw2, By, Bpur force distribution matrices.

Bw1, Bw2 width of leading and trailing surfaces.
C damping matrix / output matrix.
Ck) Theodorsen function.

F(k), G(k) real and imaginary parts of the Theodorsen function.

c(e) damping coefficient associated with (¢) coordinate.
E(e) expectation.
ey, € distance from control surface hinge lines to center of the deck.
Four buffeting forces acting on deck.

F;, Fy1,Fyw2 aerodynamic forces acting on deck, leading and trailing surfaces.

H{, A] flutter derivatives.
h vertical displacement = heaving displacement.
I identity matrix.
J performance matrix.
K, k reduced frequency.
K stiffness matrix / feedback gain matrix.
K. coefficient matrices of variable gain.

k(e)

stiffness coefficient associated with (¢) coordinate.
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Q). Q)
q(*)
S

tr (o)

Pr, Pq f(P)

Q

aerodynamic forces per unit length.

auxiliary matrices to solve Riccatti’s equation.

Laplace operator.

low and upper limits of lag coefficients.

mass matrix.

mass and polar mass moment of inertia per unit length.

dimensionless Laplace variable.

vector of size q describing system operating point.

aerodynamic matrix , approximate aerodynamic matrix.

vector of unknowns of system (e)

Laplace variable.
trace of a matrix.

mean wind speed.

control vector.

matrix of wind forces.

weighing factors.

state-space vector

output vector.

vector of aerodynamic states.

rotations of the deck, leading and trailing surfaces.
approximation error of RFA.

lag coefficients.

air density.

weighing functions.

transition matrix.
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