4

Materiais e Métodos

4.1

Materiais utilizados

Foram utilizadas para esta pesquisa as seguintes membranas de PTFE: Gore-Tex[®], Bionnovation e dois tipos diferentes de membranas produzidas durante a pesquisa, que foram chamadas de Membrana A e Membrana B. A membrana considerada como padrão foi a Gore-tex[®].

4.2 Preparação do PTFE

Um dos protótipos de barreira de PTFE, chamado de membrana A, foi submetido à extrusão em solução. O polímero selecionado foi o PTFE 601A produzido pela empresa DuPontTM, que apresenta as características físicas médias da Tabela 2. Além disso, é uma substância relativamente inerte aos agentes químicos e solventes mais comuns. Este polímero, composto por partículas brancas foi associado a um lubrificante (óleo mineral Bravir medicinal) para sua extrusão.

Tabela 2 – Características físicas típicas do polímero PTFE 601 A da Dupont (Empresa DuPontTM - catálago informativo)

Propriedades	Método ASTM	Unidade	Valor típico
Diâmetro da	D4895	μm	570
partícula			
Densidade	D618		2,15
Específica			
Pressão sugerida	D4895	MPa(psi)	11,4(1,660)
pela empresa			bar
DuPont TM para			
extrusão			
Ponto de fusão	D1458	°C (°F)	327(621)

O pó do polímero foi misturado com uma solução de óleo mineral, marca Bravir medicinal, na proporção de 1 g de óleo para cada 4 g de pó (Figura 14). Após a pesagem da massa em uma balança de precisão (modelo AND HM-202), o

material era colocado em um misturador (Mixer/Mill Spex 8000) (Figura 15) por 3 minutos para homogeneização e, então, o material foi levado à extrusora, desenhada para formar uma seção reta retangular de 40 mm por 0,75 mm, com uma relação de área final para inicial de 1: 26 (Figura 16). A extrusão foi realizada com o auxílio de uma prensa Schulz de até 15 toneladas, para a extrusão se utilizou uma pressão constante de 11 toneladas. A fita gerada na extrusão (Figura 17) foi pesada, com a balança de precisão citada anteriormente, e, em seguida, armazenada em estufa (Estufa AD modelo 311 CG) a uma temperatura entre 50°C a 150°C durante seis dias, para evaporação do óleo, comprovada pela variação do peso. Este procedimento permitiu a fabricação de uma fita mestra que foi empregada em todos os experimentos posteriores.

O segundo protótipo de barreira de PTFE, chamado de membrana B, foi obtido através da compra da fita na empresa Gaxetas LGT-FLEX SERVFLEX® PTFE expandido, esta apresentava as seguintes dimensões: 25 mm de largura, 5 mm de espessura e 5 m de comprimento. Suas características, segundo o fabricante, estão na tabela 3.

Tabela 3 – Características físicas da fita comercializada pela empresa Gaxetas LGT-FLEX.

Temperatura	Temperatura	Serviço	PH	Pressão	Resistência a
Máxima	Mínima	Continuo			Tração
+ 310°C	- 240°C	280°C	0 a 14	200 bar	300 kg/cm ²

Figura 14 – Polímero 601A comercializado pela DuPontTM misturado ao óleo.

Figura 15 – Misturador automático.

Figura 16 – Extrusão da fita.

Figura 17 – Fita pós-extrusão.

4.3

Tracionamento e laminação

Para este trabalho foram desenvolvidas no laboratório da PUC-Rio, uma máquina e uma adaptação em um laminador: na primeira, produzida para realização do tracionamento da fita, acima da base da máquina foi instalado um parafuso de rosca sem fim conectado a um motor. Um carro sobre um trilho foi fixado ao parafuso com rosca sem fim. O carro se movimenta através do acionamento da chave automática, proporcionando o seu deslocamento com velocidade controlada. A fita é presa ao carro através de pinças. (Figura 18a e 18b). Já na segunda máquina foi uma adaptação em um laminador. O laminador normalmente tem dois rolos, mas a estes foi conectada uma resistência, para permitir que a laminação fosse realizada com temperaturas próximas a 300°C (Figura 19a e 19b).

Figura 18a – Motor conectado ao parafuso de rosca sem fim.

Figura 18b – Imagem, vista de cima, de toda a máquina.

Figura 19a – Instalação das resistências dentro dos rolos do laminador.

Figura 19b – Imagem do laminador observando os fios da resistência.

A preparação do PTFE ainda não fornece uma membrana com características adequadas para o uso odontológico proposto, por isso, as fitas foram submetidas a uma sequência de tracionamento e laminação. Após alguns experimentos preliminares com uma máquina produzida no laboratório de tração, foi desenvolvido um conjunto de tração constituído por duas pinças para prender a fita com contato ao longo de toda a seção da fita. Um sistema de aquecimento, com temperaturas controladas entre 50°C e 250°C, foi associado ao sistema de tracionamento. Este conjunto está mostrado na Figura 20.

O tracionamento das membranas era inicialmente realizado na direção das fibras (longitudinal), empregando um segmento de fita medindo 38 mm de comprimento. Esta fita era mantida aquecida a 170°C e tracionada com uma taxa de deslocamento de 4,93 mm/s (Figura 21).

Após o tracionamento longitudinal a fita chegou a um comprimento de 354 mm e largura de 21 mm, e foram descartados 88 mm próximos a cada pinça e o restante com comprimento de 178 mm foi dividido em duas partes. Cada uma foi reposicionada no conjunto mostrado na Figura 22 e tracionada no sentido transversal das fibras, com o mesma taxa de deslocamento citado anteriormente, iniciando com 21 mm de comprimento e chegando a 118 mm. Nesta fita foram descartados 20 mm próximos a cada pinça e a fita dividida em três pedaços. Finalmente, um terceiro tracionamento foi realizado, novamente, no sentido

longitudinal em cada pedaço de fita, iniciando com 21 mm de comprimento, mesma taxa de deslocamento e terminando com 47 mm de comprimento.

A fita final foi montada pela laminação a quente de fitas superpostas, mantendo a temperatura das fitas 220°C. (Figura 23).

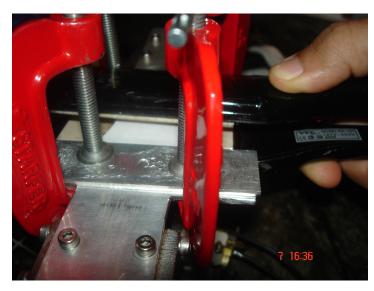


Figura 20 – Tracionamento da fita com aquecimento.

Figura 21 – Primeiro tracionamento no sentido paralelo as fibras.

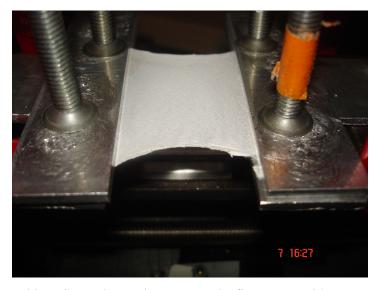


Figura 22 – Segundo tracionamento da fita, no sentido perpendicular às fibras.

Figura 23 – Laminação da membrana reduzindo a espessura.

4.4

Caracterizações Físicas

Amostras do polímero empregado para a fabricação da membrana B, como recebido e após a fabricação da membrana, amostras da membrana Bionnovation e Gore-Tex[®] foram analisadas por calorimetria diferencial de varredura (DSC) no aparelho DSC-50, da SHIMADZU.

O calorímetro diferencial de varredura permite identificar a temperatura de transição vítrea, a temperatura de fusão do polímero e qualquer outra transição que decorra da presença de substâncias contaminantes. Foi empregada uma taxa de aquecimento de 10°C por minuto entre 10 e 350 C°.

4.5

Microestrutura e porosidade

A micromorfologia da superfície da membrana e sua secção transversal foram avaliadas em microscopia eletrônica de varredura (MEV) empregando dois microscópios: o JEOL JSM-6510LV e o DSM 960 ZEISS.

A porosidade superficial foi analisada por MEV. Foram separados cinco segmentos de cinco diferentes membranas dos fabricantes Bionovation e Gore-Tex[®] e da membrana B. Ao todo foram e obtidas vinte e cinco imagens aleatórias de cada tipo de membrana, com um aumento de 4.000 vezes para avaliação dos tamanhos médios dos poros da membrana. A área interna dos poros foi caracterizada com a ajuda do programa de processamento de imagem KS 400.

As vinte e cinco imagens, representando os campos aleatoriamente selecionados de cada um dos três grupos de membrana, foram analisadas interativamente três vezes com diferentes valores de translucidez do histograma para possibilitar a análise de poros com diferentes diâmetros. Desta maneira, pretende-se avaliar a contribuição de poros de diferentes diâmetros e em diferentes profundidades.