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Resumo

Fortes, R.A.F. Modelo de descarburacdo e formacdo de
escorias na producédo de aco em aciaria elétrica. Rio de Janeiro,
2010. 319p. — Tese de Doutorado — Departamento de Engenharia
de Materiais, Pontificia Universidade Catélica do Rio de Janeiro.

Um modelo de descarburacdo e formacdo de escorias foi
desenvolvido e aplicado ao processo de fabricacdo de aco em forno
elétrico a arco de 120 ton de capacidade, com carga de ferro gusa e de
sucata ferrosa. O carregamento de carbono foi significativamente variado
para testar a consisténcia do modelo, considerando a cinética de
oxidacao do carbono, oxidacdo do fésforo e de reducéo do 6xido de ferro.
Gusa e coque foram empregados como fontes mais relevantes de
carbono, resultando na entrada de 15 a 35 kg carbono/ton. As taxas de
fusdo do gusa e da sucata governam a disponibilidade dos elementos
mais relevantes tais como carbono, fésforo e silicio em solugéo, portanto,
afetam as taxas de descarburacdo e de formacéo de escorias. A principal
fonte de fosforo na carga ferrosa € o gusa. Desta forma, a evolugcdo do
teor de fosforo na fase metal mostrou-se importante para as estimativas
das taxas de fusdo do gusa, uma vez que o fésforo pode ser empregado
como tracador adicional ao carbono. Modelos cinéticos envolvendo as
reacoes do fosforo e silicio operam simultaneamente com os modelos
cinéticos referentes as reacfes do carbono e do ferro.

Integrac6es numéricas associadas a um algoritmo de gradientes
reduzidos generalizado foi empregado para o sistema nédo linear com
restricbes, de forma a determinar a maioria dos parametros cinéticos do
modelo. A taxa de fusédo global da carga de sucata foi maior do que a taxa
de fusdo aparente do gusa. Supde-se que, 0 gusa apesar de ter relacdes
geométricas desfavoraveis a transferéncia de calor em relagdo a sucata,
poderia fundir mais rapidamente influenciado pelo seu baixo ponto de
fusdo. Entretanto, devido a formacédo de camada solidificada a partir da

massa liquida na qual é imerso, € provavel que mesmo fundido
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posteriormente, ocorra um processo de encapsulamento temporario,
conferindo-lhe uma taxa aparente de fusdao mais baixa. A constante
cinética da reacdo de descarburacdo quando o teor de carbono é inferior
ao carbono critico de 0.19% em massa e pelo menos 60% da carga
ferrosa estdo fundidas, foi estimada em 0.74 min, taxas comparaveis as
obtidas em aciaria a oxigénio.

A principal fonte de oxigénio para oxidacdo do ferro €
disponibilizada por langas supersonicas. Estima-se que 20% do oxigénio
injetado via lancas sejam consumidos para a formacao de 6xido de ferro.
Entretanto, cerca de 31% e 26% do oxigénio oriundo de injetores de pos-
combustdo podem contribuir na formacdo de Oxido de ferro ou sédo
captados pelo sistema de exaustdo de gases, respectivamente. Os
resultados indicam que em torno de 15-30% do carbono injetado podem
ndo reagir no forno, sendo removidos com a escoria. Adicionalmente ao
estado de n&o-equilibrio no sistema Fe-C-O observado, a dispersdo nas
estimativas de carbono sollvel na fase metal também pode ter sido
influenciada pela intensidade de penetracdo da injecao de coque.

O algoritmo proposto se constitui num promissor simulador de
praticas que visam otimizar o rendimento metalico do ferro, a partir da
dependéncia da cinética de reducdo do oxido de ferro com sua atividade

quimica na escoria.

Palavras-chave
Forno elétrico a arco; descarburacdo; desfosforagdo; formacgdo de
escorias; balanco de massa; modelagem.
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Abstract

Fortes, R.A.F. Decarburization and slag formation model for the
electric arc furnace. Rio de Janeiro, 2010. 319p. — Doctoral Thesis
— Departamento de Engenharia de Materiais, Pontificia
Universidade Catdlica do Rio de Janeiro.

A decarburization and slag formation model was developed and
applied to a steelmaking process based on scrap and pig iron mixes
melted in a conventional AC electric arc furnace (EAF) with 120 ton
capacity. The amount of carbon input was varied significantly in order to
evaluate the model consistency regarding mainly the kinetics of carbon
oxidation, phosphorus oxidation and iron oxide formation and reduction.
Pig iron and coke were used as sources of carbon, resulting in variation of
total carbon input in the range of 15 to 35 kg carbon/ton. The pig iron and
scrap melting rates determine the availability of the most relevant
elements such as carbon, phosphorus and silicon in solution in Fe-C
melts, and therefore, affecting the decarburization as well the slag
formation rates. The pig iron is the main source of phosphorus in the
ferrous charge. Hence, the evolution of the phosphorus content in the
metal phase is important to predict the pig iron melting rate, since
phosphorus can be used as a tracer element in addition to carbon. Kinetic
models regarding phosphorus and silicon were applied simultaneously to
kinetic models of carbon and iron reactions.

A numerical integration method supported a generalized reduced
gradient algorithm for non-linear and constrained system (GRG) was
applied to determine most of the kinetic model parameters. The scrap
melting rates were found to be higher than pig iron apparent melting rates.
This is expected that, even though the heat transfer issues related to
significant differences in the area to volume ratio compared to scrap, pig
iron may melt faster influenced by its low melting point. However, a
solidified shell maybe created from the hot heel where pig iron is

immersed, even when further melting occur, Fe-rich carbon melts could be
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encapsulated temporarily and present lower apparent melting rate. The
decarburization rate parameter, when at least 60% of the charge is
melted, was estimated as 0.74 min™, when carbon content is lower than
the critical carbon 0.19 %wt, which is similar to the rate range observed in
oxygen steelmaking facilities. Around 31% and 26% of the oxygen input
through post combustion injectors were addressed to iron oxidation and to
the off-gas system, respectively.

The main source of oxygen taking part of iron oxidation is available
from supersonic lances. Approximately 20% of the oxygen input through
lancing are consumed to form iron oxide. The results also indicate about
15-30% of the injected carbon may not react and leave EAF during slag-
off. In addition to the observed non-equilibrium state in Fe-C-O system,
the dispersive behavior of the prediction of soluble carbon content in the
metal phase could also be influenced by the intensity of penetration coke.

The model framework is a promising tool to work preliminarily in
“what-if” process scenario builder as a static model for iron vyield
optimization, regarding the kinetics of iron oxide reduction reaction and the

proposed dependence on its chemical activity in the slag phase.

Key words
Electric arc furnace; decarburization; dephosphorization; slag
formation; mass balance; model development.
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DRI Direct Reduced Iron

EAF Electric Arc Furnace

EBT Eccentric Bottom Tap Hole

GPMT Gas phase mass transfer

HBI Hot Briquette Iron

LD Linz-Donawitz converter technology by VAI
LET Converter

LPMT Liquid phase mass transfer

LWS Loire-Wendel-Sprunk converter

OBM Oxygen Bottom Blowing Maxhute

OSM Oxygen Steelmaking

Q-BOP Quick Basic Oxygen Process (Bottom blowing)
SBQ Special Billet Quality

GRG Generalized Reduce Gradient

VAI Voest-Alpine Industry


DBD
PUC-Rio - Certificação Digital Nº 0721398/CA


PUC-RIo - Certificacdo Digital N° 0721398/CA

Although nature commences with reason and
ends in experience, it is necessary for us to
do the opposite that is to commence with
experience and from this to proceed fto
investigate the reason.

Leonardo Da Vinci
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