3
The Problem

3.1
Some basic geometry

We present an abstract setup for a global Lyapunov-Schmidt decomposition for the nonlinear operator to be defined in the next section.

Let X and Y be Banach spaces which are split as direct sums of horizontal and vertical subspaces, $X = W_X \oplus V_X$ and $Y = W_Y \oplus V_Y$. Here W_X and W_Y are closed subspaces and $k = \dim V_X = \dim V_Y < \infty$. There are unique projections $P_X : X \to W_X$ and $P_Y : Y \to W_Y$ with kernels V_X and V_Y respectively, and complementary projections $Q_X : X \to V_X$ and $Q_Y : Y \to V_Y$ given by $Q_X = I - P_Y$ and $Q_Y = I - P_X$. Sets of the form $x + W_X$ (resp. $y + W_Y$) or $x + V_X$ (resp. $y + V_Y$) will be denoted by horizontal and vertical affine subspaces. The height of a horizontal affine subspace $v + W_X$ (resp. $v + W_Y$) is $v \in V_X$ (resp. $v \in V_Y$). In the definitions below, F is a C^1 operator from X to Y, not necessarily linear.

Definition 1. A fiber through a point $x \in X$ is the set $F^{-1}(y + V_Y)$, where $y = F(x)$.

That is, a fiber is the inverse image of a vertical line. Fibers were used in [4] and [18] to provide very geometric proofs of results of Ambrosetti-Prodi type. They were also considered in the study of first order periodic differential equations in [14].

Definition 2. Given an arbitrary $v \in V_X$, we define the projected restriction operator $F_v : W_X \to W_Y$ by $F_v(w) = PF(v + w)$.

The working hypothesis on F is very stringent: we assume that F is a C^1 map for which $F_v : W_X \to W_Y$ is a diffeomorphism for any v. Thus, horizontal affine subspaces are sent injectively by F to their images, which are graphs of functions from W_Y to V_Y. For brevity, we then say that F is flat. Clearly, the definition depends on the decompositions of X and Y, but we will not mention them in order to simplify notation. There is a global form of operators for which F_v is as above.
Proposition 2. Let $F : X \to Y$ be flat. Then the function

$$\Phi : \tilde{X} = W_Y \oplus V_X \to W_X \oplus V_X, \quad \Phi(z, v) = ((F_v)^{-1}(z), v)$$

is a C^1 diffeomorphism such that $\tilde{F} = F \circ \Phi : \tilde{X} \to Y$ becomes $\tilde{F}(z, v) = (z, \phi(z, v))$ for a C^1 function $\phi : \tilde{Y} \to V_Y$.

Proof. We denote by $\partial_w F_v, \partial_v F_v$ the partial derivatives of the map $(w, v) \mapsto PF(w, v)$. Analyzing the diagram below,

we see that $\Phi = \xi^{-1}, \phi = Q_v F \xi^{-1}$. The function ξ is one-to-one and onto and its derivative, in block-matrix notation, is

$$\xi'(w, v) = \begin{bmatrix} \partial_w F_v(w) & \partial_v F_v(w) \\ 0 & I \end{bmatrix} = \begin{bmatrix} F_v'(w) & \partial_v F_v(w) \\ 0 & I \end{bmatrix}.$$

Applying the inverse function theorem (F_v' is invertible and thus also ξ'), we see that ξ is a global diffeomorphism. \hfill \Box

Not only do fibers stretch out indefinitely, but they do so in a smooth way.

Proposition 3. Let $F : X \to Y$ be flat. Then each fiber α is a C^1 surface of dimension $k = \dim V_X$, which intersects each horizontal affine subspace exactly once, always transversally. The height map $x \mapsto Q_x x$ is a diffeomorphism between α and V_X.

The fact that α and a horizontal affine subspace $x + W_X$ meet transversally at a point x means that X is a direct sum of the tangent space of α at x and W_X. According to the proposition, the horizontal subspace parametrizes (bijectively) the set of fibers, and the vertical subspace is a parametrization of each fiber. Also, horizontal affine subspaces are sent injectively by F to their images, which are graphs of functions from W_Y to V_Y. On the other hand, fibers are not taken injectively (nor subjectively!) to vertical subspaces necessarily. In particular, the given hypothesis are not enough to imply the properness of the map $F : X \to Y$.

Proof. We use the change of variables $\Phi(z, v) = (F_v^{-1}(z), v)$ defined in the previous proposition. This map, from the domain of \tilde{F} to the domain of $F,$
clearly takes each vertical affine subspace in \tilde{X} to a fiber of F diffeomorphically and so that that heights are preserved. Every statement about fibers now follows from its analogous counterpart for vertical affine subspaces in \tilde{X}.

We now consider the effect of flatness on the linearizations.

Corollary 1. Let $F : X \to Y$ be flat. The Jacobian $F'(x) : X \to Y$ is a Fredholm operator of index zero at $x \in X$. The restriction of $F'(x)$ to W_x is an isomorphism between W_x and its (closed) range, which is transversal to V_Y. If x_c is a critical point of F contained in the fiber α, then $\text{Ker}(F'(x_c)) \subset T_{x_c}\alpha$.

Proof. By flatness, the derivative $P_yF'(x) : W_x \to W_Y$ is a linear isomorphism, hence a Fredholm operator of index 0. Thus the map $T : W_x \oplus V_x \to W_Y \oplus V_Y$ given by $T(w, v) = (P_yF'(x), 0)$ is also Fredholm of index zero. The same is true for $F'(x) : X \to H^{-1}(\Omega)$, since $F'(x) - T$ is the finite range operator $w + v \mapsto QDF(x)w + F'(x)V$.

Transversality of $F'(x)W_x$ and V_Y follows from the fact that $F'(x) : W_x \to F'(x)W_x$ must be injective, with closed range.

At a critical point $x_c \in \alpha$, use the transversality of the intersection of α and $(x_c + W_x)$ proved in the previous proposition to split $X = W_x \oplus T_{x_c}\alpha$. Now combine $Y = F'(x)W_x \oplus V_Y$ with the fact that $F'(x) : W_x \to F'(x)W_x$ is an isomorphism and $F'(x)T_{x_c}\alpha \subset V_Y$ to conclude that $\text{Ker}(F'(x_c)) \subset T_{x_c}\alpha$.

3.2 The Nonlinear Operator

For this section we set $X = H^1_0(\Omega)$, $Y = H^{-1}(\Omega)$. The corresponding projections will be denoted P_1, Q_1, P_{-1}, Q_{-1}. The norm used in $H^1_0(\Omega)$ will be $\|u\| = \|u\|_1 = \langle u, u \rangle^{\frac{1}{2}}_1$. Notice that this is equivalent to the full H^1 norm, by Friedrich’s inequality. We will use often this result. For the expansion of $u \in H^1_0(\Omega)$ we use the notation $u(x) = \sum u_i \varphi_i(x)$, with $u_i = \langle u, \varphi_i \rangle_{1} / \langle \varphi_i, \varphi_i \rangle_{1}$. We have $H^1_0(\Omega) \simeq H^{-1}(\Omega)$ via $\langle \tilde{u}, \cdot \rangle = \langle u, \cdot \rangle_1$, where we denote with a tilde the functional induced by an element of $H^1_0(\Omega)$. From Hilbert space theory we also know that

$$\|\tilde{u}\|_{-1} = \|u\|_1 \quad \text{and} \quad \tilde{u} \overset{H^{-1}}{\to} \tilde{u} \iff u \overset{H^1_0}{\to} u.$$

For a C^1 function f of bounded derivative, we define $F : X \to Y$ by

$$F(u) = -\Delta u - f(u). \quad (3.1)$$
The Laplacian above is understood as the weak Laplacian, acting as $u \mapsto \langle u, \cdot \rangle$, and $f(u)$ is the functional associated to the $L^2(\Omega)$ function

$$f(u) : z \mapsto \langle f(u), z \rangle_0.$$

We wish now to split our spaces in direct sums of a certain finite-dimensional space and its orthogonal complement. Denote the eigenvalues of $-\Delta : H^1_0(\Omega) \rightarrow H^{-1}(\Omega)$ by $0 < \lambda_1 < \lambda_2 \leq \ldots$ with corresponding eigenvectors φ_i. The eigenvectors may be taken to be orthogonal functions (in the occasional situation of multiplicity) and orthogonality holds simultaneously for all considered Sobolev spaces.

Definition 3. A set J of indices is said to be complete if $j \in J$ whenever $\lambda_i = \lambda_j$ and $i \in J$.

That is, if a complete set includes an index of a multiple eigenvalue, then it contains all indices associated with it.

For J a given finite complete set of indices, define the spaces $V_i = \text{Span}\{\varphi_j, \ j \in J\}$ and $V_{-1} = \text{Span}\{\tilde{\varphi}_j, \ j \in J\}$. Since each space is closed (they are finite-dimensional), we can split the whole spaces as

$$X = W_1 \oplus V_1, \quad Y = W_{-1} \oplus V_{-1}, \quad \text{where} \quad W_1 = V_1^\perp, \quad W_{-1} = V_{-1}^\perp.$$

Recall that the inner product in Y is $\langle \tilde{u}, \tilde{v} \rangle_{-1} = \langle u, v \rangle_1$.

Proposition 4. The correspondence $\tilde{u} \leftrightarrow u$ is also a bijection between W_1 and W_{-1}. Moreover, $W_1 = \{w \in X : \forall \tilde{v} \in V_{-1}, \langle \tilde{v}, w \rangle = 0\}$ and $\Delta W_1 = W_{-1}$.

Proof. This follows directly from $\langle \tilde{v}, w \rangle = \langle v, w \rangle_1 = \langle \tilde{v}, \tilde{w} \rangle_{-1}$ and the fact that $\langle \Delta w, \tilde{v} \rangle_{-1} = \langle w, v \rangle_1$. \square

Definition 4. Given a complete set J, a C^1 function $f : \mathbb{R} \rightarrow \mathbb{R}$ interacts with J if

1. the only eigenvalues λ_i in the image of f' are labeled by indices in J,

2. there are no eigenvalues in the boundary of the image of f'.

As in the abstract case, we define the orthogonal projection $P_{-1} : Y \rightarrow W_{-1}$, defined by $\langle P_{-1} \tilde{u}, \tilde{w} \rangle_{-1} = \langle \tilde{u}, \tilde{w} \rangle_{-1} = \langle u, w \rangle_1$ for each $\tilde{w} \in W_{-1}$. For a given $v \in V_1$, we define the restricted projection $F_v : W_1 \rightarrow W_{-1}$ by

$$F_v(w) = P_{-1} F(v + w), \quad (3-2)$$

for each $w \in W_1$. The projections P_{-1} and F_v respect the orthogonality and the eigenvalue structure of the original operator.
Our next goal is to prove that if f interacts with a complete set J, then the function F is flat with respect to the decompositions induced by J. The first step is the local version of this property.

Proposition 5. Let $J = \{l + 1 \leq \ldots \leq r - 1\}$ be a complete set and $f : \mathbb{R} \to \mathbb{R}$ a C^1 function interacting with J, then the derivatives of the restricted projection F_ν are uniformly bounded below. More precisely, there exists $C > 0$ such that

$$\forall v \in V_i \forall w \in W_i \forall h \in W_i, \quad \|F'_\nu(w)h\|_{-1} \geq C\|h\|_1. \quad (3-3)$$

Also, all derivatives of F_ν are invertible.

This estimate, for the case $J = \{1\}$, i.e., when the nonlinearity f interacts only with the first eigenvalue λ_1, has been extensively used ([1], [4]). It is also used in [9] in the case $J = \{1, \ldots, r\}$.

Proof. From Proposition 1, each restricted projection $F_\nu : W_i \to W_{-1}$ is C^1 with derivative $F'_\nu(w) : W_i \to W_{-1}$ given by $F'_\nu(w)h = -\Delta h - f'(w)h$. Let $\text{Ran} f' = [a, b]$, so that $\lambda_l < a < \lambda_{l+1}$ and $\lambda_{r-1} < b < \lambda_r$. Let $h \in W_i$ be of unit norm and let \bar{h}^o be the functional $\langle \bar{h}^o, \cdot \rangle = \langle h, \cdot \rangle_0$ and $\gamma = (a + b)/2$. Adding and subtracting $\gamma \bar{h}^o$ and setting $u = w + v$ we have

$$\|F'_\nu(w)h\|_{-1} = \|P_{-1}(\Delta h - \gamma \bar{h}^o) - P_{-1}(f'(u)h - \gamma \bar{h}^o)\|_{-1}$$
$$\geq \|P_{-1}(\Delta h - \gamma \bar{h}^o)\|_{-1} - \|P_{-1}(f'(u)h - \gamma \bar{h}^o)\|_{-1}$$
$$\geq \|A\|_{-1} - \|B\|_{-1}. \quad (3-4)$$

In what follows, we will write z for an arbitrary element of $H^1_0(\Omega)$, and w for one in W_i. Let us start with a bound for $\|B\|_{-1}$.

$$\|B\|_{-1} = \sup_{|z| = 1} \langle P_{-1}(f'(u)h - \gamma \bar{h}^o), z \rangle = \sup_{|u| = 1} \langle f'(u)h - \gamma \bar{h}^o, w \rangle$$
$$= \sup_{|u| = 1} \langle f'(u) - \gamma \rangle h, w \rangle_0 \leq \|f' - \gamma\|_\infty \sup_{|u| = 1} \langle |h|, |w| \rangle_0.$$

By Cauchy-Schwartz, the supremum above is realized when $|w|$ is a scalar multiple of $|h|$, which is achieved by $w = \rho h$. Since h is assumed unitary, $\rho = 1$ and, defining $c = \|f' - \gamma\|_\infty$,

$$\|B\|_{-1} \leq c \langle |h|, |h| \rangle_0 = c \langle |h|_0^2 \rangle = \sum_{i \in J} c h_i^2 |\varphi_i|^2 = \sum_{i \in J} (c/\lambda_i) h_i^2 |\varphi_i|^2. \quad (3-5)$$

We will use now the decomposition $W_i = W_+ \oplus W_-$. The spaces are given by $W_- = \{u : u = \sum_{i \leq l} u_i \varphi_i\}$, $W_+ = \{u : u = \sum_{i \geq r} u_i \varphi_i\}$ and are orthogonal both in \langle , \rangle_0 and \langle , \rangle_1.

To estimate $\|\tilde{A}\|_{-1}$, start with

$$
\|\tilde{A}\|_{-1} = \sup_{|z|=1} \langle P_{-1}(-\Delta h - \gamma \tilde{h}^0), z \rangle = \sup_{|w|=1} \langle -\Delta h - \gamma \tilde{h}^0, w \rangle
$$

$$
= \sup_{|w|=1} (\langle h, w \rangle_1 - \gamma \langle h, w \rangle_0).
$$

Now we choose $w = h_+ - h_-$ above, noting that it also has unit norm.

$$
\|\tilde{A}\|_{-1} \geq \langle h, h_+ - h_- \rangle_1 - \gamma \langle h, h_+ - h_- \rangle_0
$$

$$
= (|h_+|^2 - \gamma |h_+|^2_0) + (\gamma |h_-|^2_0 - |h_-|^2)
$$

$$
= \sum_{i \geq r} h_i^2(|\varphi_i|^2_1 - \gamma |\varphi_i|^2_0) + \sum_{i \leq \ell} h_i^2(\gamma |\varphi_i|^2_0 - |\varphi_i|^2_1)
$$

$$
= \sum_{i \geq r} (1 - \gamma/\lambda_i) h_i^2 |\varphi_i|^2_1 + \sum_{i \leq \ell} (\gamma/\lambda_i - 1) h_i^2 |\varphi_i|^2_1.
$$

That the coefficients above are all positive follows from the completeness of the set J. We have then

$$
\|\tilde{A}\|_{-1} \geq \sum_{i \notin J} |1 - \gamma/\lambda_i| h_i^2 |\varphi_i|^2_1 = \sum_{i \notin J} (C_i/\lambda_i) h_i^2 |\varphi_i|^2_1. \tag{3-6}
$$

Combining equations (3-4), (3-5) and (3-6) we get

$$
\|F'_v(w)h\|_{-1} \geq \sum_{i \notin J} (C_i - c)/\lambda_i h^2_i |\varphi_i|^2_1
$$

$$
\geq \left(\inf_{i \notin J} (C_i - c)/\lambda_i \right) \sum_{i \notin J} h^2_i |\varphi_i|^2_1
$$

$$
= \left(\inf_{i \notin J} (C_i - c)/\lambda_i \right) |h|^2_1
$$

$$
= C|h|^2_1 = C,
$$

which establishes (3-3), since $C \geq \min\{1 - b/\lambda_{r+1}, a/\lambda_{l-1} - 1\} > 0$. In particular, the derivative of $F'_v(w)$ is always injective. To prove invertibility, we write

$$
F'_v(w)h = P_{-1} \circ F'(v + w) \circ \iota_h,
$$

where ι denotes the inclusion from W_1 into $H^1_0(\Omega)$ and notice that the composition of these three Fredholm operators is also Fredholm, with index given by the sum of the individual indices, namely, zero.

The following result is a global inversion theorem, first obtained by Hadamard in the finite-dimensional case [3].
Lemma 1. Let $\Phi : X \to Y$ be a C^1 map between Banach spaces X and Y such that $\Phi'(u)$ is invertible for each u. Suppose there exists $C > 0$ such that
\[\forall u, h, \quad \|\Phi'(u)h\| \geq C\|h\|. \] (3-7)
Then Φ is a global C^1-diffeomorphism.

Theorem 1. Let J be a complete set and $f : \mathbb{R} \to \mathbb{R}$ be a C^1 function interacting with J. Then each restricted projection $F_v : W_1 \to W_{-1}$ is a C^1 diffeomorphism. Thus $F : H^1_0(\Omega) \to H^{-1}(\Omega)$ is flat.

Proof. Simply combine Proposition 5 and the lemma above.

In the case where f does not interact with the spectrum, the full operator is a diffeomorphism. This result was fully obtained by [11], after an initial version of it by [12], and follows from a simple adaptation of the proof of the above theorem.

When f interacts with a set J containing a single element j, then only the j-th eigenvalue of the Jacobian F' may become zero.

Proposition 6. If $f \in C^1$, $f'(\mathbb{R}) = [a, b]$, with $\lambda_{k-1} < a < b < \lambda_{k+1}$ and u_c is a critical point of F, then the only zero eigenvalue of $F'(u_c)$ is the k-th one. In particular, it is simple.

An analogous result holds for a general complete set J: the only zero eigenvalues of F' are labelled by indices in J.

Proof. By the Fredholm property, we must have a nonzero ξ with $F'(u_c)\xi = -\Delta \xi - f'(u_c)\xi = 0$. In other words, 1 is an eigenvalue of the generalized problem $-\Delta u = \mu f'(u_c)u$, which we write as $\mu_j(f'(u_c)) = 1$ for some j. An application of a comparison theorem yields then
\[\lambda_{k-1} < f'(u_c) < \lambda_{k+1} \Rightarrow \mu_j(\lambda_{k-1}) > \mu_j(f'(u_c)) > \mu_j(\lambda_{k+1}), \] (3-8)
or, since $\mu_j(\lambda) = \lambda_j/\lambda$ for constant λ,
\[\lambda_j/\lambda_{k-1} > 1 > \lambda_j/\lambda_{k+1} \Rightarrow \lambda_{k-1} < \lambda_j < \lambda_{k+1} \Rightarrow j = k. \] (3-9)

The bound in Proposition 5 allows to make precise the idea that fibers are uniformly steep and images under F of horizontal affine subspaces are uniformly flat.

Proposition 7. Let J be a complete set of indices with $|J| = k$ and $f : \mathbb{R} \to \mathbb{R}$ a C^1 function interacting with J. Let $u(t) = w(t) + \sum_{j \in J} t_j \phi_j$ be a
parametrization of a fiber α, where $t = (t_1, \ldots, t_k) \in \mathbb{R}^k$ and $w(t) \in W_i$. Then there exists a positive constant C, independent of t, such that

$$\|\nabla_t w(t)\|_1 \leq C \sum_{j \in J} \|\varphi_j\|_1.$$

In particular, there exist positive constants A, B, independent of t, such that

$$\|w(t)\|_1 \leq A + B\|t\|.$$

Let $W_u \subset H^{-1}(\Omega)$ be the image under F of an horizontal affine subspace $u + W_1$, passing by $u \in H_0^1(\Omega)$. Then the angle between a vector in the tangent space $T_{F(u)}W_u$ at a point $F(u) \in W_u$ and its orthogonal projection in W_{-1} is uniformly bounded above by a constant less than $\pi/2$ for all $u \in H_0^1(\Omega)$.

Proof. Fibers are inverses under F of vertical affine subspaces in $H^{-1}(\Omega)$. Thus $PF(u(t)) = \text{const.}$ and, taking derivatives,

$$(PF)'(u(t)) \partial_j u(t) = PF'(u(t)) \partial_j u(t) = 0.$$ (3-10)

Write $u(t) = w(t) + v(t)$ and expand $v(t) = \sum_{j \in J} t_j \varphi_j$, so that $\partial_j u(t) = \partial_j w(t) + \varphi_j$. For $h \in W_1$, we have $PF'(u(t))h = F'_v(w(t))h$ and thus, setting $h = \partial_j w(t)$,

$$F'_v(w(t))\partial_j w(t) = PF'(u(t))\partial_j w(t) = -PF'(u(t))\varphi_j.$$

Using first the lower bound (3-3) and then the boundedness of F',

$$C_1 \|\partial_j w(t)\|_1 \leq \|F'_v(w(t))\partial_j w(t)\|_{-1} = \|PF'(u(t))\varphi_j\|_{-1} \leq C_2 \|\varphi_j\|_1,$$

for some positive constant C_2. Thus $\|\nabla_t w(t)\|_1 \leq C \sum_{j \in J} \|\varphi_j\|_1$. A bound of the form $\|w(t)\|_1 \leq A + B\|t\|$ is now immediate.

To see that the tangent space $T_{F(u)}W_u$ is bounded away from the vertical subspace, consider the sequence of simple estimates

$$C_1 \|h\|_1 \leq \|PF'(u)h\|_{-1} \leq \|F'(u)h\|_{-1} \leq C_3 \|h\|_1.$$

The cosine between a vector $F'(u)h \in T_{F(u)}W_u$ and the horizontal subspace W_{-1} is given by the quotient $\|PF'(u)h\|_{-1}/\|F'(u)h\|_{-1}$, which is bounded from below by C_1/C_3.

The result may be interpreted as a source of stability for the numerics described in the next sections. We indicate a first application immediately. From Theorem 1, the function $F : V_1 \oplus W_1 \to V_{-1} \oplus W_{-1}$ admits a global
Lyapunov-Schmidt decomposition, where V_i is generated by the eigenvectors $\varphi_j, j \in J$.

When performing numerics, however, we do not work with φ_j — indeed, a general domain Ω does not allow for a formula for the eigenvectors. Even when this happens, as for rectangles, we must still consider the fact that the computations are performed on a finite dimensional subspace. In our case (see Section 4.2), we are using finite elements of the standard type P_1, generating an approximation X_h to the domain $H^1_0(\Omega)$ and counter-domain $H^{-1}(\Omega)$. Since $\varphi_j \notin X_h$, we have to consider approximations $\varphi_j^h \in X_h$.

An ϵ-tilted Lyapunov-Schmidt decomposition of F is a pair of splittings $F : \tilde{V}_X \oplus \tilde{W}_X \to \tilde{V}_Y \oplus \tilde{W}_Y$, for which F admits a global Lyapunov-Schmidt decomposition and the four subspaces \tilde{V}_X, \tilde{W}_X, \tilde{V}_Y and \tilde{W}_Y are ϵ-close to their untilted counterparts. Here, one may take the distance between two subspaces as the maximal angle between them.

Corollary 2. For ϵ sufficiently small and subspaces \tilde{V}_X, \tilde{W}_X, \tilde{V}_Y and \tilde{W}_Y ϵ-close to their untilted counterparts, the splittings $F : \tilde{V}_X \oplus \tilde{W}_X \to \tilde{V}_Y \oplus \tilde{W}_Y$ induce a tilted Lyapunov-Schmidt decomposition of F.

Proof. This is an immediate consequence of the above proposition. \square

The results in this section considered the nonlinear operator F as acting between $H^1_0(\Omega)$ and $H^{-1}(\Omega)$. Analogous results (stable global Lyapunov-Schmidt decomposition, boundedness and coercivity estimates, uniform flatness and steepness) also hold for $F : H^2_0 \to L^2$.