

Marco Aurélio Nunes da Silva

Análise dos Efeitos do Terreno Irregular na Propagação de Ondas Eletromagnéticas com Base na Equação Parabólica Tridimensional

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio.

Orientador: Emanoel Paiva de Oliveira Costa

Rio de Janeiro Julho de 2010.

Marco Aurélio Nunes da Silva

Análise dos Efeitos do Terreno Irregular na Propagação de Ondas Eletromagnéticas com Base na Equação Parabólica Tridimensional

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Emanoel Paiva de Oliveira Costa Orientador Centro de Estudos em Telecomunicações - PUC-Rio

Prof. André Nachbin Conselho Nacional de Ciência e Tecnologia - IMPA

Prof. Cássio Gonçalves do Rego Departamento de Engenharia Eletrônica - UFMG

Prof. Luiz Costa da Silva

Consultor Independente

Prof. Hugo Enrique Hernandez Figueroa Departamento de Microondas e Óptica - UNICAMP

Prof. Flavio José Vieira Hasselmann Centro de Estudos em Telecomunicações - PUC-Rio

Prof. Luiz Alencar Reis da Silva Mello Centro de Estudos em Telecomunicações - PUC-Rio

> Prof. José Eugênio Leal Coordenador Setorial do Centro

Técnico Científico - PUC-Rio

Rio de Janeiro, 14 de julho de 2010.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Marco Aurélio Nunes da Silva

Graduou-se em Engenharia Elétrica com ênfase em Telecomunicações na UERJ (Universidade do Estado do Rio de Janeiro) em 2003. Mestre em Engenharia Elétrica na PUC-Rio (Pontifícia Universidade Católica do Rio de Janeiro) em 2005.

Ficha Catalográfica

Silva, Marco Aurélio Nunes da

Análise dos efeitos do terreno irregular na propagação de ondas eletromagnéticas com base na equação parabólica tridimensional / Marco Aurélio Nunes da Silva; orientador: Emanoel Paiva de Oliveira Costa - 2010.

152 f.: il. (color.) ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2010.

Incluí bibliografia

1. Engenharia elétrica - Teses. 2. Equação parabólica tridimensional. 3. Condição de contorno de impedância. 4. Métodos numéricos. 5. Propagação de ondas eletromagnéticas. 6. Terreno irregular. I. Costa, Emanoel Paiva de Oliveira. Il Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Título.

CDD: 621.3

PUC-Rio - Certificação Digital Nº 0521343/CA

Para minha mãe, Maria Luiza, pelo apoio e confiança.

Agradecimentos

Ao meu orientador Professor Emanoel Paiva de Oliveira Costa pelo estímulo, apoio e parceria no decorrer desta tese.

A CAPES e à PUC-Rio, pelos auxílios concedidos, sem os quais esta tese de doutorado não poderia ter sido realizada.

Ao professor Markus Liniger, por disponibilizar os dados referentes às medidas realizadas na Suíça, que serão utilizadas em trabalhos futuros.

Aos professores integrantes da banca examinadora.

À minha mãe, pela educação, atenção e carinho de todas as horas.

A todos os amigos e familiares que de uma forma ou de outra me estimularam ou me ajudaram.

Também gostaria de agradecer e expressar meu reconhecimento a todos os professores e funcionários pelos ensinamentos e pela ajuda.

Resumo

Silva, Marco Aurélio Nunes da. Análise dos Efeitos do Terreno Irregular na Propagação de Ondas Eletromagnéticas com Base na Equação Parabólica Tridimensional. Rio de Janeiro, 2010. 152p. Tese de Doutorado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Os efeitos das variações laterais de um terreno irregular na propagação de ondas eletromagnéticas são considerados pela representação dos campos vetoriais em termo de dois potenciais escalares Hertzianos em coordenadas esféricas. A combinação da equação parabólica para esses potenciais com uma condição de contorno de impedância para o solo, seguida por uma transformação de variáveis, define um problema de condição de contorno caracterizado por equações exibindo coeficientes que dependem da função altura do terreno e de suas derivadas parciais. A solução do problema através do esquema de Crank-Nicolson leva a um sistema esparso de equações lineares que é resolvido por um método direto. O modelo numérico resultante é aplicado a terrenos irregulares, representando configurações tridimensionais hipotéticas.

Palavras-chave

Equação Parabólica Tridimensional; Condição de Contorno de Impedância; Métodos Numéricos; Propagação de Ondas Eletromagnéticas; Terreno Irregular.

Abstract

Silva, Marco Aurélio Nunes da. Three-dimensional Parabolic Equation; Impedance Boundary Condition, Numerical Methods, Electromagnetic Wave Propagation; Irregular Terrain. Rio de Janeiro, 2010. 152p. Doctoral Thesis - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

The effects from lateral variations of irregular terrain on the propagation of radio waves are considered by the representation of the vector fields in terms of two scalar Hertz potentials in spherical coordinates. The combination of threedimensional parabolic equations for these potentials with an impedance boundary condition for the ground, followed by a transformation of variables, will define a boundary-condition problem characterized by equations displaying coefficients that depend on the terrain height function and its partial derivatives. The problem solution through the Crank-Nicolson scheme will lead to a sparse system of linear equations, which will be solved by a direct method. The resulting numerical model will be applied to irregular terrain, representing hypothetical threedimensional configurations.

Keywords

Three-dimensional Parabolic Equation; Impedance Boundary Condition, Numerical Methods, Electromagnetic Wave Propagation; Irregular Terrain.

Sumário

1 Introdução	19
1.1. Motivação	19
1.2. Revisão da literatura	23
1.2.1. Equação parabólica	23
1.2.2. Equação parabólica bidimensional	26
1.2.3. Equação parabólica tridimensional	28
1.2.4. Modelo híbrido	30
1.3. Objetivos	31
1.4. Estrutura da tese	32
2 Equação parabólica tridimensional	34
2.1. Formulação	34
2.2. Aproximação parabólica	37
2.3. Modelo do Terreno	39
2.4. Condição de contorno de impedância	42
2.5. Implementação numérica	47
2.5.1. Discretização	48
2.5.2. Matriz esparsa	66
2.6. Domínio computacional	68
2.6.1. Filtro como uma condição de contorno absorvente	69
2.6.2. PARDISO	69
2.7. Campo inicial	70
3 Contribuições	73
3.1. Equacionamento puramente vetorial	73
3.2. Divergência dos campos nula	73
3.3. Inclusão do terreno	73
3.4. Despolarização dos campos	74
3.5. Outros efeitos	74
3.6. Implementação numérica do modelo contínuo	74

3.7. Aproximação para ângulo estreito	75
4 Validação da simulação	76
4.1. Filtro	76
4.1.1. Filtro superior	77
4.1.2. Filtros laterais	82
4.2. Método Split-Step de Fourier	85
4.3. Cunha	89
4.4. Dutos troposféricos	95
4.5. Ângulo estreito e parâmetros de entrada	101
5 Configurações 3D	118
5.1. Um obstáculo Gaussiano	119
5.2. Dois obstáculos Gaussianos	126
5.3. Evidências da propagação lateral	135
6 Comentários e sugestões (Trabalhos futuros)	147
7 Referências	149

Lista de figuras

Figura 1.1 – Valor médio do erro em função do número	
de obstáculos (reproduzida de [14])	21
Figura 1.2 – Valor do desvio padrão em função do número	
de obstáculos (reproduzida de [14])	22
Figura 1.3 – Ambiente tridimensional (reproduzida de [20])	24
Figura 1.4 – Modelo de propagação em passos (reproduzida de [20])	31
Figura 2.1 - Sistema de coordenadas esféricas com origem no centro	
da Terra	35
Figura 2.2 - Superfícies consecutivas utilizadas na determinação	
do campo a partir daquele definido inicialmente.	47
Figura 2.3 - Distribuição do fator de propagação em decibéis	
em superfícies consecutivas $x_l = l (a\Delta \Theta)$.	48
Figura 2.4 - Grade de discretização	49
Figura 2.5 - Relação de k com o par de índices (m,n)	51
Figura 2.6 - Grade da região de interesse	53
Figura 2.7 - Distribuição dos coeficientes não nulos da matriz A	
(M = 6, N = 6)	68
Figura 2.8 – Fonte Gaussiana	71
Figura 4.1 – Distribuição da intensidade de campo sobre Terra	
esférica supondo filtro superior com altura máxima de 60 m	77
Figura 4.2 - Distribuição da intensidade de campo sobre Terra	
esférica supondo filtro superior com altura máxima de 90 m	78
Figura 4.3 - Distribuição da intensidade de campo sobre Terra	
esférica supondo filtro superior com altura máxima de 120 m	78
Figura 4.4 - Distribuição da intensidade de campo sobre Terra	
esférica supondo filtro superior com altura máxima de 150 m	79
Figura 4.5 - Distribuição da intensidade de campo sobre Terra	
esférica supondo filtro superior com altura máxima de 180 m	79
Figura 4.6 - Distribuição da intensidade de campo sobre Terra	
esférica supondo filtro superior com altura máxima de 210 m	80

Figura 4.7 - Distribuição da intensidade de campo sobre Terra	
esférica supondo filtro superior com altura máxima de 240 m	80
Figura 4.8 - Região de interesse com filtro superior	81
Figura 4.9 - Região de interesse sem aplicação do filtro superior	81
Figura 4.10 - Distribuição da intensidade de campo sobre Terra	
esférica supondo filtro laterais com $\phi_{max} = 10^{\circ}$ (coordenada retangular)	83
Figura 4.11 - Distribuição da intensidade de campo sobre Terra	
esférica supondo filtro laterais com $\phi_{max} = 20^{\circ}$ (coordenada retangular)	83
Figura 4.12 - Distribuição da intensidade de campo sobre Terra	
esférica supondo filtro laterais com $\phi_{max} = 30^{\circ}$ (coordenada retangular)	84
Figura 4.13 - Distribuição da intensidade de campo sobre Terra	
esférica supondo filtro laterais com $\phi_{max} = 40^{\circ}$ (coordenada retangular)	84
Figura 4.14 - Distribuição da intensidade de campo sobre Terra	
esférica supondo filtro laterais com $\phi_{max} = 50^{\circ}$ (coordenada retangular)	85
Figura 4.15 - Perda de propagação em decibéis em função da altura	
da antena receptora (polarização vertical - condutividade infinita)	90
Figura 4.16 - Perda de propagação em decibéis em função da altura	
da antena receptora (polarização horizontal - condutividade infinita)	91
Figura 4.17 - Perda de propagação em decibéis em função da altura	
da antena receptora (polarização vertical - condutividade finita)	91
Figura 4.18 - Perda de propagação em decibéis em função da altura	
da antena receptora (polarização horizontal - condutividade finita)	92
Figura 4.19 - Perda de propagação em decibéis em função da altura	
da antena receptora - condutividade infinita (reproduzida de [54])	92
Figura 4.20 - Perda de propagação em decibéis em função da altura	
da antena receptora - condutividade finita (reproduzida de [54])	93
Figura 4.21 - Distribuição da perda de propagação em decibéis	
(polarização vertical - condutividade infinita)	93
Figura 4.22 - Distribuição da perda de propagação em decibéis	
(polarização horizontal - condutividade infinita)	94
Figura 4.23 - Distribuição da perda de propagação em decibéis	
(polarização vertical - condutividade finita)	94
Figura 4.24 - Distribuição da perda de propagação em decibéis	

(polarização horizontal - condutividade finita)	95
Figura 4.25 - Distribuição da intensidade de campo em decibéis	
acima de Terra esférica, supondo uma atmosfera padrão	96
Figura 4.26 - Distribuição da intensidade de campo em decibéis com	
duto de superfície (gradiente de refratividade modificada -0,5 M/m	
abaixo de 300 m)	97
Figura 4.27 - Distribuição da intensidade de campo em decibéis numa	
atmosfera padrão com duto de superfície (gradiente de refratividade	
modificada -1 M/m abaixo de 300 m)	97
Figura 4.28 - Distribuição da intensidade de campo em decibéis numa	
atmosfera padrão com duto de superfície (gradiente de refratividade	
modificada -1,5 M/m abaixo de 300 m)	98
Figura 4.29 - Distribuição da intensidade de campo em decibéis numa	
atmosfera padrão com duto de superfície (gradiente de refratividade	
modificada -2 M/m abaixo de 300 m)	98
Figura 4.30 - Distribuição da intensidade de campo em decibéis numa	
atmosfera padrão com duto de superfície (gradiente de refratividade	
modificada -2,5 M/m abaixo de 300 m)	99
Figura 4.31 - Fator de propagação para 10 GHz na presença de duto	
de superfície sobre Terra esférica calculado em 25 m de altura	100
Figura 4.32 - Fator de propagação para 10 GHz na presença de duto	
de superfície sobre Terra esférica calculado em 25 m de altura	
(reproduzido de [31])	100
Figura 4.33 - Distribuição do fator de propagação para 10 GHz	
na presença de duto de superfície sobre Terra esférica	101
Figura 4.34 - Distribuição do fator de propagação normalizado	
em decibéis para o perfil senoidal	103
Figura 4.35 - Distribuição do fator de propagação em decibéis para	
o perfil senoidal (reproduzido de [56])	104
Figura 4.36 - Distribuição do fator de propagação normalizado	
em decibéis para a cunha	105
Figura 4.37 - Distribuição do fator de propagação em decibéis para a	
cunha (reproduzido de [56])	105

Figura 4.38 - Distribuição do fator de propagação normalizado	
em decibéis para um conjunto de pirâmides	106
Figura 4.39 - Distribuição do fator de propagação em decibéis	
para um conjunto de pirâmides (reproduzido de [56])	107
Figura 4.40 - Distribuição do fator de propagação normalizado	
em decibéis para 300 MHz com $\Delta x = 5m$ e $\Delta z = 0,1m$	
considerando o modelo proposto	109
Figura 4.41 - Distribuição do fator de propagação normalizado	
em decibéis para 300 MHz com $\Delta x = 5m$ e $\Delta z = 0,71m$	
considerando o modelo Split-Step de Fourier	109
Figura 4.42 - Distribuição do erro em decibéis para 300 MHz com	
$\Delta x = 5m \ \mathbf{e} \ \Delta z = 0,1m$	110
Figura 4.43 - Histograma da distribuição do erro em decibéis para	
300 MHz com erro médio igual a -0,81 dB e desvio padrão	
igual a 1,77 dB	110
Figura 4.44 - Distribuição do fator de propagação normalizado	
em decibéis para 600 MHz com $\Delta x = 5m$ e $\Delta z = 0,1m$	
considerando o modelo proposto	111
Figura 4.45 - Distribuição do fator de propagação normalizado	
em decibéis para 600 MHz com $\Delta x = 5m$ e $\Delta z = 0,35m$	
considerando o modelo Split-Step de Fourier	111
Figura 4.46 - Distribuição do erro em decibéis para 600 MHz com	
$\Delta x = 5m \ \mathbf{e} \ \Delta z = 0,1m$	112
Figura 4.47 - Histograma da distribuição do erro em decibéis para	
600 MHz com erro médio igual a -1,32 dB e desvio padrão	
igual a 1,98 dB	112
Figura 4.48 - Distribuição do fator de propagação normalizado	
em decibéis para 1 GHz com $\Delta x = 5m$ e $\Delta z = 0,1m$	
considerando o modelo proposto	113
Figura 4.49 - Distribuição do fator de propagação normalizado	
em decibéis para 1 GHz com $\Delta x = 5m$ e $\Delta z = 0,21m$	
considerando o modelo Split-Step de Fourier	114
Figura 4.50 - Distribuição do erro em decibéis para 1 GHz com	

$\Delta x = 5m \ \mathbf{e} \ \Delta z = 0,1m$	114
Figura 4.51 - Histograma da distribuição do erro em decibéis para	
1 GHz com erro médio igual a -0,55 dB e desvio padrão	
igual a 2,02 dB	115
Figura 4.52 - Distribuição do fator de propagação normalizado	
em decibéis para 1 GHz, destacando a região da Figura 4.48 entre	
16 km e 18 km	115
Figura 4.53 - Distribuição do erro em decibéis para 1 GHz	
destacando a região da Figura 4.50 entre 16 km e 18 km	116
Figura 4.54 - Distribuição do fator de propagação normalizado	
em decibéis para 1 GHz com $\Delta x = 2m$ e $\Delta z = 0,04m$	
considerando o modelo proposto	117
Figura 5.1 - Vista de topo do obstáculo Gaussiano (branco) e	
da distribuição do fator de propagação normalizado em decibéis	
(escala de cor) na altura de 10 m	120
Figura 5.2 - Vista de topo do obstáculo Gaussiano (branco) e	
da distribuição do fator de propagação normalizado em decibéis	
(escala de cor) na altura de 20 m	120
Figura 5.3 - Vista de topo do obstáculo Gaussiano (branco) e	
da distribuição do fator de propagação normalizado em decibéis	
(escala de cor) na altura da antena transmissora (h _{TX} = 25 m)	121
Figura 5.4 - Vista de topo do obstáculo Gaussiano (branco) e	
da distribuição do fator de propagação normalizado em decibéis	
(escala de cor) na altura de 30 m	121
Figura 5.5 - Vista de topo do obstáculo Gaussiano (branco) e	
da distribuição do fator de propagação normalizado em decibéis	
(escala de cor) na altura de 40 m	122
Figura 5.6 - Vista lateral da distribuição do fator de propagação	
normalizado em decibéis no plano vertical central contendo	
o transmissor e receptor (azimute de 0°)	123
Figura 5.7 - Distribuição do fator de propagação normalizado	
em decibéis no plano vertical transversal a 5 km do transmissor	124
Figura 5.8 - Distribuição do fator de propagação normalizado	

24
25
25
26
26
28
28
29
29
30
31
32
32
32 32

em decibéis no plano vertical transversal a 6 km do transmissor	133
Figura 5.22 - Distribuição do fator de propagação normalizado	
em decibéis no plano vertical transversal a 7 km do transmissor	133
Figura 5.23 - Distribuição do fator de propagação normalizado	
em decibéis no plano vertical transversal a 8 km do transmissor	134
Figura 5.24 - Distribuição do fator de propagação normalizado	
em decibéis no plano vertical transversal a 9 km do transmissor	134
Figura 5.25 - Distribuição do fator de propagação normalizado	
em decibéis no plano vertical transversal a 10 km do transmissor	135
Figura 5.26 - Vista de topo do par de obstáculos Gaussianos	
(branco) e da distribuição do fator de propagação normalizado	
em decibéis (escala de cor) na altura de 10 m	136
Figura 5.27 - Vista de topo do par de obstáculos Gaussianos	
(branco) e da distribuição do fator de propagação normalizado	
em decibéis (escala de cor) na altura de 20 m	137
Figura 5.28 - Vista de topo do par de obstáculos Gaussianos	
(branco) e da distribuição do fator de propagação normalizado	
em decibéis (escala de cor) na altura da antena transmissora	
$(h_{TX} = 25 m)$	137
Figura 5.29 - Vista de topo do par de obstáculos Gaussianos	
(branco) e da distribuição do fator de propagação normalizado	
em decibéis (escala de cor) na altura de 30 m	138
Figura 5.30 - Vista de topo do par de obstáculos Gaussianos	
(branco) e da distribuição do fator de propagação normalizado	
em decibéis (escala de cor) na altura de 40 m	138
Figura 5.31 - Vista lateral da distribuição do fator de propagação	
normalizado em decibéis no plano vertical central contendo	
o transmissor e receptor (azimute de 0°) considerando	
o modelo proposto	140
Figura 5.32 - Vista lateral da distribuição do fator de propagação	
normalizado em decibéis no plano vertical central contendo	
o transmissor e receptor (azimute de 0°) considerando o modelo	
Split-Step de Fourier	140

141
142
142
143
144
144
145
145
145 145
145 145
145 145 146
145 145 146

Lista de tabelas

Tabela 2.1 - Coeficientes elétricos para cada componente	
da condição de contorno de impedância	45
Tabela 2.2 - Coeficientes magnéticos para cada componente	
da condição de contorno de impedância	46
Tabela 2.3 - Coeficientes da equação parabólica no interior	
da região de interesse	52
Tabela 2.4 - Coeficientes da equação parabólica no limite esquerdo	
da grade	54
Tabela 2.5 - Coeficientes da equação parabólica no limite direito	
da grade	55
Tabela 2.6 - Coeficientes da equação parabólica no limite superior	
da grade	56
Tabela 2.7 - Coeficientes da equação parabólica no limite superior	
esquerdo da grade	58
Tabela 2.8 - Coeficientes da equação parabólica no limite superior	
direito da grade	59
Tabela 2.9 - Coeficientes da condição de contorno de impedância	
no plano I (limite inferior)	61
Tabela 2.10 - Coeficientes da condição de contorno de impedância	
no plano I (limite inferior)	62
Tabela 2.11 - Coeficientes da condição de contorno de impedância	
no plano I + 1 (limite inferior esquerdo)	63
Tabela 2.12 - Coeficientes da condição de contorno de impedância	
no plano I (limite inferior esquerdo)	64
Tabela 2.13 - Coeficientes da condição de contorno de impedância	
no plano I + 1 (limite inferior direito)	65
Tabela 2.14 - Coeficientes da condição de contorno de impedância	
no plano I (limite inferior direito)	66