Resultados: Análise Não-Linear de Dutos com Defeitos de Corrosão

79

4.1 Introdução

Neste capítulo são apresentadas as previsões feitas pelos métodos tradicionais, pelo método MTI e pelo novo método MLOR. Primeiro se apresentam tabelas comparando as pressões de falha previstas pelos métodos tradicionais e as pressões obtidas na simulação numérica por MEF, mostrando-se também os erros respectivos para as previsões das pressões de falha. Depois se apresentam os resultados do novo método MLOR obtidos nas simulações numéricas e suas comparações feitas com os resultados obtidos a partir do método dos elementos finitos usando o software comercial ANSYS 12. Os resultados das tensões são também apresentados de forma gráfica para sua melhor visualização e interpretação.

Finalmente os resultados da simulação numérica e os cálculos teóricos do método MLOR são comparados com resultados de testes reais do laboratório realizados por AC Benjamin, JLF Freire, e RD Vieira [8].

4.2 Resultados e Comparação entre os Métodos

As previsões dadas pelos métodos tradicionais, pelo método MTI e pelo novo método MLOR utilizando fatores f iguais a 0.5, 1, 2 e 3.33 teóricos, assim como as pressões de ruptura encontradas nos testes reais [8] e os resultados da simulação numérica por elementos finitos das pressões de falha, segundo os

ESPÉCIME	PRESSÃO DE FALHA (MPa)										
	PRESSÃO	MÉTODOS TRADICIONAIS			MTI	NOV	O MÉTO	MEF			
	TESTE	B31G	085dL	DNV	MIII	f = 0.5	f = 1	f = 2	f = 3.33	PEL	CNV
IDTS2	22.68	21.068	20.678	21.980	21.980	21.980	21.980	21.980	21.980	22.40	22.55
IDTS3	20.31	17.428	15.897	16.404	19.144	19.143	19.143	19.143	19.143	19.65	19.77
IDTS4	21.14	20.907	20.411	21.660	21.660	21.660	21.660	21.660	21.660	21.50	21.60
IDTS5	20.87	18.802	17.673	18.697	21.950	19.533	20.161	21.042	21.783	21.25	21.35
IDTS6	18.66	17.324	15.741	16.193	19.025	17.530	18.500	19.026	19.026	18.85	19.01
IDTS7	18.77	17.528	16.045	16.603	19.254	17.899	18.832	19.254	19.254	19.00	19.15
IDTS8	24.20	21.224	21.311	24.561	24.561	24.561	24.561	24.561	24.561	24.50	24.62
IDTS9	23.06	18.679	18.036	20.786	24.496	22.261	23.072	23.641	24.040	23.60	23.71
IDTS10	23.23	18.739	18.119	20.889	22.279	21.572	22.084	22.295	22.295	22.65	22.85
IDTS11	21.26	17.577	16.581	18.524	22.273	20.601	20.601	20.601	20.601	21.10	*
IDTS12	20.16	12.185	15.663	16.775	20.233	18.892	19.392	20.007	20.246	20.45	*

Tabela 4: Previsão da pressões de falha dos casos estudados

(*) Os resultados para estes espécimes não convergiram.

Obtidas as previsões das pressões de falha, depois compara-se com as pressões reais obtidas no teste experimental [1] e construiu-se a Tabela 5 de erros percentuais mostrada a seguir.

	ERROS COM RELAÇÃO À PRESSÃO DE TESTE											
ESPÉCIME	PRESSÃO TESTE	MÉTODOS TRADICIONAIS			MUDI	NOVO MÉTODO (MLOR)				MEF		
		B31G	085dL	DNV	MII	f = 0.5	f = 1	f = 2	f = 3.33	PEL	CNV	
IDTS2	22.68	7.10%	8.82%	3.08%	3.08%	3.08%	3.08%	3.08%	3.08%	1.23%	0.56%	
IDTS3	20.31	14.21%	21.74%	19.25%	5.76%	5.76%	5.76%	5.76%	5.76%	3.27%	2.69%	
IDTS4	21.14	1.09%	3.44%	-2.47%	-2.47%	-2.47%	-2.47%	-2.47%	-2.47%	-1.71%	-2.20%	
IDTS5	20.87	9.92%	15.33%	10.42%	-5.16%	6.42%	3.41%	-0.81%	-4.36%	-1.81%	-2.29%	
IDTS6	18.66	7.14%	15.63%	13.20%	-1.98%	6.04%	0.84%	-1.98%	-1.98%	-1.04%	-1.88%	
IDTS7	18.77	6.63%	14.53%	11.56%	-2.56%	4.66%	-0.31%	-2.56%	-2.56%	-1.21%	-1.98%	
IDTS8	24.20	12.30%	11.94%	-1.49%	-1.49%	-1.49%	-1.49%	-1.49%	-1.49%	-1.24%	-1.74%	
IDTS9	23.06	19.00%	21.79%	9.86%	-6.23%	3.46%	-0.05%	-2.52%	-4.25%	-2.34%	-2.81%	
IDTS10	23.23	19.33%	22.00%	10.07%	4.09%	7.13%	4.93%	4.02%	4.02%	2.49%	1.64%	
IDTS11	21.26	17.33%	22.01%	12.87%	-4.76%	3.10%	3.10%	3.10%	3.10%	0.76%	*	
IDTS12	20.16	39.56%	22.31%	16.79%	-0.36%	6.29%	3.81%	0.76%	-0.43%	-1.44%	*	
Erro Médio		13.96%	16.32%	9.38%	-1.10%	3.82%	1.87%	0.44%	-0.14%	-0.28%	-0.89%	
Desvio Padrão		10.26%	6.37%	6.96%	3.91%	3.20%	2.71%	3.05%	3.53%	1.90%	1.99%	
Erro Mínimo		1.09%	3.44%	-2.47%	-6.23%	3.19%	2.68%	-2.56%	-4.36%	-2.34%	-2.81%	
Erro Maximo		39 56%	22 31%	19.25%	5 76%	7 13%	5 76%	576%	5 76%	3 27%	2 69%	

Tabela 5: Erros das pressões de falha

4.3

Resultados das Simulações Numéricas

Nesta etapa, primeiro acha-se a pressão de falha no duto com defeitos interagindo considerando os critérios de falha e convergência adotados e a análise das tensões de von Mises. Para mostrar isto utiliza-se o espécime com dois defeitos IDTS5. Depois, apresenta-se uma tabela com todos os espécimes estudados e faz-se uma comparação com os testes reais.

A Figura 30 ilustra a malha, as camadas ao longo da espessura e a distribuição das tensões de von Mises, mostrando-se somente o grupo de defeitos e não o espécime todo (IDTS5). Observa-se uma região de cor cinza que corresponde a valores de tensão menores que o valor mínimo de tensão considerada para a visualização (565.7 MPa cor azul); esta escala é adotada para uma melhor visualização gráfica das tensões. Observe-se que a menor tensão de von Mises é SMN=156 MPa. Cada faixa de cor varia de 20 em 20 MPa desde o valor mínimo cor azul (565.7 MPa) até a cor vermelho (SMX=745.7 MPa), o máximo valor da resistência a tração verdadeira (S_{ur} =SMX) do material.

Figura 30: Distribuição das tensões de VM do espécime IDTS5

Figura 31: Faixa das tensões de VM do espécime IDTS5

A faixa das tensões ainda é grande com incrementos de 20 MPa para a escala de visualização de qual elemento ou elementos da camada exterior dos defeitos já atingiram a tensão máxima. Assim é preciso reduzir a escala de visualização. A Figura 31 e Figura 32 mostram os mesmos dados com incrementos de 10MPa e de 1MPa respectivamente, onde se observa de forma mais clara que elementos atingem o valor da resistência à tração verdadeira (745.7 MPa cor vermelha).

A faixa de tensão máxima (cor vermelha) é atingida apenas por sete elementos, cinco elementos em cada defeito seguindo as LOR e dois nos vértices, como mostra a Figura 32, segundo o critério de primeiro elemento para os modelos Numéricos via FEM.

Figura 32: Tensões de VM da superfície exterior ou primeira camada

A Figura 33 mostra os resultados para a última camada (superfície interior do tubo), na qual dois elementos atingem a tensão máxima. Isto acontece quando todos os elementos ao longo da espessura (todas as camadas) atingem o valor da resistência à tração verdadeira ($\sigma_{VM} = \sigma_{ur}$) do material, como se apresentou no capítulo anterior, na seção critérios de falha.

Figura 33: Tensões de VM da superfície interior ou ultima camada

A Figura 34 mostra as tensões de von Mises para a última camada (interna), desde o mínimo valor (cor azul) até o máximo valor de tensão (cor vermelho escuro).

Figura 34: Tensões de von Mises na camada interna

Os dados das tensões de von Mises e as coordenadas XYZ dos nós foram tirados da análise numérica feita no ANSYS, mediante o uso do comando PHAT, depois estes dados foram processados no *Matlab*, aonde gerou-se a Figura 34 e Figura 35.

A Figura 35 apresenta as tensões de von Mises para a última camada (interna), ilustrando-se uma superfície tridimensional com as tensões máximas por onde acontecerá a falha (cor vermelho escuro), Nestas regiões estão contidas as denominadas linhas ortogonais de ruptura LOR.

Figura 35: Superfície das tensões de von Mises

As Figuras 36 a 38, apresentam a convergência e o número de iterações; o processo iterativo não-linear continua até que a convergência estabelecida seja atingida segundo descrito na seção (3.6), o critério baseado nos valores de forças e utilizando a norma euclidiana L2.

Na Figura 36 é apresentada a convergência quando os elementos da primeira camada (superfície exterior dos defeitos) atingem o valor do limite de resistência à tração verdadeira ($\sigma_{VM} = \sigma_{ur}$) do material, sendo que o número de iterações máximas neste caso foi de 86.

Figura 36: Critério de convergência

A Figura 37 mostra a convergência para a última camada dos elementos correspondentes à superfície interior do tubo. No final houve uma instabilidade mínima, mas atingiu-se o critério de falha chegando-se à convergência, o número de iterações (90 iterações) foi maior que para a primeira camada.

Figura 37: Critério de convergência última camada de elementos

Figura 38: Não convergência e instabilidade.

Ao se aumentar o valor da pressão Δp , o que acontece é a instabilidade numérica, como mostrado na Figura 38, pela presença de um ou mais elementos muito distorcidos no modelo analisado e também pelo esgotamento de ductilidade do material. Isto tem relação com o patamar quase horizontal da tensão máxima da curva tensão deformação verdadeira no intervalo de 9% a 18% da deformação como se apresentou na seção (3.5) para a não linearidade do material considerada para a simulação numérica via MEF.

A Tabela 6 mostra a evolução passo a passo do processo iterativo e as pressões (MPa) para cada fase de carga. Para a *load step 17* o *substep* corresponde a infinito (999999), isto quer dizer que não houve convergência segundo o critério estabelecido. Depois tem-se que fazer uma nova simulação com uma pressão menor da que a que causou a não convergência.

***** INDEX OF DATA SETS ON RESULTS FILE - IDTS12 *****										
LOAD/STEP	TIME/FREQ	SUBSTEP	CUMULATIVE	Δp	PRESSÃO					
1	1.00E-02	1	2	1.7956	11.6876					
2	2.00E-02	2	3	1.7956	13.4832					
3	3.50E-02	3	4	1.7956	15.2788					
4	5.75E-02	4	5	1.7956	17.0744					
5	9.13E-02	5	6	0.8978	17.9722					
6	0.14188	6	7	0.8978	18.8700					
7	0.21781	7	8	0.4489	19.3189					
8	0.33172	8	9	0.4489	19.7678					
9	0.50258	9	11	0.2245	19.9923					
10	0.75887	10	23	0.2245	20.2167					
11	0.86738	11	61	0.1122	20.3289					
12	0.93369	12	70	0.0561	20.3850					
13	0.96353	13	90	0.0281	20.4131					
14	0.98176	14	96	0.0140	20.4271					
15	0.98997	15	120	0.0140	20.4412					
16	0.99223	16	171	0.0070	20.4482					
17	1	999999	181	-	-					

Tabela 6: Resultados da simulação numérica

4.4 Análise das LOR

A Figura 39 apresenta o grupo de defeitos do espécime IDTS5 que será utilizado para o estudo das linhas ortogonais de ruptura do método MLOR.

Figura 39: Linhas ortogonais de ruptura LOR

Figura 40: Superfícies para estudo das LOR

Na Figura 40 são mostradas as seções em cor vermelho (B) ao lado esquerdo e em cor azul (A) ao lado direito. As análises de tensões correspondentes às LOR são mostradas a seguir. O número (1) comprende à LOR que está na superfície interna do tubo (última camada), (2) comprende à LOR que está na camada intermédia, e (3) comprende à LOR que está na superfície externa do defeito, todas elas contidas nas seções A e B.

Figura 41: Tensão normal X para B

Figura 42: Tensão normal Y para B

Figura 43: Tensão normal Z para B

Figura 44: Tensão cisalhante XZ para B

Figura 45: Tensão cisalhante XY para B

Figura 47: Tensão principal (1) para B

Figura 48: Tensão principal (2) para B

Figura 49: Tensão principal (3) para B

Figura 50: Tensão de von Mises para B

4.5 Análise Geral quanto aos Métodos de Cálculo

As simulações realizadas estão divididas em dois grupos: IDTS2 a IDTS7 e de IDTS8 a IDTS12; para estes dois grupos de espécimes são calculadas as pressões pelos métodos tradicionais, MTI, MLOR utilizando os fatores de 0.5, 2 e 3.33 e a simulação numérica pelo MEF.

Figura 51: Razões entre as pressões previstas e a pressão de teste

Na Figura 51, as razões das pressões de falha reais medidas em testes de laboratório [8, 18] são comparadas com aquelas previstas pelos cinco métodos de avaliação, ou seja, o método ASME B31G, DNV RP-F101 para um defeito único (parte B), o RSTRENG área efetiva, o método da DNV RP-F101 método para defeitos interagindo (Parte B), o método de MTI, MLOR, e também com o MEF. Observa-se o conservadorismo dos métodos ASME B31G, DNV RP-F101 e RSTRENG (085dL).

Na Figura 52 são mostradas as razões de pressões de falha para o método de MTI, MLOR, e para o MEF, isto com a finalidade de ter uma melhor visualização.

Observa-se o não conservadorismo do método MTI. O MEF apresenta um conservadorismo somente para quatro espécimes.

Figura 52: Razões entre as pressões para o MTI, MLOR e MEF

A Tabela 7 apresenta as razões de pressão quando são comparadas com a pressão de falha experimental para todos os métodos, incluindo o MEF. O valor máximo é 1.044 para o MLOR considerando f=3.33 e para o método MEF a razão máxima é 1.023. Estes valores estão mais perto da pressão de falha real. Observase que para o fator f=2 a razão máxima é 1.026 e o método apresenta melhor a realidade.

ESPÉCIME	MÉTODOS TRADICIONAIS			МТІ	NC)VO MÉT(MEF			
	B31G	085dL	DNV	NI I I	f = 0.5	f = 1	f = 2	f = 3.33	PEL	CNV
IDTS2	0.929	0.912	0.969	0.969	0.969	0.969	0.969	0.969	0.988	0.994
IDTS3	0.858	0.783	0.808	0.942	0.942	0.942	0.942	0.942	0.967	0.973
IDTS4	0.989	0.966	1.025	1.025	1.025	1.025	1.025	1.025	1.017	1.022
IDTS5	0.901	0.847	0.896	1.052	0.936	0.966	1.008	1.044	1.018	1.023
IDTS6	0.929	0.844	0.868	1.020	0.940	0.992	1.020	1.020	1.010	1.019
IDTS7	0.934	0.855	0.884	1.026	0.953	1.003	1.026	1.026	1.012	1.020
IDTS8	0.877	0.881	1.015	1.015	1.015	1.015	1.015	1.015	1.012	1.017
IDTS9	0.810	0.782	0.901	1.062	0.965	1.001	1.025	1.042	1.023	1.028
IDTS10	0.807	0.780	0.899	0.959	0.929	0.951	0.960	0.960	0.975	0.984
IDTS11	0.827	0.780	0.871	1.048	0.969	0.969	0.969	0.969	0.992	-
IDTS12	0.604	0.777	0.832	1.004	0.937	0.962	0.992	1.004	1.014	-
Erro Médio	0.860	0.837	0.906	1.011	0.962	0.981	0.996	1.001	1.003	1.009
Desvio Padrão	0.103	0.064	0.070	0.039	0.032	0.027	0.030	0.035	0.019	0.020
Maximo	0.989	0.966	1.025	1.062	1.025	1.025	1.026	1.044	1.023	1.028
Minimo	0.103	0.777	0.808	0.942	0.929	0.942	0.942	0.942	0.967	0.973

Tabela 7: Razões entre as pressões

Finalmente é apresentada uma comparação entre o teste experimental e o modelo numérico utilizando o MEF.

Quadro 2: Comparação entre resultados experimentais e numéricos (MEF) para os espécimes IDTS 2 a 7

O Quadro 2 mostra a comparação entre o teste experimental e a simulação pelo MEF para os espécimes IDTS 2 a 7. A segunda coluna representa as tensões de von Mises em escala de 736.7 MPa (cor azul) até o maximo valor 745.7 MPa

(cor vermelha) para a última camada ou superfície interna para cada espécime IDTS. Observe-se que o aumento para cada cor da escala é de 1 MPa. Da mesma forma é apresentado no Quadro 3 a comparação entre o teste experimental e a simulação pelo MEF para os espécimes IDTS 8 a 12.

Os Quadros 4 e 5 apresentam comparações entre o teste real e as previsões

de ruptura propostas pelo novo método MLOR. Os resultados experimentais para

os espécimes IDTS-3, 4 e 6 mostraram que houve interação, embora não esteja tão

evidente [8, 18]; os cálculos teóricos segundo o método MLOR mostra que para o

espécime IDTS-4 somente ocorre falha individual (vide Apêndice A.2). Para o

espécime IDTS-3 o MLOR diz que há interação entre os dois defeitos, mas o

Quadro 4: Comparação entre resultados experimentais e analíticos (MLOR)

98

resultado do teste experimental não mostra isto de forma clara; a falha individual apresenta estricção (*necking*) nos dois defeitos.

Quadro 5: Comparação entre resultados experimentais e analíticos (MLOR)

No espécime IDTS-7 o método MLOR prevê interação entre os dois defeitos alinhados, observa-se que os dois menores valores de pressão de falha ocorrem para dois (19.254MPa) e três (20.089 MPa) defeitos (vide Apêndice A.2); por este fato a falha no teste experimental acontece com os três defeitos. O espécime IDTS-6 tem um comportamento semelhante ao do espécime IDTS-7, por apresentar a mesma configuração; a falha no espécime IDTS-6 é parcial e pode acontecer em dois (19.026MPa) e três (19.812 MPa) defeitos.

Para o espécime IDTS-10 o método MLOR prevê que a falha pode acontecer nos dois defeitos superiores ou inferiores indiferentemente. No teste real a falha acontecerá por onde exista a menor resistência causada por pequenas diferenças ou tolerâncias geométricas na usinagem dos defeitos. A amostra IDTS-10 teve a sua ruptura passando por dois dos defeitos na linha superior do grupo de defeitos, mas a estricção (*necking*) também foi pronunciada nos dois defeitos localizados na linha inferior.

A falha dos espécimes IDTS 7 e 9 aconteceu nos três defeitos e também em toda a espessura da parede cheia do material entre eles (falha total). O método MLOR prevê que a falha para os espécimes IDTS 7 e 9 ocorre somente para dois dos três defeitos, isto porque as pressões para dois e três defeitos calculadas pelo método MLOR estão bem próximas e correspondem aos menores valores de pressão de falha (vide apêndice A.2);

Para o grupo de defeitos dos espécimes IDTS 10 a 12 a falha aconteceu em parte do número total de defeitos do grupo. Essas falhas são classificadas como falha parcial e interativa. O método MLOR prevê a falha para os espécimes IDTS 10 a 12 da mesma forma que no teste experimental.

O Quadro 6 mostra uma comparação das tensões de von Mises atuantes na superficie interna do duto, e os resultados experimentais para os espécimes IDTS 2 a 7. A segunda coluna mostra iso-superfícies para valores das tensões; a terceira coluna mostra uma superfície tridimensional a qual representa distribuição das tensões em toda a área do grupo de defeitos na direção longitudinal e circunferencial para cada espécime IDTS (vide Apêndice A.4).

Quadro 6: Tensões de von Mises para os espécimes IDTS 2 a 7

O Quadro 7 mostra uma comparação das tensões de von Mises com os resultados experimentais para os espécimes IDTS 8 a12, a segunda coluna mostra iso-superfícies para valores das tensões; a terceira coluna mostra uma superfície tridimensional a qual representa distribuição das tensões em toda a área do grupo de defeitos na direção longitudinal e circunferencial para cada espécime IDTS (vide Apêndice A.4).

As iso-superfícies correspondentes à segundas colunas dos Quadro 6 e 7 mostram as tensões de von Mises; de cor azul as tensões m ínimas e de cor vermelho escuro as tensões máximas (746 MPa para IDTS 2 a 7 e 797MPa para IDTS 8 a 12). Estas zonas vermelhas correspondem às linhas ortogonais de ruptura LOR, por onde ocorre a ruptura (falha) prevista pelo método de elemento finitos.

Nos espécimes IDTS-2, IDTS-4 e IDTS-8 a simulação numérica pelo MEF prevê que a falha acontecerá perto das bordas do defeito seguindo a direção longitudinal como se mostra na terceira coluna. No teste experimental os espécimes IDTS 2 e 4 confirmaram melhor esta afirmação.

Quadro 7: Tensões de von Mises para os espécimes IDTS 8 a 12

A falha dos espécimes IDTS 7 e 9 segundo a simulação por MEF aconteceu nos três defeitos, falha total. Isto aconteceu nos teste experimentais da mesma forma, como se mostra nas figuras dos quadros 6 e 7.

Para o grupo de defeitos dos espécimes IDTS 10 a 12, a falha segundo o MEF aconteceu em parte do número total de defeitos do grupo; por exemplo, para o espécime IDTS12 a falha foi para 6 dos 9 defeitos. Essas falhas são classificadas como falha parcial e interativa, como mostrado nas figuras da segunda coluna do Quadro 7.