3 Análise de Campos Modais em Guias de Onda Superquadráticos

Este capítulo refere-se à análise de campos modais em guias de onda superquadráticos. Da mesma forma que no capítulo anterior, será aplicado o método de Rayleigh-Ritz na determinação dos campos modais. Entretanto, as funções de base polinomiais são substituídas por funções trigonométricas, pois a utilização de polinômios como funções de base limita o número de modos que podem ser computados.

Seja a seção transversal de um guia superquadrático definida por [12]:

$$\left|\frac{x}{a_{0}}\right|^{\gamma} + \left|\frac{y}{b_{0}}\right|^{\gamma} - 1 = 0$$
(3.1)

onde, $a_0 e b_0$ são os semi-eixos nas direções x e y, respectivamente; $\gamma e o$ parâmetro real que controla o comportamento do raio de curvatura.

A figura 3.1 ilustra os casos onde $\gamma = 2$, 5 e 100 para uma relação de $a_0/b_0 = 2$. Quando $\gamma = 2$, a estrutura correspondente é um guia de onda elíptico, se $a_0 \neq b_0$, ou um guia de onda circular, se $a_0 = b_0$. A medida em que γ aumenta, a estrutura se aproxima de um guia de onda retangular com cantos arredondados.

Figura 3.1 – Seção transversal de um guia de onda superquadrático.

As paredes do guia são consideradas condutores perfeitos e o meio interior ao guia caracterizado pela permissividade ε_0 e pela permeabilidade μ_0 .

Tendo em vista que a determinação dos campos modais em guias de onda superquadráticos segue a mesma metodologia descrita no capítulo 2, nos itens abaixo serão descritos apenas os pontos principais que conduzem a solução do problema.

3.1. Determinação dos Campos Modais pelo Método de Rayleigh-Ritz

Nesta seção, descreve-se o procedimento para determinação dos campos modais em guias de onda superquadráticos, aplicando o método de Rayleigh-Ritz definido na seção 2.1.

Considere-se um guia de onda de seção transversal superquadrática como mostrado na figura 3.1. Admite-se que o problema está sujeito às mesmas condições de contorno indicadas anteriormente em (2.15a) e (2.15b).

As soluções para os campos no interior do guia podem ser construídas a partir das soluções da equação (2.16a), que são obtidas aplicando o método de Rayleigh-Ritz, definido na seção 2.1, resolvendo-se o sistema indicado em (2.12).

Para os modos TE, a condição de contorno dada por (2.15a) é uma condição natural e, portanto, satisfeita pela aplicação direta das funções de base. Neste capítulo, serão utilizadas funções de base trigonométricas:

$$f_i = sen\left(\frac{m\pi x}{2a}\right)cos\left(\frac{n\pi y}{2b}\right)$$
(3.2)

onde *a* e *b* não são necessariamente iguais aos semi-eixos a_0 e b_0 .

Observa-se que as funções de base dependem dos pares $m \in n$, ou seja, o índice *i* corresponde ao par ordenado (m,n).

Uma vez que os guias de onda superquadráticos são estruturas simétricas em relação a ambos eixos coordenados, as soluções $\psi_T(x, y)$ serão classificadas em

modos pares e ímpares em relação a cada eixo coordenado, aplicando-se o mesmo critério definido no capítulo 2.

A partir desse critério, verifica-se que modos TE pares (ímpares) em uma dada direção são representados por funções *cosseno* (*seno*) na coordenada correspondente. Assim, a equação (3.2) é válida para modos ímpares em x e pares em y. Para outras paridades, as funções de base devem ser modificadas convenientemente.

As soluções, $\psi_T(x, y)$, são então expressas por:

$$\Psi_T(x,y) = \sum_i c_i f_i = \sum_{m=m_{min}}^{M_{max}} \sum_{n=n_{min}}^{N_{max}} c_{mn} \operatorname{sen}\left(\frac{m\pi x}{2a}\right) \cos\left(\frac{n\pi y}{2b}\right)$$
(3.3)

onde M_{max} e N_{max} são os valores máximos dos índices *m* e *n*, respectivamente.

Os valores mínimos dos índices em m e n, $m_{mim} e n_{mim}$, são definidos de acordo com a paridade dos modos. Assim, para modos pares em x(y), $m_{min} = 0$ $(n_{min} = 0)$, efetuando-se o somatório sobre m(n) par. Analogamente, para modos ímpares em x(y), $m_{min} = 1$ $(n_{min} = 1)$, e o somatório é efetuado para valores ímpares dos índices.

A computação de um grande número de modos TE pode gerar o aparecimento de modos espúrios, pois a condição de contorno dada por (2.15a) é uma condição natural e, portanto, satisfeita apenas aproximadamente.

Para evitar a presença de modos espúrios, é estabelecida a seguinte condição para que uma dada solução seja considerada válida:

$$\frac{1}{\sqrt{a_0 b_0}} \int_C \left| \frac{\nabla \psi_T(x, y)}{\psi_T(x, y)} \right| dl \le 50$$
(3.4)

sendo a integração realizada sobre o contorno do guia.

Para os modos TM, a condição de contorno indicada em (2.15b) não é satisfeita pela aplicação direta das funções trigonométricas. Para tanto, as funções de base devem ser multiplicadas por uma função, g(x, y), que anule o potencial

nas paredes condutoras do guia. Considerando-se que o contorno da seção transversal do guia de onda é superquadrático, tal função é dada por:

$$g(x, y) = \left(\frac{x}{a_0}\right)^{\gamma} + \left(\frac{y}{b_0}\right)^{\gamma} - 1$$
(3.5)

Assim, as funções de base, f_i , e as soluções, $\psi_T(x, y)$, são expressas por:

$$f_{i} = \left[\left(\frac{x}{a_{0}} \right)^{\gamma} + \left(\frac{y}{b_{0}} \right)^{\gamma} - 1 \right] cos \left(\frac{m\pi x}{2a} \right) sen \left(\frac{n\pi y}{2b} \right)$$
(3.6)

$$\Psi_{T}(x,y) = \sum_{i} c_{i} f_{i} = \sum_{m=m_{min}}^{M_{max}} \sum_{n=n_{min}}^{N_{max}} c_{mn} \left[\left(\frac{x}{a_{0}} \right)^{\gamma} + \left(\frac{y}{b_{0}} \right)^{\gamma} - 1 \right] cos \left(\frac{m\pi x}{2a} \right) sen \left(\frac{n\pi y}{2b} \right)$$

$$(3.7)$$

Para os modos TM, as funções *seno* (*cosseno*) em uma dada dimensão geram modos *pares* (*ímpares*) na direção correspondente.

Novamente, a escolha das funções *seno* e *cosseno* em (3.6) é adequada para modos ímpares em x e pares em y. Para outras paridades, as funções de base devem ser modificadas convenientemente.

Os valores mínimos dos índices m e n, $m_{min} e n_{mim}$, são definidos de acordo com a paridade dos modos. Assim, para modos pares em x (y), $m_{min} = 1$ ($n_{min} = 1$), efetuando-se o somatório sobre m (n) ímpar. De forma análoga, para modos ímpares em x (y), $m_{min} = 0$ ($n_{min} = 0$), e o somatório é efetuado para valores pares dos índices.

 M_{max} e N_{max} devem ser suficientemente grandes para assegurar a convergência dos resultados.

O cálculo numérico dos elementos das matrizes [A] e [B] é realizado nos itens 3.1.1 e 3.1.2.

3.1.1. Determinação dos Elementos *a_{ij}*

Os elementos a_{ij} são determinados efetuando-se a integração indicada em (2.13a).

Para os modos TE, as funções de base são definidas em (3.2), sendo o vetor gradiente dessas funções dado por:

$$\nabla f_i = \left(\frac{m\pi}{2a}\right) \cos\left(\frac{m\pi x}{2a}\right) \cos\left(\frac{n\pi y}{2b}\right) \vec{a}_x - \left(\frac{n\pi}{2b}\right) \sin\left(\frac{m\pi x}{2a}\right) \sin\left(\frac{n\pi y}{2b}\right) \vec{a}_y \tag{3.8}$$

onde, $\vec{a}_x \in \vec{a}_y$ são os vetores unitários nas direções $x \in y$, respectivamente. Substituindo-se (3.8) em (2.13a), resulta:

$$a_{ij} = \left(\frac{m_1\pi}{2a}\right) \left(\frac{m_2\pi}{2a}\right) \int_0^{a_0} \cos\left(\frac{m_1\pi x}{2a}\right) \cos\left(\frac{m_2\pi x}{2a}\right) \int_0^{f_b(x)} \cos\left(\frac{n_1\pi y}{2b}\right) \cos\left(\frac{n_2\pi y}{2b}\right) dy dx + \\ + \left(\frac{n_1\pi}{2b}\right) \left(\frac{n_2\pi}{2b}\right) \int_0^{a_0} \sin\left(\frac{m_1\pi x}{2a}\right) \sin\left(\frac{m_2\pi x}{2a}\right) \int_0^{f_b(x)} \sin\left(\frac{n_1\pi y}{2b}\right) \sin\left(\frac{n_2\pi y}{2b}\right) dy dx \\ = \int_0^{INT_2(x)} \sin\left(\frac{n_2\pi y}{2b}\right) dy dx$$

$$(3.9)$$

onde, $f_b(x) = b_0 \left[1 - (x/a_0)^{\gamma} \right]^{\frac{1}{\gamma}}$.

Os índices *i* e *j* representam os pares ordenados (m_1, n_1) e (m_2, n_2) , respectivamente.

As integrais $INT_1(x)$ e $INT_2(x)$ indicadas em (3.9) são tabeladas [25]. Seus resultados encontram-se no Apêndice A. A integração em relação a x é efetuada numericamente.

Para os modos TM, as funções de base são definidas em (3.6), sendo o vetor gradiente dessas funções expresso por:

$$\nabla f_{i} = f_{1}(x, y) \, \vec{a}_{x} + f_{2}(x, y) \, \vec{a}_{y} \tag{3.10}$$

onde,

$$f_{1}(x,y) = \left(-\frac{m_{1}\pi}{2a}\right) sen\left(\frac{m_{1}\pi x}{2a}\right) sen\left(\frac{n_{1}\pi y}{2b}\right) \left[\left(\frac{x}{a_{0}}\right)^{\gamma} + \left(\frac{y}{b_{0}}\right)^{\gamma} - 1\right] + cos\left(\frac{m_{1}\pi x}{2a}\right) sen\left(\frac{n_{1}\pi y}{2b}\right) \left(\frac{\gamma}{a_{0}}\right) \left(\frac{x}{a_{0}}\right)^{\gamma-1}$$
(3.11a)
$$\left(n_{0}\pi\right) = \left(m_{0}\pi x\right) = \left(n_{0}\pi y\right) \left[\left(x_{0}\right)^{\gamma} + \left(y_{0}\right)^{\gamma}\right]$$

$$f_{2}(x,y) = \left(\frac{n_{1}\pi}{2b}\right) cos\left(\frac{m_{1}\pi x}{2a}\right) cos\left(\frac{n_{1}\pi y}{2b}\right) \left[\left(\frac{x}{a_{0}}\right)^{r} + \left(\frac{y}{b_{0}}\right)^{r} - 1\right] + cos\left(\frac{m_{1}\pi x}{2a}\right) sen\left(\frac{n_{1}\pi y}{2b}\right) \left(\frac{\gamma}{b_{0}}\right) \left(\frac{x}{b_{0}}\right)^{\gamma-1}$$
(3.11b)

Combinando-se (3.10) e (3.11) e substituindo-se em (2.13a), obtém-se:

$$\begin{aligned} a_{ij} &= \left(\frac{m_{i}\pi}{2a}\right) \left(\frac{m_{2}\pi}{2a}\right)_{0}^{a_{0}} sen\left(\frac{m_{i}\pi x}{2a}\right) sen\left(\frac{m_{2}\pi x}{2a}\right) \cdot \\ & \cdot \underbrace{\int_{0}^{f_{b}(x)} \left[\left(\frac{x}{a_{0}}\right)^{\gamma} + \left(\frac{y}{b_{0}}\right)^{\gamma} - 1\right]^{2} sen\left(\frac{n_{i}\pi y}{2b}\right) sen\left(\frac{n_{2}\pi y}{2b}\right) dy \ dx - \\ & - \left(\frac{m_{i}\pi}{2a}\right) \left(\frac{\gamma}{a_{0}}\right)_{0}^{a_{0}} sen\left(\frac{m_{i}\pi x}{2a}\right) cos\left(\frac{m_{2}\pi x}{2a}\right) \left(\frac{x}{a_{0}}\right)^{\gamma-1} \cdot \\ & \cdot \underbrace{\int_{0}^{f_{b}(x)} \left[\left(\frac{x}{a_{0}}\right)^{\gamma} + \left(\frac{y}{b_{0}}\right)^{\gamma} - 1\right] sen\left(\frac{n_{i}\pi y}{2b}\right) sen\left(\frac{n_{2}\pi y}{2b}\right) dy \ dx - \\ & - \left(\frac{m_{2}\pi}{2a}\right) \left(\frac{\gamma}{a_{0}}\right)_{0}^{a_{0}} cos\left(\frac{m_{i}\pi x}{2a}\right) sen\left(\frac{m_{2}\pi x}{2a}\right) \left(\frac{x}{a_{0}}\right)^{\gamma-1} \cdot \\ & \cdot \underbrace{\int_{0}^{f_{b}(x)} \left[\left(\frac{x}{a_{0}}\right)^{\gamma} + \left(\frac{y}{b_{0}}\right)^{\gamma} - 1\right] sen\left(\frac{n_{i}\pi y}{2b}\right) sen\left(\frac{n_{2}\pi y}{2b}\right) dy \ dx + \\ & + \left(\frac{\gamma}{a_{0}}\right)^{2} \int_{0}^{a_{0}} \left(\frac{x}{a_{0}}\right)^{2\gamma-2} cos\left(\frac{m_{i}\pi x}{2a}\right) cos\left(\frac{m_{2}\pi x}{2a}\right) \underbrace{\int_{VT_{3}(x)}^{f_{b}(x)} sen\left(\frac{n_{i}\pi y}{2b}\right) sen\left(\frac{n_{2}\pi y}{2b}\right) dy \ dx + \\ & + \left(\frac{\gamma}{a_{0}}\right)^{2} \int_{0}^{a_{0}} \left(\frac{x}{a_{0}}\right)^{2\gamma-2} cos\left(\frac{m_{i}\pi x}{2a}\right) cos\left(\frac{m_{2}\pi x}{2a}\right) \underbrace{\int_{VT_{3}(x)}^{f_{b}(x)} sen\left(\frac{n_{i}\pi y}{2b}\right) sen\left(\frac{n_{2}\pi y}{2b}\right) dy \ dx + \\ & + \left(\frac{\gamma}{a_{0}}\right)^{2} \int_{0}^{a_{0}} \left(\frac{x}{a_{0}}\right)^{2\gamma-2} cos\left(\frac{m_{i}\pi x}{2a}\right) cos\left(\frac{m_{2}\pi x}{2a}\right) \underbrace{\int_{VT_{3}(x)}^{f_{b}(x)} sen\left(\frac{n_{i}\pi y}{2b}\right) sen\left(\frac{n_{2}\pi y}{2b}\right) dy \ dx + \\ & \frac{VT_{3}(x)}{VT_{6}(x)} \end{bmatrix}$$

$$+\left(\frac{n_{1}\pi}{2b}\right)\left(\frac{n_{2}\pi}{2b}\right)_{0}^{a_{0}}\cos\left(\frac{m_{1}\pi x}{2a}\right)\cos\left(\frac{m_{2}\pi x}{2a}\right)\cdot\\\cdot\int_{0}^{b_{0}\left[\left(\frac{x}{a_{0}}\right)^{\gamma}+\left(\frac{y}{b_{0}}\right)^{\gamma}-1\right]^{2}\cos\left(\frac{n_{1}\pi y}{2b}\right)\cos\left(\frac{n_{2}\pi y}{2b}\right)dy \ dx +\\\left(\frac{n_{1}\pi}{2b}\right)\left(\frac{\gamma}{b_{0}}\right)_{0}^{a_{0}}\cos\left(\frac{m_{1}\pi x}{2a}\right)\cos\left(\frac{m_{2}\pi x}{2a}\right)\cdot\\\cdot\int_{0}^{b_{0}\left[\left(\frac{y}{b_{0}}\right)^{\gamma-1}\left[\left(\frac{x}{a_{0}}\right)^{\gamma}+\left(\frac{y}{b_{0}}\right)^{\gamma}-1\right]\cos\left(\frac{n_{1}\pi y}{2b}\right)\sin\left(\frac{n_{2}\pi y}{2b}\right)dy \ dx +\\\left(\frac{n_{2}\pi}{2b}\right)\left(\frac{\gamma}{b_{0}}\right)_{0}^{a_{0}}\cos\left(\frac{m_{1}\pi x}{2a}\right)\cos\left(\frac{m_{2}\pi x}{2a}\right)\cdot\\\cdot\int_{0}^{b_{0}\left[\left(\frac{y}{b_{0}}\right)^{\gamma-1}\left[\left(\frac{x}{a_{0}}\right)^{\gamma}+\left(\frac{y}{b_{0}}\right)^{\gamma}-1\right]sen\left(\frac{n_{1}\pi y}{2b}\right)\cos\left(\frac{n_{2}\pi y}{2b}\right)dy \ dx +\\\left(\frac{n_{1}\pi y}{b_{0}}\right)^{2}\int_{0}^{a_{0}}\cos\left(\frac{m_{1}\pi x}{2a}\right)\cos\left(\frac{m_{2}\pi x}{2a}\right)\int_{NT_{9}(x)}^{b_{0}\left(\frac{y}{2b}\right)^{2\gamma-2}}sen\left(\frac{n_{1}\pi y}{2b}\right)sen\left(\frac{n_{2}\pi y}{2b}\right)dy \ dx +\\\left(\frac{\gamma}{b_{0}}\right)^{2}\int_{0}^{a_{0}}\cos\left(\frac{m_{1}\pi x}{2a}\right)\cos\left(\frac{m_{2}\pi x}{2a}\right)\int_{0}^{b_{0}\left(\frac{y}{b_{0}}\right)^{2\gamma-2}}sen\left(\frac{n_{1}\pi y}{2b}\right)sen\left(\frac{n_{2}\pi y}{2b}\right)dy \ dx +\\\left(\frac{\gamma}{b_{0}}\right)^{2}\int_{0}^{a_{0}}\cos\left(\frac{m_{1}\pi x}{2a}\right)\cos\left(\frac{m_{2}\pi x}{2a}\right)\int_{0}^{b_{0}\left(\frac{y}{b_{0}}\right)^{2\gamma-2}}sen\left(\frac{n_{1}\pi y}{2b}\right)sen\left(\frac{n_{2}\pi y}{2b}\right)dy \ dx +$$

As integrais $INT_3(x)$ a $INT_{10}(x)$ indicadas em (3.12) são resolvidas analiticamente e suas soluções são apresentadas no Apêndice A. A integração em relação a *x* é efetuada numericamente.

3.1.2. Determinação dos Elementos *b_{ij}*

Para os modos TE, as funções de base são definidas em (3.2). Substituindose (3.2) em (2.13b), obtém-se a seguinte expressão para os elementos b_{ij} :

$$b_{ij} = \int_{0}^{a_0} sen\left(\frac{m_1\pi x}{2a}\right) sen\left(\frac{m_2\pi x}{2a}\right) \underbrace{\int_{0}^{f_b(x)} cos\left(\frac{n_1\pi y}{2b}\right) cos\left(\frac{n_2\pi y}{2b}\right) dy}_{INT_{11}(x)} dx \qquad (3.13)$$

A integral $INT_{11}(x)$ indicada em (3.13) é tabelada [25], e seu resultado encontra-se no Apêndice A. A integração em relação a x é efetuada numericamente.

Para os modos TM as funções de base são definidas em (3.6). Substituindose (3.6) em (2.13b), resulta:

$$b_{ij} = \int_{0}^{a_0} \cos\left(\frac{m_1 \pi x}{2a}\right) \cos\left(\frac{m_2 \pi x}{2a}\right) \underbrace{\int_{0}^{f_b(x)} \left[\left(\frac{x}{a_0}\right)^{\gamma} + \left(\frac{y}{b_0}\right)^{\gamma} - 1\right]^2 \sin\left(\frac{n_1 \pi y}{2b}\right) \sin\left(\frac{n_2 \pi y}{2b}\right) dy}_{INT_{12}(x)} dx$$
(3.14)

A integral $INT_{12}(x)$ indicada em (3.14) é resolvida analiticamente e sua solução é apresentada no Apêndice A. A integração em relação a x é efetuada numericamente.

Uma vez determinados os elementos a_{ij} e b_{ij} , os números de onda de corte k_c podem ser calculados resolvendo-se, computacionalmente, o sistema de autovalores generalizado indicado em (2.12).

A subrotina utilizada na solução do sistema (2.12) foi a DGVCRG do IMSL.

3.2. Resultados Numéricos

A formulação descrita anteriormente para a determinação dos números de onda de corte em guias superquadráticos foi implementada computacionalmente em linguagem FORTRAN.

Foram estudadas duas configurações para a seção transversal: circular e elíptica. Nos exemplos aqui considerados, o número de harmônicos das funções trigonométricas utilizadas como funções de base, M_{max} e N_{max} , foi 20. Em todos os exemplos, considerou-se as dimensões $a = a_0$ e $b = b_0$.

Para ilustrar a precisão do método, os 460 primeiros campos modais TE e TM, incluindo modos pares ou ímpares em cada direção, de um guia de onda

circular de 1 mm de raio foram calculados e comparados com valores obtidos utilizando soluções exatas. Os resultados apresentam um erro menor do que 0,13% para os 200 primeiros modos computados. O tempo de execução do programa foi de 20 segundos para os modos TE e 1 minuto para os modos TM, considerando-se um microcomputador de 1 GHz e 256MB de RAM. Nas tabelas 3.1 e 3.2 são apresentados os números de onda de corte dos 10 primeiros modos TE e TM, respectivamente. Para esses modos, o erro máximo é de 0,022% para os modos TE e de 0,002% para os modos TM.

A convergência dos resultados, em função do número de harmônicos das funções trigonométricas, $M_{max} = N_{max}$, para modos TE e TM em um guia de onda circular de 1 mm de raio, é mostrada nas tabelas 3.3 e 3.4, respectivamente. Nessas tabelas estão indicados os valores dos números de onda de corte dos modos TE₁₁ e TM₀₁, e o erro do cálculo numérico. Para $M_{max} = N_{max} = 30$, o número total de modos computados, incluindo TE e TM, pares ou ímpares em cada direção, é 980.

As tabelas 3.5 e 3.6 apresentam as freqüências de corte dos 11 primeiros modos TE e TM, respectivamente, em um guia de onda elíptico com eixos de 10,0 cm e 6,614 cm. Os resultados obtidos foram comparados com [11], apontando discrepâncias menores que 0,1% para os modos TE e discrepâncias menores que 0,08% para os modos TM.

Modo	Valor Exato de <i>k</i> _c	Valor Calculado de k_c	Erro (%)
(1,1)	1,841184	1,841149	0,001
(2,1)	3,054237	3,053568	0,022
(0,1)	3,831706	3,831677	0,001
(3,1)	4,201189	4,201110	0,002
(4,1)	5,317553	5,316991	0,011
(1,2)	5,331443	5,331435	0,000
(5,1)	6,415616	6,415950	0,005
(2,2)	6,706133	6,706003	0,002
(0,2)	7,015587	7,015654	0,001
(6,1)	7,501266	7,502112	0,004

Tabela 3.1 – Valores de números de onda de corte, para modos TE, em um guia de onda circular de 1 mm de raio.

Modo	Valor Exato de <i>k</i> _c	Valor Calculado de k_c	Erro (%)
(0,1)	2,404826	2,404848	0,001
(1,1)	3,831706	3,831726	0,001
(2,1)	5,135622	5,135615	0,002
(0,2)	5,520078	5,520134	0,001
(3,1)	6,380162	6,380200	0,001
(1,2)	7,015587	7,015634	0,001
(4,1)	7,588342	7,588463	0,002
(2,2)	8,417244	8,417418	0,002
(0,3)	8,653728	8,653832	0,001
(5,1)	8,771484	8,771552	0,001

Tabela 3.2 – Valores de números de onda de corte, para modos TM, em um guia de onda circular de 1 mm de raio.

n ^o de Harmônicos	k_c do Modo TE ₁₁	Erro (%)
2	1,845886	0,255
4	1,842191	0,055
6	1,841271	0,005
8	1,840927	0,014
10	1,840767	0,023
12	1,840670	0,028
14	1,840485	0,038
16	1,841753	0,031
18	1,841189	0,000
20	1,841149	0,002
22	1,841130	0,003
24	1,840383	0,044
26	1,841222	0,002
28	1,841302	0,006
30	1,841220	0,002

Tabela 3.3 – Valores de números de onda de corte do modo TE_{11} , em função do número de harmônicos das funções de base, para um guia de onda circular de 1 mm de raio.

n° de Harmônicos	k_c do Modo TM ₀₁	Erro (%)
2	2,408181	0,140
4	2,405679	0,035
6	2,405156	0,014
8	2,404987	0,007
10	2,404918	0,004
12	2,404886	0,002
14	2,404868	0,002
16	2,404858	0,001
18	2,404852	0,001
20	2,404848	0,001
22	2,404845	0,001
24	2,404843	0,001
26	2,404842	0,001
28	2,404841	0,001
30	2,404841	0,001

Tabela 3.4 – Valores de números de onda de corte do modo TM_{01} , em função do número de harmônicos das funções de base, para um guia de onda circular de 1 mm de raio.

	Freqüência de Corte (GHz)	
Modo	De acordo com [11]	Método Proposto
Par TE_{11}	0,889668	0,890257
Ímpar TE ₁₁	1,299789	1,300805
Par TE_{21}	1,603495	1,604310
Ímpar TE ₂₁	1,841098	1,842675
Par TE_{31}	2,287842	2,289253
Ímpar TE ₃₁	2,421751	2,423917
Par TE_{01}	2,499336	2,501180
Par TE ₄₁	2,949422	2,951005
Ímpar TE ₄₁	3,021076	3,023961
Par TE_{12}	3,06712	3,069459
Par TE ₅₁	3,593	3,594074

Tabela 3.5 – Valores de freqüências de corte, para modos TE, em um guia de onda elíptico com eixos de 10,0 cm e 6,614 cm.

	Freqüência de Corte (GHz)	
Modo	De acordo com [11]	Método Proposto
Par TM ₀₁	1,467264	1,468348
Par TM ₁₁	2,093482	2,095006
Ímpar TM ₁₁	2,554241	2,556146
Par TM ₀₂	2,755062	2,757063
Par TM ₂₁	3,120856	3,123140
Par TM ₁₂	3,433530	3,436042
Ímpar TM ₀₂	3,678144	3,680896
Par TM ₃₁	3,715596	3,718296
Par TM ₁₃	4,118878	4,121858
Ímpar TM ₃₁	4,232814	4,235929
Par TE ₄₁	4,32920	4,332291

Tabela 3.6 – Valores de freqüências de corte, para modos TM, em um guia de onda elíptico com eixos de 10,0 cm e 6,614 cm.