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Abstract

Lima, Vinicius de Mello; Silva, Eduardo Costa (Advisor).Obstacle
Detection and Avoidance System for UAV’s, based on
neuro-fuzzy controller. Rio de Janeiro, 2018. 75p. Dissertação
de mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

This dissertation presents the design and development of an obstacle
detection and avoidance system for unmanned aerial vehicles, implemented
by a neuro-fuzzy controller. In this context, this work presents a theoretical
review of unmanned aerial vehicles, the applicable Brazilian legislation,
obstacle detection methods, fuzzy logic and neural networks. The developed
controller was implemented in order to mimic the actions taken by a human
operator, aiming at avoiding obstacles found in the navigation path of the
UAV. Inference rules were established based on consultation with specialists
in the field and the weights adjusted by neural networks. The decision-
making process takes into account information collected by a multichannel
Lidar and ultrasonic sensors embedded in the UAV. In turn, the developed
algorithm was embedded in a commercial flight controller. The complete
quadricopter system is detailed, highlighting the key features of all sensors
and the flight controller. The results of computational simulations and
experimental tests are presented, discussed and compared, in order to
evaluate the performance of the developed system.

Keywords
Electrical Engineering – Thesis; Obstacle Detection and Avoidance

System; UAV; Neuro-Fuzzy Controller; SONAR; LIDAR;
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Resumo

Lima, Vinicius de Mello; Silva, Eduardo Costa. Sistema de De-
tecção e Desvio de Obstáculos para VANTs, baseado em
Controlador Neuro-Fuzzy. Rio de Janeiro, 2018. 75p. Disserta-
ção de Mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

Esta dissertação apresenta o projeto e desenvolvimento de um sistema
para detecção e desvio de obstáculos para veículos aéreos não tripulados
(VANTs), implementado por um controlador neuro-fuzzy. Neste contexto,
este trabalho apresenta uma revisão teórica sobre veículos aéreos não tri-
puláveis, legislação brasileira aplicável, métodos de detecção de obstáculos,
lógica nebulosa e redes neurais. O controlador desenvolvido foi implemen-
tado de forma a imitar as ações realizadas por um operador humano, visando
desviar de obstáculos encontrados no caminho de navegação do VANT. Re-
gras de inferência são estabelecidas baseadas na consultoria de especialistas
da área e os pesos ajustados pela rede neural. O processo de tomada de
decisão ocorre levando em consideração as informações coletadas por um
Lidar multicanal e sensores ultrassônicos embarcados no VANT. Por sua
vez, o algoritmo desenvolvido foi incorporado em um controlador de vôo
comercial. O sistema completo do quadricóptero é detalhado, destacando as
principais características de todos os sensores e do controlador de vôo. Os
resultados das simulações computacionais e testes experimentais são apre-
sentados, discutidos e comparados, a fim de avaliar o desempenho do sistema
desenvolvido.

Palavras-chave
Engenharia Elétrica – Teses; Sistema de detecção e desvio de obstá-

culos; VANT; Controlador neuro-fuzzy; SONAR; LIDAR
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A robot must protect its own existence....

Isaac Asimov, Runaround, 1942.
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1
Introduction

The technological development that has occurred over the last years in
electronics, solid state devices, microprocessors, data storage and sensors, led
to a significant increase of alternative solutions based on the use of UAVs
(Unmanned Aerial Vehicle) in several activities: military, security, engineering
inspections, filming, recreation, etc. This market trend points to large-scale
use of UAVs, opening space for the development of research associated with
performance optimization of these systems. In particular, flight safety is an ex-
tremely relevant aspect in this regard, since it contributes to the enhancement
of the reliability of UAV based systems.

The costs and size of electronics are continuously decreasing, allowing to
reach levels of innovation and discovery not yet foreseen. However, cultural and
regulatory restrictions have been slowing down the large scale use of UAVs, so
a lot has to be done in order to break paradigms and educate people about
its use. In EUA, two areas stand out: public safety and precision agriculture.
In Brazil, the use of UAVs in precision agriculture has shown a large increase
in the last years. It is expected that research on new materials, propulsion
systems, structural constructs and electronics will lead to even further techno-
logical breakthroughs on the next decades [1].

1.1
Context

The present work aims at contributing to the development of an auxiliary
pilot system capable of safely identifing and avoiding obstacles [2]. Nowadays,
in most cases, obstacle avoidance operations are carried out by a human
pilot; and just a few commercial systems for detection and avoidance are
already in use. Among them, the Phantom 4 (DJI) embedded controller can
be highlighted, which is based on computer vision techniques. In this context,
the present work focus at the development of an autonomous detection and
avoidance system, using lidar and sonar sensors for detection and a neuro-fuzzy
algorithm to define how to perform the obstacle avoidance [3][4].
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Chapter 1. Introduction 15

1.2
Unmanned Aerial Vehicle

1.2.1
Definition

Unmanned Aerial Vehicles (UAV) are aircrafts that do not need a
pilot on board. They are systems composed by several sub-systems, such
as: aircraft, payload, control station, launch and recovery system (where
applicable), communication and others [5]. Their first applications were on
the military sector, followed by scientific and commercial applications. Their
development and operation had rapidly expanded in the last 30 years. UAV can
be divided in two groups: remotely piloted aircrafts (RPA) and autonomous
aircrafts [6]; and UAV regulations address the issue differently for each case.
For civil applications, RPAs are more commonly used and, on the other
hand, autonomous aircrafts are widely used in military context. The range
of applications spread across agriculture, geosciences, disaster management,
industrial, photography, surveillance and others. It is important to mention
that all UAV sub-systems are an integral part of the UAV system and they
have equal importance. Figure 1.1 illustrates the integration of each major
UAV sub-system, that are herein briefly explained:

– Control Station: could be based on the ground, on a ship or also
in another aircraft. It is the control center of the operation and man-
machine interface. From there, all commands and missions are uploaded
through a communication system to the aircraft, and it receives all the
information sent from the aircraft.

– Payload: the load carried by an aircraft in order to achieve an specific
mission. Some sophisticated UAVs could carry different sensors as video
and thermal camera, radar, lidar, and others.

– Air vehicle: The mission characteristics settle the required type and per-
formance of the air vehicle. The principal task of the aircraft is to carry
the mission payload and all required subsystems for the operation. Other
important requirements are, but not limited to, airspeed, endurance, fuel
and speed. Three designs are common: fixed-wing, rotary-wing and con-
vertible aircraft.

– Navigation System: It continuously informs to the operator the posi-
tion of the aircraft and vice-versa. It is essential for autonomous opera-
tion, and commonly based on inertial navigation system (INS) and global
positioning system (GPS). Nowadays, other methods are also available
as radio tracking and direct reckoning.
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– Launch, Recovery and Retrieval Equipment: Launch equipment
is required when the aircraft does not have vertical flight capability
or access to a suitable runway. Conventionally, it is a ramp used to
accelerate the aircraft on a trolley until it reaches sufficient airspeed
to sustain airborne flight. Besides, a parachute, suitable landing zone or
other method are required to bring back the aircraft. Additionally, heavy
aircrafts may require other equipments for transportation and launching.

– Communications: The main function of a communication system is
to provide data links between the control station and the aircraft. The
transmission is usually done by radio frequency, but other alternatives
could be used as laser beam and optical fibers. The communication
system is responsible for transmitting: control commands to the aircraft
and mounted payload; updated position to control station and vice
versa; aircraft telemetry. The complexity, cost and power demand of the
communication system is defined by the required range of operation, data
security and bandwidth.

– Interfaces: Although some systems could operate as stand-alone, other
have to read and write information from/to several subsystems. They
have to use compatible protocols in order to ensure an adequate data
path throughout the entire system.

– Support equipment and transportation: The mission planning
should consider the required support equipment, such as tools, spare
parts, manuals, etc.; because neglecting these aspects could compromise
the mission. Besides, some missions require transportation equipment to:
move the aircraft to specific launching zones, position control stations
and recovery equipment and others.

Usually, the design of aircraft-based systems consists in three main stages:
conceptual phase, preliminary design and detailed design phase.

At conceptual phase, market studies should be done in order to analyse
the commercial viability of the project, such as operational costs, size of the
market, regulatory issues, etc. During this phase, tests on aircraft models are
performed to confirm theoretical aerodynamic calculations and to identify
any inconsistencies. The obtained results are evaluated in order to define
if the original conceptual design will proceed or not to the next phase.
The preliminary design comes afterwards, where optimisations to increase
overall performance of the system are made and normally an aircraft mock-
up is manufactured to get a better idea about components assembling and
maintenance of the system. These studies lead to a comprehensive definition
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Figure 1.1: Structure of UAV System [5].

and specification of the system. The detailed design is the final stage of
the process, being responsible for the detailed analysis of mechanical and
electronics issues, production requirements, test equipments and operating /
maintenance manuals.

1.2.2
Airframes

Due to the reduced risk compared with crewed aircraft, many different
airframe configurations are available for UAVs. For convenience, they are
grouped into three types, according to their take-off and landing methods:

– HTOL: horizontal take-off and landing;

– VTOL: vertical take-off and landing

– Hybrid: combine attributes of HTOL and VTOL.

HTOL Basically, they can be divided in three different types according
to lift/mass balance, stability and control: tailplane-aft, tailplane forward or
tailless. Most configurations have the power-plant at the rear of the fuselage,
and the payload on the front with unobstructed view forward [5]. Figure 1.3
gives an example of this kind of configuration.

VTOL They are rotary-wing aircrafts, having a considerably more com-
plex aerodynamics than fixed-wing aircrafts. Their lift is based on the principle
of receiving air from above and accelerating it downwards. Many models could
be seen in literature [5, 8]: Single rotor, Co-axial Rotor, Tandem Rotor, Tri-
Rotor, Quad-Rotor, Hex-rotor and others. All of them have advantages and
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Figure 1.2: Praxis Solar HTOL [7].

disadvantages and use complicated control algorithms. Figure 1.3 gives an ex-
ample of this kind of configuration.

Figure 1.3: 3DR Solo [9].

Hybrid For long-range missions, HTOL are preferred, because they have
longer flight autonomies and reach higher speeds, covering larger areas in
less time. But the ability to take-off and land vertically and hovering are
precious assets of VTOLs; especially under conditions of limited space to
initiate and finish the mission. Hybrids find their space in this gap. Many
types of hybrid aircrafts are presented in literature, as: Convertible rotor, tilt-
wing-body, ducted fan and jet-life. Figure 1.4 gives an example of this kind of
configuration.

1.2.3
Legislation

Technological improvements, increase in operational capabilities and
more accessible prices made a “boom” on sales and use of UAV’s. Coming
with that, the necessity of regulations in order to guarantee public safety,
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Figure 1.4: Latitude HQ-90B [10].

data protection and privacy takes place [6]. These factors, associated with
legal, cultural and social landscapes, pose some impediments to the advance
of this technology. At this part, a brief explanation about Brazilian UAV
Legislation appears necessary. Basically, three organizations are responsible
for UAV regulation: National Telecommunication Agency - ANATEL, National
Civil Aviation Agency - ANAC, and Air Space Control Department - DECEA.
Their area of actuation and main responsibility are briefly described:

ANATEL It was created on 1997 with the main goal to regulate telecom-
munication services in Brazil. Its area of actuation could be divided in four
subgroups: customer service, certification and homologation of telecommunica-
tions products, regulatory authorization and competition solution[11]. A brief
explanation of each subgroups comes next:

– Customer Service: makes possible the consumer to register complaints
against telecommunications operators (mobile phone services, internet
providers and others), and also against ANATEL services.

– Certification and Homologation of Telecommunications Products: analy-
ses if telecommunication equipments are compliant with Brazilian stan-
dards of operation and identify them with a stamp.

– Regulatory Authorization: authorizes the use of radio frequencies and
gives operation license for telecommunications stations.

– Competition Solution: deals with administrative solutions for companies
or economic groups. These solutions are divided in three areas: prior
consent,contractual homologation and conflicts resolution.
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Once UAVs use data-link, remote monitoring, remote operation, video
link and others, all of these RF-transmitters have to be certificated and
homologated for operation in Brazil. This process aims to control the use of
spectrum, level of interference between channels and to verify if the level of
power irradiated is according to standards.

By resolution 242[12], ANATEL specifies all the rules and procedures to
certificate and homologate products for telecommunications. All procedures are
done using MOSAICO platform (specific system accessed through ANATEL
website).

ANAC The Brazilian National Civil Aviation Agency is responsible by de-
veloping standards, certifing companies, promoting workshops, schools, super-
vising civil aviation professionals, airfields and airports, and overseeing the
operations of aircraft, airlines, airports and professionals in the industry, fo-
cusing on safety and the quality of air transport[13]. The normative RBAC-E
n◦94, specifies the general rules, under ANAC competence, for RPAS . This
normative is composed by eight sub-chapters and discusses topics such as:

• E94.1 - Applicability;

• E94.3 - Definitions;

• E94.5 - RPAS and RPA classification;

• E94.7 - Responsibilities of remote pilot;

• E94.9 - Remote pilot requisites

• E94.19 - Documents necessary for operation;

• E94.103 - Flight rules;

• E94.301 - Registration and trademarks;

• E94.701 - Contraventions.

According to RBAC-E n◦94, any operation with RPAS have to take place at
least 30 m (at horizontal level) away from persons that are not involved with
the operation and autonomous flight are forbidden.

DECEA The Air Space Control Department (DECEA) is in charge of air
space access control. It is a department inside the Aeronautics Command,
which in turn belongs to Defence Ministry. Using normative ICA 100-40, it
specifies the rules that RPAS have to follow in order to access Brazilian Air
Space. Some points of this normative are herein highlighted [14].

At chapter two, some definitions and abbreviations are explained, such
as:
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• 2.1.6 - RPA is an unmanned aircraft without crew piloted by a remote
station with non-recreational purpose;

• 2.1.15 - Detection and Avoidance means capability of seeing, perceiving
or detecting conflicting traffic and other risks, making possible to take
adequate decisions to avoid them;

• 2.1.29 - Autonomous operation is a operation that takes place without
the pilot intervention during the flight;

• 2.1.30 - Visual Line of Sight - VLOS: is a operation where the pilot has
a direct visual contact with the aircraft, without any external aid;

• 2.1.31 - Extended Visual Line of Sight - EVLOS: the pilot does not have
the direct visual contact with the aircraft and then has to use auxiliary
equipment or observers to conduct a safe fight;

• 2.1.32 - Beyond Visual Line of Sight - BVLOS: the pilot does not have
the aircraft in his visual line of sight, even using an observer;

• 2.1.33 - Radio Line of Sight - RLOS: operation with direct radio link
between aircraft and pilot;

• 2.1.34 - Beyond Radio Line of Sight - BRLOS: operation with indirect
radio link between aircraft and pilot, i.e. using signal repeaters, satellites
and others.

• 2.1.45 - Air Space Access Request System for RPAS - SARPAS: system
created to facilitate the requests to access air space by the users.

Chapter three discusses about Brazilian Air Space structure; chapter seven
describes pilot responsibilities; chapter eleven the access rules, and chapter
twelve all authorization procedures. All the limits and principles of flight are
explained, as well as penalties in case of rules transgressions.

1.3
Relevance and Objectives

For increasing flight security, with the increasingly higher number of civil-
ian players coming to the UAV market, it is necessary to provide them with
sufficient resources to avoid dangerous flight conditions and, at the same time,
let the pilot / autopilot control the aircraft. Computational vision, nowadays,
is still available in some aircrafts on the market, however with many limitations
as maximum distance of detection, maximum speed of the aircraft, processing
time and computational cost.

Many literature about using Lidar for obstacle detection [15], Fuzzy In-
ference System for control [16,17], underwater robot using AI based algorithms
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[18], trajectory control using neural network [19] are available. In spite of that,
a system using lidar and sonars for detection and neuro-fuzzy control for avoid-
ance was not found. Hereupon, this work aims at developing an object detection
and avoidance system, based on distance sensors (lidar and sonar) and com-
putational intelligence algorithms (based on neuro-fuzzy control). The DAS
should be capable to be used in outdoor and indoor environments, and works
with flight speed higher than 5 m/s. Thus, the main activities towards that
goal were:

– Studies about neuro-fuzzy systems and UAVs;

– Sensors selection and theory;

– Study of commercial flight controllers;

– Development of a test platform;

– Development of the neuro-fuzzy system;

– Integration between the developed system and the platform; and

– Simulated tests and results evaluation.

1.4
Dissertation Structure

Chapter 1 presented the introduction, definitions, applicable legislation,
relevance and objective. Chapter 2 brings important aspects about Neural
Networks, Fuzzy Logic, Detection and Estimation; topics that were used in
the developed detection and avoidance algorithms. In this way, it intends to
give the reader a general understanding about the subject. At chapter 3, all the
characteristics of the developed prototype are described, including mechanical
and electrical specifications. This chapter presents the development of the
neuro-fuzzy controller and discusses the system integration with the platform.
Chapter 4 presents and discusses the obtained results and chapter 5 presents
the conclusions and ideas for future works. The appendices show all of the
developed codes.
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2
Theoretical Review

2.1
Neural Networks

2.1.1
Basic Concepts

The human brain is a highly complex, nonlinear and parallel computer;
that may process certain computations many times faster than a digital
computer. This has motivated many works on artificial neural networks in
order to mimic a “nervous system” similar to the human brain, with its
parallel processing, adaptation and generalization capabilities, including real-
time learning. According [20], neural networks are:

“A neural network is a massively parallel distributed processor made
up of simple processing units, which has a natural propensity for
storing experiential knowledge and making it available for use. It
resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment
through a learning process.

2. Interneuron connection strengths, known as synaptic weights,
are used to store the acquired knowledge.”

The learning process is performed by a learning algorithm that modi-
fies the synaptic weights of the network. Neural networks may change its own
topology, so as neurons in a human brain may die and new synaptic con-
nections may grow. Generalization at neural networks refers to the ability of
producing reasonable outputs for inputs not seen during the learning process.
Neural networks are used for the treatment of linear and nonlinear problems,
input-output mapping, evidential response (pattern classification), contextual
information, fault tolerance, neurobiological analogy and others [20].
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The basic component of a neural network is the neuron, which is
fundamental to process information. As shown in Figure 2.1, a neuron is
composed by three basic elements:

– Synaptic weights: similar to biological neuron, a group of synapses
receive the input signals. Each synapse is characterized by a weight wkj,
the notation representing a input signal xj connected to neuron k. The
input signals are multiplied by synaptic weights. Different from synapses
in the brain, a synaptic weight in artificial neurons could swing from
negative to positive values.

– Adder: for summing weighted input signals. This operation is a linear
combiner.

– Activation function: to adjust the amplitude range of output signal
yk. Usually normalized from 0 to 1 or -1 to 1.

Figure 2.1: Nonlinear model of a neuron [20].

Besides, there is a external bias (bk) used to increase or decrease the input
of the activation function. Mathematically, the neuron could be described as
given by equations ((2-1)) to ((2-3)), where x1,..., xm are inputs; wkj are the
respective synaptic weights and yk the output signal[20].

uk =
m∑
j=1

wkjxj (2-1)

vk = bk +
m∑
j=1

wkjxj (2-2)

yk = ϕ(vk) (2-3)
The two main kinds of activation functions are [20]:

– Threshold Function: Also named as Heaviside function. In this model,
the output of the neuron is equal to 1, when the input of the activation
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function is greater than or equal to zero, and the output is 0 otherwise,
as presented in equation (2-4).

ϕ(vk) =

1 if vk ≥ 0
0 if vk < 0

 (2-4)

– Sigmoid Function: The most common activation function used in
artificial neural networks. It exhibits a great balance between linear and
nonlinear behaviour. It is mathematically described by equation (2-5),
where a is the slope of the function.

ϕ(vk) = 1
1 + exp(−avk))

(2-5)

2.1.2
Network Architectures and Knowledge Representation

The learning algorithm used to train the network should consider the
structure of the neural network. There are three main classes of neural networks
[20]:

– Single-layer Feedforward Networks: in this case, the input layer is
connected directly to the neurons of the output layer, but the reverse
never happens.

– Multilayer Feedforward Networks: this case differs from single-layer
topology due to the presence of one or more hidden layers. The term
“hidden” refers to the fact that this part of the network is not directly
connected to the inputs and outputs. The hidden layers allow the network
to solve more complex problems, because new neural interactions can be
achieved. This kind of network is normally identified by the number of :
inputs, hidden layers, outputs, and neurons at each layer.

– Recurrent Networks: they have at least one feedback loop, which
represents the main difference between them and feedforward networks.
These feedback loops improve the learning capability performance of the
network.

The knowledge of neural networks refers to stored information by some
agent to predict or respond to the outside world. The representation of this
knowledge is highly diverse, which makes development of neural networks a
challenge. According to [20]: “...knowledge of the world consists of two kinds of
information:

– The known world state, represented by facts about what is and what has
been known; this form of knowledge is referred to as prior information;
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– Observations (measurements) of the world, obtained by means of sen-
sors designed to probe the environment, in which the neural network is
supposed to operate. Ordinarily, these observations are inherently noisy,
being subject to errors due to sensor noise and system imperfections. In
any event, the observations so obtained provide the pool of information,
from which the examples used to train the neural network are drawn.”

The knowledge of the world is organized as a set of input-output pairs,
each pair consisting of an input signal and the corresponding desired response.
The set of training data is presented to the neural network during its learning
process. As the information inside a neural network is very complex, there are
four general rules for knowledge representation:

1. Similar inputs from similar classes should produce similar representations
and should be classified in the same class;

2. Items in different classes should have widely different representations;

3. A large number of neurons should be involved in the representation of
an important feature;

4. Whenever available, prior information and invariances should be built
into the design of the neural network.

As knowledge representation is directly related with network architec-
ture, normally, desired answers are achieved by experimental study for a spe-
cific application of interest. The design considerations take places as an essen-
tial part of the structural learning loop.

2.1.3
Learning Process

As humans learn from a sort of ways, it is natural to suppose that neural
networks can also learn from different manners. The learning process of a
neural network can be divided in supervised and unsupervised learning.

Supervised Learning Lets consider a situation of a generic environment that
a person knows very well and a blank neural network. At this environment,
the network is exposed to different situations and for each one of them, the
person tells the neural network how to react. That is, basically, the mechanism
of supervised learning. For each input-output training pair, the network
parameters are adjusted based on the error signal, which is the difference
between the desired answer and actual response of the neural network. When
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training is finished, the knowledge is stored as synaptic weights and the neural
network may deal with the environment by itself. Some effort should be done
to minimize the error. Section 2.1.4 describes some algorithms conventionally
used to reduce the error. Figure 2.2 illustrates the supervised learning process.

Figure 2.2: Supervised Learning Block Diagram [20].

Unsupervised Learning At this case, no one supervises or teaches the neural
network during the learning process. The parameters of the network are
optimized with respect to the data available. The purpose of this kind of
algorithm is to discover patterns or features. The learning process consists
of modifying the synaptic weights of all connections in response to inputs and
a set of rules, until a final configuration is achieved. Figure 2.3 illustrates the
unsupervised learning process.

Figure 2.3: Unsupervised Learning Block Diagram [20].

2.1.4
Training Algorithm
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2.1.4.1
Least-Mean-Square Algorithm

According to [20], LMS algorithm was inspired by Rosenblatt’s percep-
tron and it was the first linear adaptive-filtering algorithm for solving problems
such as prediction and communication-channel equalization. It uses a linear
combiner and proved to be robust against external disturbances, computa-
tionally efficient and effective in performance. This algorithm is configured to
minimize the instantaneous value of the cost function (2-6), where e(n) is the
error signal measured at time n. Differentiating this function with respect to
the weight vector results in (2-7). With the least-square filter, the LMS algo-
rithm operates with a linear neuron, so the error signal could be expressed as
(2-8). Doing some algebra and applying the gradient descent method, the LMS
algorithm could be written as (2-9). LMS traces a random trajectory towards
the goal, a small η (learning-rate parameter) improves the capacity of the al-
gorithm to remember past data, however the convergence rate becomes slow.
From a practical perspective, this algorithm is interesting because it does not
require a model of the environment and is very simple.

ε(ŵ) = 1
2e

2(n) (2-6)

∂ε(ŵ)
∂ŵ

= e(n)∂e(n)
∂w

(2-7)

e(n) = d(n)− xT (n)ŵ(n) (2-8)

ŵ(n+ 1) = ŵ(n) + ηx(n)e(n) (2-9)
where:

e(n) = error signal measured at time n;
x(n) = input vector;
d(n) = desired response;
w(n) = weight vector;
ŵ(n) = instantaneous weight vector.

2.1.4.2
Back-Propagation Algorithm

With the advent of multilayer neural networks other solutions were cre-
ated to deal with non-linear characteristics and increasingly larger search
spaces. The LMS algorithm has some limitations due to its linear character-
istics, so, aiming to overcome these, some algorithms were developed. Back-
propagation (BP) algorithm was one of them, which is widely used due to its
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capability to work with multilayer structures and to find solutions to non-linear
problems. At BP, training have two phases: forward and backward. At forward
phase, synaptic weights remain the same throughout the network and function
signals are computed at neuron-by-neuron basis. At backward phase, the pro-
cedure begins at the output layer, passing the error signals backward through
the network, layer by layer, towards the input, and recursively computing the
local gradient for each neuron.

For the sake of simplicity, just a few parts of the algorithm will be ex-
plained and illustrated. Similar to LMS, BP applies a correction to the synap-
tic weight proportional to the partial derivative, as shown in (2-7). After some
mathematical manipulations, the new equation for synaptic weight adjustment
can be expressed as:

∆wji(n) = −ηδj(n)yi(n) (2-10)
The local gradient points towards the required changes in synaptic

weights. It is given by:

δj(n) = ej(n)ϕ′

j(vj(n)) (2-11)

where:
η = learning-rate parameter;
yj = signal at output of neuron j at iteration n;
ej(n) = error signal for neuron j at time n;
ϕ

′
j(vj(n)) = derivative of the associated activation function;

vj(n) = activation function (2.1.1).

In order to increase the learning rate and prevent learning process to
finish in a local minimum, without occurring instability of the system, equation
(2-10) could be modified to include a momentum constant (α) with a value
from zero to one. The new equation is:

∆wji(n) = α∆wji(n− 1) + ηδj(n)yi(n) (2-12)

In general, the convergence of BP algorithm cannot be analytically
demonstrated; however, some criteria using Euclidean norm and average
squared error are usually applied.

2.2
Fuzzy Logic
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2.2.1
Basic Concepts

A high level of precision, normally, implies in high computational cost
and takes significant time. Many problems admits a level of uncertainty and
according to Professor Zadeh, by accepting some level of imprecision we can
do a better job. In this scenario, Fuzzy Logic finds its place when smooth
transitions and the nature of human concepts and thoughts are required [4,21].

Fuzzy systems are universal approximators, that can approximate the
behaviour of complex systems that are not properly represented by analytic
functions or numerical relations. In a very simplistic way, they map an input
group to an output group. These groups may be linguistic propositions or other
forms of fuzzy information.

2.2.1.1
Fuzzy Set

It is a set where the transition from “belongs” to “does not belong”
is gradual, i. e. without a crisp boundary. This transition is characterized by
membership functions that commonly use linguistic expressions as “this lake is
deep”. A fuzzy set is mathematically defined by equation (2-13), as an extension
of a classical set. Its construction relies on identification of a suitable universe
of discourse and specification of an adequate membership function.

A = {(x, µA(x)) | x ε X} (2-13)

where:
A = fuzzy set;
X = universe of discourse;
x = each element;
µA = membership function.

The most basic operations in fuzzy sets are: union, intersection and com-
plement; but a notion of containment makes place for better understanding.
These operations will be described below:

– Containment: Fuzzy set A is contained in fuzzy set B if and only if
µA(x) ≤ µB(x) for all x.

– Union: The union of two fuzzy sets A and B is a fuzzy set C, whose
membership function is related to those of A and B by

µC(x) = max(µA(x), µB(x)) = µA(x) ∨ µB(x) (2-14)
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– Intersection: The intersection of two fuzzy sets A and B is a fuzzy set C,
whose membership function is related to those of A and B by

µC(x) = min(µA(x), µB(x)) = µA(x) ∧ µB(x) (2-15)

– Complement: The complement of fuzzy set A, denoted by Ā (NOT A),
is defined as

µĀ(x) = 1− µA(x) (2-16)

2.2.1.2
Membership Function

Membership functions are subjective, they map each element X of the
domain to a correspondent membership grade, between 0 and 1, in relation
to a fuzzy set. This grade could be seen as a probabilistic quantity associated
to the degree of pertinence of X to the fuzzy set. Membership functions could
be symmetrical, asymmetrical and n-dimensional. Some definition terms are
important to remark [4]:

– Core: Region of the universe that is characterized by complete and full
membership;

– Support: Region of the universe that is characterized by nonzero mem-
bership;

– Boundary: Region of the universe containing elements that have a
nonzero membership but not complete membership;

– Normal Membership function: it has at least one element x with unitary
membership value;

– Convex Membership function: it has membership values that are strictly
monotonically increasing or decreasing, or whose membership values are
monotonically increasing then monotonically decreasing with increase in
the values of the elements of the fuzzy set.

These definitions are highlighted in Figures 2.4 and 2.5.
Along the years, many different types of fuzzy membership functions have

been proposed. The most common are: triangular, trapezoidal,Gaussian, bell,
sigmoidal, polynomial.

Fuzzyfication is the process of making a crisp quantity fuzzy. It is possible
considering that many crisp quantities have an amount of uncertainty then
may be represented by a membership function; however, despite of this
representation being useful, it is not mandatory.
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Figure 2.4: Fuzzy set core, support and boundaries [21].

Figure 2.5: Normal convex fuzzy set (a) and normal nonconvex
fuzzy set (b) [21].

2.2.1.3
Fuzzy Relations and Rules

Fuzzy Relations are fuzzy sets with n-dimensional membership functions
that maps each n-dimensional element to a membership grade between 0 and
1. Applications include areas as fuzzy control and decision making. A binary
fuzzy relation can be described as [21]:

R = {((x, y), µR(x, y)) | (x, y) ε X × Y } (2-17)

Many fuzzy relations could be combined through composition operations.
The most common are presented below:

Max-min composition are also called max-min product. It is a fuzzy
set defined by (2-18),where R1 and R2 are fuzzy relations defined on X × Y
and Y × Z.

µR1◦R2(x, z) = maxy min[µR1(x, y), µR2(y, z)] (2-18)

Max-product composition is an alternative to the max-min composi-
tion. It as defined by equation (2-19).
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µR1◦R2(x, z) = maxy[µR1(x, y)µR2(y, z)] (2-19)

Fuzzy Rules assume the form described at (2-20), where A and B are
linguistic values defined the universe of discourse. A is called antecedent and B
is called consequent. Sometimes the relation expressed by (2-20) is abbreviated
as A → B. In general, fuzzy rules can be interpreted in two ways: A coupled
with B and A entails B. These contribute to formulate a bunch of methods to
calculate the relation R = A → B.

if x is A then y is B (2-20)

Fuzzy reasoning is an inference procedure that obtains conclusions from
a set of fuzzy if-then rules and known facts. The basic rule of inference is modus
ponens, that stablishes that someone could infer the truth of A from the truth
of B. From fuzzy reasoning, a system’s behavior could be described by some
situations, such as:

– Single rule with single antecedent;

– Single rule with multiple antecedents;

– Multiple rules with multiple antecedents.

2.2.1.4
Defuzzification

It refers to the approach used to extract a crisp value from a fuzzy set
as a representative value. In general, there are five methods for defuzzifying a
fuzzy set C contained in a universe of discourse Z. Three of these methods are
explained below [4,21]:

– Centroid of area: the most adopted defuzzification strategy. It is based
on calculation of expected value.

ZCOA =
∫
µC(z) · z dz∫
µC(z) dz (2-21)

– Weighted average method: one of the most computationally efficient
defuzzification methods. It is implemented by weighting each member-
ship function in the output by its respective maximummembership value.

Z∗ =
∑
µC(z̄) · z̄∑
µC(z̄) (2-22)

where:
z̄ = centroid of each symmetric membership function.

DBD
PUC-Rio - Certificação Digital Nº 1612976/CA



Chapter 2. Theoretical Review 34

– Mean of maximum: is the average of the maximizing z at which the
MF reaches a maximum µ∗.

ZMOM =
∫
Z′ z dz∫
Z′ dz

(2-23)

where:
Z ′ = z | µC(z) = µ∗)

2.2.2
Fuzzy Inference Systems

It is a computing framework based on fuzzy set theory, fuzzy rules and
fuzzy reasoning. The basic structure consists of a set of rules, database and
a reasoning mechanism to perform the inference procedure. There are three
different types of inference systems, their differences relying on consequent,
aggregation and defuzzification procedures [4, 21].

Mamdani fuzzy model is the most common fuzzy inference system due to its
simple structure of min-max operations. It operates in four steps: evaluation
of the antecedent of each rule, obtention of each rule’s conclusion, results
aggregation and defuzzification. Normally, this method is useful when the
problem deals with a small amount of variables, otherwise some difficulties
may appear, as an exponential increase of the number of rules.

Takagi-Sugeno-Kang (TSK) fuzzy model was proposed in an effort to
develop a systematic approach to generating fuzzy rules from a given in-
put–output data set. A typical rule in TSK model, with two-inputs x and
y, and an output z, has the form: IF x is A and y is B, THEN z is z = f (x, y);
where z = f (x, y) is a crisp function in the consequent. The overall output is
obtained via a weighted average defuzzification.

Tsukamoto fuzzy model was proposed by Tsukamoto at 1979. In this
method, the consequent of each fuzzy rule is represented by a fuzzy set with
a monotonic membership function. The inferred output of each rule is defined
as a crisp value induced by the membership value coming from the antecedent
cause of the rule. The overall output is calculated by the weighted average of
each rule’s output. Because of the special nature of the output membership
functions required by this method, it is not as useful as a general approach,
and must be employed in specific situations only.
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2.3
Neuro-Fuzzy

In many cases, to solve complex real-world problems several computing
techniques have to work together, constructing complementary hybrid intelli-
gent systems. Neuro-fuzzy systems brings together the ability of neural net-
works to recognize patterns and adapt themselves to different environments,
and the ability of fuzzy inference systems to incorporate human knowledge and
perform inference and decision making [21].

A neuro-fuzzy algorithm uses neural networks to tune membership func-
tions of fuzzy systems that are employed to perform decision-making process.
Fuzzy logic can encode expert knowledge using rules with linguistic labels,
however it takes a long time to properly design and tune the membership
functions. Neural networks can automate this process and substantially re-
duce development time and cost, while improving performance at the same
time. The learning process of neural networks is relatively slow and the data
is difficult to analyse, besides knowledge acquisition for design fuzzy rules and
universe of discourse being a hard task. Then, the use of neural networks was
extended to automatically extract fuzzy rules from numerical data. Two types
of neuro-fuzzy algorithms are explained in the next subsections [22].

2.3.1
ANFIS

Adaptive Neuro-fuzzy Inference System (ANFIS) is a kind of feedforward
neural network composed by nodes and directional links through which the
nodes are connected. A part or all of the nodes are adaptive, meaning that
their outputs depend on the parameters pertaining to these nodes, and the
learning rule specifies how these parameters should be changed to minimize a
predefined error measure [21]. The formulas for the node functions may vary
from node to node, and the selection of each node function depends on the
overall input-output function, which the adaptive network is required to carry
out. Figure 2.6 shows an example of ANFIS architecture with five layers, that
are herein described:

– Layer 1: every node in this layer is adaptive, with a node function that
receives x and y as inputs. Ai and Bi are linguistic labels associated with
the nodes. The outputs are the membership grades of a fuzzy set. The
parameters of this layer are referred as premise parameters.

– Layer 2: all nodes are fixed and their outputs are the product of all the
incoming signals. Each node output represents the firing strength of a
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Figure 2.6: ANFIS architecture [21].

rule.
wi = µAi(x)µBi(y), i = 1, 2. (2-24)

– Layer 3: all nodes are fixed and the i-th node calculates the ratio of the
i-th rule’s firing strength to the sum of all rules’ firing strengths. Outputs
of this layer are also called normalized firing strengths.

– Layer 4: all nodes are adaptive with a node function given by (2-25).
The parameters in this layer are referred as consequent parameters. Here,
w̄i comes from layer 3 and pi, qi and ri are the parameter set of this node.

O4,i = w̄ifi = w̄i(pix+ qiy + ri) (2-25)

– Layer 5: this single layer computes the overall output as the summation
of all incoming signals.

The learning process of this algorithm could be performed in a hybrid
way, aiming at converging faster. In the forward pass, consequent parameters
are identified by the least-mean-square algorithm. In the backward pass,
premise parameters are updated by the back-propagation algorithm.

In theory, when the number of rules is not restricted, a zero-order
Sugeno model has unlimited approximation power for matching any non-linear
function arbitrarily well on a compact set [21].

2.3.2
CANFIS

Coactive Neuro-fuzzy Inference System is an extension of ANFIS for
multiple output problems with non-linear fuzzy rules, being also known as
generalized ANFIS. This extension emphasizes many characteristics of neural
networks and linguistic interpretability of a FIS. In this kind of system, fuzzy
rules are constructed with shared membership values to express correlations
between outputs that share same antecedents. Their powerful capability stem
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from pattern-dependent weights between the consequent layer and the fuzzy
association layer. Figure 2.7 shows a example of CANFIS architecture.

Figure 2.7: CANFIS architecture [21].

Sometimes rules may be hard to understand and membership functions
should be carefully determined. Although some difficulties, automatic rules
extraction methods are usually capable to outperform manually designed
systems. Many combinations could be done to obtain higher precision and
performance enhancement [21].

2.4
Detection and Estimation

This section briefly describes some characteristics of distance sensors that
may be used in UAV systems in order to implement obstacle detection and
avoidance. The topics described are vast and have numerous books and papers
about them [23–26].

2.4.1
RADAR

RADAR is an acronym for “radio detection and ranging”. Its physical
principles of operation where stablished in 1886, but their practical uses started
just a little before the second world war, driven by military applications.
Nowadays, it is used in an increased number of applications as meteorology,
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air traffic control, collision avoidance and earth mapping [26, 27]. One of
the main advantages of RADARs in relation to optical instruments is that
electromagnetic waves suffer low attenuation from fog, clouds and rain.

In radar applications, to decide if the returned signal came from an
object, the amplitude of receiver output is compared with a threshold. If
the received signal is higher than the threshold this indicates an echo from
a reflecting object, otherwise noise. If an echo is received, the target range
could be calculated based on light speed and the time required for a pulse to
propagate and return. The range can be estimated by:

R = ct0
2 (2-26)

where:
R = range;
c = speed of light;
t0 = time delay after a pulse is transmitted.

It is of great interest to know the location and velocity of a target. In a
monostatic radar, as shown in Figure 2.8, transmitter and receiver are located
at the same place. The position measurements are performed in spherical
coordinates with the origin at radar antenna’s phase center. The antenna points
in x axis direction, the angle θ is called azimuth and φ elevation, both are
determined from antenna orientation. Velocity is estimated based on Doppler
effect using the shift of target echoes. Despite the fact that Doppler shift
gives only radial velocity component, a series of measurements of position and
velocity may be used to infer target dynamics in three dimensions.

In a scenario with multiple targets, some RADAR parameters should
be considered as range resolution and side lobes; both determined by radar
waveform and antenna pattern. Range resolution is a metric to describe radar
ability to detect different objects near each other, normally notated as ∆R. It
could be expressed as:

∆R = R2 −R1 = c
(t2 − t1)

2 = c
δt

2 (2-27)

where:
∆R = range resolution;
R1 = range of object 1;
R2 = range of object 2;
c = speed of light;
t1 = time delay of object 1;
t2 = time delay of object 2;
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δt = difference between t2 and t1.

Figure 2.8: Simplified pulsed radar block diagram [27].

In directional antennas, the main lobe has the larger field strength and
goes in one direction. However, some undesired radiation in other directions
appears, being called “side lobes”. Side lobes waste energy in antennas and
increase noise level, on receivers. The power density of a radar, considering
lossless propagation and a directional antenna, is given by equation (2-28),
named Radar Equation.

PD = PtG

4ΠR2 (2-28)
where:
Pt = peak transmitted power;
R2 = distance;
G = antenna gain.

2.4.2
SONAR

SONAR is an acronym for “sound navigation and ranging”. It uses sound
for detection, classification and location of targets [25]. Sonars could be divided
in two groups: passive and active. The basic sonar equation is given by (2-29)
in dB. It express how much the signal power surpasses the combination of the
noise power with a given threshold. A signal excess of zero corresponds to a
probability of detection (pd) of 50% and a positive signal excess indicates pd
> 50%.

SE = S −N −DT (2-29)
where:
SE = signal excess;
S = signal;
N = noise;
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DT = detection threshold.

2.4.2.1
Passive Sonar

This type of sonar listens to the sound radiated by a target using
sophisticated microphones to detect signals against the ambient noise. The
nature of the sound (frequency spectrum) helps to classify the target; however,
it gives no information about the range. For measuring the range of the target
other methods must be applied as triangulation, HDPR (Horizontal direct
passive ranging) or VDPR (Vertical Direct Passive Ranging)[25].

2.4.2.2
Active Sonar

This type of sonar, also known as echo ranging systems, uses a projector
to generate sound pulses that travel in a medium to a target and return as
an echo to a transducer. The echo has to be detected against the ambient
noise and reverberation. Knowing the speed of sound in the medium and the
time between the transmission of the pulse and the returned echo, the distance
range towards the target can be calculated as shown in equation (2-30).

R = ct

2 (2-30)

where:
R = range of a target;
c = velocity of the sound in the medium;
t = time between the transmission pulse and received echo.

The acoustic power radiated by a projector is less than the electrical
power supplied to it, the ratio relying on the projector efficiency. Besides,
sonars can also estimate the velocity of the target by Doppler Shift, similar to
radars.

2.4.3
LIDAR

LIDAR is an acronym for “light detection and ranging”. They are laser-
based systems that work in an similar way as radars and sonars. A extremely
short light pulse is sent by a short-pulse laser into the atmosphere, being
scattered in all directions with a certain probability distribution. Just a small
portion of this light returns to the lidar and is collected by a telescope that
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focus the light on a photodetector, which in turn converts the light to an
electrical analog signal. This analog signal is converted to a digital signal and
post-processed [24]. The equation for a monostatic single-scattering elastic
lidar is given by (2-31). Monostatic means that laser and telescope are located
in the same place and elastic means that the returned light has the same
wavelength as the emitted light. Figure 2.9 illustrates a lidar system.

F (r) = C1F
cη0

2
βπ,p(r) + βπ,m(r)

r2 exp
[
−2

∫ r

0
κt(x)dx

]
(2-31)

where:
C1 = system constant, depends on the transmitter and receiver optics collection
aperture;
F = radiant flux emitted by the laser, considered constant if laser emits short
light pulses of rectangular form;
c = velocity of light in the medium;
η0 = emitted pulse duration;
βπ,p = particulate angular scattering coefficient;
βπ,m = molecular angular scattering coefficient;
κt = particulate and molecular extinction coefficient.

Figure 2.9: Diagram showing lidar system [28].

The laser light is almost monochromatic, so narrow-band optical filters
are used to eliminate interference or unwanted light from other sources. These
filters improve in the signal-to-noise ratio and increase the lidar measurement
range. The range could be measured by the time-of-flight principle, according
to equation (2-32), that considers the overall time between the emission of the
light pulse and its return [29].

R = cT

2n (2-32)
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where:
R = range of a target;
c = velocity of light in vacuum;
t = round-trip time of the light;
n = refractive index of the medium in which the light pulse propagates.
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3
Materials and Methods

3.1
Prototype characteristics

3.1.1
Mechanical Specifications

Many things have to be considered during the design of an aircraft
system. At this point, someone has to ask: What is the purpose of this system?
What capability it should have? How long it should be in the air? What kind of
on-board “intelligence”? In order to answer these questions and many others,
the conceptual phase takes place[5].

The concept of this project aims at developing a detection and avoidance
system that could be used in commercial drones. With that in mind, the use of
a quadcopter fits well the purpose because it is very popular, easy to find, has
many options in the market and may be acquired by a low cost. The project
was based on the TBS Discovery frame, shown in Figure 3.1, that is a variation
of the F450 from DJI . Its dimensions are 47 x 32 x 3.5 cm (W x L x H).

TBS Discovery has more internal space then the F450 and the version
used is built with carbon fiber, providing more resistance to collisions. Once
the frame is selected, it imposes some restrictions to the motor type and
to the size of propellers. The Emax motor model MT2216 was chosen in
combination with 1045 propellers (10” diameter and 4.5” pitch) [30]. According
to the manufacturer’s guide, this combination maximizes the motor thrust. It
is expected to have a maximum thrust of 950 g per motor, using 4S LiPo
(lithium-polymer) batteries (14.8 V).

Two important items to consider in an UAV project are the required
payload and total weight of the system, as both reduce the endurance time.
The maximum tolerable dimensions for the carried payload are dependent of
the frame dimensions. Besides, the maximum payload weight is a function of
the UAV empty weight and of the maximum thrust provided by the motors.
The payload mass and dimensions may vary, so both have to be analyzed
[5]. To maximize the carried mass, 4S batteries where selected to maximize
the motor’s thrust. The selected motor-propeller configuration, powered by 4S
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Figure 3.1: TBS Discovery frame.

LiPo batteries, can reach a maximum system thrust of 3800 g. On the other
hand, to increase the tolerable dimensions for payloads inserted beneath the
frame, the landing gear shown in Figure 3.2 was used. Its dimensions are 32 x
33 x 15 cm (W x L x H).

The batteries are the heavier part of the system, so that they should
be selected carefully. Lithium-polymer batteries were selected, because they
have high energy densities and are consolidated in the UAV market. The
system is powered by a 4S battery of 5000 mAh / 30C (discharge rate of
the battery), with total weight of 481 g. Table 3.1 presents the weight of the
system’s components, including the embedded electronics. Considering a 3800
g maximum thrust capacity and that the UAV system is flyable up to 70%
of the maximum thrust, the payload weight still available after assembling all
components was estimated around 500 g.

3.1.2
Sensors and Flight Controller

This subsection highlights the sensors used in the Detection and Avoid-
ance System (DAS) and the flight controller. In order to compose the “eyes”
of the DAS, two different types of sensors are used, sonar and lidar. Trying
to keep project costs within a reasonable limit, without compromising perfor-
mance, a lidar is used in the front of the UAV, as main source of ambient
detection, and five sonars were attached in the other sides; i.e. rear, right, left,
top and bottom.
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Figure 3.2: Landing Gear for TBS Discovery frame.

Table 3.1: Table of system’s components weight.

OTY Component Weight (g) Total (g) Price ($)
1 Frame 414 414 32
1 Landing gear 313 313 24
1 Battery 481 481 100
4 ESC 28 112 25
4 Motors 62 248 30
1 Flight Controller 38 38 53
1 GPS 33 33 32
1 Radio Receptor 11 11 86
1 Telemetry TX 4 4 18
1 Camera FPV 50 50 55
1 FPV TX 25 25 30
1 Arduino Nano 7 7 4
5 Sonar 8.5 34 4
1 Lidar 265 265 750

Miscellaneous 65 65 15
Total Weight / Price 2100 1258

3.1.2.1
Sensors

LIDAR
The selected lidar was the Leddar R© M16 Sensor Module of LeddarTech R©

that uses LEDDAR technology [29]. This sensor is based on a LED with a 940
nm wavelength, whose work principle is the same of conventional laser lidars.
This sensor has a 16-channel photodetector array, providing simultaneous
multiple detection, ranging segments and distance measurement of multiple
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objects. Figure 3.3 shows the sensor and Figure 3.4 illustrates illumination
area, detection segments and beam [31]. The data communication could be
performed using CAN port or RS-485 serial.

Figure 3.3: Leddar M16 [31].

Figure 3.4: Illumination area, beam and detection zone [32].

Some characteristics of the Leddar R© M16 Sensor are described below
[32]:

– Rugged Technology

– Rapid acquisition rate (up to 50 Hz)

– Large illumination area (95◦ in this case)
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– 8◦ vertical field of view

– No moving parts

– Short, diffused pulses from infrared light

– 100 meters detection range

– Low cost

– Lateral discrimination, for multiple object detection

– Real-time object tracking capabilities

– Long detection range with low-power light source

– Detection in adverse weather conditions

– Reliability

– Ocular safety

– USB, RS-485, CAN, UART interfaces

– 10 mm distance resolution

Leddar R© M16 has limitations regarding to measurement rate, CPU load,
LED intensity and others. Thus, it is necessary to find a balance between the
setup of the sensor and the project needs, Figure 3.5 shows the established
setup. Table 3.2 describes all setup items and shows their respective ranges.
Figure 3.5 indicates a CPU load of 72% for the selected configuration, which
ensures that it does not overload the system, with a reasonable safety margin.

Figure 3.5: Leddar M16 configuration.

It is important to notice that this sensor handles internally all the algo-
rithms to make the point cloud, detection and estimation of the targets. Thus,
it is not necessary to do this work externally, saving time and computational
cost. The sensor sends, by the CAN port or RS-485 serial, a message containing
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Table 3.2: Table of configurations in Leddar M16.

Parameter Range Brief Description
Accumulations 1 to 1024 Act in range, measurement rate and noise.
Oversampling 1 to 8 Enhance accuracy, precision and resolution
Point Count 2 to 64 Determine maximum detection range.

Threshold Offset 1 to 100 Modification of amplitude threshold.
Smoothing -16 to 16 Higher values enhance precision but reduce reactivity.

LED Control Manual/Auto Adjust LED power accordingly incoming detection amplitudes.
Change Delay 1 to 8192 Minimum frame delay between power changes.

Object
Demerging N/A Near-objects discrimination.

Crosstalk
Removal N/A Remove inter-channel interference noise.

information about the distance until the detected objects, in each one of the
16 channels. This information is used as input in the neuro-fuzzy controller.

In order to reduce to a feasible number of variables that DAS has to deal,
the 16 channels were clustered in 3 channels: lidar left, lidar center, lidar right.
To achieve that, a minimum function was applied to a group of channels and
the result saved in a new variable, Figure 3.6 illustrate the process. The result
from channels 1 to 5 was saved at variable lidar left, channels 6 to 11 was saved
at variable lidar center and channels 12 to 16 was saved at variable lidar right.

Figure 3.6: Lidar clustering process.

SONAR
Many rangefinders based on sonar technology are available in the market.
However, most of them are quite expensive and difficult to find in the Brazilian
market. Taking this into consideration, the Ultrasonic Ranging Module HC-
SR04 was selected [33]. This sensor is very familiar to Arduino developers,
being cheap and easy to find.

The sensor transmits ultrasonic waves into the air and detects reflected
waves from a target. It can measure distances from 2 cm to 400 cm, with
resolution of 3 mm. The transmitter, receiver and control circuit are all built-
in in a single module. It has four pins: 5 V supply, trigger pulse input, echo
pulse output and ground. The sensor is shown in Figure 3.7 and its electrical
parameters are presented in Table 3.3.
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Table 3.3: Electric Parameters of HC-SR04.

Working Voltage DC 5 V
Working Current 15 mA

Working Frequency 40 kHz
Max Range 4 m
Min Range 2 cm

Measuring Angle 15◦
Trigger Input Signal 10 µs TTL pulse
Echo Output Signal Range in proportion

Dimension 45x20x15 mm

Figure 3.7: Sonar HC-SR04.

Its functionality is quite simple, when a trigger pulse is received on the
transducer, the module sends eight pulses of 40 kHz and detects. If it receives a
returned pulse in response to the transmitted pulses, the module puts the echo
pulse output in high level. The time it remains in high level is proportional to
the distance range. The distance until the detect object is calculated with the
sonar range equation (2-30).

A careful installation is critical for correct operation of the system, since
any misalignment could result in false/wrong information in the output of the
sensor. Some characteristics of the environment as roughness and unevenness
may interfere in the quality of the results, demanding a post processing
treatment of the acquired information. The HC-SR04 does not have embedded
computational capability to process data or generate the trigger pulses, so an
Arduino Nano was used to perform these tasks [34].

Arduino Nano is a small board based on ATmega328 microcontroller with
a 16 MHz clock speed, that is fast enough for this application. It has 22 digital
I/O ports and 8 analog input ports. The digital ports are used to generate
the trigger signal and to receive the output signals from the five sonar sensors.
Arduino sends a trigger pulse and reads the echo time of each sensor. As
sound velocity varies considerably in the air according with the temperature,
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it is extremely important to measure the temperature to properly calculate
the distance towards the target [35]. Consequently, a NTC 10kΩ temperature
sensor of GBK Robotics was also connected to the Arduino platform [36], this
sensor is a thermistor with a nominal resistance of 10 kΩ at 25◦ Celsius and
the resistance of this kind of sensor decreases with temperature. Thermistor
circuit could be seen at Figure3.8, Arduino sends +5 Vdc to sensors boards
and reads Vout. The value of RT1 are calculated using Equation 3-1.

Figure 3.8: Thermistor board electrical diagram.

RT1 = 5 ∗R1
Vout

−R1 (3-1)

where:
R1 = fixed resistor;
RT1 = sensor measured resistance.

The calibration of the sensor was done using the Steinhart-Hart Thermis-
tor Equation (3-2). The coefficients of this equation were empirically adjusted,
aiming at minimizing the error between the temperature values measured by
the sensor compared and the temperatures measured by the Instrutherm TH-
1300 thermometer.

T = 1
0.001129148 + 0.0002278707836[ln(R)] + 0.0000000876741[ln(R)3]

(3-2)
where:
T = temperature in kelvin;
R = sensor measured resistance.

The temperature measurements were applied to Equation (3-3) in order
to estimate sound speed. The sound velocity calculated by (3-3) is then applied
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in (2-30) to estimate the distance towards the target.

e = 331.3 + 0.606 ∗ T (3-3)

where: e = velocity of sound;
T = temperature in degrees Celsius.

The estimated distances are saved in a matrix that stores the last
three distance values measured by each sensor, to eliminate some wrong
measurements that could happen, this information is applied to the input
of a median filter, whose output is sent to the neuro-fuzzy controller. From
Signal Processing Theory, if the distribution is symmetric, the mean is equal
to the median. Median filter is robust to outliers and to maintain the speed
and softness of the system, only three values are analysed by each turn of the
filter, this amount of samples was adjusted empirically.

3.1.2.2
Flight Controller

Nowadays, many flight controllers are commercially available in the
market, being easy to find from simple controllers (with gyroscopes and
accelerometers only) to very sophisticated ones (with several sensors, ports
and computational power). Some of them are proprietary [37], while others
are open source [38], with a variety of operational systems.

The Pixhawk Flight Controller was selected to be used in this project [8].
It is an independent open-hardware project developed by ETH Zurich (Swiss
Federal Institute of Technology), Autonomous Systems Lab, 3D Robotics,
ArduPilot Group and other individuals. It was developed aiming at providing
hardware to academic, hobby and industrial communities with low cost, high
availability and high-end autopilot design. Many series and manufactures may
be seen in the market. The system developed in this work is based on a generic
Pixhawk 1 flight controller, updated with FMU version 2, shown in Figure 3.9.
This update corrected a problem in version 1 that restricted addressable RAM
to 1 MB.

Pixhawk autopilot module runs a NuttX RTOS and supports two flight
stacks: PX4 and APM. This operational system is standards compliant,
scalable from 8 bit to 32 bit microcontroller environments, highly configurable,
has many embedded device drivers , C/C++ compatible, supports graphics
and other resources [39]. APM flight stack was chosen due to its flexibility
in vehicle types, easy implementation of obstacle avoidance, control override,
path planning and GPS based navigation [40]. Below is a list of the hardware
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Figure 3.9: Pixhawk Flight Controller.

resources [8]:

– Microprocessor:

– 32 bit STM32F427 Cortex M4 core with FPU [41]
– 168 MHz/256 kB RAM / 2 MB Flash Memory
– 32 bit STM32F103 failsafe co-processor

– Sensors:

– Micro L3GD20 3-axis, 16 bit gyroscope
– Micro LSM303D 3-axis, 14 bit accelerometer / magnetometer
– Invensense MPU6000 3-axis accelerometer / gyroscope
– MEAS MS5611 barometer

– Interfaces:

– 5x UART ports, one high-power capable, 2x with hardware flow
control

– 2x CAN
– Spektrum DSM / DSM2 / DSM-X R© Satellite compatible input up

to DX8
– Futaba S.BUS R© compatible input and output
– PPM sum signal
– RSSI input
– I2C
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– SPI
– 3.3 and 6.6V Analog-to-Digital Converter inputs
– External micro USB port

– Power System:

– Ideal diode controller with automatic fail-over
– Servo rail high-power (7 V) and high-current ready
– All peripheral outputs over-current protected, all inputs ESD pro-

tected

3.2
Neuro-Fuzzy Controller

The neuro-fuzzy controller is the decision-maker of DAS, infering the
necessary obstacle avoidance decision based on the information received from
sonars, lidar and UAV velocity. The proposed controller was developed with
the help of a black-box Simulink library, available at MathWorks R© Commu-
nity [42]. This library already has three different implementations of ANFIS
and CANFIS system: Scatter, Grid and ART (Adaptative Resonance Theory).
These implementation methods modify how the information of input space is
partitioned, and, consequently, affect the architecture, operation and approxi-
mation capacity of each ANFIS/CANFIS system. Scatter-type uses a quantity
of fuzzy rules equal to the number of the fuzzy subsets of each input; Grid-type
has a exponential relation between number of inputs and number of rules; on
the other hand, ART-type resembles the scatter-type but it is a much smarter
unsupervised learning technique that clusterizes the input data exclusively on
the areas of the input space where data appear [43,44]. The selection of input
space partitioning method was empirical. Scatter-type gave unsatisfactory re-
sults, and Grid-type crashed the computer all times, probably because of the
increased number of rules, more precisely 48828125 in this case. However, as
expected, ART-type presented good results and computational feasibility.

CANFIS-ART networks consist of six layers, they employ 2 algorithms
for parameter learning (i.e. RLS and error-backpropagation) and 1 algorithm
for automatic structure learning (i.e fuzzy-ART). Following a brief explanation
about each layer:

– Layer 1 (Inputs Normalization): CANFIS-ART uses the technique of
complement coding to normalize the input training data. Complement
coding is a normalization process that replaces an n-dimensional input
vector with its 2n-dimensional complemented coded, this helps avoiding
the problem of category proliferation.
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– Layer 2 (Input Fuzzification): The nodes belonging to this layer are
called input-term nodes and each represents a term of an input-linguistic
variable and functions as an 1-D membership function. Here it was used
a trapezoidal membership function.

– Layer 3 (Fuzzy-AND Operation): Each node in this layer performs a
fuzzy-AND operation and the T-norm operator of the algebraic product
was selected. The output of each node in this layer represents the firing
strength of the corresponding fuzzy rule.

– Layer 4 (Normalization of each rule firing strength): The output of the
k-th node in this layer, is the firing strength of each rule divided by the
total sum of the activation values of all the fuzzy rules. This results in
the normalization of the activation values of all fuzzy rules.

– Layer 5: The output of all nodes are adjusted by the consequent parame-
ters that represents the contribution of the k-th rule to the m-th output,
it is regulated by RLSE algorithm.

– Layer 6: The m-th output of the network is computed as the algebric
sum of the m-th node’s inputs.

CANFIS parameters were adjusted empirically by try-and-error. Many
combinations were evaluated of learning rate, number of membership fuctions,
gamma factor, among others. For the sake of brevity, only the best found
configuration is presented at Figure 3.10. The detailed explanation of each
parameter could be seen at 2 and [42–44]. Following a brief explanation about
some parameters:

– Ita: This is the “learning rate” constant used in the back-propagation
algorithm to adjust Layer 1 parameters;

– alpha: This is the “momentum term” constant that relates to the error
back-propagation algorithm used to adjust the parameters of Layer 1;

– Lambda: This is the “forgetting factor” associated with the Recursive
Least Squares (RLS) algorithm that is used to adjust the linear param-
eters of Layer 4;

– rhoa: This is the “vigilance parameter” of the fuzz-ART algorithm that
serves the task of input space partitioning.

– Alpha: The “choice parameter” of the fuzzy-ART algorithm;
– Beta: The fuzzy-ART “learning rate” parameter.
– MF Inclination Factor: This parameter sets the fuzziness of the trape-
zoidal membership functions that constitute the function of the input
term nodes.
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Figure 3.10: CANFIS setup.

The database for training, validation and test is an important issue
to consider. Then, a dataset was created, consisting in 1200 different kind
of simulated situations. Each situation is a combination between the input
variables (lidar left, lidar center, lidar right, sonar left, sonar right, sonar back,
sonar up, sonar down, velocity X, velocity Y, velocity Z) and the respective
avoidance attitude (pitch, roll and throttle). For correct avoidance attitude
setup, each input combination was presented to a specialist, that established
the most adequate avoidance attitude response to it. The database was divided
in 50% training, 25% validation and 25% test. The number of epochs was used
as training stopping criteria and in this case was 600 epochs. The CANFIS
structure utilized for training and validation process is highlighted in Figure
3.11. When the signal LE is high (one), the structure performs training; and
when LE is low (zero) the structure performs validation.
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Figure 3.11: CANFIS training setup.

The system output consists of three variables: roll (output variable 1),
pitch (output variable 2) and throttle (output variable 3, acts as car accelerator
controlling altitude). ). As the roll and pitch movements can assume two
directions: right / left for roll and forward / backward for pitch, their range can
assume negative or positive values, defined between -100 to 100. On the other
hand, throttle is unidirectional, so it was defined from 0 to 100. All outputs
were normalized in order to provide compatibility with PX4 and APM. Inside
the flight controller, the flight stack converts the variables for motor useful
information. Figure 3.12 shows the RMSE after the training stage and before
outputs normalization. The training algorithm converged after 250 epochs,
achieving the RMSE values presented in Table 3.4, that also shows the pitch,
roll and throttle RMSEs obtained for the test dataset.

Figure 3.12: CANFIS RMS output error.
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Table 3.4: RMSE values.

Output Training
Pitch 0.2485
Roll 0.2445

Throttle 0.2430

3.3
System Integration

Due to safety issues, the DAS behavior was analysed before integration
with the flight stack. To achieve that, a Raspberry Pi 3 model B (RPi) was
used to emulate the flight controller and communicate with the sensors and
Pixhawk. Raspberry Pi 3 is a small development computer with on-boarded
Linux OS and several hardware resources. As the velocity parameters comes
from Pixwawk, communication between both of them had to be implemented.
This systems integration takes shape in two spheres: hardware and software.

Hardware - RPi has four USB ports and a standard UART [45]. These
ports were used in the systems integration, because they are easily integrated.
Communication between Arduino, use to read the sonars data, and RPi was
done directly by their USB ports. On the other hand, the Lidar sensor has CAN
and RS-485 ports. The RS-485 was preferred, even considering the necessity
of using a RS-485 to USB adapter. Finally, since USB communication with
Pixhawk during flight should not be performed [40], this communication was
implemented by UART. Figure 3.13 presents a block diagram representing the
hardware integration.

Figure 3.13: Hardware integration block diagram.

Software - A communication protocol was implemented to read information
sent from Arduino. Every time RPi requests data, an interruption is triggered
in Arduino, that responds with the target distances measured by all sonars.
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Communication with lidar was done using MODBUS protocol ([46]), that was
already implemented in the sensor by its manufacturer. Besides, the commu-
nication between RPi and Pixhawk was established by MAVlink protocol [47].

For this analysis, all the codes used in the neuro-fuzzy controller at
Simulink were transcripted to Python. A program was written to receive all
sensors measurements and the UAV velocity, and then send this information
to the controller and save DAS results to be further analysed. Figure 3.14
presents a block diagram representing the software integration. Besides, Figure
3.15 and 3.16 show the platform with all systems integrated.

Figure 3.14: Software integration block diagram.

Figure 3.15: Frontal view of platform with DAS on-board.
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Figure 3.16: Superior view of platform with DAS on-board.
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4
Results

With the UAV assembled, some tests should be performed to verify the
behaviour of DAS. The tests were conducted on two different environments:
inside a controlled site and open air. Following are the explanations.

4.1
Controlled Site

To conduct this test, a closed ambient with some obstacles was chosen and
eight tests were done. Due to the fact that it was a closed ambient, a real flight
could infer some risk; thus, some constrains had to be applied to guarantee the
integrity of the platform and operator. Following are the description of each
test.

Test 1 - here, the UAV was stopped, on a table and with bottom sonar
disabled. In this test the intend was to check if false positives were happening.
Figure 4.1, Tables 4.1 and 4.2 show the environment conditions and system
outputs. It was expected that once the UAV was stopped, everything detected
was not a possible collision, thus a zero condition in all of the outputs would
be a good value. Considering the 5% radio controller dead-zone, with these
outputs, no command of avoidance was send; then a valid output.

Figure 4.1: First test scenario.
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Table 4.1: First test inputs.

Parameter Entrance Value
Left Lidar 2 m

Center Lidar 2 m
Right Lidar 0 m
Left Sonar 2.26 m
Right Sonar 0 m
Back Sonar 0 m
Up Sonar 0 m

Down Sonar 0 m
Axe X velocity 0.01 (m/s)
Axe Y velocity 0.0 (m/s)
Axe Z velocity 0.0 (m/s)

Table 4.2: First test output.

Parameter Normalized Value
Roll Output -0.03
Pitch Output 0.00

Throttle Output 0.05

Test 2 - at this moment, velocity in one axis was considered and all
sonars were available. Figure 4.2, Tables 4.3 and 4.4 show the environmental
conditions and system outputs. As can be seen, the scenario was crowded of
objects, then few actions were available. A object was detected in the back,
exactly in the direction of flight ( Vx = 1 m/s), the option of the system was
compensate the pitch with 12% in the opposite direction, a valid decision. With
obstacles in both sides and velocity to the left (Vy = 1 m/s), any movement
to any side could be risk; thus the option of the DAS was increase throttle and
pass up the obstacle, a valid option. Considering the 5% radio controller dead-
zone (area at the center of the joystick that count as zero), the roll command
could be ignored.

Figure 4.2: Second test scenario.
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Table 4.3: Second test inputs.

Parameter Entrance Value
Left Lidar 0 m

Center Lidar 0 m
Right Lidar 12 m
Left Sonar 0.64 m
Right Sonar 0.58 m
Back Sonar 0.19 m
Up Sonar 2.70 m

Down Sonar 0.19 m
Axe X velocity 1.0 (m/s)
Axe Y velocity 1.0 (m/s)
Axe Z velocity 0.0 (m/s)

Table 4.4: Second test output.

Parameter Normalized Value
Roll Output 0.04
Pitch Output 0.12

Throttle Output 0.21

Test 3 - here, velocity in one axe was considered and all sonars were available.
Figure 4.3, Tables 4.5 and 4.6 show the environment conditions and system
outputs. Like test 2, the scenario was crowded of objects, then few actions
were available. However, now the system has velocity to go front (Vx = -3
m/s), the near object at this was 12 m of distance; then, at this moment,
no avoidance was necessary. It is important to highlight the totally different
behavior of the system compared with test 2; with the same obstacles and
opposite direction of movement, the DAS was capable of changing its output
taking into consideration only the parameters of velocity and direction of
movement. This behaviour is very important because obstacles could represent
a threat or not depending on the movement of the UAV.

Figure 4.3: Third test scenario.
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Table 4.5: Third test inputs.

Parameter Entrance Value
Left Lidar 0 m

Center Lidar 0 m
Right Lidar 12 m
Left Sonar 0.64 m
Right Sonar 0.58 m
Back Sonar 0.19 m
Up Sonar 2.70 m

Down Sonar 0.19 m
Axe X velocity -3 (m/s)
Axe Y velocity 0.0 (m/s)
Axe Z velocity 0.0 (m/s)

Table 4.6: Third test output.

Parameter Normalized Value
Roll Output 0.0
Pitch Output 0.0

Throttle Output 0.0

Test 4 - once again, velocity in one axe was considered and all sonars were
available. Figure 4.4, Tables 4.7 and 4.8 show the environment conditions and
system outputs. The difference between test 3 and test 4 is the velocity to
go front (Vx = -17 m/s). With these conditions, the system judge that no
avoidance was necessary, probably because there is still enough space between
the UAV and the object for a avoidance action, e.g. to go left or go up. Thus,
could be considered a valid decision.

Figure 4.4: Fourth test scenario.
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Table 4.7: Fourth test inputs.

Parameter Entrance Value
Left Lidar 0 m

Center Lidar 0 m
Right Lidar 12 m
Left Sonar 0.64 m
Right Sonar 0.58 m
Back Sonar 0.19 m
Up Sonar 2.70 m

Down Sonar 0.19 m
Axe X velocity -17 (m/s)
Axe Y velocity 0.0 (m/s)
Axe Z velocity 0.0 (m/s)

Table 4.8: Fourth test output.

Parameter Normalized Value
Roll Output 0.0
Pitch Output 0.0

Throttle Output 0.0

Test 5 - going ahead the test 4, velocity in one axe was considered and all
sonars were available. Figure 4.5, Tables 4.9 and 4.10 show the environment
conditions and system outputs. The difference between test 4 and test 5 is
the distance of the object reported by the right lidar (2 m in this case). With
this velocity (Vx = -17 m/s) and distance of the object, an avoidance action
becomes urgent. The answer of the system was increase the throttle in 26%
trying to surpass the obstacle. This could be a valid decision if the obstacle is
not a huge wall or something like that. The roll and pitch answer was considered
a wrong decision because put the system in collision route.

Figure 4.5: Fifth test scenario.
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Table 4.9: Fifth test inputs.

Parameter Entrance Value
Left Lidar 0 m

Center Lidar 0 m
Right Lidar 2 m
Left Sonar 0.64 m
Right Sonar 0.58 m
Back Sonar 0.19 m
Up Sonar 2.70 m

Down Sonar 0.19 m
Axe X velocity -17 (m/s)
Axe Y velocity 0.0 (m/s)
Axe Z velocity 0.0 (m/s)

Table 4.10: Fifth test output.

Parameter Normalized Value
Roll Output 0.13
Pitch Output 0.08

Throttle Output 0.26

Test 6 - here, the scenario is completely different. Velocity in two axes were
considered and all sonars were available. Figure 4.6, Tables 4.11 and 4.12 show
the environment conditions and system outputs. A smooth movement to front
and left in a diagonal movement was done, all obstacles very far, the system
did not find any collision route and none avoidance was necessary.

Table 4.11: Sixth test inputs.

Parameter Entrance Value
Left Lidar 73 m

Center Lidar 36 m
Right Lidar 45 m
Left Sonar 0.0 m
Right Sonar 0.0 m
Back Sonar 2.1 m
Up Sonar 0.0 m

Down Sonar 0.19 m
Axe X velocity -0.37 (m/s)
Axe Y velocity -0.46 (m/s)
Axe Z velocity 0.0 (m/s)

Table 4.12: Sixth test output.

Parameter Normalized Value
Roll Output 0.0
Pitch Output 0.0

Throttle Output 0.0
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Figure 4.6: Sixth test scenario.

Test 7 - the idea was to check the DAS behaviour in a movement against solo.
Figure 4.7, Tables 4.13 and 4.14 show the environment conditions and system
outputs. As can be seen, once the movement was slowly, the system reacted
smoothly against the ground approximation. This fact is very interesting since
it avoids unnecessary sudden movements.

Table 4.13: Seventh test inputs.

Parameter Entrance Value
Left Lidar 0.0 m

Center Lidar 0.0 m
Right Lidar 0.0 m
Left Sonar 0.0 m
Right Sonar 0.0 m
Back Sonar 0.0 m
Up Sonar 0.0 m

Down Sonar 0.0 m
Axe X velocity 0.0 (m/s)
Axe Y velocity 0.0 (m/s)
Axe Z velocity 0.3 (m/s)

DBD
PUC-Rio - Certificação Digital Nº 1612976/CA



Chapter 4. Results 67

Figure 4.7: Seventh test scenario.

Table 4.14: Seventh test output.

Parameter Normalized Value
Roll Output 0.07
Pitch Output 0.06

Throttle Output 0.06

Test 8 - in this test, a object was quite near the UAV and velocity in one
axe was considered. Figures 4.8, 4.9 and Table 4.15 show the environment
conditions and system outputs. The idea was to check the behaviour of
the system in the same scenario with different velocity pattern, i.e. velocity
changing from its maximum to minimum and from front to back. As can be
seen, the DAS output got its maximum when the UAV was in collision route
with maximum velocity, as the speed reduces, the output of the DAS decreases
too. Considering the 5% radio controller dead-zone, all the outputs below 0,05
can be disconsidered.

Table 4.15: Eighth test inputs.

Parameter Entrance Value
Left Lidar 1 m

Center Lidar 1 m
Right Lidar 1 m
Left Sonar 0.0 m
Right Sonar 0.0 m
Back Sonar 0.0 m
Up Sonar 0.0 m

Down Sonar 0.0 m
Axe X velocity -20..20 (m/s)
Axe Y velocity 0.0 (m/s)
Axe Z velocity 0.0 (m/s)
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Figure 4.8: Eighth test scenario.

Figure 4.9: Eighth test outputs.

4.2
Open Air Test

This test was conducted at Popular Theater, in the city of Niterói, RJ.
It is a large open-air space with good flight conditions and little obstacles,
Figure 4.10 shows the place. The test had the objective of finding false-positives
(system avoiding obstacles that do not exist) and founds its importance in
analysing aleatory commands of DAS. It consisted in hovering and doing some
movements like circles, square, front-back, and altitudes varying from 2.5 m
to 20 m. Part of the DAS log is shown in Figure 4.11 and the moments
highlighted were when the UAV was near the ground, its back facing the
operator and system indicating a very small movement to up-front-right, this
output condition is shown in Table 4.16 in a simplified way. This output suggest
that DAS started to react to the proximity of the floor and was trying to
compensate the downward movement.
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Figure 4.10: Popular Theater open-air space (Google Earth
photo).

Table 4.16: Seventh test output.

Parameter Normalized Value
Roll Output 0.07
Pitch Output 0.05

Throttle Output 0.06

Figure 4.11: Real flight DAS log.
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5
Conclusions and Future Works

5.1
Conclusions

The main goal of this dissertation was to develop a system capable of
detecting and analysing the risk situations during flights and of taking action
that mimic a human being. To achieve that, a detection sensor network and
an artificial intelligent system based on neuro-fuzzy algorithm was developed.
Therefore, a prototype was projected and built to support real experiments.
All the work, research done and test results led to some conclusions:

– Lidar technology presents outstanding performance for detection. How-
ever, its high costs still only makes it affordable for high value-added
operations;

– Sonars have a good value for money, but for in air application show a
limited range;

– For small UAVs, radar is impractical due to its weight, price and space
necessary;

– Attention has to be given in the UAV design, its purpose and application;

– Databases for detection and avoidance system development is still hard
to find and a lot of effort has to be given to its development;

– Neuro-fuzzy algorithm could be a good artificial intelligence solution for
this kind of application. However, attention has to be given to networking
tuning and training error;

– More tests with the DAS have to be done in different environments to
reach a final conclusion about its behavior.
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5.2
Future Works

By following this dissertation research, some improvements can be made:

• Database consistency check to find any discrepancies

• Implement the developed algorithm in C++ and run it inside the
Pixhawk;

• Substitute the sonars for other model with longer distance range;

• Deep analyse of the training error in order to minimize it;

• Perform more tests to ensure performance and behaviour of the system.
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