
Novel Node Importance Measures to Improve Keyword
Search over RDF Graphs

Elisa Souza Menendez

Tese (Doutorado em Informática). Pontifícia Universidade Católica do Rio de Janeiro,
Rio de Janeiro, 2019.

Elisa Souza Menendez

Novel Node Importance Measures to Improve
Keyword Search over RDF Graphs

TESE DE DOUTORADO

Thesis presented to the Programa de Pós-Graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Doutor em Ciências - Informática

Advisor: Prof. Marco Antonio Casanova

Rio de Janeiro
February 2019

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

All rights reserved.

 Elisa Souza Menendez

Elisa Souza Menendez holds a master in computer science degree from
Pontifical Catholic University of Rio de Janeiro (PUC-Rio), and a
bachelor degree in Information Systems from Federal University of
Sergipe (UFS). Her main research topics are Semantic Web and
Information Retrieval.

Bibliographic data

Menendez, Elisa Souza

 Novel Node Importance Measures to Improve Keyword Search over
RDF Graphs / Elisa Souza Menendez; advisor: Marco Antonio
Casanova. – 2019.

 91 f. : il. ; 30 cm

 Tese (Doutorado em Informática)–Pontifícia Universidade Católica
do Rio de Janeiro, Rio de Janeiro, 2019.

 Inclui bibliografia

 1. Informática – Teses. 2. Ranqueamento. 3. Busca por palavras-
chave. 4. RDF. 5. SPARQL. 6. PageRank. I. Casanova, Marco
Antonio. II. Pontifícia Universidade Católica do Rio de Janeiro.
Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

Acknowledgments

First, the most special thank you to the best advisor I could ask for, Prof. Marco

Antonio Casanova. For sure, his fully support and wisdom were key contributors in

my academic achievements. I feel inspired by Prof. Casanova to become a professor

myself, hoping someday, a student can admire me as much as I admire him.

I would like to thank my second advisor, Prof. Mohand Boughanem and all the team

from the Institut de Recherche en Informatique de Toulouse (IRIT). They made my

year in France very pleasant and culturally enriching.

I can’t forget to thank the team from Tecgraf/K2, which were a key part in the early

years of this project. Best regards, Yenier, Grettel, Fred and Kaka. Of course, I

would like to extend my appreciation and gratitude to my classmates, professors

and staff from the Department of Informatics of PUC-Rio.

This study was financed in part by the Conselho Nacional de Desenvolvimento

Científico e Tecnológico (CNPq), and by the Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior (CAPES).

Last, but not least important, my deep gratitude to my parents, Gracinha and Angel,

for their support and encouragement during all these years of study. I love you,

thanks.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

Abstract

Menendez, Elisa Souza; Casanova, Marco Antonio (advisor). Novel Node
Importance Measures to Improve Keyword Search over RDF Graphs.
Rio de Janeiro, 2019. 91p. Tese de Doutorado - Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

A key contributor to the success of keyword search systems is a ranking

mechanism that considers the importance of the retrieved documents. The notion

of importance in graphs is typically computed using centrality measures that highly

depend on the degree of the nodes, such as PageRank. However, in RDF graphs,

the notion of importance is not necessarily related to the node degree. Therefore,

this thesis addresses two problems: (1) how to define importance measures for

RDF graphs; (2) how to use these measures to help compile and rank results of

keyword queries over RDF graphs. To solve these problems, the thesis proposes

a novel family of measures, called InfoRank, and a keyword search system, called

QUIRA, for RDF graphs. Finally, this thesis concludes with experiments showing

that the proposed solution improves the quality of the results in two keyword search

benchmarks.

Keywords
Ranking; Keyword Search; RDF; SPARQL; PageRank.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

Resumo

Menendez, Elisa Souza; Casanova, Marco Antonio (orientador). Novas
Medidas de Importância de Vértices para Aperfeiçoar a Busca por
Palavras-chave em Grafos RDF. Rio de Janeiro, 2019. 91p. Tese de
Doutorado - Departamento de Informática, Pontifícia Universidade Católica
do Rio de Janeiro.

Um ponto importante para o sucesso de sistemas de busca por palavras-

chave é um mecanismo de ranqueamento que considera a importância dos

documentos recuperados. A noção de importância em grafos é tipicamente

computada usando medidas de centralidade, que dependem amplamente do

grau dos nós, como o PageRank. Porém, em grafos RDF, a noção de

importância não é necessariamente relacionada com o grau do nó. Sendo assim,

esta tese aborda dois problemas: (1) como definir uma medida de importância

em grafos RDF; (2) como usar essas medidas para ajudar a compilar e ranquear

respostas a consultas por palavras-chave sobre grafos RDF. Para resolver estes

problemas, esta tese propõe uma nova família de medidas, chamada de

InfoRank, e um sistema de busca por palavras-chave, chamado QUIRA, para

grafos RDF. Esta tese é concluída com experimentos que mostram que a

solução proposta melhora a qualidade dos resultados em benchmarks de busca

por palavras-chave.

Palavras-chave
Ranqueamento; Busca por palavras-chave; RDF; SPARQL; PageRank.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

Table of Contents

1 Introduction 10
1.1. Context and Motivation 10
1.2. Goal and Contributions 12
1.3. Structure of the Thesis 13

2 Background and Related Work 14
2.1. Linked Data 14
2.1.1. RDF Graphs and SPARQL 14
2.1.2. Principles and The Web of Data 16
2.2. Information Retrieval and Keyword Search 18
2.2.1. Overview 18
2.2.2. Importance Measures 20
2.2.3. Evaluation of Information Retrieval Systems 21
2.3. Related Work 22
2.3.1. Keyword Search Over Structured Databases 22
2.3.2. Importance Measures for Structured Databases 23
2.4. Chapter Conclusion 26

3 The InfoRank Importance Measures 27
3.1. Discussion and Formal Definitions 27
3.2. Implementation and Example 31
3.2.1. Running Example 31
3.2.2. Computing Informativeness 31
3.2.3. Computing InfoRank 33

4 The Process of Keyword Search over RDF Graphs 39
4.1. Discussion and Problem Definition 39
4.1.1. The Keyword Search Problem 39
4.1.2. Overview of the Proposed Solution 42
4.2. Implementation and Examples 43
4.2.1. Finding Pieces of Information in a Graph 43
4.2.2. Connecting Pieces of Information in a Graph 51

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

4.2.3. Ranking Information in a Graph 58
4.3. Chapter Conclusion 59

5 The QUIRA Keyword Search System 60
5.1. Architecture 60
5.2. Interface 62
5.3. Chapter Conclusion 66

6 Evaluation 67
6.1. Setup 67
6.2. Ranking Experiments 70
6.2.1. IMDb 70
6.2.2. MusicBrainz 72
6.3. Keyword Search Experiments 74
6.3.1. IMDb 74
6.3.2. MusicBrainz 80
6.4. Chapter Conclusion 82

7 Conclusions and Future Work 83
7.1. Conclusions 83
7.2. Future Work 85

8 Bibliography 87

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

List of Figures

Figure 1: Informal RDF Graph 15
Figure 2: The LOD Cloud Diagram 18
Figure 3: Information Retrieval Process 19
Figure 4: Graph Example 31
Figure 5: An RDF Graph. 41
Figure 6: Example of the Schema Graph in IMDb. 52
Figure 7: Metric closure sub graph for L={:Actress,:Genre,:Movie}. 55
Figure 8: Metric closure sub graph for L2={:Actress/1,:Actress/2,:Movie}. 57
Figure 9: QUIRA’s Architecture. 60
Figure 10: Query submission and answer. 63
Figure 11: Graph schema for an answer. 63
Figure 12: Property selection. 64
Figure 13: Answer evaluation. 64
Figure 14: URI information. 65
Figure 15: URI relations. 65
Figure 16: URI navigation. 65
Figure 17: Overview of the IMDb Schema 69
Figure 18: Overview of the MusicBrainz Schema 69
Figure 19: InfoRank result for K={harrison, ford, george, lucas}. 78
Figure 20: PageRank result for K={harrison, ford, george, lucas}. 79
Figure 21: InfoRank result for K = {terminator, actor}. 79
Figure 22: PageRank result for K = {terminator, actor}. 79
Figure 23: InfoRank result for K = {Hardcore, Kids, duration}. 81
Figure 24: PageRank result for K = {Hardcore, Kids, duration}. 82

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

List of Tables

Table 1: Informativeness of resources for the running example. 33
Table 2: Table NODES for the running example. 34
Table 3: Table EDGES for the running example. 34
Table 4: Example of the Power Iteration method. 37
Table 5: InfoRank result for the running example. 37
Table 6: Possible answers for K={rocky,sylvester,stallone}. 41
Table 7: Example of TMC from IMDb. 45
Table 8: Example of TMP from IMDb. 45
Table 9: Example of TDI from IMDb. 45
Table 10: Example of TDV from IMDb. 45
Table 11: Matches for K={julie,andrews,christopher,plummer}. 50
Table 12: Templates generated for K={julie,andrews,christopher,plummer}. 51
Table 13: Metric closure example of the classes in IMDb. 54
Table 14: Metric closure edges for L1={:Actress,:Genre}. 56
Table 15: Metric closure edges for L2={:Actress/1,:Actress/2,:Genre}. 56
Table 16: Templates generated for K={julie,andrews,anne,hathaway,genre}. 57
Table 17: IMDb class ranking computed by InfoRank. 71
Table 18: IMDb object property ranking computed by InfoRank. 71
Table 19: IMDb top 10 instances induced by InfoRank. 71
Table 20: IMDb top 10 instances induced by PageRank. 72
Table 21: MusicBrainz class ranking computed by InfoRank. 72
Table 22: MusicBrainz object property ranking computed by InfoRank. 73
Table 23: MusicBrainz top 10 instances induced by InfoRank. 73
Table 24: MusicBrainz top 10 instances induced by PageRank. 74
Table 25: IMDb results. 75
Table 26: InfoRank results for IMDb. 76
Table 27: PageRank results for IMDb. 77
Table 28: InfoRank results for MusicBrainz. 80
Table 29: PageRank results for MusicBrainz. 81

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

1
Introduction

1.1. Context and Motivation

Keyword search is a well-known and convenient way for users to query large

amounts of data, whether in Web pages or databases. The user simply types some

terms, called keywords, and it is up to the system to retrieve the documents that best

match the list of keywords. Search engines for Web pages popularized this kind of

search. More recently, some of the Information Retrieval techniques used by Web

search engines were adapted to query databases to hide from users unfriendly SQL

queries.

In the last decade, RDF emerged as a data model that represents data as a

set of triples, which in turn induces a graph. This kind of modeling adds flexibility

to describe resources and follows W3C standardized formats and ontologies.

Considering that RDF graphs are interesting sources of knowledge that are also

queried with unfriendly SPARQL queries, keyword search over RDF graphs (or

briefly RDF-KwS) becomes a relevant research topic.

In Web Information Retrieval there are two main tasks: (1) matching

keywords with indexed documents; (2) ranking the retrieved documents by order

of relevance. RDF graphs present a further challenge, when compared to the Web,

since the information that a user needs may not be in a single triple, but rather it is

distributed over the graph. Hence, an answer for a keyword query over an RDF

graph is better formalized as a minimal subgraph of the RDF graph that covers the

keywords.

Summarizing, there are three main tasks in RDF-KwS: (1) finding pieces of

information in the RDF graph; (2) assembling the retrieved pieces of information

to compose complete answers; (3) ranking the complete answers. The main

motivation of this work is how to construct an RDF-KwS system that covers these

three tasks.

To achieve a good ranking mechanism, typical information retrieval

systems rank the documents based not only on how well they match the keyword

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

11

query, but also based on how important the documents are. The notion of

importance for Web pages is typically computed using centrality measures for

graphs created using the hyperlink structure of the Web. PageRank (Brin & Page

1998) and HITS (Kleinberg 1999) are some of the most popular centrality measures

used in Web Information Retrieval. Their main idea is to assign high scores to pages

that are referenced by many other important pages.

Returning to the RDF environment, the majority of the related work test

their strategies using some RDF graph that reflects Web pages and their links, such

as DBpedia1 (Kasneci et al. 2008; Franz et al. 2009; Harth et al. 2009; Mirizzi et al.

2010; Le et al. 2014; Ngomo et al. 2017), or using some dataset about co-

authorships of research papers, with data from DBLP2 (Balmin et al. 2002; Franz et

al. 2009; Wei et al. 2011), for example. We argue that PageRank or HITS variations

work well for these types of RDF graphs because the incoming or outgoing edges

actually indicate the relevance of a resource. In the Web, it is reasonable that a Web

page (or node) with several incoming edges is more important than a Web page

with a few incoming edges. Likewise, in an RDF graph about research publications,

an author with many accepted papers is usually more important than an author of

few accepted papers.

However, RDF-KwS operates over full RDF graphs, where the incoming or

outgoing edges of a node do not necessarily indicate the node’s importance with

respect to any existing node relationship or, at least, it may be hard to detect which

relationships would express the notion of importance. Thus, traditional measures

may fail to compute the importance of a node. As an example, in an RDF graph

representation of IMDb3, instances of “common classes” (e.g. Genre, Language,

Country, Company) have a high number of incoming edges. Hence, a traditional

PageRank algorithm will assign scores to these common instances that are higher

than the scores of popular movies and actors. Of course, we could manually assign

weights to the object properties in order to capture their semantics, and use a

Weighted PageRank or HITS Algorithm, as in (Balmin et al. 2002; Ding et al. 2004;

1 http://dbpedia.org/sparql
2 http://dblp.uni-trier.de
3 www.imdb.com

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

12

Park et al. 2011). However, one may argue that the manual assignment of weights

is bothersome and subjective. Thus, other works focused on strategies to learn

weights based on user feedback (Nie et al. 2005; Agarwal et al. 2006; Komamizu

et al. 2017). In addition to the difficulty of detecting relationships that express the

importance of a graph node, it would be interesting to eliminate unwanted

relationships that would distort traditional importance measures.

1.2. Goal and Contributions

Summarizing, the problems addressed in this work are: (1) how to define

importance measures in RDF graphs in which the importance of a node is not

directly related to its degree; (2) how to use these measures to help compute and

rank answers of keyword queries over RDF graphs.

To solve these problems, the first and key contribution of this thesis is a

novel family of importance measures, collectively called InfoRank, for RDF graphs.

The proposed importance measures are combinations of three intuitions: (I)

“important things have lots of information about them”; (II) “important things are

surrounded by other important things”; (III) “few important relations (e.g. friends)

are better than many unimportant relations (e.g. acquaintances)”. They require

neither the manual assignment of weights to object properties nor a training dataset

to use as input to a learning algorithm.

The second contribution is an RDF-KwS system, named QUIRA (QUerying

with InfoRAnk), which uses InfoRank: to narrow the retrieved pieces of

information; to choose the best paths to connect the resources (nodes) in the graph;

and to rank the retrieved answers.

Finally, the third contribution of this thesis consists of two enriched RDF

datasets, IMDb and MusicBrainz4, along with keyword search benchmarks adapted

to the RDF enviroment. We use these datasets in our experiments to assess the

correctness and the performance of the importance measures and the translation

algorithm.

4 https://musicbrainz.org

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

13

1.3. Structure of the Thesis

The remainder of this thesis is structured as follows. Chapter 2 introduces

background concepts about Linked Data and Keyword Search. It also discusses

related work that brings together both worlds, that is, strategies that are focused on

performing Keyword Search over Linked Data, and related work aimed at

measuring node important in a graph. Chapter 3 presents the proposed measures to

capture node importance in RDF graphs, called InfoRank. Chapter 4 shows how to

use these measures in a strategy for keyword search over RDF graphs. Chapter 5

describes the architecture and interface of QUIRA, a system that implements the

strategy proposed in Chapter 4. Chapter 6 covers experiments to assess the

InfoRank importance measures and the QUIRA system. Finally, Chapter 7

concludes the thesis and indicates directions for future work.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

2
Background and Related Work

In this chapter we present background concepts and related work. Section 2.1

defines Linked Data, RDF, SPARQL, the Web of Data and its principles, while

Section 2.2 describes the Information Retrieval processes and some popular

importance measures, such as PageRank. Finally, Section 2.3 presents the related

work about keyword search over structured databases (relational and RDF) and

some of the importance measures used in these works.

2.1. Linked Data

2.1.1. RDF Graphs and SPARQL

The Resource Description Framework (RDF)5 is a framework for expressing

information about resources. Resources can be anything (people, objects, concepts,

etc.) and are described using triples. A triple is a statement that has a subject, a

predicate and an object. Informally, an instance of a statement can be “The Mona

Lisa was created by Leonardo Da Vinci”, in which the subject is “The Mona Lisa”,

the predicate is “was created by” and the object is “Leonardo Da Vinci”. The

combination of the statements forms a graph, as shown in Figure 1.

Formally, in RDF, the subject and the predicate of the triple have to be

represented as an URI, and the object can be a URI or a literal. URI stands for

“Uniform Resource Identifier” and is a global identifier that allows different people

to reuse the URI to identify the same thing. For instance, the dataset DBpedia uses

the URI <http://dbpedia.org/resource/Mona_Lisa> to denote the Mona Lisa

painting described by the corresponding Wikipedia article. Additionally, DBpedia

5 https://www.w3.org/TR/rdf11-primer/

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

15

uses the URI <http://dbpedia.org/ontology/author> to represent the predicate “was

created by” and the URI <http://dbpedia.org/resource/Leonardo_da_Vinci> to

represent the object “Leonardo Da Vinci”.

 Figure 1: Informal RDF Graph

Finally, a literal is a basic value that is not a URI, such as a string, a number,

a date, etc. For instance, DBpedia denotes the following triple, in which the object

is literal:

(<http://dbpedia.org/resource/Mona_Lisa>,

 <http://dbpedia.org/property/otherTitle>,

 "La Joconde")

In practice, RDF is used in combination with vocabularies that provide

semantic information about the resources. Examples of popular vocabularies are:

• RDF Schema: defines the basic idea of classes and properties. For

example, one can state that the URI

http://www.example.org/friendOf can be used as a property and that

the subjects and objects of this predicate must be resources of class

http://www.example.org/Person. Then, one can say that the

resources Bob and Mary are of the type Person, and that Bob is a friend

of Mary.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

16

• OWL (Web Ontology Language): extends the expressivity of RDF

Schema with additional primitives, such as equivalent class, equivalent

property, different from, same as, etc.

• FOAF (Friend of a Friend): describes people, their activities and their

relations to other people.

• Dublin Core: defines general attributes such as title, creator, date and

subject.

The SPARQL query language6 can be used to express queries over RDF

graphs. A simple example of a SPARQL query is shown below, which returns the

URIs of all people named “Mary”.
SELECT ?subject

WHERE { ?subject rdf:type foaf:Person .

 ?subject foaf:name "Mary" }

The SELECT clause identifies the variables that will appear in the result (in

this case, ?subject). The where clause contains the graph pattern that is matched

with a RDF graph. The pattern in this example is a single triple, but SPARQL also

supports aggregation, subqueries, negation, filters, etc.

Another important feature of SPARQL is the possibility to update RDF

datasets, and to insert or delete triples. For instance, the modify operation can be

used to remove or add triples based on bindings for a query pattern specified in a

where clause, as in:

DELETE { ?person foaf:firstName "Bill" }
INSERT { ?person foaf:firstName "William" }
WHERE { ?person foaf:firstName "Bill" .
 ?person foaf:lastName "Smith" }

2.1.2.Principles and The Web of Data

Tim Bernes-Lee introduced a set of best practices for publishing and interlinking

structured data on the Web, known as Linked Data (Berners-Lee, 2006). There are

four main principles that define Linked Data:

6 http://www.w3.org/TR/sparql11-query/

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

17

• Use URIs as names for things.

• Use HTTP URIs so that people can look up those names.

• When someone looks up a URI, provide useful information using the

standards (RDF, SPARQL).

• Include links to other URIs, so that they can discover more things.

The idea of the first principle is to extend the classic Web and use URIs

(Uniform Resource Identifiers) to identify not only documents, but also any object

or concept of the real world. URIs can identify concrete things, such as people,

places, and cars, or abstract concepts, such as feelings and relations (Heath & Bizer,

2011).

Once there is a URI defining something, it needs to be combined with the

HTTP protocol in order to enable the URI to be dereferenced, that is, to provide

access to the description of objects and concepts.

The third principle promotes the use of standard content format to enable

different applications to process Web content. The structured data can be

represented and shared using a simple graph-based model, known as RDF

(Resource Description Framework), described in section 2.1.1.

Finally, the fourth promotes the use of RDF triples to describe relationships

between resources. Such triples are often referred to as links. For instance, to

connect a person with a place, one may use the relationship “works”.

Moreover, links should also be created between different datasets in order

to create a global data space, called the Web of Data, which forms a large graph

connecting RDF datasets from all sorts of topics, such as locations, people,

publications, music, movie, etc. The idea of the Web of Data started to gain force

in 2007 with the LOD - Linked Open Data7 project. The aim of this project was to

identify existing datasets available under open licenses and to publish them in RDF,

according to the Linked Data Principles (Heath & Bizer, 2011). Subsequently,

several individuals and organizations were stimulated to publish their data in the

LOD using the Linked Data principles. Figure 2 shows the LOD graph for the

datasets published until June 2018.

7 https://lod-cloud.net

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

18

 Figure 2: The LOD Cloud Diagram

2.2. Information Retrieval and Keyword Search

2.2.1.Overview

An information retrieval (IR) system is a software program that manages documents

and helps users find the information they need. The documents that satisfy the user

information need are called relevant documents. A perfect retrieval system would

retrieve only relevant documents (that is, it would have 100% precision) and would

retrieve all such documents (that is, it would have 100% recall). However, perfect

retrieval systems do not exist since search statements are incomplete and relevance

depends on the subjective opinion of users.

There are three basic processes an IR system has to support: the

representation of the content of the documents, the representation of the user

information need, and the comparison of the two representations. The processes are

visualized in Figure 3, in which squared boxes represent data and rounded boxes

represent processes (Hiemstra 2009).

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

19

 Figure 3: Information Retrieval Process

Representing the documents is usually called the indexing process and it

takes place offline, that is, before the user accesses the IR system. The indexing

process may include the actual storage of the document in the system, but often

documents are only partially stored, for instance, only the title and the abstract, plus

information about the actual location of the document. The process of representing

the user information need is often referred to as the query formulation process. In a

broad sense, query formulation might denote the complete interactive dialogue

between the system and the user, leading not only to a suitable query but, possibly,

also to the user better understanding his information need; this is denoted by the

feedback process in Figure 3.

The comparison of the query against the document representations is called

the matching process. This process usually results in a ranked list of documents.

Users will walk down this document list in search of the information they need.

Ranked retrieval will hopefully put the relevant documents at the top of the ranked

list, minimizing the time the user has to invest in reading the documents. Simple

but effective ranking algorithms use the frequency distribution of terms over

documents, but also statistics over other information, such as importance measures

over the graph created using the hyperlink structure of the Web.

Section 2.2.2 presents some definitions of popular importance measures,

such as PageRank, while Section 2.2.3 presents some basic definitions of how to

evaluate the returned list of ranked documents.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

20

2.2.2. Importance Measures

Importance measures have as goal to identify the most important or central node in

a graph, depending on what importance means. A simple way to compute the

importance of a node is just to analyze its degree. However, this returns a local

measure of importance, whereas in some contexts a global analysis of the graph is

preferable. For instance, the Betweenness Centrality counts the number of shortest

paths going through a node; hence it is able to identify important connectors in a

graph. The Closeness Centrality measures the average distance from a node to all

other nodes, hence the more central a node is, the closer it is to all other nodes.

Other types of importance measures try to capture the idea that “it is not

about what you know, but who you know”. That is, the notion of importance is

given by how well-connected a node is to other important nodes. PageRank (Brin

& Page 1998) is the most popular importance measure of this type. Using the

hyperlink structure of the Web, the basic idea is that, if a Web page has links from

other high-quality Web pages, then that is an indication that it is likely to be worth

looking at the page.

PageRank can be computed using an iterative strategy, named the Power

Iteration method. Let G = (V, E) be a directed graph and PR(v, i) be the PageRank

score calculated at iteration i. First, we initialize all scores with the same value;

then, for 0 < i < x, we iterate until the computation of the centrality score converges

or exceeds the maximum number of possible iterations x.

PageRank can be computed using an iterative method, called Power

Iteration. Let G = (V,E) be a directed graph and PR(r,i) be the PageRank score of a

node rÎV calculated at iteration i. First, the method initializes all scores with the

same value:

 !"($, 0) = 1/+	 (1)

where N is the total number of nodes in G. Then, for 0<i<x, it iterates until the

computation of the score converges or exceeds x, the maximum number of

iterations:

 !"($, -) =
1−	/
+ + /∑

!"23,-−14

56(3)
3∈89($)

 (2)

where a is a dumping factor (usually set to 0.85), MI (r) is the set of nodes that have

a link to r and dO (s) is the number of outgoing links from s.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

21

One variant of PageRank uses link weights to give more importance to

certain types of links. The Weighted PageRank PRW is defined as:

 !":($, 0) = 1/+	 (3)

 !":($, -) =
1−	/
+ + /∑

!";23,-−14

56(3)
∗ =($, 3)3∈89($)

 (4)

where w(r,s) is a weight between 0 and 1 of edge (r,s) ∈ E.

Other importance measures that can be computed using the Power Iteration

method are the HITS Authorities and Hubs (Kleinberg 1999). In the Web, a good

Hub is page that works like a catalog or a directory of other pages, that is, a page

that points to many other pages, whereas a good Authority is page that is referenced

by many Hubs. HITS depends on a mutual recursion, hence, in the first step, we

initialize all hubs scores with the same value:

 >?@($, 0) = 1/+	 (5)

Then, for each iteration 0<i<x, we first update the authorities using the

initialized hubs:

 A?Bℎ($, -) = ∑ 	>?@(3, - − 1)3∈89($)
	 (6)

Then, we update the hubs using the authorities:

 >?@($, -) = ∑ 	A?Bℎ(3, - − 1)3∈86($)
	 (7)

where MO (r) is the set of nodes that r links to.

As the last step of the iteration, we normalize the Authorities and Hubs

scores by dividing them by the respective maxinum score. The algorithm stops

when the computation of the score converges or exceeds the maximum number of

iterations.

2.2.3. Evaluation of Information Retrieval Systems

When applied to a graph, a centrality or importance measure induces a ranked list

L of the set of nodes of the graph, which can be compared to a golden standard list

S. In this section, we therefore recall the definitions of precision and average

precision for the ranked lists, which we will use to compare the measures.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

22

Let S be a list of documents, considered as the golden standard, and let R

be the set of all documents in S. A document d is relevant iff dÎR. Let L be a list of

documents.

The precision at position k of L with respect to S is defined as:

!(D) = 	
|	" ∩ GB-GHG5	(D)	|

|	GB-GHG5	(D)	|

where retrieved(k) is the set of all documents in L until position k.

The average precision of L, denoted A!I,	with respect to S is defined as:

A!I = 	
1

|"|
		J $GKGHLMNG(D) ∗ !(D)

O

PQR

where relevance(k) is an indicator function that returns 1, if the document at

position k is relevant, and 0, otherwise. Notice that the average precision of the

golden standard S is A!T = 1, which is the target performance of a centrality

measure.

2.3. Related Work

2.3.1. Keyword Search Over Structured Databases

Tools that implement keyword-based queries over relational databases and RDF

datasets have been investigated for some time. Since both fields have similar

challenges, we discuss them together.

We may distinguish between tools that are schema-based, in the sense that

they use information about the conceptual schema to compile a keyword-based

query into an SQL or SPARQL query, from those that are graph-based, which

operate directly on the data.

BANKS (Bhalotia et al. 2002) and BLINKS (He et al. 2007) are examples

of relational graph-based tools, and Sindice (Oren et al. 2008) and Structured LM

(Elbassuoni & Blanco, 2011) are examples of RDF graph-based tools.

Relational schema-based tools explore the foreign keys declared in the

relational schema to compile a keyword-based query into an SQL query with a

minimal set of join clauses, based on the notion of candidate networks (CNs). This

approach was first proposed in DISCOVER (Hristidis & Papakonstantinou 2002)

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

23

and DBXplorer (Agrawal et al. 2006) and adopted in a quite a few tools, including

recent ones (De Oliveira et al. 2015).

Schema-based tools gained more attention since they take advantage of the

query processor of the database (or triple store), instead of processing row by row

(or triple by triple) as in graph-based tools. Hence, we continue our discussion with

keyword search tools over RDF that are schema-based, that is, tools that translate

keyword queries into SPARQL queries.

SPARK (Zhou et al. 2007) is an early RDF schema-based tool, which, given

a keyword query, returns a ranked list of SPARQL queries as a result of the

translation. In the first step of the process, the algorithm tries to match query terms

with resources. In the second step, it tries to find missing relations that connect these

terms to synthesize the SPARQL queries. Finally, in the third step, it uses a

probabilistic ranking model to rank possible queries. However, the ranking model

only considers the keywords matched and some statistics about the knowledge base,

it does not consider the importance of nodes when ranking the queries.

QUICK (Zenz et al. 2009) is an RDF schema-based tool that tries to

circumvent the problem of generating multiple possible queries by executing the

translation process incrementally based on user feedback. QUICK also does not

consider the importance of the nodes when synthesizing SPARQL queries.

Hermes (Tran et al. 2009) combines the idea of generating summary graphs

for the original RDF graph, using the class hierarchy, to generate and rank candidate

SPARQL queries. To capture the idea of importance, Hermes uses simple metrics

over the summary graph.

The QUIOW tool, our first implementation (García et al. 2017; Izquierdo et

al. 2018), is schema-based and supports both the RDF and the relational

environments by translating keyword queries into SPARQL or SQL queries.

Although the tool proved efficient for an industrial dataset about petroleum, it had

a poor performance for an RDF graph representation of IMDb due to the large size

and ambiguity of the domain. The importance measures introduced in this thesis

remediate these problems, as shown in Section 5.

2.3.2. Importance Measures for Structured Databases

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

ObjectRank (Balmin et al. 2004) was one of the first proposals to compute a global

importance score for database entities using PageRank. The authors transformed

the structure of a relational database (RDB) into a graph, using foreign keys as links

between entities, and them applied PageRank with manual weight assignment to

different types of links. The authors evaluated their strategy using the DBLP

dataset.

 In RDF, other works that manually assign weights to use with PageRank

are: Swoogle (Ding et al. 2004), which evaluated their strategy using documents

crawled from the Web; Park et al. (2011), which performs evaluation using their

own small research dataset; and Beagle++ (Chirita et al. 2006), which adapted

ObjectRank to an RDF Graph about activity metadata in desktops.

NAGA (Kasneci et al. 2008) is a semantic search engine that uses a

PageRank-like algorithm to capture the provenance of information and use the

confidence to rank answers of a query. The authors performed the evaluation using

TREC8 datasets.

Harth et al. (2009) use the concept of Authority of HITS to rank RDF data,

considering the provenance of the information through the naming authorities. The

authors evaluate their strategy using two different RDF datasets crawled from the

Web and comparing with PageRank. The authors justify that they did not compared

with ObjectRank because the manual assignment of weights to the thousands of

properties in the crawled datasets would be unfeasible.

TripleRank (Franz et al. 2009) represented an RDF graph as a tensor. Then,

it used the PARAFAC decomposition of the tensor to induce groups of properties

and resources, with authority and hub scores for the particular latent aspect (topic)

the group represents. It showed how to use the result of the PARAFAC

decomposition to guide a faceted browsing application. Finally, it tested the

application in several experiments over RDF datasets with 5 to 55 thousand triples.

PARAFAC decomposition proved interesting for faceted browsing exactly because

it induces groups of properties and resources, together with authority and hub

scores. However, it is not clear how to extend this strategy to the context of keyword

8 https://trec.nist.gov

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

25

search, not to mention the problem of computing the PARAFAC decomposition of

tensors with 200+ million non-zero entries, as in the experiments described in

Section 5. Finally, the authors tested their strategy using DBpedia and DBLP

datasets.

DBpediaRanker (Mirizzi et al. 2010) focus their strategy on ranking

resources from DBpedia to generate ad-hoc tag clouds given a query. They use

domain experts to identify key nodes of the domain and then use similarity

algorithms to retrieve all the nodes within the same domain.

RareRank (Wei et al. 2011) is an algorithm for ranking entities in the

scientific research domain. It adapts PageRank to combine two different scores: link

information (e.g., a citation between two publications), and the content information

(e.g., provided by the links between document-topic and topic-topic).

HARE (Ngomo et al. 2017) is another adaptation of PageRank that allows

the simultaneous computation of ranks for RDF triples, resources, properties and

literals using bi-partite graphs. In the evaluation they show that HARE is up to 2

orders of magnitude faster than PageRank and the ranking quality is comparable

regarding DBpedia classes.

FORK (Komamizu et al. 2017) adapted ObjectRank to Linked Data. The

main contribution of the work is a learning algorithm for property weights based on

user’s relevance feedbacks, instead of the manual assignment of weights. The

authors evaluated their strategy using DBpedia and results showed that FORK

achieves the best ranking method when compared to baseline approaches. Similary,

DBtrends (Marx et al. 2016a) uses query logs to improve their ranking function.

As mentioned in the introduction, DBpedia and DBLP (or other research

datasets) are highly influenced by link semantics: DBLP through authorship links,

and DBpedia through links derived from Wikipedia, such as, wikiPageRedirects,

wikiPageDisambiguates, primaryTopic, etc. Furthermore, in the LOD cloud,

DBpedia has many incoming links from other RDF datasets.

For further references that focus on ranking strategies for degree-dependent

datasets, such as DBpedia or DBLP, we refer the reader (Bast et al. 2016; Roa-

Valverde et al. 2014; Yumusak et al. 2014; Marx et al. 2016b). We continue our

discussion with some alternative strategies that do not highly depend on node

degree.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

26

Graves et al. (2008) propose the use of closeness centrality for undirected

graphs and evaluates the strategy using three datasets, CIA Factbook, Terrorist

Ontology and Wine Ontology. The authors compare their strategy with a ranking

using the number of incoming edges. The problem with closeness centrality is that

it is not efficient for large RDF graphs.

Although the work presented in (Kim et al. 2016) is not specific to RDF

graphs, it proposes the degree decoupled PageRank technique that penalizes or

boosts the importance of the node degree in recommendation graphs, depending on

the domain characteristics. They argue that, in some contexts, the importance of the

node can be inversely proportional to its degree. The authors performed an

evaluation using graphs extracted from IMDb, Last.fm, DBLP and Epinions. From

results for the IMDb dataset, they noticed that, for a movie recommendation graph,

traditional PageRank performs better; however, for an actor recommendation graph,

the node degree actually needs to be penalized. They argue that, when an actor plays

in a large number of movies, he probably is a non-discriminating (“B movie”) actor,

whereas, when an actor is associated with relatively few movies, he may be a more

discriminating (“A movie”) actor.

2.4. Chapter Conclusion

In this chapter we showed the main concepts about Linked Data and Information

Retrieval. In the related work section, we showed the combination of both worlds

with strategies to solve the problem of keyword search over structured databases,

either relational or RDF. We divided the works into two classes. The first class

contains popular works that focus on solving the main problems of this field. The

second class includes works that specifically deal with the ranking problem using

importance measures. We showed that most of the works use some adaptation of

PageRank or HITS and test their strategies with degree-dependent datasets, such as

DBpedia and DBLP.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

27

3
The InfoRank Importance Measures

 This chapter introduces a novel family of importance measures, collectively called

InfoRank, for RDF graphs. The proposed importance measures are combinations of

three intuitions: (I) “important things have lots of information about them”; (II)

“important things are surrounded by other important things”; (III) “few important

relations (e.g. friends) are better than many unimportant relations (e.g.

acquaintances)”. These intuitions are discussed in Section 3.1 along with formal

definitions. Moreover, Section 3.2 presents a running example and details of the

implementation.

3.1. Discussion and Formal Definitions

Following the intuition that “important things have lots of information

about them” and observing the way that RDF graphs are modeled, we notice that

more important nodes are usually associated with more literals (information)

through datatype properties than less important nodes. This comes from the nature

of RDF datasets versus normalized relational databases. A decent triplification of a

normalized relational database would include a de-normalization step and would

filter out null values, which would result in resources with a different number of

datatype property values and object properties. Hence, the more “complete” the

profile of an actor or a film, say, the more important that actor or film would be.

As example, consider some different trivia extracted from IMDb of a movie

with international projection, such as Titanic (1997):

imdb:Titanic imdb:trivia "A 1/8 scale model of the ship's
 stern was also used." .
imdb:Titanic imdb:trivia "Was the first film to be filmed at Fox
 Studios Baja."
imdb:Titanic imdb:trivia "The \"ale\" in the below decks party
 was actually root beer."
imdb:Titanic imdb:trivia "Tom Cruise was considered for the role
 of Jack Dawson."

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

28

imdb:Titanic imdb:trivia "The most-voted-for film on IMDb that
 is not on the Top 250 List."
imdb:Titanic imdb:trivia "Most of the ocean which extras were
 jumping into was 3 feet deep."
imdb:Titanic imdb:trivia "Macaulay Culkin was considered for the
 role of Jack Dawson."
imdb:Titanic imdb:trivia "For some wreck interior shots, a set
 was constructed and submerged."
imdb:Titanic imdb:trivia "Barbra Streisand was considered for
 the role of Molly Brown."
imdb:Titanic imdb:trivia "British newspapers alleged that
 Michael Caine refused a role."
...

Additionally, in IMDb, Titanic has a total of 205 triples with trivia, 134

triples with quotes said by the characters, 180 triples with tags, and so on. In total

there are 1297 literals describing the movie Titanic. Now, considering a movie with

only national projection, such as the Brazilian movie O Auto da Compadecida,

which has only 70 literals describing it.

Continuing the example, we can also analyze a multilingual dataset, such as

DBpedia, in which Titanic has the following labels:
:Titanic(1997) rdfs:label "Titanic (1997 film)"@en .
:Titanic(1997) rdfs:label " (1997 ملیف) كیناتیت "@ar .
:Titanic(1997) rdfs:label "Titanic (1997)"@de .
:Titanic(1997) rdfs:label "Titanic (película de 1997)"@es .
:Titanic(1997) rdfs:label "Titanic (film, 1997)"@fr .
:Titanic(1997) rdfs:label "Titanic (film 1997)"@it .
:Titanic(1997) rdfs:label "������ (1997����)"@ja .
:Titanic(1997) rdfs:label "Titanic (1997)"@nl .
:Titanic(1997) rdfs:label "Titanic (film 1997)"@pl .
:Titanic(1997) rdfs:label "Titanic (1997)"@pt .
:Titanic(1997) rdfs:label "Титаник (фильм, 1997)"@ru .

:Titanic(1997) rdfs:label "�
��	 (1997��)"@zh .

and O Auto da Compadecida has the following ones:

:A_Dog's_Will rdfs:label "O Auto da Compadecida (filme)"@pt .
:A_Dog's_Will rdfs:label "A Dog's Will"@en

Note that, in a relational database, different labels or trivia of the same

movie would need to be modeled in a different table according to the First Normal

Form (1NF) of relational databases. However, in RDF, this can be modeled as

literals connected directly to the resources. Hence, resources that are more

“complete” (i.e. with more information) have a higher number of literals, instead of

a higher degree through foreign keys.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

29

The second intuition that we follow is inspired by PageRank and says that

“important things are surrounded by other important things”. For instance, the

movie “Titanic” has links through object properties with actors “Kate Winslet” and

“Leonardo Dicaprio”, which are also important nodes in the graph. As in (Graves

et al. 2008), we agree that, in RDF graphs, the direction of an object property does

not have the same meaning as a Web hyperlink since a property is often found in

its inverse form (e.g. directedBy/directs). Given that, we treat an RDF graph as

undirected and consider all neighbors of a node (i.e. all other nodes that have an

object property linked to it) when propagating the importance with PageRank.

We further improve this intuition by introducing a third one that says “few

friends are better than many acquaintances”. As discussed in the introduction, the

typical centrality measures are highly dependent on the degree of the node. In our

work, we do not want to boost (or penalize) the degree importance, but we focus on

a strategy that favors the quality of relations, rather than their quantity, that is, we

prefer an approach that captures the notion that “few important relations (e.g.

friends) are better than many unimportant relations (e.g. acquaintances)”.

Formally, let T be a set of RDF triples. Assume that T contains schema

information and that it is possible to identify the set C of classes defined in T, the

set P of object properties defined in T, the set D of datatype properties defined in

T, the set L of literals defined in T, and the set R of (class) instances defined in T,

i.e., rÎR iff there is a triple (r,rdf:type,c)ÎT such that cÎC. For simplicity, we

assume that there are no blank nodes.

Instance Informativeness. The level of “informativeness” of a resource measures

how informative the resource is. As previously discussed, information is

represented as literals in RDF graphs. However, data resources (instances) usually

have more literals than metadata resources (classes and properties). Hence, we first

focus our strategy on the informativeness of instances.

The informativeness of an instance rÎR, denoted IW(r), is defined as the

number of triples of the form (r,p,v)ÎT, where vÎL.

Ranking Schema Elements. Continuing our strategy based on instance

informativeness, we say that “important classes usually have informative instances”

and “important properties are usually those connecting informative instances”.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

30

The absolute informativeness of a class cÎC is defined as the maximum

value of IW(r) of all instances r of class c. The informativeness of a class c, denoted

IR(c), is the absolute informativeness of c, divided by the maximum absolute

informativeness value of all classes in C. That is, we normalize the values of IR(c)

by their maximum value. We will rank classes by descending order of IR(c).

Likewise, the absolute informativeness of an object property pÎP is defined

as the maximum value of IW(r)+IW(s) of all triples of the form (r,p,s)ÎT. The

informativeness of p, denoted IR(p), is the absolute informativeness of p, divided

by the maximum absolute informativeness value of all object properties in P. We

will rank object properties by descending order of IR(p).

On the other hand, the absolute informativeness of a datatype property dÎD

is defined as the number of distinct literals, i.e. distinct values of vÎL of all triples

of the form (r,d,v). The informativeness of d, denoted IR(d), is the absolute

informativeness of d, divided by the maximum absolute informativeness value of

all datatype properties in D. We will rank datatype properties by descending order

of IR(d).

Ranking Data. Note that we used only Intuition I in our strategies to rank metadata

resources. However, we propose a combination of the three intuitions to rank

instances.

Let r,sÎR and pÎP. Assume that (r,p,s)ÎT or (s,p,r)ÎT, that is, ignore the

direction of the object property p. The normalized weight of (r,p), denoted W(r,p),

is defined as:

 ;($, U) = 9"(U)/∑ 9"(V)V	∈	!	LM5	(W$,V,BX∈Y	Z$	WB,V,$X∈Y) 	 (8)

Note that the normalized weight W(r,p) does not depend of “who” the

neighbors of r are, but it depends only on how they are connected to r, that is, it

considers the InfoRank scores of properties p and q, for all properties q whose

domain includes r.

Again, we initialize all scores with the same value:

 !":($, 0) = 1/+	 (9)

where N is the total number of nodes in G. Then, we compute PageRank using

W(r,p) as the edge weights:

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

31

!":($, -) =
1−	/

+
+ / ∑ !":(3, - − 1) ∗ ;(3, U)W$,U,3X∈Y	Z$	W3,U,$X∈Y (10)

where a is a dumping factor (usually set to 0.85).

The InfoRank score of an instance r, denoted IR(r), is the final PageRank

score of r after x iterations, PRW(r,x), weighted by the informativeness of r, IW(r):

 9"($) = !":($, [) ∗ 9;($) (11)

3.2. Implementation and Example

3.2.1. Running Example

In order to exemplify the implementation steps, consider the simple graph shown

in Figure 4 with IRIs denoted in oval and literals denoted in dashed boxes.

 Figure 4: Graph Example

Furthermore, consider that the graph also includes the following triples:

(X, rdf:type, rdfs:Class), (Y, rdf:type, rdfs:Class), (Z, rdf:type, rdfs:Class)

(x1, rdf:type, X), (x2, rdf:type, X), (y1, rdf:type, Y), (y2, rdf:type, Y),

(z1, rdf:type, Z), (z2, rdf:type, Z), … (z10, rdf:type, Z)

3.2.2.Computing Informativeness

In the first step to achieve the final InfoRank score, we need to compute the

informativeness of instances by counting the number of literals as described in

Section 3.1. This can be computed with the following SPARQL query.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

32

Instances
select ?r ?iw
where
{ ?r rdf:type/rdf:type rdfs:Class .
 OPTIONAL
 { select ?r (count(?o) as ?inf)
 where { ?r ?p ?o .
 filter (isLiteral(?o)) }
 group by ?r
 }
 BIND(if(bound(?inf), ?inf, xsd:integer("0")) AS ?iw)
}

Note that, since our graph contains schema information, we apply a graph

pattern that requires that variable ?r be bound only to instances of some class (recall

that we assume that are no blank nodes). Furthermore, since some instances may

not have literals, we need to make the count of literals optional, so if there is no

bound, the value returned is 0.

In the second step, we calculate the informativeness of the classes

considering the informativeness of the instances to capture the idea that “important

classes usually have informative instances”. The following SPARQL query shows

how to compute the absolute informativeness of classes.

Classes
select ?c (max(?iw) as ?abs)
where
{ ?r rdf:type ?c .
 ?c rdf:type rdfs:Class .
 OPTIONAL
 { select ?r (count(?o) as ?inf)
 where { ?r ?p ?o .
 filter (isLiteral(?o)) }
 group by ?r
 }
 BIND(if(bound(?inf), ?inf, xsd:integer("0")) AS ?iw)
}
group by ?c

In the third step, we calculate the informativeness of object properties, also

considering the informativeness of the instances to capture the idea that “important

properties are usually those connecting informative instances”. The following

SPARQL query shows how to compute the absolute informativeness of object

properties.

Object Properties
select ?p (max(?iw_r + ?iw_s) as ?abs)
where

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

33

{ ?r ?p ?s .
 ?r rdf:type/rdf:type rdfs:Class .
 ?s rdf:type/rdf:type rdfs:Class .
 OPTIONAL
 { select ?r (count(?o) as ?inf_r)
 where { ?r ?p2 ?o .
 filter (isLiteral(?o)) }
 group by ?r
 }
 OPTIONAL
 { select ?s (count(?o) as ?inf_s)
 where { ?s ?p2 ?o . filter (isLiteral(?o)) }
 group by ?s
 }
 BIND(if(bound(?inf_r), ?inf_r, xsd:integer("0")) AS ?iw_r)
 BIND(if(bound(?inf_s), ?inf_s, xsd:integer("0")) AS ?iw_s)
}
group by ?p

Moreover, we can compute the informativeness of datatype properties using

the following query.
Datatype Properties

select ?d (count(distinct ?o) as ?abs)
where
{ ?r rdf:type/rdf:type rdfs:Class .
 ?r ?d ?o . filter (isLiteral(?o))
}
group by ?d

Finally, Table 1 presents the result of the queries to calculate the

informativeness of instances, classes and object properties for our running example.

In this example, we assume that there is just one datatype property.

Table 1: Informativeness of resources for the running example.

Instances Classes Object Properties

?r ?iw ?c ?abs ?p ?abs

x1 , x2 2 X 2 p1 8
y1 6 Y 6 p2 7
y2 , z1 ... z10 1 Z 1 p3 2

3.2.3. Computing InfoRank

Given that we use Oracle 12c as the triple store for our RDF dataset and that it

would not be possible to load the graph matrix in memory to compute PageRank or

InfoRank, we used an iterative strategy with SQL queries to simulate the Power

Iteration method.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

34

As a pre-processing step, in addition to the informativeness of instances, we

need to compute their degrees, which can be done with the following SPARQL

query.

select ?r as ?instance ((?in_dgr + ?out_dgr) as ?degree)
where
{ ?r rdf:type/rdf:type rdfs:Class .
 OPTIONAL { select ?r (count(?o) as ?out_d)
 where{ ?r ?p ?o .
 ?o rdf:type/rdf:type rdfs:Class }
 group by ?r
 }
 OPTIONAL { select ?r (count(?o) as ?in_d)
 where { ?o ?p ?r }
 group by ?r
 }
 BIND(if(bound(?out_d), ?out_d, xsd:integer("0")) AS ?out_dgr)
 BIND(if(bound(?in_d), ?in_d, xsd:integer("0")) AS ?in_dgr)
}

Now, we are able to materialize a relational table, named NODES, with the

informativeness and the degrees of each instance. Table 2 shows how this table

would look like when considering our running example.

Table 2: Table NODES for the running example.

instance in_dgr out_dgr degree info
x1 0 1 1 2
x2 0 1 1 2
y1 3 0 3 6
y2 10 1 11 1
z1 0 1 1 1
… … … … …

We materialize another table, named EDGES, to represent the instances and

their neighbors. Table 3 shows how this table would look like when considering our

running example.

Table 3: Table EDGES for the running example.

instance property neighbor direction abs info weight
x1 p1 y1 1 8 1.00 1.00
y1 p1 x1 0 8 1.00 0.34
y2 p2 y1 1 7 0.87 0.25
y1 p2 y2 0 7 0.87 0.30
...

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

35

Note that column instance contains all instances in the graph that have a

neighbor, either through direct edges (direction = 1) or through inverse edges

(direction = 0). This was done for efficiency purposes. The following SPARQL

query shows how we can compute the instance/neighbor relation of table EDGES.

select ?instance ?p ?neighbor ?dir
where
{ { select (?r as ?instance) ?p (?s as ?neighbor) ("1" as ?dir)
 where { ?r ?p ?s .
 ?r rdf:type/rdf:type rdfs:Class .
 ?s rdf:type/rdf:type rdfs:Class }
 }
 UNION
 { select (?s as ?instance) ?p (?r as ?neighbor) ("0" as ?dir)
 where { ?r ?p ?s .
 ?r rdf:type/rdf:type rdfs:Class .
 ?s rdf:type/rdf:type rdfs:Class . }
 }
}

Furthermore, we join the result with the absolute informativeness (column

abs) of the given property that was previously computed (see Table 1). We also

present the normalized informativeness (column info), as described in Section 3.1.

The next step is to compute the normalized weight for each edge, as defined

in Equation 5. The following SQL query shows how to compute this weight, and

how to recreate table EDGES to include the new weight column.

create table EDGES_2 as
select e1.*, info/sum_info as weight
from EDGES e1
join (select instance, sum(info) as sum_info
 from EDGES
 group by instance) e2
on e1.instance = e2.instance;

drop table EDGES;
rename EDGES_2 to EDGES;

Moreover, note that, if we want to consider the graph as directed, we only

need to add a clause like where direction = 1, or where direction = 0 to consider a

graph with the inverse edges.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

36

Finally, Algorithm 1 implements the Power Iteration method. We used the

codes of PageRank from Python’s package Networkx9 as a base for our

implementation. The inputs of the algorithm are the maximum number of iterations

allowed, the tolerance for convergence and the dumping factor.

In the first step of the Power Iteration method, we run an SQL query to

create a table, named LAST, which contains the initial scores, as defined in Equation

6. Then, for each iteration, we run an SQL query that simulates the PageRank

propagation of scores, as defined in Equation 7. Again, if we want to consider the

graph as directed, we only need to modify the where clause, as explained before.

Algorithm 1. Power Iteration method with SQL Queries
Input: max_iter, tol, fac
Output: a table with the final PageRank score

N = select count(*) from NODES

run (create table LAST as
 select instance, 1/N as score
 from NODES n1)

iter = 0

while (iter < max_iter):

 iter += 1

 run (create table CURR as
 select e1.neighbor as instance,
 ((1 - fac)/N) + (fac * SUM(score*weight)) as score
 from EDGES e1
 join LAST n1 on (e1.instance = n1.instance)
 group by e1.neighbor)

 conv = run (select SUM(ABS(t2.score - t1.score))
 from LAST t1
 join CURR t2 on (t1.instance = t2.instance)

 drop table LAST
 if (conv <= tol):
 return table CURR
 else:
 rename table CURR to LAST
return null

The result of the propagation is stored in a new table named CURR, which

is then compared with table LAST to check convergence. The algorithm stops when

the convergence achieves the tolerance or the number of iterations exceeds the

9 https://networkx.github.io

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

37

maximum number of iterations allowed. In the case of convergence, table CURR

will have the final weighted PageRank score.

Table 4 shows the PageRank scores of instances throughout the iterations

using a tolerance of 1.0e-4 and a dumping factor of 0.85. Note that, the highest

score alternates between instances y1 and y2. However, since y2 has a higher degree,

it ends up with the highest PageRank score when the algorithm achieves

convergence after 57 iterations.

Table 4: Example of the Power Iteration method.

instance i = 0 i = 1 i = 2 i = 3 i = 4 i = 57

x1, x2 0.071 0.032 0.054 0.071 0.053 0.072

y1 0.071 0.148 0.205 0.143 0.241 0.206

y2 0.071 0.636 0.178 0.495 0.234 0.334

z1 … z10 0.071 0.015 0.051 0.022 0.042 0.032

Hence, to conclude our strategy, we simply join table CURR with table

NODES, so we can weight the PageRank score by the instance informativeness to

finally obtain the InfoRank score, as defined in Equation 8. The following SQL

query shows how to achieve the final score.
select n1.instance, info,
 score as pagerank,
 info * score as inforank
from teste_nodes n1
join teste_curr n2 on n1.instance = n2.instance

The final InfoRank result of our running example is shown in Table 5.

Instance y1 finishes with the highest InfoRank score, since it has a good PageRank

score and a large level of informativeness.

Table 5: InfoRank result for the running example.

instance info pagerank inforank

x1, x2 2 0.072 0.143

y1 6 0.206 1.236

y2 1 0.334 0.334

z1 … z10 1 0.032 0.032

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

38

As the last step of our strategy, we materialize the InfoRank scores as triples

of the graph. Hence, the graph of our running example would also include the

following triples:

(X, :inforank, "0.333"), (Y, :inforank, "1.000"), (Z, :inforank, "0.166"),

(p1, :inforank, "1.000"), (p2, :inforank, "0.875"), (p3, :inforank, "0.250"),

(x1, :inforank, "0.143"), (x2, :inforank, "0.143"),

(y1, :inforank, "1.236"), (y2, :inforank, "0.334"),

(z1, :inforank, "0.032"), …, (z10, :inforank, "0.032")

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

4
The Process of Keyword Search over RDF Graphs

This chapter presents a solution that covers the three main tasks of the process of

Keyword Search over RDF Graphs: (1) finding pieces of information in the RDF

graph; (2) assembling the retrieved pieces of information to compose complete

answers; (3) ranking the complete answers. Section 4.1 presents an overview of the

problem and our strategy, Section 4.2.1 to 4.2.3 discuss in detail solutions to the

these three tasks.

4.1. Discussion and Problem Definition

4.1.1. The Keyword Search Problem

Let T be a set of RDF triples, GT be the RDF graph induced by T, and L be the set

of literals defined in T. Assume that T contains schema information, that is, T

follows an RDF schema S, with S Í T.

A keyword-based query K is simply a set of literals, or keywords. Let match:

L´L ® [0,1] be a similarity function between literals such that match(s,t)=j

indicates how similar s and t are: j=1 says that s and t are identical, and j=0 indicates

that s and t are completely dissimilar. Let s Î [0,1] be a similarity threshold. We

leave match and s unspecified at this point.

The set M[K,T] of literal matches between K and literals of T is defined as

(recall that S Í T):

M[K,T] = { (k,(r,p,o)) Î K´T / (r,p,o) Î T Ù match(k,o) ³ s }

An answer for K over T is a subset A of T such that:

1) There is a subset of K, denoted K/A, such that, for each k Î K/A there is

(r,p,o) Î A such that (k,(r,p,o)) Î M[K,T].

2) There is no other answer B for K over T such that (K/A < K/B).

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

40

We say that K/A is the set of keywords matched by A. Condition (1) says

that k matches the literal of a triple (r,p,v) in A, in which r can be an instance, a

class or a property (recall that S Í T). Also, Condition (1) does not require that all

keywords in K be matched in an answer. Indeed, we say that A is total iff K/A = K,

and partial otherwise. Condition (2) requires that an answer must match as many

keywords in K as possible.

This notion of an answer is quite liberal. In particular, it allows the RDF

graph GA induced by an answer A to be disconnected. To circumvent this problem,

we define a partial order between answers, using their induced RDF graphs, as

follows. Given a directed graph G, let |G| denote the number of nodes and edges of

G and #c(G) denote the number of connected components of G, when the direction

of the edges of G is disregarded. We define a partial order “<” for graphs such that,

given two graphs G and G’:

G < G’ iff (#c(G) + |G|) < (#c(G’) + |G’|) or

(#c(G) + |G|) = (#c(G’) + |G’|) and #c(G) < #c(G’)

We use the partial order “<” between graphs to compare answers. Let A and

B be two answers and GA and GB be their RDF graphs. We say that A is smaller

than B iff GA < GB. An answer A for K over T is minimal iff there is no other answer

B for K over T such that GB < GA.

Recall that GT is the RDF graph induced by T. A possible strategy to return

minimal answers would be to generate an answer A such that the induced graph GA

is a minimal Steiner tree over GT connecting the literals in GA that match the

keywords. Indeed, computing a Steiner tree avoids including unnecessary edges to

connect the nodes. However, we note that the minimal Steiner tree problem is NP-

Complete, albeit there are known heuristics that generate approximate solutions,

especially when GT is a large graph (Li et al. 2016).

As an example, let K={rocky,sylvester,stallone} and GT be the graph shown

in Figure 5. Note that two triples match with keyword rocky, one triple matches

with the keyword sylvester and two triples match with the keyword stallone. Hence,

the set of data matches is:

M ={ (rocky, (r3, :label, Rocky)), (rocky, (r4, :label, Rocky V))

(sylvester, (r1, :label, Sylvester Stallone)),

(stallone, (r1, :label, Sylvester Stallone)),

 (stallone, (r2, :label, Sage Stallone)) }

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

41

 Figure 5: An RDF Graph.

Finally, Table 6 presents the set of possible answers for keyword query

K={rocky,sylvester,stallone}. Note that A1 to A4 are partial matches because K/An

< K and A5 to A8 are total matches because K/An = K. Considering that A5 and A6

are smaller sets of triples than A7 and A8, and that there is a Steiner Tree connecting

each triple in those sets, A5 and A6 are probably the answers the user would prefer.

Then, we could use some ranking function to return the answers to the user ordered

by relevance.

Table 6: Possible answers for K={rocky,sylvester,stallone}.

An K/An
A1 = {(r3, :label, Rocky)} rocky
A2 = {(r4, :label, Rocky V)} rocky
A3 = {(r1, :label, Sylvester Stallone)} sylvester, stallone
A4 = {(r2, :label, Sage Stallone)} stallone
A5 = {(r3, :label, Rocky),
 (r1, :label, Sylvester Stallone)}

rocky,
sylvester, stallone

A6 = {(r4, :label, Rocky V),
 (r1, :label, Sylvester Stallone)}

rocky,
sylvester, stallone

A7 = {(r3, :label, Rocky),
 (r1, :label, Sylvester Stallone),
 (r2, :label, Sage Stallone)}

rocky
sylvester
stallone

A8 = {(r4, :label, Rocky V),
 (r1, :label, Sylvester Stallone),
 (r2, :label, Sage Stallone)}

rocky,
sylvester,
stallone

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

42

4.1.2.Overview of the Proposed Solution

In Section 4.1.1, we illustrated a naïve method that goes as follows: (1) generate all

possible matches by searching the triples for each keyword; (2) generate all possible

answers; (3) select the minimal answers; (4) generate all possible Steiner Trees; (5)

rank the results. However, in a large and ambiguous dataset, this is not at all

feasible. For instance, if we search IMDb looking for triples that have keyword

rocky in some value, we find 9,600 triples, for keyword sylvester we find 4,237

triples and for keyword stallone we find 1,242 triples. This would generate billions

of possible answers to be analyzed.

Therefore, we looked for strategies to minimize these problems. The first

one is that we do not need to analyze the triples themselves, but we can group the

matches at the level of classes and properties. By doing this, we can generate

SPARQL templates that satisfy groups of classes/properties. Furthermore, we do

not need to generate a Steiner tree between each collection of triples, but we can

generate a Steiner tree at the schema level between collections of classes and, using

the Steiner tree, synthesize SPARQL templates. By generating SPARQL templates

and consequently SPARQL queries, we leave the responsibility for finding the

actual instances, and paths between instances, to the RDF triple stores that were

built for that. Hence, we classify the translation algorithm proposed in this research

as schema-based.

Furthermore, we use the InfoRank measures to further reduce the number

of matches of the task “finding pieces of information in the graph”, as described in

Section 4.2.1. Our strategy contrasts with a typical Web Information Retrieval

system since it may not choose the triple that covers the maximum number of

keywords as in the example of Section 4.1.1. Instead, we may prioritize exact

matches with highly important instances. Furthermore, we do not treat the keywords

as “bag of words”, but we consider the order of appearance of the words in the

query. For instance, for the keyword query K={movie,rocky,character} we assume

that the user wants a character of a movie named rocky, however, if the query is

K={character,rocky,movie}, we assume that the user wants a movie that has a

character named rocky. This strategy was adopted after analyzing the queries in the

keyword search benchmarks described in Section 6.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

43

For the task “assembling the retrieved pieces of information to compose

complete answers”, we use InfoRank to choose the best paths when building the

Steiner Tree, as described in Section 4.2.2. Finally, for the task “ranking the

complete answers”, we use the importance measure to order the SPARQL query

and consider the importance of the instances retrieved in each SPARQL result, as

described in Section 4.2.3.

4.2. Implementation and Examples

4.2.1. Finding Pieces of Information in a Graph

In this section, we present a greedy algorithm that takes keywords as input and

returns the best set of class/property groups, as defined in Section 4.1.

 In the first step of our strategy, we materialize group tables about metadata

(classes and properties), and data (instances and values) that will help us finding

the pieces of information. Note that these tables are computed only once, before

execution time.

The group tables about classes and properties, respectively named TMC and

TMP, can be computed using the following queries. Recall that we assume that the

graph contains schema information and that the InfoRank scores are materialized

in the graph.

Group Table for Classes - TMC

select ?class ?literal ?info
 (strlen(?literal) as ?length)
where
{ ?class rdf:type rdfs:Class .
 ?class rdfs:label ?literal .
 ?class :inforank ?info }

Group Table for Properties - TMP

select distinct ?class ?property ?literal ?info
 (strlen(?literal) as ?length)
where
{ ?r rdf:type ?class .
 ?class rdf:type rdfs:Class .
 ?r ?property ?o .
 filter (?property != rdf:type)
 ?property rdfs:label ?literal .
 ?property :inforank ?info }

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

44

Furthermore, we materialize two other tables about instance identifiers (i.e.

rdfs:label, foaf:name, dc:title, etc.), named TDI, which can be computed with the

following query.

Group Table for Data Instances - TDI

select ?class ?property ?literal
 (sum(?inforank) as ?info)
 (strlen(?literal) as ?length)
 (count(*) as ?count)
where
{ ?r rdf:type ?classs .
 ?class rdf:type rdfs:Class .
 ?r ?property ?literal .
 filter (?property in (rdfs:label, foaf:name, dc:title …))
 ?r :inforank ?inforank .
}
group by ?class ?property ?literal

Finally, the last table, named TDV, is about other data values (i.e. sound mix,

trivia, etc.), which can be computed with the following query.

Group Table for Data Values - TDV

select ?class ?property ?literal
 (sum(?inforank) as ?info)
 (strlen(?literal) as ?length)
 (count(*) as ?count)
where
{ ?r rdf:type ?classs .
 ?class rdf:type rdfs:Class .
 ?r ?property ?literal .
 filter(?property NOT in (rdfs:label, foaf:name, dc:title …))
 filter(isLiteral(?literal))
 ?r :inforank ?inforank .
}
group by ?class ?property ?literal

Table 7 and Table 8 show examples of the group tables TMC and TMP

considering an IMDb dataset. Likewise, Table 9 and Table 10 show examples of

data instances and data values in the same dataset. The count column indicates that

there are two movies named The Sound of Music, three actors named Christopher

Plummer, 99,956 movies with a mono sound mix, and so on. The info column is the

aggregation of the InfoRank scores of all resources of a given group. For instance,

the two resources of group e1 sum up to 0.00190 of InfoRank scores. The length

column is the number of characters of the literal column (i.e. string length).

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

45

Table 7: Example of TMC from IMDb.

g class literal info length
c1 :Movie Movie 0.90673 5
c2 :Actress Actress 0.91476 7

Table 8: Example of TMP from IMDb.

g class property literal info length
p1 :Movie :sound_mix sound mix 0.00002 9
p2 :Movie :trivia trivia 0.06817 6

Table 9: Example of TDI from IMDb.

g class property literal info length count
e1 :Movie rdfs:label The Sound of Music 0.00190 18 2
e2 :Actress rdfs:label Julie Andrews 0.00067 13 2
e3 :Actor rdfs:label Christopher Plummer 0.00039 19 3

Table 10: Example of TDV from IMDb.

g class property literal info length count
v1 :Movie :sound_mix mono 1.28063 4 99956
v2 :Movie :trivia The gazebo used for the

"Sixteen Going on
Seventeen" and
"Something Good"
scenes can still be
visited in the Salzburg
area, on "Sound of
Music" tours. However,
the public had to be
excluded from the
interior because film
fans who were
considerably older than
"sixteen going on
seventeen" were
injuring themselves
while trying to dance
along the seats. The
gazebo in Austria was
only used for exterior
shots, the actual dance
by Julie Andrews and
Christopher Plummer
was filmed on a replica
located in L.A.

0.00190 505 1

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

46

Algorithm 2 presents (in an indented style) an overview of a greedy strategy

to obtain the best set of groups that satisfy a keyword query K.

Algorithm 2: Greedy Strategy to return the best set of groups
Input: A keyword query K and the group tables TMC, TMP, TDI, TDV
Output: A subset of groups M

1. J ¬ all keywords in K
2. M ¬ Æ
3. while J is not empty:
4. c ¬ find in TMC a class with the highest accum given J,
 use the highest info/length to disambiguate
5. if a match c is found:
6. add c to M, remove the keywords in literal(c) from J
7. if J did not change:
8. break

9. S ¬ Æ #S will contain keywords
10. L ¬ Æ #L will contain list of keywords

11. for k in K:
12. if k is NOT in a class match of M:
13. add k to S
14. else if S is not empty:
15. add S to L and clear S
16. if S is not empty:
17. add S to L and clear S

18. for S in L:
19. J ¬ all keywords in S
20. while J is not empty:
21. p ¬ find in TMP a property with the highest accum given
 J, use the highest info/length to disambiguate
 (filter by class if necessary)

22. e ¬ find in TDI an instance with the highest accum
 given J, use the highest info/length to
 disambiguate (filter by class if necessary)
23. if accum(J,literal(p)) >= accum(J,literal(e)):
24. add p to M, remove the keywords in literal(p) from J
25. continue

26. if all keywords in J are matched by literal(e):
27. add e to M, remove the keywords in literal(e) from J
28. continue

29. v ¬ find in TDV a value with the highest accum score
 given J, use the highest info/length to
 disambiguate (filter by class if necessary)
30. if (accum(J,literal(e)) * info(e)/length(e) >=
 accum(J,literal(v)) * info(v)/length(v)):
31. add e to M, remove the keywords in literal(e) from J

32. else:
33. add v to M, remove the keywords in literal(v) from J

34. if J did not change:
35. break

36. eliminate redundancies from M and return

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

47

Let discrete(j,o) be a score function that returns 100 if literal o contains

keyword j, and 0, otherwise. Also, let accum(J,o) be a function that returns the

accumulated score, given a set of keywords J = {j1, j2, …, jn}:

 LNN?\(], Z) = 5-3N$GBG(^R, Z) +	…	+ 5-3N$GBG(^O	, Z)	 (12)

As an example, consider the keyword query K={sound, music}. Using the

data in Table 7 to Table 10, the discrete scores that return 100 are:

discrete(sound, The Sound of Music) = 100

discrete(music, The Sound of Music) = 100

discrete(sound, sound mix) = 100

Hence, the accumulated non-zero scores are:

accum({sound,music}, The Sound of Music) = 200

accum({sound,music}, sound mix) = 100

Note that functions discrete and accum are based on the Oracle Text10

scoring functions, since we used Oracle 12c database to index and search for

matches.

Let K={movie,sound,of,music,actress,julie} be our first running example.

In the first step of the algorithm (lines 3 to 8), we try to find all class matches

considering first the accum score, and then, disambiguating with the info/length

score. The following query in Oracle shows how to find such matches in table TMC

for our running example (note that we eliminate stop words, such as of, when

computing the accum score).

select class, literal, info, score(1) as accum
from TMC
where contains(value, 'DEFINESCORE(movie,DISCRETE) accum
 DEFINESCORE(sound,DISCRETE) accum
 DEFINESCORE(music,DISCRETE) accum
 DEFINESCORE(actress,DISCRETE) accum
 DEFINESCORE(julie,DISCRETE)', 1) > 0
order by accum desc, info/length desc

Hence, the algorithm starts with J={movie,sound,of,music,actress,julie},

and in the first iteration of the first while loop (line 3), it chooses class Movie since

10 https://docs.oracle.com/cd/B28359_01/text.111/b28303/quicktour.htm#g1011793

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

48

it has a higher info/length score than class Actress (and both have the same accum

score).

Furthermore, note that, besides considering the importance of the group

given by the info score, we also consider how close the literal is to J by using the

length of the string. For instance, exact matches, such as movie/Movie, have a higher

priority than matches that contain other words, such as movie/TV Movie. The word

count could probably better identify the closeness of the match, however, due to

efficiency issues, we chose the length instead of the count.

Continuing to the second iteration, the algorithm chooses class Actress,

given that J={movie,sound,of,music,actress,julie}. In the third iteration, the while

loop breaks since it had no more matches (i.e., J did not change).

In the second step (lines 9 to 17), we split the keywords in sequences

separated by the class matches. This is important so we give a meaning to the order

of appearance of words, instead of treating the query as a “bag of words”. For our

running example, the sequences generated are S1={sound,of,music} and S2={julie},

and L={S1,S2}.

In the third step (lines 18 to 35), for each sequence, we try to match the

keywords with properties, instances and values, and solve ambiguity problems.

Hence, in the first iteration of the for loop (line 18), J={sound,of,music}.

We proceed by trying to find property matches in table TMP (line 21) using the

following query.
select class, property, literal, info, score(1) as accum
from TMP
where contains(value, 'DEFINESCORE(sound,DISCRETE) accum
 DEFINESCORE(music,DISCRETE)', 1) > 0
 and class = ':Movie'
order by accum desc, info/length desc

Note that the above query considers only properties that have class Movie

as their domain. We are able to perform such filtering since we identify that there

is a class match (movie) before the given sequence S1={sound,of,music}, which

again depends on the order of words. However, if the sequence has no preceding

class match, we simply do not add the class filter to the where clause.

We continue by searching the instances (line 22) for the same sequence in

order to check whether there are ambiguities. The following query shows how to

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

49

find instance matches in table TDI. Again, note that the query considers only

instances of class Movie.

select class, property, literal, info, length, score(1) as accum
from TDI
where contains(value, 'DEFINESCORE(sound,DISCRETE) accum
 DEFINESCORE(music,DISCRETE)', 1) > 0
 and class = ':Movie'
order by accum desc, info/length desc

Continuing with the running example for J={sound,of,music}, we found an

ambiguity for keyword sound between property sound mix in table TMP and

instance The Sound of Music in the table TDI. However, recall that

accum({sound,music}, The Sound of Music) = 200

accum({sound,music}, sound mix) = 100.

Hence, we solve this ambiguity by choosing instance The Sound of Music,

since it has a higher accum score than property sound mix. Since all keywords in J

are matched by the chosen instance, the while loop stops (recall that the continue

statement11 skips the remainder of the loop body and continues with the next

iteration of the loop).

Finally, in the second iteration of the for loop, where J={julie}, the

algorithm chooses instance Julie Andrews and stops. The result at the end of this

loop is M={c1, c2, e1, e2}. However, since e1 (i.e. instance The Sound of Music) and

e2 (i.e. instance Julie Andrews) were already filtered by c1 (i.e. class Movie) and c2

(i.e. class Actress), respectively, we eliminate the redundancies and the output is

actually M={e1, e2} (line 36).

In the first running example we showed how to solve ambiguities between

properties and instances matches. However, we still need to solve ambiguities

between instances and values.

Let K={julie,andrews,christopher,plummer} be our second running

example. Since there are no class and property matches, the algorithm goes straight

to table TDI and successfully finds a match with group e2 (see Table 11). However,

11 https://en.wikipedia.org/wiki/Control_flow#Continuation_with_next_iteration

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

50

since it did not find all keywords (line 26), the algorithm proceeds to try other values

(line 29). The following query shows how to match the keywords with table TDV

for our running example.

select class, property, literal, info, length, score(1) as accum
from TDV
where contains(value, 'DEFINESCORE(julie,DISCRETE) accum
 DEFINESCORE(andrews,DISCRETE) accum
 DEFINESCORE(christopher,DISCRETE) accum
 DEFINESCORE(plummer,DISCRETE)', 1) > 0
order by accum desc, info/length desc

Table 11: Matches for K={julie,andrews,christopher,plummer}.

g class property literal info length
e2 :Actress rdfs:label Julie Andrews 0.00067 13
v2 :Movie :trivia (…) The gazebo in

Austria was only used
for exterior shots, the
actual dance by Julie
Andrews and
Christopher Plummer
was filmed on a replica
located in L.A.

0.00190 505

After searching the values table, the algorithm finds a new match, which

leads us to an ambiguity between groups v2 and e2 (again, see Table 11). Moreover,

recall that

accum({julie,andrews,christopher,plummer}, Julie Andrews) = 200

accum({julie,andrews,christopher,plummer}, The gazebo….) = 400

In order to resolve this ambiguity, we use accum * info/length (line 30).

Note that, although value v2 contains the four keywords (i.e. higher accum), the

algorithm actually chooses instance e2 instead of value v2 due to the info/length

scores. Hence, in the second iteration of the while loop (line 20), where

J={christopher,plummer}, the algorithm chooses instance e3, and the final output

is M={e2, e3}.

A typical Web information retrieval system would probably prioritize value

v2 in the first iteration, since it covers all keywords. However, we argue that, in an

RDF environment, we need to take advantage of the explicit relations indicated by

the graph modeling. Hence, we rather prioritize single instance matches, such as e2

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

51

and e3, so that we can later present a subgraph that shows the relation between them.

In this case, the graph would show the relation between Julie Andrews and

Christopher Plummer through The Sound of Music, that is, the movie they co-acted.

Note that, if we present the sentence “… the actual dance by Julie Andrews

and Christopher Plummer was filmed on a replica located in L.A.” to the user, the

relation between Julie Andrews and Christopher Plummer is not clear, even though

this sentence is a trivia of the movie The Sound of Music.

Finally, with the output from Algorithm 2, we can generate SPARQL

templates that satisfy the retrieved groups. The resulting templates for

K={julie,andrews,christopher,plummer} are shown in Table 12.

Table 12: Templates generated for K={julie,andrews,christopher,plummer}.

template interpretation
?r1 rdf:type :Actress .
?r1 rdfs:label ?o1 .
filter(contains(?o1, 'julie
andrews'))

Instances of class :Actress that
contain keywords julie
andrews in their labels

?r2 rdf:type :Actor .
?r2 rdfs:label ?o2 .
filter(contains(?o2, 'christopher
plummer'))

Instances of class :Actor that
contain keywords christopher

plummer in their labels

4.2.2. Connecting Pieces of Information in a Graph

The second task of the RDF-KwS process, i.e., connecting pieces of information,

consists of finding a minimal Steiner tree between the classes of the groups

retrieved in the first task.

The Steiner tree problem consists in finding a minimal tree that spans a

given subset of nodes of a given graph. The nodes that must be spanned by the tree

are called terminals. However, the solution might include other nodes to connect

these terminals. Given that the Steiner tree problem is NP-Complete, the classical

approximated solution consists of three steps: (1) construct the metric closure of a

graph G, that is, a complete graph in which each edge (m,n) is weighted by the

shortest path distance between m and n, for each pair of nodes m and n of G; (2)

select from the metric closure a subgraph that contains only the terminal nodes; (3)

compute a minimal spanning tree on the subgraph.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

52

In our solution, the Steiner tree is computed over the schema graph, a

representation of the schema as the IMDb example in Figure 6. Note that, we can

pre-compute the metric closure before running time and execute only steps two and

three when the user submits a keyword query.

Let G = (V,E) be an undirected graph, where the nodes are the classes of the

RDF graph with the respective informativeness (as defined in Chapter 3) and the

edges represent the connections between the classes through object properties. Note

that there might be several properties connecting two classes in the RDF graph;

however, we create the schema with only one edge between nodes. Moreover, we

do not consider the direction of the edge when computing the Steiner Tree.

 Figure 6: Example of the Schema Graph in IMDb.

The following query shows how to obtain the edges of the schema graph

given an RDF graph, which are materialized in a table named TSG. Again, recall

that we assume that the graph contains schema information and that the InfoRank

scores are materialized in the graph.

Table for the Schema Graph - TSG

select distinct ?domain ?domain_info ?range ?range_info
where
{ ?r ?p ?o .
 ?r rdf:type ?domain .
 ?domain rdf:type rdfs:Class .
 ?o rdf:type ?range .
 ?range rdf:type rdfs:Class .
 ?domain :inforank ?domain_info .
 ?range :inforank ?range_info .
}

In the first step, we need to solve the all pairs shortest path problem in order

to compute the metric closure of a graph G. This problem consists in finding the

shortest paths between all pairs of nodes of the given graph. One known approach

to this problem is to run Dijkstra’s algorithm (Cormen et al. 2009) considering every

node in the graph as source.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

53

Algorithm 3 presents an adapted version of Dijkstra’s algorithm that better

fits our needs. The main difference is that we consider the informativeness of

classes to choose the best path when there is a tie (line 18), instead of using edge

weights as in a typical implementation of Dijkstra’s algorithm.

Furthermore, in a typical implementation of Dijkstra’s algorithm, the

distance from the source node s to itself is always initialized with 0. However, in

our strategy, this distance is only initialized with 0 (line 10) if the class has a self

loop (e.g. class Movie in Figure 6). Otherwise, we initialize the distances between

all neighbors of the source node with 1 (line 12). We will justify such modification

with an example later on.

Algorithm 3: Dijkstra shortest path algorithm
Input: A graph G and a source node s
Output: The distance and the path from s to all other nodes of G

1. Q ¬ Æ
2. info ¬ the informativeness of the nodes in G
3. for each node v in G:
4. dist[v] ← ¥
5. path[v] ← Æ
6 add v to Q
7. for each neighbor n of s:
8. add s and n to path[n]
9. if n = s:
10. dist[n] ← 0
11. else:
12. dist[n] ← 1
13. while Q is not empty:
14. u ← node in Q with the smallest dist[u]
15. remove u from Q
16. for each neighbor v of u:
17. alt ← dist[u] + 1
18. if((alt < dist[v]) or
 (alt = dist[v] and info[u] > info[v])):
19. dist[v] ← alt
20. path[v] ← path[u] + v
21. return dist and path

We run Dijkstra’s algorithm using every node of the graph as source. Then,

we eliminate the redundancies and finally create the metric closure. Note that this

is computed only once, before execution time. Table 13 presents an example of the

metric closure for the schema graph in Figure 6.

In the next step to compute the Steiner tree, we select from the metric

closure a subgraph with only edges that are incident to terminal nodes. Then, we

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

54

can calculate an approximation of the Steiner tree by solving the minimum spanning

tree problem on the metric closure subgraph.

Table 13: Metric closure example of the classes in IMDb.

edge source target dist path
e1 :Genre :Genre 2 :Genre, :Movie, :Genre
e2 :Genre :Movie 1 :Genre, :Movie
e3 :Genre :Character 2 :Genre, :Movie, :Character
e4 :Genre :Actress 2 :Genre, :Movie, :Actress
e5 :Movie :Movie 0 :Movie, :Movie
e6 :Movie :Character 1 :Movie, :Character
e7 :Movie :Actress 1 :Movie, :Actress
e8 :Character :Character 2 :Character, :Actress, :Character
e9 :Character :Actress 1 :Character, :Actress
e10 :Actress :Actress 2 :Actress, :Movie, :Actress

Algorithm 4 shows how to solve this problem using Kruskal’s algorithm and

a data structure for disjoint sets (Cormen et al. 2009). Again, we adapted the

algorithm to use the informativeness of the nodes to choose the best path (line 5).

Algorithm 4: Kruskal mininum spanning tree algorithm
Input: An undirected weighted graph G
Output: A mininum spanning tree

1. function kruskal(G)
2. X ← Æ
3. for each node u in G:
4. makeset(u)
5.   E = the edges of G sorted by asceding order of weight  and
 descending order of informativeness
6. for each edge {u,v} of E
7. if find(u) ¹ find(v):
8. add edge {u,v} to X
9. union(u,v)

10. function makeset(x) # create a single set containing just x
11. π(x) ← x 
12. rank(x) ← 0 �

13. function find(x) # to which set does x belong?
14. while x ¹ π(x):
15. x ← π(x) 
16. return x�

17. function union(x,y) # merge the sets containing x and y
18. rx ← find(x)
19. ry ← find(y) 
20. if rank(rx) > rank(ry)
21. π(ry) ← rx

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

55

22. else:
23. π(rx) ← ry
24. if rank(rx) = rank(ry):
25. rank(ry) ← rank(ry) + 1

The algorithm starts by creating trees that contain only a single node of the

graph (lines 3 and 4). Then, it repeatedly looks for the edge with lowest

weight/higher informativeness that connects two different trees and, when it finds

one, the two trees are merged (lines 6 to 9).

Let K={julie, andrews, drama, movie} be our first running example. The

keywords julie andrews matches with an instance of class Actress, the keyword

drama matches with an instance of class Genre, and keyword movie matches with

class Movie. Recall that this is the output of “finding pieces of information in a

graph”, as described in Section 4.2.1. Hence, L={:Actress, :Genre, :Movie} are the

terminal nodes that needs to be spanned in our solution. Figure 7 shows the

subgraph of the metric closure of Table 13 that connects only terminal nodes in L.

Figure 7: Metric closure sub graph for L={:Actress,:Genre,:Movie}.

In the first iteration of Kruskal’s algorithm, the edge with the lowest weight

is e5; however, it does not connect two different trees. Then, the algorithm chooses

edge e7, since the combined informativeness of classes :Movie + :Actress is higher

than the combined informativeness of classes :Movie + :Genre. Then, since edge e7

connects two different trees, they are merged to compose a tree with nodes :Movie

and :Actress. Finally, the algorithm chooses edge e2 and stops, since all nodes were

spanned.

The output of Kruskal’s algorithm for terminal nodes L are edges e7 and e2.

However, note that these are the edges of the metric closure; the final output of the

Steiner tree requires that we “unpack” the path of each edge (see Table 13). In this

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

56

case, the output of the Steiner tree is the same as Kruskal’s algorithm, given that

the distances of the paths are 1, that is, there is no need to unpack the path.

Now, let K={julie, andrews, anne, hathaway, comedy} be our second

running example. The keywords julie and andrews match with an instance of class

Actress, keywords anne and hathaway match with another instance of class Actress,

and keyword comedy matches with an instance of class Genre.

If we considered that the set of terminal nodes is L1={:Actress, :Genre} (i.e.

only the distinct classes), the metric closure edges for these nodes would be those

in Table 14. However, we actually want to identify different matches for different

instances. Hence, the different class matches are identified with a number id, which

lead us to L2={:Actress/1, :Actress/2, :Genre}, where :Actress/1 is Julie Andrews,

and :Actress/2 is Anne Hathaway. Therefore, in order to achieve a proper solution

for keyword query K, we expand the edges in Table 14 that have multiple class

matches to compose the expanded metric closure edges for L2, which are presented

in Table 15.

Table 14: Metric closure edges for L1={:Actress,:Genre}.

edge source target dist path
e1 :Genre :Genre 2 :Genre, :Movie, :Genre
e4 :Genre :Actress 2 :Genre, :Movie, :Actress
e10 :Actress :Actress 2 :Actress, :Movie, :Actress

Table 15: Metric closure edges for L2={:Actress/1,:Actress/2,:Genre}.

edge source target dist path
e1 :Genre :Genre 2 :Genre, :Movie, :Genre

e4/1 :Genre :Actress/1 2 :Genre, :Movie, :Actress/1
e4/2 :Genre :Actress/2 2 :Genre, :Movie, :Actress/2
e10/1 :Actress/1 :Actress/1 2 :Actress/1, :Movie, :Actress/2
e10/2 :Actress/2 :Actress/2 2 :Actress/2, :Movie, :Actress/2
e10/3 :Actress/1 :Actress/2 2 :Actress/1, :Movie, :Actress/2

Figure 8 presents the graph of the edges in Table 15. Given that all edges

have the same weight, Kruskal’s algorithm first selects edge e10/3, since the

combined informativeness of :Actress + :Actress is higher than that of :Actress +

:Genre, and the edge connects two different trees. Then, the algorithm may select

either edge e4/1 or e4/2. Suppose that it selects e4/1 and, hence, the output is e10/3 and

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

57

e4/1. In this example, we need to unpack the path of the edges in order to get the

final Steiner tree. Hence, the edges generated from e4/1 and e10/3 are:

e4/1 ® s1={:Genre, :Movie}, s2={:Movie :Actress/1}

e10/1 ® s3={:Actress/1, :Movie}, s4={:Movie :Actress/2}

Figure 8: Metric closure sub graph for L2={:Actress/1,:Actress/2,:Movie}.

Note that when unpacking the paths, we include class :Movie (a non-

terminal node) to connect the terminal nodes. This is a good example of why we

need the modification in Dijkstra’s algorithm. In its typical implementation, edge

e10/3 would have a distance of 0, and the path would not include class :Movie. This

would lead to an incorrect schema representation indicating that class :Actress has

a self loop, which consequently would generate an incorrect SPARQL template.

Furthermore, recall that the metric closure is computed only once, before execution

time, to avoid running Dijkstra’s algorithm every time a user executes a keyword

query. Finally, note that edge s3 is a duplicate of edge s2, given that we consider the

graph as undirected. Thus, the final output of the Steiner tree is a graph with edges

s1, s2 and s4.

After computing the Steiner tree, we are able to create another SPARQL

template indicating how the instances of classes are connected. Table 16 shows the

templates generated for the running example at the end of this step.

Table 16: Templates generated for K={julie,andrews,anne,hathaway,genre}.

template interpretation
?r1 rdf:type :Actress .
?r1 rdfs:label ?o1 .
filter(contains(?o1, 'julie andrews'))

Instances of class :Actress
that contains keywords julie

andrews in their labels
?r2 rdf:type :Actress .
?r2 rdfs:label ?o2 .
filter(contains(?o2, 'anne hathaway'))

Instances of class :Actress
that contains keywords anne

hathaway in their labels

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

58

?r3 rdf:type :Genre .
?r3 rdfs:label ?o3 .
filter(contains(?o3, 'comedy'))

Instances of class :Genre
that contains keyword
comedy in their labels

?r4 rdf:type :Movie . Instances of class :Movie
?r4 ?p1 ?r1 .
?r4 ?p2 ?r2 .
?r4 ?p3 ?r3 .

How these instances are
connected together

4.2.3. Ranking Information in a Graph

The third task of the Keyword Search over RDF Graphs process consists in ranking

the retrieved answers of a keyword query. In our solution, this task is simple as

creating new templates to get the InfoRank scores divided by the length of the

string, and aggregate them in an order by clause. Again, recall that we materialized

the scores as triples of the graph. Hence, continuing the example in Table 16, the

final SPARQL query for K={julie, andrews, anne, hathaway, comedy} is presented

in the following.

select *
where
{
 # Matches templates
 ?r1 rdf:type :Actress .
 ?r1 rdfs:label ?o1 .
 filter(contains(?o1, 'julie andrews'))
 ?r2 rdf:type :Actress .
 ?r2 rdfs:label ?o2 .
 filter(contains(?o2, 'anne hathaway'))
 ?r3 rdf:type :Genre .
 ?r3 rdfs:label ?o3 .
 filter(contains(?o3, 'comedy'))
 ?r4 rdf:type :Movie .
 ?r4 rdfs:label ?o4 .

 # Steiner Tree templates
 ?r4 ?p1 ?r1 .
 ?r4 ?p2 ?r2 .
 ?r4 ?p3 ?r3 .

 # Ranking templates
 ?r1 :inforank ?s1 .
 ?r2 :inforank ?s2 .
 ?r3 :inforank ?s3 .
 ?r4 :inforank ?s4 .
}
order by desc (?s1/strlen(?o1) +
 ?s2/strlen(?o2) +
 ?s3/strlen(?o3) +

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

59

 ?s4/strlen(?o4))

4.3.Chapter Conclusion

In this chapter, we presented a solution to the Keyword Search over RDF Graphs

problem. For the first task of the solution, we introduced a greedy strategy that,

given a keyword query, finds matches (pieces of information) in a graph. The

strategy also groups the matches at the level of classes and properties, instead of

processing triple by triple, and generates SPARQL templates with patterns that

satisfy these groups. Furthermore, the greedy strategy uses InfoRank to reduce the

number of matches and to prioritize highly important instances when there is

ambiguity. It also considers the order of appearance of the keywords, instead of

treating it as a “bag of words”. For the second task, we defined a strategy that, given

the classes retrieved from the first task, finds a Steiner tree in a graph that represents

the schema of an RDF dataset. This task uses the informativeness of classes to

choose the best path when there is also an ambiguity. Likewise, it generates

SPARQL templates with patterns that satisfy the Steiner tree. Finally, for the third

task, we showed how to create a few more templates with InfoRank patterns to rank

the matches in a SPARQL query.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

5
The QUIRA Keyword Search System

This chapter presents the technical aspects of QUIRA (QUerying with InfoRAnk),

a keyword search system that implements the strategy proposed in Chapter 4. First,

we describe the architecture of QUIRA by showing the interaction between its

processes and the database. Then, we present an interface with the following

functions: (1) it allows the user to submit keyword queries; (2) it presents to the

user an answer of a keyword query over an RDF graph; (3) it allows the user to

evaluate an answer; (4) it allows the user to navigate through URIs; (5) it describes

an URI.

5.1. Architecture

Figure 9 summarizes the architecture of QUIRA, in which the green squares

represent the processes and the inputs are enumerated in sequence. Also, we

describe the integration of QUIRA with the database, which has the RDF dataset

and the pre-materialized auxiliary tables described in Section 4.2.

Figure 9: QUIRA’s Architecture.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

61

The execution flow goes as follows:

1. The user submits a keyword query or a URI.

2. If the input is a keyword query, the Service process redirects it to the

Parser process.

3. If the input is a URI, Service redirects it directly to the SPARQL

Constructor.

4. Parser splits the keyword query into a list of keywords and identifies

which ones are stop words according to the default list of English stop

words12. Then, the keywords are redirected to the Greedy/Matching

processes.

5. The Greedy and the Matching processes are executed together as

described in Section 4.2.1. Matching is responsible for accessing the

auxiliary tables TMC, TMP, TDI and TDV to find the matches with the

keywords. Greedy is responsible for handling the matches and for

disambiguating the matches found, when required. The groups

generated in this process are redirected to the Steiner Tree process.

6. The Steiner Tree process is responsible for the strategy described in

Section 4.2.2. The output is a Steiner tree over the schema graph and

the groups themselves, which are redirected to the SPARQL

Constructor process.

7. According to the type of input, the SPARQL Constructor process is

responsible for synthesizing a SPARQL query, which is redirected to

the Executor process.

8. The Executor process is simply responsible for executing the SPARQL

query in the RDF dataset and redirecting the answers to the user.

Note that, when the input of the SPARQL Constructor process are the groups

and the schema graph, the synthesized query is similar to that presented in Section

4.2.3. However, when the input is an URI, the query is formulated to retrieve the

information of that given URI. For example, the URI of the movie The Sound of

12 https://www.ranks.nl/stopwords

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

62

Music is <https://www.imdb.com/title/tt0059742>; hence, if the user submits this

specific URI, the generated SPARQL query is as follows:
select ?topic ?property ?value ?label
where
{ # Literals of the instance
 { select ("Information" as ?topic) ?property ?value ?label
 where { <https://www.imdb.com/title/tt0059742> ?p ?value .
 ?p rdfs:label ?property .
 FILTER (isLiteral(?value)) }
 order by ?property ?value
 }
 union
 # Connections to other instances through outgoing edges
 { select ?topic ?property ?value ?label
 where
 { <https://www.imdb.com/title/tt0059742> ?p ?value .
 ?value rdf:type ?g .
 ?value rdfs:label ?label .
 ?p rdfs:label ?property .
 ?g rdfs:label ?topic .
 filter not exists {?g rdfs:subClassOf ?superClass }
 }
 order by ?topic ?property ?label
 }
 union
 # Connections to other instances through incoming edges
 { select ?topic ?property ?value ?label
 where
 { ?value ?p <https://www.imdb.com/title/tt0059742> .
 ?value rdf:type ?g.
 ?value rdfs:label ?label .
 ?p rdfs:label ?property .
 ?g rdfs:label ?topic .
 filter not exists {?g rdfs:subClassOf ?superClass }
 }
 order by ?topic ?property ?label
 }
}

The next section presents the result of this SPARQL query at the interface

when the user wants to describe a URI.

5.2. Interface

The main requirements of a keyword search interface are a text box where the user

types keywords and a layout area to present the answers to the user. When dealing

with an RDF graph, one could naturally consider presenting the results as graphs,

given that answers are subgraphs of the RDF graph. However, there may be several

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

63

possible answers, and one single answer may contain several nodes and edges.

Hence, we chose a table layout to present the retrieved answers, as shown in Figure

10. Note that there is an indication of the Page and a Next button so that the user

can see all the results. Moreover, users are more familiar with table or list

presentations than with graph presentations.

Furthermore, given that a table layout may lose information about how

instances are connected in the graph, we allow the user to see the schema behind

the answer by clicking on the graph icon, as shown in Figure 11.

Figure 10: Query submission and answer.

Figure 11: Graph schema for an answer.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

Another feature of the presentation is to show to the user the classes that

compose the answers, to allow her to see the available properties of these classes,

and to select those that she wants to include in the table. Figure 12 shows an

example of this feature, in which a user wants to include the year of the retrieved

works.

The last feature concerning presentation is the possibility of the user to

evaluate the retrieved answer giving 1 to 5 starts, and also to provide a comment to

help improve QUIRA’s results (see Figure 13).

Figure 12: Property selection.

Figure 13: Answer evaluation.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

65

Besides the keyword search engine, we also allow the user to navigate to an

instance by clicking on the URI, and see its data (Figure 14) and its relations with

other instances (Figure 15). The user may continue navigating through other

instances to discover more data. Note that the work Everyone Says I Love is

connected to the work The Sound of Music through property referenced in; hence,

the user can navigate to the former work to see more data, as shown in Figure 16.

Figure 14: URI information.

Figure 15: URI relations.

Figure 16: URI navigation.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

66

5.3.Chapter Conclusion

In this chapter, we presented the architecture and interface of the QUIRA system.

The architecture reflects the steps of the keyword search process, as defined in

Chapter 4. Also, we introduced a new feature in which the user is able to submit a

URI in order to get more data about the respective instance. Finally, the interface

permits the user to submit queries, analyze answers and navigate through the

instances of the graph.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

6
Evaluation

This chapter presents an evaluation of the strategies proposed in this thesis using

the IMDb and MusicBrainz RDF datasets. First, we show experiments to test the

effectiveness of InfoRank as an importance measure for RDF graphs, when

compared to other popular measures, such as PageRank. Second, given two popular

keyword benchmarks over IMDb and MusicBrainz, we evaluate the quality of the

results of QUIRA, a system for Keyword Search over RDF Graphs that uses

InfoRank.

6.1. Setup

In order to evaluate our strategy, we downloaded the relational IMDb13 dataset in

MySQL and used Oracle 12c to transform it to RDF via R2RML. We used an RDF

dump of MusicBrainz14 as our second dataset and enriched it with DBpedia data,

since the dump was incomplete.

Figure 17 and Figure 18 show an overview of the RDF schemas. The IMDb

schema has 24 classes, 92 datatype properties, 37 object properties, and a total of

238,778,487 triples. The MusicBrainz schema has 8 classes, 13 datatype properties,

12 object properties, and a total of 212,948,635 triples.

Note that, since MusicBrainz did not include schema data, we performed a

pre-processing step in order to capture such data. Hence, the following queries

retrieve triples with rdfs:Class, rdf:Property, rdfs:domain and rdfs:range, as well as

the rdfs:label of classes and properties generated from the respective URI. Hence,

the only required schema properties are rdf:type and rdfs:subClassOf.

13 https://sites.google.com/site/ontopiswc13/home/imdb-mo
14 http://www.linkedbrainz.org

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

68

Generates the rdfs:Class triples
insert { ?class rdf:type rdfs:Class }
where
{ select distinct ?class
 where { ?r rdf:type ?class}
}
Generates the rdf:Property triples
insert { ?property rdf:type rdf:Property }
where
{ select distinct ?property
 where { ?r ?property ?o .
 filter (?property not in (rdf:type,rdfs:label,…)) }
}
Generates the rdfs:domain and rdfs:range triples
insert { ?property rdfs:domain ?domain .
 ?property rdfs:range ?range }
where
{ select distinct ?property ?domain ?range
 where
 { ?r ?property ?o .
 ?property rdf:type rdf:Property .
 ?r rdf:type ?domain .
 ?o rdf:type ?range .
 }
}
Generates the labels of classes from URI
insert { ?class rdfs:label ?label }
where
{ select ?class
 replace(replace(replace(str(?class),
 ".*(#|/)", ""),
 "([^_])([A-Z])","$1_$2"),
 "_"," ") as ?label
 where { ?class rdf:type rdfs:Class }
}
Generates the labels of properties from URI
insert { ?property rdfs:label ?label }
where
{ select ?property
 lcase(replace(replace(replace(str(?property),
 ".*(#|/)", ""),
 "([^_])([A-Z])","$1_$2"),
 "_"," ")) as ?label
 where { ?property rdf:type rdf:Property }
}

All experiments were conducted using a RESTful Web application

developed in Java. The app ran on a macOS Sierra, 1,7 GHz Intel Core i5 RAM 4

GB. To store and manage the RDF data, we used Oracle 12c, running on a 2x deca-

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

69

core Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz, 128GB RAM, 32KB Cache

L1.

Figure 17: Overview of the IMDb Schema

Figure 18: Overview of the MusicBrainz Schema

The datasets, benchmarks, and a detailed description of the experiments

with printouts and queries are available at the QUIRA Web page15.

15 https://sites.google.com/view/quira/

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

70

6.2. Ranking Experiments

6.2.1. IMDb

This section presents results that assess InfoRank in the IMDb dataset to check

whether it would be feasible to use these measures in a keyword search system.

Table 17 presents the ranking of the IMDb classes (super classes only) using

the absolute informativeness (InfoMax) of classes defined in Section 3.1. Recall that

we use the maximum informativeness of the instances of the given class. Hence, to

show why we chose such metric, Table 17 also presents the summation (InfoSum)

and the average (InfoMax) of the informativeness of instances. We argue that, in

the IMDb dataset, the most important classes are those that represent works

(movies, TV series, etc.) and people (actors, actresses, directors, etc.), which is the

result that InfoMax and InfoAvg give. Note that, if we ranked classes using the node

degree or InfoSum, the first in the ranking would be class Character. However, an

IMDb user is probably more interested in movies (and other types of works) and

movie stars, rather than in characters.

Table 18 presents the ranking of the IMDb object properties also using the

informativeness of properties, as defined in Section 3.1. Note that the top properties

are those connecting movies. For instance, the triple (:StarWars_EpisodeII,

:follows, :StarWars_EpisodeI) indicates that the movie Star Wars: Episode II is a

sequence of the movie Star Wars: Episode I. We can also find the inverse property

followed_by, expressed by the triple (:StarWars_EpisodeI, :followed_by,

:StarWars_EpisodeII).

Table 19 and Table 20 show the top 10 instances induced by InfoRank and

PageRank, respectively. With PageRank, the top instances are highly connected

nodes, such as countries, language and genres. However, we argue that, when

considering a movies dataset, we would expect as top instances popular movies,

series, actors, actresses, etc.

To indicate popularity, the tables also show the users’ rating of works

extracted from the IMDb Web site. In the case of a person, we extracted the best

rated work in which she starred, directed, produced, etc. InfoRank’s results show

highly rated work/person, such as Star Wars, The Wizard of Oz, Titanic and Morgan

Freeman. The results show some TV Series with lower rates because they have a

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

71

considerable level of informativeness (General Hospital – 375 literals; Days of Our

Lives – 232 literals), and also a high degree through property :episode_of_series,

since they have been on air for a long time. Likewise, the results show some hosts

from TV Shows that also have been on air for a long time. Although InfoRank

results show a few less popular works/people, we argue that InfoRank results

correspond better to what users would expect in an IMDb dataset.

Table 17: IMDb class ranking computed by InfoRank.

Rank Class InfoMax InfoAvg InfoSum Degree
1 imdb:Work 1619 11.06 24,250,376 2,410,207
2 imdb:Person 1482 4.57 13,987,247 3,913,018
3 imdb:Character 3 2.37 26,736,416 19,419,994
4 imdb:Company 3 3.00 449,942 224,971
5 imdb:Language 2 2.00 364 364
6 imdb:Country 2 2.00 46 319
7 imdb:Genre 2 2.00 319 46

Table 18: IMDb object property ranking computed by InfoRank.

Rank Property Info Degree
1 imdb:follows 1.000 332,551
2 imdb:followed_by 1.000 332,548
3 imdb:edited_from 1.000 14,103
4 imdb:edited_into 1.000 14,103
5 imdb:referenced_in 0.985 223,535
6 imdb:references 0.985 223,532
 ….

Table 19: IMDb top 10 instances induced by InfoRank.

Rank Instance Class Rating

1 Star Wars imdb:Movie 8.6

2 Dolly Parton imdb:Actress 6.8

3 Jay Leno imdb:Actor 5.3

4 Morgan Freeman imdb:Actor 8.6

5 The Wizard of Oz imdb:Movie 8.0

6 General Hospital imdb:TV Series 6.7

7 Days of Our Lives imdb:TV Series 5.3

8 Bob Barker imdb:Actor 7.7

9 Titanic imdb:Movie 7.8

10 Around the World in Eighty Days imdb:Movie 6.8

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

72

Table 20: IMDb top 10 instances induced by PageRank.

Rank Instance Class Rating

1 English imdb:Language -
2 United States imdb:Country -
3 Short imdb:Genre -
4 Drama imdb:Genre -
5 Comedy imdb:Genre -
6 Documentary imdb:Genre -
7 UK imdb:Country -
8 Spanish imdb:Language -
9 German imdb:Language -
10 France imdb:Country -

6.2.2. MusicBrainz

This section presents results that assess InfoRank in the MusicBrainz dataset.

Table 21 presents the ranking of the MusicBrainz classes (super classes

only) using their respective absolute informativeness. We argue that, in a

MusicBrainz dataset, the most important classes are those representing music

artists, tracks and albums, which is the result that InfoMax and InfoAvg gives. Note

that, if we ranked classes using the node degree, the ranking would be Track,

Record, Release, Release Event, Album, Music Artist. However, a user is probably

more interested in the artists themselves than in events. Also, if we ranked using

InfoSum, class Record would come before class Album.

Table 21: MusicBrainz class ranking computed by InfoRank.

Rank Class InfoMax InfoAvg InfoSum Degree
1 mo:MusicArtist 1407 4.92 4,419,477 1,126,024
2 mo:Album 800 3.39 3,634,901 1,523,406
3 mo:Track 162 3.97 53,866,908 18,153,577
4 mo:Release 73 2.16 2,261,498 1,954,557
5 mo:Record 4 2.91 4,099,572 2,150,137
6 geo:SpatialThing 4 2.00 8,850 8,819
7 mo:ReleaseEvent 2 2.00 1,606,050 1,606,089
8 muto:Tag 2 2.00 65,772 65,772

Likewise, Table 22 shows the ranking of the MusicBrainz object properties

also using their respective informativeness. The highest informative property is

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

73

foaf:made, which connects artists with their respective work (tracks, albums and

releases). The top property considering the degree is mo:track, which connects

tracks with their respective albums and records, and the second one is foaf:made.

In this case, we consider that both Info and Degree return relevant results.

Table 22: MusicBrainz object property ranking computed by InfoRank.

Rank Property Info Degree
1 foaf:made 1.0000 25,163,691
2 foaf:based_near 0.9979 628,359
3 muto:hasTag 0.7007 1,802,421
4 mo:track 0.5979 43,613,185
5 mo:member_of 0.5901 1,863,05
6 event:factor 0.5674 1,908,578
7 mo:label 0.0773 1,435,813
8 mo:record 0.0525 2,150,137
9 mo:release 0.0518 1,606,089

10 event:place 0.0014 1,652,066

Table 23 and Table 24 show the top 10 instances induced by InfoRank and

PageRank, respectively. In PageRank, the majority of the top instances are

countries from class geo:SpatialThing, again because they are nodes with a high

degree. The Various Artists instance is used when a track is recorded by several

artists. However, in the case of a music dataset, we argue that a user would expect

famous artists, songs or albums as top instances. In the case of MusicBrainz, we

extracted the number of listeners of artists from Last.fm16 as an importance

indicator. Hence, note that InfoRank returns famous musicians, such as Elvis

Presley, Mozart, Beethoven, Bob Dylan, etc. Again, we argue that InfoRank shows

results that correspond better to the expectation of a user searching for music related

instances.

To summarize, these preliminary experiments suggested that InfoRank

would provide better ranking results than PageRank when used in a keyword search

system, which is confirmed in the following section.

Table 23: MusicBrainz top 10 instances induced by InfoRank.

Rank Instance Class Listeners

16 https://www.last.fm

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

74

1 Various Artists mo:MusicArtist -
2 Elvis Presley mo:MusicArtist 2,4 mi
3 Johann Sebastian Bach mo:MusicArtist 1,5 mi
4 Wolfgang Amadeus Mozart mo:MusicArtist 1,6 mi
5 Willie Nelson mo:MusicArtist 0,9 mi
6 Frank Sinatra mo:MusicArtist 2,3 mi
7 Ludwig van Beethoven mo:MusicArtist 1,8 mi
8 Bruce Springsteen mo:MusicArtist 2,2 mi
9 Bob Dylan mo:MusicArtist 2,6 mi
10 Pyotr Ilyich Tchaikovsky mo:MusicArtist 0,9 mi

Table 24: MusicBrainz top 10 instances induced by PageRank.

Rank Instance Class Listeners

1 United States geo:SpatialThing -
2 United Kingdom geo:SpatialThing -
3 Various Artists mo:MusicArtist -
4 Germany geo:SpatialThing -
5 Japan geo:SpatialThing -
6 France geo:SpatialThing -
7 Canada geo:SpatialThing -
8 Italy geo:SpatialThing -
9 Netherlands geo:SpatialThing -
10 Australia geo:SpatialThing -

6.3.Keyword Search Experiments

6.3.1. IMDb

To evaluate the impact of using InfoRank in a keyword search system over IMDb,

we used all 50 queries (adapted to our RDF dataset) from Coffman’s IMDb

Benchmark (Coffman & Weaver 2010). We ran versions of QUIRA using a variety

of ranking measures. Table 25 presents an overview of the results, with the Mean

Average Precision (MAP), the total elapsed time and the number of iterations

needed to compute the measures.

The measures in Table 25 include InfoRank, as defined in Section 3.1, a

version of PageRank using the graph as undirected, the HITS Authorities, which

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

75

prioritizes nodes with high in-degree, and HITS Hubs, which prioritizes nodes with

high out-degree. We also include the Degree-decoupled PageRank (Kim et al. 2016)

with a penalization parameter of 0.5. Note that we did not compared InfoRank with

any approach that uses manually weighted links due to its subjectivity, neither with

approaches that learn weights from user feedback since we face the cold start

problem. Moreover, we eliminated measures that are not computed efficiently in

large data, such as, closeness centrality.

Furthermore, Table 26 and Table 27 show the complete results for InfoRank

and PageRank. The Create column shows the time in seconds to transform the

keyword query into a SPARQL query, column Execute shows the time to execute

the query in Oracle 12c, and column Build shows the time to build the answers and

present them to the user. We also included the individual Mean Average Precision

(MAP) score for each query.

Table 25: IMDb results.

 Time(min) Iterations MAP
InfoRank 28 24 0.82
PageRank 27 30 0.76
HITS Authorities 25 12 0.73
HITS Hubs 25 12 0.30
Degree-decoupled PageRank p = 0.5 38 37 0.54

Analyzing the results, we noted that PageRank and HITS Authorities fail

when choosing class Character, instead of class Work, in queries where a Steiner

tree needs to be computed. As an example, consider the keyword query

K={harrison, ford, george, lucas} from Coffman’s Benchmark, whose expected

results are movies directed by George Lucas and starred by Harrison Ford. Figure

19 and Figure 20 show the InfoRank and PageRank results, respectively. Note that,

in both results, the algorithm correctly identifies Harrison Ford and George Lucas

as instances of class Person. However, given that there two possible paths between

two people (see Figure 17), PageRank chooses class Character as a preferable path

since it has the highest degree, and InfoRank correctly chooses class Work since it

is more informative.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

76

Table 26: InfoRank results for IMDb.

Keyword Query Create Execute Build Total AP
1. denzel washington 1.47 1.17 3.97 6.61 1.00
2. clint eastwood 1.74 60.32 0.94 63.00 1.00
3. john wayne 1.16 60.88 0.73 62.77 1.00
4. will smith 0.98 61.23 0.63 62.85 1.00
5. harrison ford 0.91 60.96 1.19 63.06 1.00
6. julia roberts 1.23 60.06 0.69 61.98 1.00
7. tom hanks 1.26 19.45 0.53 21.24 1.00
8. johnny depp 0.85 21.25 0.93 23.02 1.00
9. angelina jolie 1.24 60.84 0.62 62.71 1.00
10. morgan freeman 1.25 59.42 0.61 61.28 1.00
11. gone with the wind 1.21 60.78 0.55 62.54 1.00
12. star wars 1.67 63.08 0.63 65.38 1.00
13. casablanca 1.37 62.91 0.55 64.83 1.00
14. lord of the rings 1.30 61.55 0.83 63.69 1.00
15. the sound of music 6.74 66.78 0.65 74.17 1.00
16. wizard of oz 1.26 61.20 0.64 63.09 1.00
17. the notebook 1.25 20.79 0.63 22.67 1.00
18. forrest gump 0.76 20.94 0.90 22.59 1.00
19. the princess bride 1.38 59.41 1.13 61.91 1.00
20. the godfather 1.08 61.39 0.63 63.11 1.00
21. atticus finch movie 1.90 22.18 0.89 24.97 1.00
22. indiana jones movie 1.99 61.86 0.53 64.38 0.00
23. james bond movie 1.95 66.57 0.52 69.04 0.00
24. rick blaine movie 1.72 22.37 0.69 24.78 0.00
25. will kane movie 1.93 60.96 0.60 63.48 0.00
26. dr. hannibal lecter movie 1.87 22.31 0.65 24.83 1.00
27. norman bates movie 2.21 64.59 0.51 67.31 1.00
28. darth vader movie 1.88 24.39 0.72 26.99 1.00
29. the wicked witch of the west movie 2.00 65.64 0.63 68.27 1.00
30. nurse ratched movie 2.76 22.13 0.62 25.51 1.00
31. frankly my dear i don't give a damn 7.94 11.93 0.78 20.66 1.00
32. i'm gonna make him an offer he can’t … 7.866 20.283 0.87 29.02 1.00
33. you don't understand i coulda had class … 6.763 61.03 0.55 68.35 1.00
34. toto, i've a feeling we're not in kansas… 6.262 21.99 0.549 28.805 1.00
35. here's looking at you kid 2.278 62.669 0.631 65.578 0.00
36. hamill skywalker 3.892 103.367 0.557 107.816 1.00
37. tom hanks 2004 17.157 120.755 0.534 138.446 0.00
38. henry fonda yours mine ours character 14.89 30.877 0.527 46.294 1.00
39. russell crowe gladiator character 9.508 101.688 0.744 111.94 1.00
40. brent spiner star trek character 11.512 95.765 0.627 107.904 1.00
41. audrey hepburn 1951 4.946 90.74 0.726 96.412 0.00
42. jacques clouseau actor 2.321 63.092 0.565 65.978 1.00
43. jack ryan actor 1.909 60.543 3.034 65.486 0.00
44. rocky stallone 10.459 108.386 3.127 121.972 1.00
45. terminator actor 1.861 66.645 0.823 69.329 1.00
46. harrison ford george lucas 24.257 110.807 0.629 135.693 1.00
47. sean connery fleming 11.337 105.784 0.73 117.851 1.00
48. keanu reeves wachowski 4.26 93.424 0.698 98.382 1.00
49. dean jones herbie 16.758 84.688 0.524 101.97 0.00
50. indiana jones last crusade lost ark person 9.462 32.159 0.525 42.146 1.00

MIN 0.76 1.17 0.51 6.61 0.00
AVG 4.52 57.68 0.84 63.04 0.82
MAX 24.26 120.76 3.97 138.45 1.00

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

77

Table 27: PageRank results for IMDb.

Keyword Query Create Execute Build Total AP
1. denzel washington 1.25 24.19 2.28 27.71 1.00
2. clint eastwood 1.24 59.56 0.67 61.47 1.00
3. john wayne 0.97 60.39 0.58 61.95 1.00
4. will smith 1.29 61.65 0.61 63.54 1.00
5. harrison ford 0.99 60.63 0.59 62.21 1.00
6. julia roberts 1.36 59.83 0.56 61.75 1.00
7. tom hanks 1.73 19.82 1.05 22.59 1.00
8. johnny depp 1.03 23.33 0.70 25.06 1.00
9. angelina jolie 1.20 68.52 0.61 70.33 1.00
10. morgan freeman 1.17 81.29 0.64 83.10 1.00
11. gone with the wind 1.15 61.42 0.52 63.09 1.00
12. star wars 1.96 62.26 0.93 65.16 0.78
13. casablanca 1.70 61.45 0.52 63.67 1.00
14. lord of the rings 0.89 62.10 0.73 63.71 1.00
15. the sound of music 6.08 72.49 0.94 79.51 1.00
16. wizard of oz 1.12 61.49 0.63 63.24 1.00
17. the notebook 0.79 19.70 0.64 21.13 1.00
18. forrest gump 1.89 19.41 1.21 22.51 1.00
19. the princess bride 1.22 61.15 0.52 62.89 1.00
20. the godfather 1.21 61.40 0.63 63.24 1.00
21. atticus finch movie 2.14 21.99 0.58 24.71 1.00
22. indiana jones movie 2.46 66.33 1.07 69.86 1.00
23. james bond movie 1.98 61.42 0.49 63.89 0.00
24. rick blaine movie 2.27 20.93 0.69 23.89 1.00
25. will kane movie 1.86 65.75 0.50 68.11 1.00
26. dr. hannibal lecter movie 2.16 22.39 0.66 25.22 1.00
27. norman bates movie 2.14 64.42 0.62 67.18 1.00
28. darth vader movie 2.00 24.88 0.58 27.46 1.00
29. the wicked witch of the west movie 2.02 64.62 0.73 67.36 1.00
30. nurse ratched movie 2.14 22.40 0.63 25.17 1.00
31. frankly my dear i don't give a damn 8.65 20.47 0.60 29.72 1.00
32. i'm gonna make him an offer he can’t … 8.76 20.74 0.75 30.25 1.00
33. you don't understand i coulda had class … - - - timeout 0.00
34. toto, i've a feeling we're not in kansas… 7.01 27.15 4.34 38.50 1.00
35. here's looking at you kid 2.27 61.11 0.60 63.99 0.00
36. hamill skywalker 4.15 106.44 0.62 111.20 1.00
37. tom hanks 2004 20.94 219.02 0.83 240.78 0.00
38. henry fonda yours mine ours character 16.67 31.32 0.63 48.62 1.00
39. russell crowe gladiator character 9.55 206.95 0.75 217.25 0.00
40. brent spiner star trek character 7.30 99.08 1.02 107.39 1.00
41. audrey hepburn 1951 3.88 85.69 0.84 90.41 0.00
42. jacques clouseau actor 2.56 65.54 0.78 68.88 1.00
43. jack ryan actor 1.42 59.84 0.51 61.76 0.00
44. rocky stallone 3.04 87.32 0.76 91.11 1.00
45. terminator actor 1.84 69.96 0.84 72.63 0.00
46. harrison ford george lucas 14.66 110.09 0.86 125.61 0.00
47. sean connery fleming 6.55 84.53 0.69 91.77 0.00
48. keanu reeves wachowski 3.27 95.73 0.65 99.65 0.00
49. dean jones herbie 8.47 86.76 0.60 95.83 0.00
50. indiana jones last crusade lost ark person 8.09 32.42 0.54 41.05 1.00

MIN 0.79 19.41 0.49 21.13 0.00
AVG 3.89 62.60 0.80 67.29 0.76
MAX 20.94 219.02 4.34 240.78 1.00

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

78

PageRank and HITS Authorities also fail in the ranking step for some

keyword queries due to the high dependency on the degree. For example, consider

the query K={terminator, actor} whose expected results are the Terminator movies

stared by Arnold Schwarzenegger. Figure 21 and Figure 22 show the InfoRank and

PageRank results, respectively. PageRank ranks first the voice actor Jim Cummings

because his node has a high degree, since voice actors are usually casted several

times, whereas InfoRank correctly returns in the top results the movies The

Terminator, Terminator 2: Judgment Day and Terminator 3: Rise of the Machines

starred by Schwarzenegger.

The HITS Hubs fails in all queries that refer to a person (e.g. K={denzel,

washington}) since instances of class Person do not have outgoing edges.

Furthermore, the Degree Decoupled PageRank (Kim et al. 2016), with a

penalization parameter of 0.5, fails because it penalizes instances with high degree,

whereas many important instances (e.g. Star Wars) have a high degree.

Figure 19: InfoRank result for K={harrison, ford, george, lucas}.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

79

Figure 20: PageRank result for K={harrison, ford, george, lucas}.

Figure 21: InfoRank result for K = {terminator, actor}.

Figure 22: PageRank result for K = {terminator, actor}.

To summarize, InfoRank achieves the best MAP result in Coffman’s IMDb

Benchmark queries, since it successfully finds a balance between degree and

informativeness. Furthermore, Table 25 indicates that this type of centrality

measure, based on the Power Iteration method, can be computed in feasible time.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

80

6.3.2. MusicBrainz

Continuing our experiments, we used 25 queries from QALD-217 (also adapted to

our schema) to evaluate the impact of InfoRank in a keyword search system over

MusicBrainz.

Table 28 and Table 29 show the results of the evaluation using InfoRank

and PageRank, respectively. The results only differed in query K = {Hardcore,

Kids, duration}, which should return the duration of track Hardcore Kids. Note that

InfoRank (Figure 23) returns the expected result. On the other hand, PageRank

(Figure 24) matches Hardcore Kids with an album, instead of a track, since it gives

a priority to music albums that have a higher number of tracks, given that more

tracks imply more links. However, we argue that the number of tracks is not

necessarily related to the importance of an album.

Table 28: InfoRank results for MusicBrainz.

Keyword Query Create Execute Build Total AP
1. Slayer track 1.58 33.61 3.95 39.14 1.00
2. David Bowie group 1.14 26.54 0.79 28.47 1.00
3. group Dover start year 1.58 22.00 0.62 24.20 1.00
4. Michael Jackson album 0.87 67.29 0.77 68.93 1.00
5. Star Wars soundtrack 1.72 76.67 0.78 79.16 1.00
6. solo artist birth date 1962-05-30 1.98 64.06 0.69 66.73 -
7. The Cure solo artist 1.199 21.792 0.672 23.663 0.80
8. Kraftwerk album 0.72 25.24 0.59 26.56 1.00
9. group Nirvana 1.18 12.78 0.68 14.64 1.00
10. Sex Pistols group end year 1.18 20.91 0.80 22.89 1.00
11. Quee MacArthur group Queen 4.01 92.24 0.90 97.15 1.00
12. Tom Waits birth date 1.30 20.81 0.61 22.72 1.00
13. solo artist birth date 1960-12-29 3.36 124.82 0.65 128.82 -
14. group end year 2010 7.33 75.29 0.67 83.30 1.00
15. BBC Symphony Orchestra album 0.70 92.29 0.67 93.66 0.00
16. Michael Stipe group 0.67 21.98 0.56 23.22 1.00
17. Amy Macdonald album 1.00 66.02 0.68 67.70 1.00
18. Michael Jackson live album 2.25 77.70 0.67 80.63 0.00
19. In Utero producer 1.30 20.99 0.66 22.95 -
20. Hardcore Kids duration 2.23 61.53 0.52 64.27 1.00
21. Kurt Cobain Nirvana 0.73 20.21 1.04 21.98 0.00
22. Aretha Franklin track 0.96 26.67 0.70 28.33 1.00
23. Millencolin group start year 1.56 21.61 0.63 23.81 1.00
24. group Trio solo artist 9.79 30.68 0.66 41.13 0.00
25. Ramones solo artist 0.73 22.01 0.71 23.45 -

MIN 0.67 12.78 0.52 14.64 0.00
AVG 2.04 45.83 0.83 48.70 0.80
MAX 9.79 124.82 3.95 128.82 1.00

17 https://github.com/ag-sc/QALD

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

81

Table 29: PageRank results for MusicBrainz.

Keyword Query Create Execute Build Total AP
1. Slayer track 1.43 35.765 2.819 40.014 1.00
2. David Bowie group 0.924 28.292 0.813 30.029 1.00
3. group Dover start year 1.54 22.915 0.82 25.275 1.00
4. Michael Jackson album 1.429 71.058 0.779 73.266 1.00
5. Star Wars soundtrack 2.11 70.522 0.712 73.344 1.00
6. solo artist birth date 1962-05-30 1.678 60.002 0.665 62.345 -
7. The Cure solo artist 1.569 21.904 1.023 24.496 0.80
8. Kraftwerk album 0.837 24.483 0.753 26.073 1.00
9. group Nirvana 7.61 19.466 0.497 27.573 1.00
10. Sex Pistols group end year 1.653 26.627 0.854 29.134 1.00
11. Quee MacArthur group Queen 6.938 186.027 0.592 193.557 1.00
12. Tom Waits birth date 0.901 23.162 0.817 24.88 1.00
13. solo artist birth date 1960-12-29 7.579 141.798 0.738 150.115 -
14. group end year 2010 13.023 129.654 0.74 143.417 1.00
15. BBC Symphony Orchestra album 0.638 83.114 0.684 84.436 0.00
16. Michael Stipe group 0.677 21.955 0.566 23.198 1.00
17. Amy Macdonald album 0.617 63.783 0.657 65.057 1.00
18. Michael Jackson live album 1.524 69.067 0.611 71.202 0.00
19. In Utero producer 1.342 23.84 0.535 25.717 -
20. Hardcore Kids duration 0.933 65.52 0.717 67.17 0.00
21. Kurt Cobain Nirvana 0.652 20.69 0.57 21.912 0.00
22. Aretha Franklin track 0.629 24.975 0.671 26.275 1.00
23. group Millencolin start year 1.556 21.188 0.864 23.608 1.00
24. group Trio solo artist 9.499 35.955 0.729 46.183 0.00
25. Ramones solo artist 0.891 20.344 0.773 22.008 -

MIN 0.62 19.47 0.50 21.91 0.00
AVG 2.73 52.48 0.80 56.01 0.75
MAX 13.02 186.03 2.82 193.56 1.00

Figure 23: InfoRank result for K = {Hardcore, Kids, duration}.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

82

Figure 24: PageRank result for K = {Hardcore, Kids, duration}.

6.4. Chapter Conclusion

In this chapter we presented an evaluation using the IMDb and MusicBrainz

datasets. In a preliminary step, we compared rankings induced by InfoRank and

PageRank regarding classes, properties and instances. While PageRank results

show highly connected nodes in the first positions, InfoRank provides what we

argue to be more important nodes considering the domain. Hence, the preliminary

experiments suggested that InfoRank could achieve a good ranking mechanism

when used in a keyword search system.

Indeed, in the second step of the evaluation, we ran two popular benchmarks

over IMDb and MusicBrainz using different versions of QUIRA to compare the

results provided by different importance measures. The two best results were

InfoRank and PageRank. However, we showed that InfoRank outperformed

PageRank in both datasets.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

7
Conclusions and Future Work

7.1. Conclusions

In the last years, keyword search over RDF graphs (briefly RDF-KwS) became a

relevant research topic with the goal of hiding from users the unfriendly SPARQL

queries. Many of the proposed solutions adapted popular Information Retrieval

techniques to the RDF-KwS world, including ranking mechanisms (e.g. PageRank)

that consider the importance of the retrieved documents. However, PageRank, and

other typical importance measures, highly depend on the degree of nodes, whereas

the notion of importance of a node is not necessarily related to its degree in RDF

graphs.

Therefore, the first contribution of this thesis, presented in Chapter 3, is a

novel family of importance measures, called InfoRank, designed for degree-

independent RDF Graphs. The proposed importance measures are combinations of

three intuitions: (I) “important things have lots of information about them”; (II)

“important things are surrounded by other important things”; (III) “few important

relations (e.g. friends) are better than many unimportant relations (e.g.

acquaintances)”.

The second contribution, presented in Chapter 4, is a strategy that translates

keyword queries into SPARQL queries and that incorporates the InfoRank measure.

The strategy solves the three tasks of the RDF-KwS problem: (1) finding pieces of

information in the RDF graph; (2) assembling the retrieved pieces of information

to compose complete answers; (3) ranking the complete answers. Furthermore,

Chapter 5 presents the architecture and interface of QUIRA (QUerying with

InfoRAnk), a tool that implements the strategy.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

84

The third contribution, presented in Chapter 6, consists of two enriched RDF

datasets, IMDb and MusicBrainz18, along with keyword search benchmarks adapted

to the RDF enviroment.

We used these datasets to evaluate InfoRank and QUIRA. We first

presented preliminary experiments to assess the potential of InfoRank as an

importance measure. Thus, for both datasets, we compared the rankings generated

by InfoRank and PageRank regarding classes, properties and instances. The top

instances of the PageRank rankings include highly connected nodes, such as

countries (e.g. United States and France), either in IMDb and MusicBrainz.

However, the InfoRank rankings return mostly popular instances according to the

domain, for example, Star Wars, Morgan Freeman and Titanic, in IMDb, and Elvis

Presley, Mozart and Beethoven, in MusicBrainz. Hence, these experiments indicate

that InfoRank would provide better ranking results than PageRank when used in a

keyword search system.

In the second part of the evaluation, we tested our tool with two popular

keyword search benchmarks for IMDb and MusicBrainz, adapted to the RDF

schema. We ran the benchmarks with versions of QUIRA using different

importance measures, such as PageRank, Degree-decoupled PageRank, HITS, and

InfoRank itself. Indeed, from the experiments, we were able to conclude that

InfoRank improves the quality of results, when compared to other ranking

strategies. For instance, in IMDb, PageRank fails when it gives priority to class

Character, instead of class Work, in queries where a Steiner tree needs to be

computed. It also fails when it ranks first supporting actors that are casted several

times (i.e. nodes with high degree), instead of lead actors, such as Arnold

Schwarzenegger. In MusicBrainz, a similar scenario happens when PageRank

prioritizes music albums that have a higher number of tracks (again, nodes with

high degree), instead of other popular albums or tracks.

Hence, to summarize the results, InfoRank achieved a Mean Average

Precision (MAP) of 0.82 and PageRank a MAP of 0.76 in IMDb. While in

MusicBrainz, InfoRank achieved a MAP of 0.80 and PageRank a MAP of 0.75.

18 https://musicbrainz.org

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

85

7.2. Future Work

We may suggest a range of possibilities that would improve our solution.

The first one is actually a research field called Entity Linking (Moro et al.

2014), which refers to the task of linking entity references in a text to a knowledge

base. This could be used to discover entities in literals of an RDF dataset. For

instance, consider the trivia of The Sound of Music that says, “…the actual dance

by Julie Andrews and Christopher Plummer was filmed on a replica located in

L.A.”. Recall from Section 4.2.1 that this caused an ambiguity with the label of

actress Julie Andrews. Hence, we could perform a pre-processing step to annotate

free-text literals of an RDF dataset using the labels of the same dataset. For instance,

the mentioned trivia would become “…the actual dance by <a href="

https://www.imdb.com/name/nm0000267">Julie Andrews and <a href="

https://www.imdb.com/name/nm0001626">Christopher Plummer was

filmed on a replica located in L.A.”. Then, we could exclude such links when

indexing literals for the keyword search process, which would eliminate the

ambiguity between the trivia and label of the actress (or actor). Note that this step

can also benefit from InfoRank to choose the most important entities. Furthermore,

this would represent an advantage to the users, since the interface would have more

links for them to follow.

The second possible path to follow is another research field, called Entity

Summarization (Cheng et al. 2011; Thalhammer et al. 2012), which aims at

providing meaningful descriptions of entities. This field is an extension of the

Ontology Summarization field (Zhang et al. 2007; Peroni et al. 2008). We actually

have a preliminary implementation of this feature in the sense that the user is able

to click on an URI instance and see its data and its relations with other instances, as

described in Chapter 5. However, we can improve the implementation with

techniques from the Entity Summarization field to show more meaningful

information. Furthermore, we can also benefit from InfoRank to show the most

important instances first.

Other possible future work is to test QUIRA with datasets with larger

schemas. Recall from Section 4.2.2 that we compute an approximated Steiner tree

over the schema graph. However, in a dataset with thousands of classes the

computation of the Steiner tree could be very inefficient. Furthermore, we could

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

86

also experiment different ranking functions in the final SPARQL query. Recall

from Section 4.2.3 that we simply sum the InfoRank scores of all instances involved

in the query. However, we could use some strategy that gives more weight to

instances that are more important to the query. Finally, another option could be to

adopt domain knowledge, such as user rating of IMDb, in the ranking function.

Other more obvious possibilities to improve our keyword search system are

the well-known fields of Natural Language Processing/Question Answering (Unger

et al. 2012; Freitas et al. 2013), and Machine Learning algorithms that take

advantage of user feedback (Komamizu et al. 2017).

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

8
Bibliography

AGARWAL, Alekh et al. Learning to rank networked entities. In: Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM Press, 2006, p. 14.

AGRAWAL, Sanjay et al. DBXplorer: a system for keyword-based search over
relational databases. In: Proceedings of the 18th IEEE International
Conference on Data Engineering (ICDE). IEEE Comput. Soc, 2002, p. 5-
16.

BALMIN, Andrey et al. Objectrank: Authority-based Keyword Search in
Databases. In: Proceedings of the 13th International Conference on Very
Large Data Bases (VLDB). VLDB Endowment, 2004, p. 564-575.

BAST, Hannah et al. Semantic Search on Text and Knowledge Bases. Foundations
and Trends® in Information Retrieval, v. 10, n. 2-3, p. 119-271, 2016.

BERNERS-LEE, Tim. Linked Data - Design Issues. 2006. Available at:
<http://www.w3.org/DesignIssues/LinkedData.html>. Accessed January 2,
2019.

BHALOTIA, Gaurav, et al. Keyword searching and browsing in databases using
BANKS. In: Proceedings of the 18th IEEE International Conference on
Data Engineering (ICDE). IEEE Comput. Soc, 2002, p. 431-440.

BRIN, Sergey; & PAGE, Lawrence. The anatomy of a large-scale hypertextual
Web search engine. Computer Networks and ISDN Systems, v. 30, n. 1-7,
p. 107-117, 1998.

CHENG, Gong et al. Relin: relatedness and informativeness-based centrality for
entity summarization. In: International Semantic Web Conference.
Springer, Berlin, Heidelberg, 2011. p. 114-129.

CHIRITA, Paul-Alexandru et al. Beagle++ : Semantically Enhanced Searching and
Ranking on the Desktop. In: Proceedings of the 3rd European Semantic
Web Conference (ESWC). Springer, Berlin, Heidelberg, 2006. p. 348-362.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

88

COFFMAN, Joel; & WEAVER, Alfred C. A Framework for Evaluating Database
Keyword Search Strategies. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Managemen (CIKM). ACM,
2010, p. 729–38.

CORMEN, Thomas et al. Introduction to Algorithms. MIT Press, 2009.

DE OLIVEIRA, Pericles et al. Ranking Candidate Networks of Relations to
Improve Keyword Search over Relational Databases. In: Proceedings of the
31th IEEE International Conference on Data Engineering (ICDE). IEEE,
2015, p. 399–410.

DING, Li et al. Swoogle: A Search and Metadata Engine for the Semantic Web. In:
Proceedings of the 13th ACM International Conference on Information
and Knowledge Management (CIKM). ACM, 2004, p. 652.

ELBASSUONI, Shady; & BLANCO, Roi. Keyword search over RDF graphs. In:
Proceedings of the 20th ACM international conference on Information
and knowledge management. ACM, 2011. p. 237-242.

FRANZ, Thomas et al. TripleRank: Ranking Semantic Web Data by Tensor
Decomposition. In: Proceedings of the 8th International Semantic Web
Conference (ISWC). Springer, Berlin, Heidelberg, 2009, p. 213–28.

FREITAS, André et al. Querying linked data graphs using semantic relatedness: A
vocabulary independent approach. Data & Knowledge Engineering, v. 88,
p. 126-141, 2013.

GARCÍA, Grettel et al. RDF Keyword-Based Query Technology Meets a Real-
World Dataset. In: Proceedings of the 20th International Conference on
Extending Database Technology (EDBT). EDBT, 2017, p. 656–67.

GRAVES, Alvaro et al. A Method to Rank Nodes in an RDF Graph. In:
Proceedings of the Poster and Demonstration Session at the 7th
International Semantic Web Conference (ISWC). CEUR-WS.org, 2008,
p. 84–85.

HARTH, Andreas et al. Using Naming Authority to Rank Data and Ontologies for
Web Search. In: Proceedings of the 8th International Semantic Web
Conference (ISWC). Springer, Berlin, Heidelberg, 2009, p. 277–92.

HE, Hao et al. BLINKS: Ranked Keyword Searches on Graphs. In: Proceedings of
the 2007 ACM SIGMOD International Conference on Management of
Data. ACM, 2007, p. 305.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

89

HEATH, Tom; & BIZER, Christian. Linked Data: Evolving the Web into a Global
Data Space. Synthesis Lectures on the Semantic Web: Theory and
Technology, v. 1, n. 1, p. 1–136, 2011.

HIEMSTRA, Djoerd. Information Retrieval Models. In: Information Retrieval:
Searching in the 21st Century, p. 2–19, 2009.

HOGAN, Aidan et al. ReConRank: A Scalable Ranking Method for Semantic Web
Data with Context. In: Proceedings of the 2nd International Workshop on
Scalable Semantic Web Knowledge Base Systems (SSWS). 2006.

HRISTIDIS, Vagelis; & PAPAKONSTANTINOU, Yannis. Discover: Keyword
Search in Relational Databases. In: Proceedings of the 28th International
Conference on Very Large Databases (VLDB). Elsevier, 2002, p. 670–81.

IZQUIERDO, Yenier et al. QUIOW: A Keyword-Based Query Processing Tool for
RDF Datasets and Relational Databases. In: Proceedings of the 29th
International Conference on Database and Expert Systems Applications
(DEXA). Springer, Cham, 2018. p. 259-269.

KASNECI, Gjergji et al. NAGA: Searching and Ranking Knowledge. In:
Proceedings of the 24th IEEE International Conference on Data
Engineering (ICDE). IEEE, 2008, p. 953–62.

KIM, Jung Hyun et al. PageRank Revisited: On the Relationship between Node
Degrees and Node Significances in Different Applications? In: GraphQ: 5th
International Workshop on Querying Graph Structured Data (Satellite
Event at EDBT/ICDT). CEUR-WS, 2016, p. 1–8.

KLEINBERG, Jon M. Authoritative Sources in a Hyperlinked Environment.
Journal of the ACM, v. 46, n. 5, p. 604–32, 1999.

KOMAMIZU, Takahiro et al. FORK: Feedback-Aware ObjectRank-Based
Keyword Search over Linked Data. In: Asia Information Retrieval
Symposium (AIRS). Springer, Cham, 2017, p. 58–70.

LE, Wangchao et al. Scalable keyword search on large RDF data. IEEE
Transactions on knowledge and data engineering, v. 26, n. 11, p. 2774-
2788, 2014.

LI, Rong-Hua et al. Efficient and progressive group steiner tree search. In:
Proceedings of the 2016 International Conference on Management of
Data. ACM, 2016. p. 91-106.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

90

MARX, Edgard et al. DBtrends: Exploring Query Logs for Ranking RDF Data. In:
Proceedings of the 12th International Conference on Semantic Systems.
ACM, 2016a, p. 9-16.

MARX, Edgard et al. DBtrends: Publishing and Benchmarking RDF Ranking
Functions. In: 2nd International Workshop on Summarizing and
Presenting Entities and Ontologies, Co-located with the 13th Extended
Semantic Web Conference. SumPre@ ESWC, 2016b.

MIRIZZI, Roberto et al. Ranking the Linked Data: The Case of DBpedia. In:
Proceedings of the 10th International Conference on Web Engineering
(ICWE). Springer, Berlin, Heidelberg, 2010, p. 337–54.

MORO, Andrea; RAGANATO, Alessandro; NAVIGLI, Roberto. Entity linking
meets word sense disambiguation: a unified approach. Transactions of the
Association for Computational Linguistics, v. 2, p. 231-244, 2014.

NGOMO, Ngonga et al. Holistic and Scalable ranking of RDF data. In: Big Data
(Big Data), 2017 IEEE International Conference on. IEEE, 2017. p. 746-
755.

NIE, Zaiqing et al. Object-Level Ranking. In: Proceedings of the 14th
International Conference on World Wide Web (WWW). ACM Press,
2005, p. 567.

OREN, Eyal et al. Sindice. com: a document-oriented lookup index for open linked
data. International Journal of Metadata, Semantics and Ontologies, v. 3,
n. 1, p. 37-52, 2008.

PARK, Hyunjung et al. A Link-Based Ranking Algorithm for Semantic Web
Resources. Journal of Database Management, v. 22, n. 1, p. 1–25, 2011.

PERONI, Silvio et al. Identifying key concepts in an ontology, through the
integration of cognitive principles with statistical and topological measures.
In: Asian Semantic Web Conference. Springer, Berlin, Heidelberg, 2008. p.
242-256.

ROA-VALVERDE, Antonio J. et al. A Survey of Approaches for Ranking on the
Web of Data. Information Retrieval, v. 17 n. 4, p. 295–325, 2014.

THALHAMMER, Andreas et al. Evaluating entity summarization using a game-
based ground truth. In: International Semantic Web Conference. Springer,
Berlin, Heidelberg, 2012. p. 350-361.

TRAN, Thanh et al. Top-k Exploration of Query Candidates for Efficient Keyword
Search on Graph-Shaped RDF Data. In: Proceedings of the 25th IEEE

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

91

International Conference on Data Engineering (ICDE). IEEE, 2009, p.
405–16.

TURPIN, Andrew & SCHOLER, Falk. User Performance versus Precision
Measures for Simple Search Tasks. In: Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM Press, 2006, p. 11.

UNGER, Christina et al. Template-based question answering over RDF data. In:
Proceedings of the 21st international conference on World Wide Web.
ACM, 2012. p. 639-648.

WEI, Wang et al. Rational Research Model for Ranking Semantic Entities.
Information Sciences, v. 181, n.13, p. 2823–40, 2011.

YU, Jeffrey et al. Chang. 2010. Keyword Search in Databases. Morgan &
Claypool.

YUMUSAK, Semih et al. A Short Survey of Linked Data Ranking. In: Proceedings
of the 2014 ACM Southeast Regional Conference. ACM Press, 2014, p. 1–
4.

ZENZ, Gideon et al. From Keywords to Semantic Queries—Incremental Query
Construction on the Semantic Web. Journal of Web Semantics: Science,
Services and Agents on the World Wide Web, v. 7, n. 3, p. 166–76, 2009.

ZHANG, Xiang et al. Ontology summarization based on rdf sentence graph. In:
Proceedings of the 16th international conference on World Wide Web.
ACM, 2007. p. 707-716.

ZHENG, Weiguo et al. Semantic SPARQL Similarity Search over RDF Knowledge
Graphs. Proceedings of the VLDB Endowment, v. 9, n. 11, p. 840–51, 2016.

ZHOU, Q et al. SPARK: Adapting Keyword Query to Semantic Search. In:
Proceedings of the 6th International Semantic Web Conference (ISWC).
Springer, Berlin, Heidelberg, 2007, p. 694–707.

DBD
PUC-Rio - Certificação Digital Nº 1521394/CA

