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Fatigue Analysis

In this chapter the steps for calculating the structural integrity will be

explained.
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Figure 5.1: Calculating the structural integrity

In order to determine the fatigue strength of any equipment, it is

necessary to calculate the cumulative damage on its structure caused by

cyclic loads. The expected cumulative damage for the total working life of the

equipment at every point of the structure considered critical for fatigue should

not exceed a limit level, [19]. In this work the fatigue life will be calculated

based on the S-N fatigue approach under the assumption of linear cumulative

damage.

5.1

Palmgren-Miner rule

The Palmgren-Miner rule for calculating the fatigue damage is given by
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D =
n

N
(5.1)

where n is the number of stress cycles in a constant stress range S and N is the

number of cycles to failure at the same constant stress range. The S-N curve

for a given material and structural joint is then given by

NSmf = Cf (5.2)

where mf is the fatigue strength exponent and Cf is the fatigue strength

coefficient. Stiftelsen Det Norske Veritas, DNV, is a classification society

that provides services for managing of risk. DNV states that [5] the mean

stresses can be neglected for fatigue assessment of welded connections and

only the ranges of cyclic stress should be considered in determining the fatigue

endurance. The chosen S-N curve for a given joint takes into account the local

stress concentrations created by the joint itself and by the weld profile and

the design stress can be considered the stress adjacent to the weld. If the weld

is situated in a region of stress concentration, the nominal stress should be

multiplied by an appropriate stress concentration factor [5].

In this work the structural integrity of the welded connection of the base

of the tower to the deck of the platform will be investigated as it is critical

for fatigue and a failure in this connection would be catastrophic. Due to

this criticality, [6] recommends the use of a full penetration weld and a non-

destructive examination after the welding process in order to check for the

existence of cracks or bubbles on the weld. As the stresses were calculated

using a classical beam theory, a nominal stress S-N curves will be used.

5.2

Stress Range Distribution Evaluation

The use of Miner’s rule together with required S-N curve to determine the

fatigue strength of the structure makes necessary the knowledge of the number

of stress cycles at every stress ranges for all critical points of the structure

during the working life of the structure. As the fatigue strength has to be

determined during the design phase of the structure, it is necessary to know

in advance the expected sea and loading condition, short term condition, as

well as their probability distribution. In this work it is proposed to do a

numerical simulation for each expected short term condition and construct

a stress histogram to express the stress range distribution using a rainflow

procedure. An approximation to the accumulated damage per each short term

condition can then be given by
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Dj =
Tj

tj

R
∑

i=1

ni

N̄i

for j = 1, . . . , o (5.3)

where o is the number of expected short term conditions, Tj is the expected

working time under each short term condition, tj is the period of the simulation,

ni is the number of stress cycles in stress block i, R is the number of stress

blocks and N̄i is the number of cycles to failure given by

N̄i = Cf S̄
−mf

i for i = 1, . . . , R (5.4)

where S̄i is an average stress range attributed to each stress range block. The

choice of this average stress range may have a significant influence on the

calculated fatigue life [5] and can be given by

S̄i = λi (Si−1 + Si) for i = 1, . . . , R (5.5)

where Si−1 and Si are the limits for each stress block and λi are coefficients

to be obtained from related S-N curve in order to N̄i be an average number of

cycles to failure at that stress block. An approximation to the probability of

occurrence of the average stress range S̄i is given by

P
(

S̄i

)

=
ni

NT

for i = 1, . . . , R (5.6)

where NT is the total number of stress cycles obtained during the simulation of

the given short term condition. After substituting the Eqs. (5.4) and (5.6) into

(5.3) and rearranging the accumulated damage per each short term condition

can be given by

Dj =
Tj

tj

M
∑

i=1

NTP
(

S̄i

)

S̄m
i

C
for j = 1, . . . , o (5.7)

The summation of the product P
(

S̄i

)

S̄m
i can be considered an approxi-

mation to the expected value of S̄m and Eq. (5.7) can be rewritten as

Dj =
Tj

tj

NT

C
E

[

S̄m
]

for j = 1, . . . , o (5.8)

The total expected damage for the working life of the structure is then

given by

D =
o

∑

j=1

Dj (5.9)

A simplified approach for fatigue analysis where the stress range distri-

bution may be presented as a two-parameter Weibull distribution is proposed

on [5]. The two-parameter Weibull probability distribution function is given

by
FW (s) = 1− e−(s/q)

h

(5.10)
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where s is the stress stress range, q is a scale parameter and h is a shape

parameter.

The scale parameter can be obtained from the largest expected stress

range. In this case, it is given by [5]

q =
sm

[

(ln(n0))
1/h

] (5.11)

where n0 is the number of cycles and sm is the largest expected stress range

during the working life. The shape parameter, h, can be determined by least-

squares methods, provided that stress range data distribution is available. In

reference [5] a maximum value of h = 1.2 is recommended for steel structures

under offshore environmental conditions.

The probability density function of the stress ranges is given by

fW (s) =
dFW (s)

ds
= h

sh−1

qh
e−(s/q)

h

(5.12)

The fatigue damage for finite stress range is given by Eq. (5.1) and the

number of cycles to failure at a given stress range can be obtained from Eq.

(5.2)
N(s) = CfS

−mf (5.13)

By using Eqs. (5.12) and (5.13) a differential fatigue damage can be

obtained as
dD =

n0f(s)

N(s)
ds (5.14)

and an estimation of fatigue damage can be obtained as

D̃ =

∫ sm

0

dD (5.15)

In general the S-N curves are two slope curves. Considering that the

turning point is at s = s1 and sm > s1 the integration on Eq. (5.15) has to be

split into
D̃ = D̃l + D̃u − D̃m (5.16)

where
D̃l =

∫ s1

0

n0f(s)

Cf2s−mf2
ds (5.17)

and
D̃u =

∫ ∞

s1

n0f(s)

Cf1s−mf1
ds (5.18)

and
D̃m =

∫ ∞

sm

n0f(s)

Cf1s−mf1
ds (5.19)

Evaluating the integral on Eq. (5.17) it is obtained

D̃l =
n0

Cf2

{

qmf2Γl

(

h+mf2

h
,

(

s1
q

)h
)}

(5.20)
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and evaluating the integral on Eq. (5.18) it is obtained

D̃u =
qmf1n0

Cf1

{

Γ

(

h+mf1

h

)

+ Γu

(

h+mf1

h
,

(

s1
q

)h
)

− h

h+mf1

Γ

(

2h+mf1

h

)}

(5.21)

where Γu is the Upper Incomplete Gamma function given by

Γu(h, s1) =

∫ ∞

s1

sh−1e−sds (5.22)

The integration on Eq. (5.19) can be obtained by replacing s1 by sm on

Eq. (5.21).

This estimation of fatigue damage may be used within an optimization

strategy on intermediate calculating steps in order to reduce the computational

effort.

Low, [24], presented a closed form solution to estimate the fatigue damage

when the stress ranges are a narrowband stochastic process. For a narrowband

process the average frequency of the peaks may be approximated by the zero

mean upcrossing rate which, for a Gaussian process, is given by

v+X(0) =
1

2π

σẊ

σX

(5.23)

where X is the stochastic process, σ denotes the standard deviation and a dot

the time derivative. In this case the probability density function of the peaks

follows a Rayleigh distribution and is given by

fRr =
r

σ2
X

exp

(

− r2

2σ2
X

)

(5.24)

The number of stress cycles during a period T is given by

n = v+X(0)T (5.25)

Integrating over all the stress ranges the expected damage can be

calculated as
D̄ = v+X(0)T

∫ ∞

0

1

N(s)
fS(s)ds (5.26)

substituting the S-N relationship it is obtained

D̄ =
v+X(0)T

Cf

∫ ∞

0

smffS(s)ds (5.27)

for a narrowband process the stress amplitude and the peak may be assumed to

be identical an are conveniently designated by the same variable r. Considering

s = 2r (5.28)
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and substituting the Eq. (5.28) into (5.27) it is obtained

D̄ =
2mfv+X(0)T

Cf

∫ ∞

0

rmffR(r)dr (5.29)

and substituting the Eq. (5.24) into (5.29) and integrating, the Rayleigh

approximation is obtained

D̄ =
v+X(0)T

Cmf

(

2
√
2σX

)mf

Γ
(

1 +
m

2

)

(5.30)

If the process can not be considered narrowbanded, the Rayleigh approx-

imation is a conservative estimate to the fatigue damage.

Fricke et al [13] compared the results obtained for the fatigue resistance

of a detail of a containership according several classification societies and

concluded that a variation on the predicted fatigue lives is significant, mainly

due to considered loads, local stresses and chosen S-N curves. A direct

calculation of loads using a spectral method was performed and the variation of

the predicted life was reduced but was still significant. The results obtained by

direct calculation were considered to be too conservative. It can be concluded

that even using simplified approaches recommended by classification societies

or direct calculation of expected fatigue lives a lot of uncertainty is presented

on results.

Sutherland and Veers [39] examined the effects of using various models for

the distribution of stress cycles over the structure of wind turbine components.

They used a generalized Weibull fitting technique and obtained good results

for matching the body of the distribution and extrapolating the tail of the

distribution.

Tasdemir and Nohut [40] investigated the fatigue resistance of primary

supporting members of a ship structure. They used a global finite element

model for the ship and a local finite element model to obtain the stress

concentration factors for the weld details. For the long term stress range

distribution they used the procedure recommended by a classification society

based on the Weibull distribution.

Dong et al [7] performed a long-term fatigue analysis of welded multipla-

nar tubular joints for a fixed jacket offshore wind turbine. They investigated

the influence of the wave loads, the wind loads and the combined effect of wind

and wave loads over the fatigue resistance of the welds of the structure. For

the distribution of the stresses due to the wave and wind loads they used a

two-parameter Weibull distribution and for the combination of wind and wave

loads they used the generalized gamma function whose probability density

function is given by
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fg(s) =
|h|
Γ(a)

sah−1

qah
e−(s/q)

h

(5.31)

Low and Cheung [26] proposed a customized approach for assessing

the fatigue resistance of mooring lines and risers. They used the JONSWAP

spectrum for calculating the sea surface elevation. Since this spectrum is a

function of a shape parameter, the significant wave height, HS and the spectral

peak period, Tp, and they selected the value of the shape parameter, the joint

probability density function of HS and Tp is expressed as

fj (HS, Tp) = fH (HS) fTH (Tp|HS) (5.32)

Considering d (HS, Tp) as the damage function for a given HS and Tp

pair, Low and Cheung proposed to calculate the expected long-term damage

accumulated over a period T as

E[D] = T

∫ ∞

0

∫ ∞

0

d (HS, Tp) fj (HS, Tp) dHSdTp (5.33)

and they proposed to use a multipeaked third-order asymptotic approximation

for the integrand in order to evaluate this probability integral.

In most of the cases the stresses on structural components are a combi-

nation of two or more stresses due to different loads. Leira [22] investigated

the fatigue damage of welds subjected to multiple stress components. Despite

of the stress cycles of each individual component being distributed according

Weibull distribution even a linear combination of two or more Weibull compo-

nents will, in general, not be Weibull distributed [22]. Leira proposes that for

the linear combination of two stress components with Weibull cycle distribu-

tions the fatigue damage which is accumulated during a time period T for a

one-slope S-N curve expressed according Eq. (5.2) can be expressed as

E[D(T )] =
N(T )

Cf

∫ ∞

0

∫ ∞

0

[

√

s21 + cs22

]m

× fs1s2(s1, s2)ds1ds2 (5.34)

where N(T ) is the number of stress cycles that occur during the period T , s1

and s2 are the stress components, c is a constant to obtain the combined stress

and fs1s2 is the joint probability density function. Leira investigated the effect

of correlation between the two stress components on fatigue damage.

Ang et al [1] developed a technical procedure for a reliability-based

approach to fatigue analysis and fatigue-resistant design. They considered

that the stress cycles can be distributed according a Beta distribution whose

probability density function is given by

fb(s) =
sq−1

β(q, r)

(su − s)r−1

sq+r−1
u

0 ≤ s ≤ su (5.35)
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where s are the stress ranges, su is a upper limit for the stress ranges and

β(q, r) =
Γ(q)Γ(r)

Γ(q + r)
(5.36)

where Γ is the gamma function and q and r are parameters of distribution

given by
q =

µ

su

[

Ω−2
(

su
µ
− 1

)

− 1

]

(5.37)

and
r =

(

su
µ
− 1

)

q (5.38)

where µ is the mean and Ω is the covariance of the applied stress range.

Wang [42] calculated the fatigue life of a ship structural detail using a

spectral approach. Assuming that the wave-induced bending stress variation

in a ship structural element in a specific sea state is a narrow band Gaussian

random process, and consequently the peak values of the stress has a Rayleigh

probability density function, Wang presented the following formula to calculate

the fatigue damage in a specific sea state

Di =
T

Cf

(

2
√

(2)
)mf

Γ
(mf

2
+ 1

)

f0ipi (σi)
mf (5.39)

where T is design life of a ship in seconds, Cf is the fatigue strength coefficient,

mf is the fatigue strength exponent, Γ is the gamma function, f0i is zero-

up crossing frequency of the stress response in Hz, pi is the probability of

occurrence of the sea state i and σi is the standard deviation of the stress

process in the specific sea state.

Since for a wide band random process the Rayleigh distribution for the

stress peak values will result in a conservative estimation of the fatigue damage

a cycle counting correction factor in damage calculation should be introduced

in order to reduce the conservatism due to the narrow band assumption. In

this case the formula for fatigue damage, Eq. (5.39), has to be written as

Di =
T

Cf

(

2
√

(2)
)mf

Γ
(mf

2
+ 1

)

λ (mf , ǫi) f0ipi (σi)
mf (5.40)

where λ is the damage correction factor. This factor is a function of the fatigue

strength exponent and of ǫi that can be either a bandwidth parameter or a

regularity factor depending on the chosen formula for calculating the cycle

counting correction factor. Wang [42] presented three different formulas for

calculating this factor. Using one of these formulas, Wang obtained a fatigue

life of 25.16 years for a structural ship detail. For comparison, Wang also

calculated the fatigue life according the recommendation of a classification

society that assumes that the long-term distribution of the stresses follows a

Weibull distribution. In this case the calculated fatigue life was 18.765 years.
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5.3

Uncertainties in Fatigue Life Prediction

According [5] large uncertainties are associated with fatigue life prediction. One

of the sources of uncertainty are the S-N curves. Such curves are determined

by mean of experiments on specimen and the two slope exponential curves

are obtained from measured points by using curve fitting techniques. Further,

the design curves recommended on standards are the mean curve minus two

standard deviations.

Veldkamp on [41] presents the uncertainties on the results of fatigue

strength obtained by experiments with identical specimens under constant

and variable amplitude loading. He concluded that the fatigue life under

variable amplitude loading is shorter than the fatigue life under constant

amplitude loading. Therefore, when the designer chooses the S-N curve to

be used for the fatigue resistance evaluation of a structural component it

is necessary to be aware of whether the curve was obtained using constant

or variable amplitude loading. If the available curves were obtained under

constant amplitude loading a reduction factor for the values of the curve have to

be used. Veldkamp concluded on the same reference that the uncertainty of the

fatigue parameters dominate the overall uncertainty of the fatigue resistance

of the studied equipment.

Since the design of offshore equipments has to attend to the required

standards, the use of Design Fatigue Factors when determining critical param-

eters for the structure has a big influence in the predicted fatigue life. Such

design factors are intended to overcome the uncertainty on loading, on S-N

data and on the Palmgren-Miner damage accumulation rule and to avoid the

need of a probabilistic analysis of the problem.

When the weld details require the use of hot spot stress factors, the

derivation of these factor is a source of uncertainty as well. The critical details

that present reduced fatigue life have to be inspected in-service to check for

existence of fatigue cracks.

Others sources of uncertainties are the choice of parameters for the

simulation of sea surface elevation, the model for the interaction between

the platform and the sea waves, the choice of hydrodynamics coefficients for

evaluation of the dynamics of the platform and the finite element model to be

used to obtain the stresses on required critical points.

Sarkar et al [36] proposed an approach based on Wiener chaos expan-

sions to estimate the fatigue damage in structural systems with parameter

uncertainties. They used the Hermite polynomial expansion to describe the

dependence of the damage rate on some uncertain parameters
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d(z) =
∞
∑

j=0

cjHj(z) ≈
n

∑

j=0

cjHj(z) = dn(z) (5.41)

where d is the damage rate, z is a random variable, Hj are Hermite polynomials

and
cj = E [d(z)Hj(z)] = 1√

2π

∫ +∞

−∞
d(z)Hj(z)(e)

−z2/2dz

≈ 1√
2π

n
∑

i=1

hid(zi)Hj(zi)e
−z2i /2

(5.42)

Sarkar et al used this expansion to quantify how the uncertainty of one of

the parameters of the Morison’s equation used to model the force acting on the

pile of an offshore structure. They calculated the damage rate using a three

term truncated Hermite expansion and compared with the results obtained

using rainflow technique. A good agreement between the two estimates was

obtained, even in the tails of the distribution of z.

Low [25] presented a method for analyzing the variance of the damage

for any narrow-band Gaussian process. The covariance of the damage is given

by
c2D =

N + 2χ

N2

(

Γ(1 +mf )

Γ(1 +mf/2)− 1

)

(5.43)

where N is the number of half-cycles, Γ is the Gamma function and mf is the

fatigue strength exponent and

χ =
N−1
∑

k−1

(N − k)
[

αmf
ρ2ss(k) + βmf

ρ4ss(k)
]

(5.44)

where ρss is the autocorrelation of the stochastic process for the stress half-

cycles, αmf
and βmf

are coefficients depending on mf obtained by curve-fitting

techniques. The variance of the damage can then be obtained as

σ2
D = c2DD̄

2 (5.45)

where D̄ is the total expected damage. Low concludes that the proposed

method is nearly exact up to around mf = 6 and the method when applied to

processes that are less narrowband presents some minimal errors.

Garbatov and Soares [14] studied the effect of various factors related

to fatigue damage assessment of a welded ship structural component. The

considered factors were the model of the ship, scatter diagram, heading and

wave spectra. The fatigue damage was calculated using a spectral approach,

considering the long-term stress range distribution as a series of short-term

Rayleigh distributions for different sea states and headings.

They concluded that there are significant differences between all the

pairs of fatigue damage means as function of the model of the ship, there

are significant differences between the mean fatigue damage pairs of some of

the heading directions, the mean fatigue damages as function of the scatter
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diagrams for North Atlantic and World Wide Trade are similar but for all the

others tested scatter diagrams there were significant differences, and finally

that for the three considered wave spectra there were also significant differences

on the obtained fatigue damage.
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