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Dynamics of the Drilling Tower

In this section the steps to obtaining the base excitation over the tower will be

explained
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Figure 4.1: Obtaining the base excitation

The drilling tower mounted on the platform consists of a vertical beam
shaped structure used to support two lifting systems. The base of the tower is
welded to the platform and this weld is critical for fatigue. The base excitation
on the structure is obtained by means of a coordinate transformation of the
dynamic response of the platform to the x, y and z local coordinate system
located at the base of the tower. The Fig. 4.2 shows the model of the tower.

4.1
Partial Differential Equation

The tower will be considered a beam clamped to the platform and free on

the other end and the normal stress due to the bending about the y and z
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Figure 4.2: Sketch of the tower

directions will be calculated. As the mass of the tower is much smaller than
the mass of the platform, it will be considered that the dynamics of the tower
does not affect the dynamics of the platform. The differential equation for a

beam in bending around the z direction is given by

0?v(x,t) 0?v(x,t)

where v(z,t) is the displacement on y direction of any point x and instant ¢,
fy(x,t) is the inertia load per unit length and I,(z) is the inertia area moment
about the z direction, the direction = cross the geometric center of transverse
sections. The Euler-Bernoulli theory has been used. The boundary conditions

for a clamped-free beam are given by

v(0,8) = 0 (4.2)
Jv(z,t)

S . 0 (4.3)

Efz(x)yg;’w ) 0 (4.4)

and


DBD
PUC-Rio - Certificação Digital Nº 0921533/CA


PUC-RiIo - Certificagéo Digital N° 0921533/CA

Chapter 4. Dynamics of the Drilling Tower 44

9 [Efz(x)agv(x’ t)} =0 (4.5)

Ox Ox? el

It is necessary to solve the eigenvalue problem associated to this system.

As the solution for Eq.(4.1) is splittable on space and time it can be given by
v(x,t) =V (x)F,(t) (4.6)

where H is an harmonic function. Considering the frequency of H as w,,
the associated eigenvalue problem can be given by the following differential

equation

dx? dx? 4

& [Elz(m)dQV(w)] =wm(x)V(z) for0<az<L (4.7)

together with the following boundary conditions for a clamped-free beam

V(0)=0 (4.8)

dV(x) B
| =" (4.9)
Efz(x)de‘;(f) =0 (4.10)

and d

-0 (4.11)

4.2
Approximation to the Solution

In this section the steps for obtaining the dynamics of the tower will be
explained.

As the tower has a variable cross section, it will be necessary to obtain
an approximation for the solution to the dynamics of the structure. One of the
possible ways to obtain such approximation is through the discretizing of the
equations that describe the dynamics of the structure using the Finite Element
Method (FEM). The equations will be discretized using one-dimensional
elements with two nodes and six degrees of freedom per node as shown on
Fig. 4.4.

In this work only the dynamic response of the tower on y and z direction
will be investigated. An approximation to the displacement on y direction

within an element is given by
v(x,t) & Ly(x)ug(t) + Le(x)lug(t) + Ls(x)us(t) + Lia(x)luia(t) (4.12)

where Ly(z) = (1 — 3624+ 26%) Lg(x) = (—€ — 262 + €%)

(4.13)
Lg(x) = (36* — 26°) Lig(z) = (=& + &)
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¢ = z/l and [ is the length of the element. The mass and stiffness matrix

obtained considering such approximations are given by

156 221 o4 —131

[M(e)]_pf_ll 221 412 131 —312
Vo420 54 131 156 —221
131 =312 —221 42
and 12 6/ —12 6l
[K(e)]_Efz 61 4> —61 207
©) =

3 —-12 -6 12 -6l
6l 202 —61 42

(4.14)

(4.15)

where p is the mass density of the material of the tower, A is the average cross

section of the tower, F is the elasticity modulus and I is the average inertia

N _/ Us 127}
[ [
Ug >l4\ u12ﬁ< >11\0
U3 ! Uy

Figure 4.4: One-dimensional element
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area moment about the z direction.
As in real systems there is always some level of energy dissipation, a
damping matrix can be used. This matrix can be considered proportional to

mass and stiffness matrix and is given by
[C] = o[ M) + GKL) (4.16)

where « and ¢ are damping parameters. The assembly of the elements can be

seen on Fig. 4.5
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Figure 4.5: Assembly of the elements

and the approximation to the dynamics of the structure is given by
IM]X + [C]X + [K]X =F (4.17)

where [M], [C] and [K] are the global matrices of the assembly of elements,
X are the degrees of freedom of the approximation to the dynamics and F are

the external loads over the tower.

4.3
Reduced-order Model for the Dynamics

In the section 2.6 it has been proposed to use a reduced-order model to re-

present the sea surface elevation since the use of a full-order model to calculate
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the nonlinear wave body interactions is a time-consuming computational task.
In the same way, the use of the complete finite element model for the structure
of the tower for all necessary simulations to evaluate the fatigue resistance of
the equipment will make this task prohibitively expensive and an alternative
reduced-order model becomes necessary.

Considering that the matrices [M], [C] and [K] have dimensions m x m
and a basis composed by the n elements that constitute the columns of the
matrix [V] with dimension m x n with n < m, the dynamic response of the

system represented in this basis is given by [35]

X(t) = [Tla(t) (4.18)

[M][W]a(t) + [C][W]a(t) + [K][V]a(t) = F(t) (4.19)

Matrix [¥] is composed by orthogonal vectors, 1;, that generate a reduced
subspace. The projection of the dynamics of the system, Eq. (4.19), into this

reduced subspace is given by
[M.]a(t) + [Ch]a(t) + [K,Ja(t) = £.(1) (4.20)

where
[M,] = [9]" [M][¥] (4.21)

is the reduced mass matrix,
[C)] = [9]"[C][¥] (4.22)
is the reduced damping matrix,
K] = [9]"[K][¥] (4.23)
is the reduced stiffness matrix and
£,] = (97 (4.21)

is the reduced vector of external loads. The system has now order n x n and
it is expected that the necessary simulations to evaluate the fatigue resistance
of the drilling tower will demand a reduced computational effort.

It is necessary to choose an efficient basis to represent the dynamics of
the system. One of the options is to use a basis composed of the normal modes
of the system. This is the best choice when linear systems are being analyzed

[35]. The modes are obtained solving the following eigenvalue problem

(—w?[M] + [K]) 6 = 0 (4.25)
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where w are the natural frequencies and ¢ are the normal modes associated.

Since the base of the drilling tower is excited by the displacement of the
platform and the tower is considered to be clamped to the deck of the platform,
the degrees of freedom of the finite element node that represent the section of
the tower close to the deck have prescribed displacements and rotations.

If the complete finite element model of the tower is being used, it is
necessary to prescribe only the displacements and rotations of the degrees of
freedom of the node at the bottom of the tower. If, in turn, a reduced-order
model is being used, it is necessary to associate a prescribed mode for the entire
model for each prescribed degree of freedom. The finite elements used to obtain
the approximation of the dynamics of the tower have two nodes and six degrees
of freedom per node. Therefore, when constructing the reduced-order model
using the normal modes obtained from finite element model, six additional
prescribed modes have to be included on the basis before accomplishing the
projection of the approximation to the dynamics of the tower.

In general, the prescribed modes are given by

Xz[Ul U, ... Umr (4.26)

where U; are the prescribed values for each degree of freedom of the finite
element model. The prescribed mode for the displacement of the tower on x

direction is given by

T
M=[100000100000 . ..100000] (427
The prescribed mode for the displacement of the tower on y direction is
given by
T
x2=[010000010000...010000} (4.28)
The prescribed mode for the displacement of the tower on z direction is
given by
T
x3=[001000001000...oo1000} (4.29)
The prescribed mode for the torsion of the tower around z direction is
given by
T
i=[000100000100...000T100] (430

The prescribed mode for the bending of the tower around y direction is

given by
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X6=[00—X101000—X2010...00—Xnn010}

(4.31)
where Xj; is the coordinate of the node i on x direction and nn is the number

of nodes.

The prescribed mode for the bending of the tower around z direction is

given by
T
=0 X 00010X 0001 ...0X,000T1|
(4.32)
The basis for the reduced-order model is given by
(@] = [X1 X2 X3 X4 X5 X6 P1 P2 ... ¢n] (4.33)
and the dynamic response is given by
X(t) = [®]q(?) (4.34)

where q are the modal coordinates. The approximation to the dynamics of the

system projected on this basis is given by

[M;]a(t) + [Crla(t) + [Ki]a(t) = £.(2) (4.35)
where
[M,] = [@]" [M][@] (4.36)
[C,] = [@][C][@] (4.37)
[K,] = [9]"[K][®] (4.38)
f, =[0)"f (4.39)

4.4
Stress at Critical Points

In this section the steps for obtaining the stress time history on required points
of the structure will be explained.

The cross section of the tower is shown on Fig. 4.2. The normal stress-
deformation relation for the bending about the z direction for a variable cross-
section beam is given by
0?v(x,t)

0x?

where y, is the distance from required point to the neutral line of the cross

o(z,t) = By, (4.40)

section. A similar relation for the bending about the y direction can be

obtained.

T
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Figure 4.6: Obtaining the stress time history

As an approximation to the dynamics of the structure was obtained using
the Finite Element Method it is necessary to obtain an approximation to the
normal stress on required points as well. By substituting the Eq. (4.12) into
(4.40) an approximation to the normal stress due to the bending about the z
direction is obtained

I
L(z)

(4.41)
where double primes indicate a double differentiation with respect to the spatial

o(x,t) ~ Eyp (Ly(x)uz(t) + L (x)lue(t) + Ly(x)us(t) + Liy(x)lua(t))

variable z. A similar approximation for the normal stresses due to the bending
about the y direction can be obtained as well.

In this work the critical for fatigue point to be investigated is located
at the base of the tower, on the weld between the tower and the platform.
It is expected that the highest bending moments take place at this section.
The total stress at the critical point is a summation of the normal stresses
due to the bending about the y and z directions. Only the steady-state part of
the dynamic response of the tower should be considered when evaluating the

stresses at critical points.
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4.5
Parametric Uncertainty

The inherent uncertainties on the parameters or operators of any mechanical
system must be considered when such system is being analyzed. Since the
probability density function for the random variables that represent such
parameters or operators are not always available for the designer in advance,
an strategy to obtain such functions becomes necessary.

If there is not enough data available about the random variables to
be studied, the Principle of Maximum Entropy can be used to obtain an
approximation to the required probability density function [38], [15] and [16].
This principle states that:

"Among all the probability distributions consistent with the prescribed
conditions the one that mazimizes the uncertainty (entropy) should be chosen”

Being n the number of the welds of the tower, W a random vector with n
components and pW the probability density function of W the entropy related
to pW is given by

S () = — /_ :O /_ :o /_ :O PV () (pW () dw  (4.42)

The only available information about the random variables is the fab-
rication tolerance, W,,;,, < W =< W,4e. By using the Principle of Maximum
Entropy the obtained probability density function is
- 1
pW(w) = :H'[Wminvwmaa:] (U)) H

1 Wmaxi - Wmim

(4.43)

therefore, the random variables are independent with uniform probability
density function. The same distribution applies to the thickness of the plates.

Batous and Soize [3] proposed a methodology for construction and
identification of a probabilistic model of random fields in presence of modeling
errors in high stochastic dimension and presented in context of computational
structural dynamics. They presented two ways to construct the prior stochastic
model of a random field H.

The first way is using an algebraic stochastic representation of the random

field H
H((x)) = f-(G(x)) forxe (4.44)

where x is a vector representing any point in the open bounded domain 2 of
IR?, f, is a given nonlinear deterministic mapping and where {G(x),x € Q}
is a given random field for which the probability law (system of marginal
probability distributions) is completely defined and for which a generator of

independent realizations is available.
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For the second way it is necessary that the mean function and the
covariance function of random field H are known functions, what is the case
when an algebraic stochastic representation of H has been constructed or
if experimental data are available for estimating these two functions with a
sufficient accuracy. Then under certain hypotheses a statistical reduction can
be constructed using the Karhunen-Loéve expansion. The first way has been
used in this work for the constructing the stochastic model for the thickness

of the welds and for the thickness of the plates of the drilling tower.
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