
4

Dynamics of the Drilling Tower

In this section the steps to obtaining the base excitation over the tower will be

explained
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Figure 4.1: Obtaining the base excitation

The drilling tower mounted on the platform consists of a vertical beam

shaped structure used to support two lifting systems. The base of the tower is

welded to the platform and this weld is critical for fatigue. The base excitation

on the structure is obtained by means of a coordinate transformation of the

dynamic response of the platform to the x, y and z local coordinate system

located at the base of the tower. The Fig. 4.2 shows the model of the tower.

4.1

Partial Differential Equation

The tower will be considered a beam clamped to the platform and free on

the other end and the normal stress due to the bending about the y and z
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Figure 4.2: Sketch of the tower

directions will be calculated. As the mass of the tower is much smaller than

the mass of the platform, it will be considered that the dynamics of the tower

does not affect the dynamics of the platform. The differential equation for a

beam in bending around the z direction is given by

−
∂2

∂x2

[

EIz(x)
∂2v(x, t)

∂x2

]

+ fy(x, t) = m(x)
∂2v(x, t)

∂t2
for 0 < x < L (4.1)

where v(x, t) is the displacement on y direction of any point x and instant t,

fy(x, t) is the inertia load per unit length and Iz(x) is the inertia area moment

about the z direction, the direction x cross the geometric center of transverse

sections. The Euler-Bernoulli theory has been used. The boundary conditions

for a clamped-free beam are given by

v(0, t) = 0 (4.2)

∂v(x, t)

∂x

∣

∣

∣

∣

x=0

= 0 (4.3)

EIz(x)
∂2v(x, t)

∂x2

∣

∣

∣

∣

x=L

= 0 (4.4)

and
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∂

∂x

[

EIz(x)
∂2v(x, t)

∂x2

]
∣

∣

∣

∣

x=L

= 0 (4.5)

It is necessary to solve the eigenvalue problem associated to this system.

As the solution for Eq.(4.1) is splittable on space and time it can be given by

v(x, t) = V (x)Fv(t) (4.6)

where H is an harmonic function. Considering the frequency of H as ωy,

the associated eigenvalue problem can be given by the following differential

equation

d2

dx2

[

EIz(x)
d2V (x)

dx2

]

= ω2
ym(x)V (x) for 0 < x < L (4.7)

together with the following boundary conditions for a clamped-free beam

V (0) = 0 (4.8)

dV (x)

dx

∣

∣

∣

∣

x=0

= 0 (4.9)

EIz(x)
d2V (x)

dx2

∣

∣

∣

∣

x=L

= 0 (4.10)

and d

dx

[

EIz(x)
d2V (x)

dx2

]
∣

∣

∣

∣

x=L

= 0 (4.11)

4.2

Approximation to the Solution

In this section the steps for obtaining the dynamics of the tower will be

explained.

As the tower has a variable cross section, it will be necessary to obtain

an approximation for the solution to the dynamics of the structure. One of the

possible ways to obtain such approximation is through the discretizing of the

equations that describe the dynamics of the structure using the Finite Element

Method (FEM). The equations will be discretized using one-dimensional

elements with two nodes and six degrees of freedom per node as shown on

Fig. 4.4.

In this work only the dynamic response of the tower on y and z direction

will be investigated. An approximation to the displacement on y direction

within an element is given by

v(x, t) ≈ L2(x)u2(t) + L6(x)lu6(t) + L8(x)u8(t) + L12(x)lu12(t) (4.12)

where
L2(x) = (1− 3ξ2 + 2ξ3) L6(x) = (−ξ − 2ξ2 + ξ3)

L8(x) = (3ξ2 − 2ξ3) L12(x) = (−ξ2 + ξ3)
(4.13)
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Figure 4.3: Obtaining the dynamics of the tower

ξ = x/l and l is the length of the element. The mass and stiffness matrix

obtained considering such approximations are given by

[M (e)
y ] =

ρĀl

420













156 22l 54 −13l

22l 4l2 13l −3l2

54 13l 156 −22l

−13l −3l2 −22l 4l2













(4.14)

and

[K(e)
y ] =

EĪz
l3













12 6l −12 6l

6l 4l2 −6l 2l2

−12 −6l 12 −6l

6l 2l2 −6l 4l2













(4.15)

where ρ is the mass density of the material of the tower, Ā is the average cross

section of the tower, E is the elasticity modulus and Īz is the average inertia

Figure 4.4: One-dimensional element
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area moment about the z direction.

As in real systems there is always some level of energy dissipation, a

damping matrix can be used. This matrix can be considered proportional to

mass and stiffness matrix and is given by

[C(e)
y ] = α[M (e)

y ] + φ[K(e)
y ] (4.16)

where α and φ are damping parameters. The assembly of the elements can be

seen on Fig. 4.5

Figure 4.5: Assembly of the elements

and the approximation to the dynamics of the structure is given by

[M ]Ẍ+ [C]Ẋ+ [K]X = F (4.17)

where [M ], [C] and [K] are the global matrices of the assembly of elements,

X are the degrees of freedom of the approximation to the dynamics and F are

the external loads over the tower.

4.3

Reduced-order Model for the Dynamics

In the section 2.6 it has been proposed to use a reduced-order model to re-

present the sea surface elevation since the use of a full-order model to calculate
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the nonlinear wave body interactions is a time-consuming computational task.

In the same way, the use of the complete finite element model for the structure

of the tower for all necessary simulations to evaluate the fatigue resistance of

the equipment will make this task prohibitively expensive and an alternative

reduced-order model becomes necessary.

Considering that the matrices [M ], [C] and [K] have dimensions m×m

and a basis composed by the n elements that constitute the columns of the

matrix [Ψ] with dimension m × n with n ≪ m, the dynamic response of the

system represented in this basis is given by [35]

X(t) = [Ψ]a(t) (4.18)

Substituting Eq. (4.18) into (4.17) it is obtained

[M ][Ψ]ä(t) + [C][Ψ]ȧ(t) + [K][Ψ]a(t) = F(t) (4.19)

Matrix [Ψ] is composed by orthogonal vectors, ψi, that generate a reduced

subspace. The projection of the dynamics of the system, Eq. (4.19), into this

reduced subspace is given by

[Mr]ä(t) + [Cr]ȧ(t) + [Kr]a(t) = fr(t) (4.20)

where
[Mr] = [Ψ]T [M ][Ψ] (4.21)

is the reduced mass matrix,

[Cr] = [Ψ]T [C][Ψ] (4.22)

is the reduced damping matrix,

[Kr] = [Ψ]T [K][Ψ] (4.23)

is the reduced stiffness matrix and

[fr] = [Ψ]T f (4.24)

is the reduced vector of external loads. The system has now order n × n and

it is expected that the necessary simulations to evaluate the fatigue resistance

of the drilling tower will demand a reduced computational effort.

It is necessary to choose an efficient basis to represent the dynamics of

the system. One of the options is to use a basis composed of the normal modes

of the system. This is the best choice when linear systems are being analyzed

[35]. The modes are obtained solving the following eigenvalue problem

(

−ω2[M ] + [K]
)

φ = 0 (4.25)
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where ω are the natural frequencies and φ are the normal modes associated.

Since the base of the drilling tower is excited by the displacement of the

platform and the tower is considered to be clamped to the deck of the platform,

the degrees of freedom of the finite element node that represent the section of

the tower close to the deck have prescribed displacements and rotations.

If the complete finite element model of the tower is being used, it is

necessary to prescribe only the displacements and rotations of the degrees of

freedom of the node at the bottom of the tower. If, in turn, a reduced-order

model is being used, it is necessary to associate a prescribed mode for the entire

model for each prescribed degree of freedom. The finite elements used to obtain

the approximation of the dynamics of the tower have two nodes and six degrees

of freedom per node. Therefore, when constructing the reduced-order model

using the normal modes obtained from finite element model, six additional

prescribed modes have to be included on the basis before accomplishing the

projection of the approximation to the dynamics of the tower.

In general, the prescribed modes are given by

χ =
[

U1 U2 . . . Um

]T

(4.26)

where Ui are the prescribed values for each degree of freedom of the finite

element model. The prescribed mode for the displacement of the tower on x

direction is given by

χ1 =
[

1 0 0 0 0 0 1 0 0 0 0 0 . . . 1 0 0 0 0 0
]T

(4.27)

The prescribed mode for the displacement of the tower on y direction is

given by

χ2 =
[

0 1 0 0 0 0 0 1 0 0 0 0 . . . 0 1 0 0 0 0
]T

(4.28)

The prescribed mode for the displacement of the tower on z direction is

given by

χ3 =
[

0 0 1 0 0 0 0 0 1 0 0 0 . . . 0 0 1 0 0 0
]T

(4.29)

The prescribed mode for the torsion of the tower around x direction is

given by

χ4 =
[

0 0 0 1 0 0 0 0 0 1 0 0 . . . 0 0 0 1 0 0
]T

(4.30)

The prescribed mode for the bending of the tower around y direction is

given by
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χ6 =
[

0 0 −X1 0 1 0 0 0 −X2 0 1 0 . . . 0 0 −Xnn 0 1 0
]T

(4.31)
where Xi is the coordinate of the node i on x direction and nn is the number

of nodes.

The prescribed mode for the bending of the tower around z direction is

given by

χ5 =
[

0 X1 0 0 0 1 0 X2 0 0 0 1 . . . 0 Xnn 0 0 0 1
]T

(4.32)
The basis for the reduced-order model is given by

[Φ] =
[

χ1 χ2 χ3 χ4 χ5 χ6 φ1 φ2 . . . φn

]

(4.33)

and the dynamic response is given by

X(t) = [Φ]q(t) (4.34)

where q are the modal coordinates. The approximation to the dynamics of the

system projected on this basis is given by

[Mr]q̈(t) + [Cr]q̇(t) + [Kr]q(t) = fr(t) (4.35)

where
[Mr] = [Φ]T [M ][Φ] (4.36)

[Cr] = [Φ]T [C][Φ] (4.37)

[Kr] = [Φ]T [K][Φ] (4.38)

fr = [Φ]T f (4.39)

4.4

Stress at Critical Points

In this section the steps for obtaining the stress time history on required points

of the structure will be explained.

The cross section of the tower is shown on Fig. 4.2. The normal stress-

deformation relation for the bending about the z direction for a variable cross-

section beam is given by

σ(x, t) = Eyp
∂2v(x, t)

∂x2
(4.40)

where yp is the distance from required point to the neutral line of the cross

section. A similar relation for the bending about the y direction can be

obtained.
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Figure 4.6: Obtaining the stress time history

As an approximation to the dynamics of the structure was obtained using

the Finite Element Method it is necessary to obtain an approximation to the

normal stress on required points as well. By substituting the Eq. (4.12) into

(4.40) an approximation to the normal stress due to the bending about the z

direction is obtained

σ(x, t) ≈ Eyp (L
′′

2(x)u2(t) + L′′6(x)lu6(t) + L′′8(x)u8(t) + L′′12(x)lu12(t))
Īz

Iz(x)
(4.41)

where double primes indicate a double differentiation with respect to the spatial

variable x. A similar approximation for the normal stresses due to the bending

about the y direction can be obtained as well.

In this work the critical for fatigue point to be investigated is located

at the base of the tower, on the weld between the tower and the platform.

It is expected that the highest bending moments take place at this section.

The total stress at the critical point is a summation of the normal stresses

due to the bending about the y and z directions. Only the steady-state part of

the dynamic response of the tower should be considered when evaluating the

stresses at critical points.
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4.5

Parametric Uncertainty

The inherent uncertainties on the parameters or operators of any mechanical

system must be considered when such system is being analyzed. Since the

probability density function for the random variables that represent such

parameters or operators are not always available for the designer in advance,

an strategy to obtain such functions becomes necessary.

If there is not enough data available about the random variables to

be studied, the Principle of Maximum Entropy can be used to obtain an

approximation to the required probability density function [38], [15] and [16].

This principle states that:

”Among all the probability distributions consistent with the prescribed

conditions the one that maximizes the uncertainty (entropy) should be chosen”

Being n the number of the welds of the tower,W a random vector with n

components and pW the probability density function ofW , the entropy related

to pW is given by

S (pW ) = −

∫ +∞

−∞

∫ +∞

−∞

...

∫ +∞

−∞

pW (w)ln (pW (w)) dw (4.42)

The only available information about the random variables is the fab-

rication tolerance, Wmin � W � Wmax. By using the Principle of Maximum

Entropy the obtained probability density function is

pW (w) =  [Wmin,Wmax](w)
n
∏

i=1

1

Wmaxi −Wmini

(4.43)

therefore, the random variables are independent with uniform probability

density function. The same distribution applies to the thickness of the plates.

Batous and Soize [3] proposed a methodology for construction and

identification of a probabilistic model of random fields in presence of modeling

errors in high stochastic dimension and presented in context of computational

structural dynamics. They presented two ways to construct the prior stochastic

model of a random field H.

The first way is using an algebraic stochastic representation of the random

field H
H((x)) = fr(G(x)) for x ∈ Ω (4.44)

where x is a vector representing any point in the open bounded domain Ω of

IR3, fr is a given nonlinear deterministic mapping and where {G(x),x ∈ Ω}

is a given random field for which the probability law (system of marginal

probability distributions) is completely defined and for which a generator of

independent realizations is available.
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For the second way it is necessary that the mean function and the

covariance function of random field H are known functions, what is the case

when an algebraic stochastic representation of H has been constructed or

if experimental data are available for estimating these two functions with a

sufficient accuracy. Then under certain hypotheses a statistical reduction can

be constructed using the Karhunen-Loève expansion. The first way has been

used in this work for the constructing the stochastic model for the thickness

of the welds and for the thickness of the plates of the drilling tower.
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