
3

Dynamics of the Platform

An example of application of the proposed procedure will be given where the

equipment to be designed is similar to the drilling tower mounted on a platform

shown on Fig. 3.1.

Some simplifications on the geometry of the platform have been made,

each leg of the platform was considered to have a cylindrical shape and the

pontoons between the legs were removed. The draft of the platform, the depth

of the submerged volume of the body measured from undisturbed sea surface,

has been modified in order to compensate the differences on the geometry. A

closed-form solution for the wave loads over a cylinder is available on literature.

A sketch of the simplified platform is shown on Fig. 3.2.

Figure 3.1: Drilling tower mounted on a platform
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Figure 3.2: Sketch of the platform

3.1

Equation of Motion

The motions of the platform can be split into three mutually perpendicular

translations of the center of gravityG and the three rotations aboutG shown on

Fig. 3.3. When obtaining the dynamics of the platform, the global coordinate

system will be used.

The equations of motion for the six degrees of freedom of the platform

are given by

6
∑

j=1

{(Mij + Aij) ẍj +Bijẋj + Cijxj} = Fi for i = 1, . . . , 6 (3.1)

where i = 1 to 6 are the surge, sway, heave, roll, pitch and yaw motions, xj is

the displacements of harmonic oscillation in or about direction j, Mij are solid

mass or inertia coefficients, Aij are hydrodynamic mass or inertia coefficients,

Bij are hydrodynamic damping coefficients, Cij are restitution coefficients and

Fi is the harmonic exciting wave force or moment in direction i. The surge,

sway and yaw motions are considered to be restricted by the mooring system

or dynamic positioning system of the platform. Therefore, in this work only

the the heave, roll and pitch motions of the platform will be considered when

determining the base excitation for the drilling tower.The solid mass matrix of

the platform is given by

[M (p)] =







Mp 0 0

0 Ixx −Ixy
0 −Ixy Iyy






(3.2)

whereMp is the mass of the platform, Ixx is the mass moment of inertia around

DBD
PUC-Rio - Certificação Digital Nº 0921533/CA



Chapter 3. Dynamics of the Platform 31

Figure 3.3: Movements of the platform

X axis, Iyy is the mass moment of inertia around Y axis and Ixy is the mass

product of inertia. The hydrodynamic mass matrix of the platform is given by

[A(p)] =







4a 0 0

0 2aL2
y 0

0 0 2aL2
x






(3.3)

where a is the hydrodynamic mass coefficient per cylinder of the platform, and

Lx and Ly are the distances between the cylinders along X and Y direction

respectively. The hydrodynamic damping matrix is given by

[B(p)] =







4b 0 0

0 2bL2
y 0

0 0 2bL2
x






(3.4)

where b is the hydrodynamic damping coefficient per cylinder of the platform.

The restitution matrix is given by

[C(p)] =







4c 0 0

0 2cL2
y 0

0 0 2cL2
x






(3.5)

where c is the restitution coefficient per cylinder of the platform.

Considering that the platform motions have a linear behavior and the

sea state have a known wave spectrum, the resulting motions of the platform

can be obtained by the superposition of the motions of the platform in still

water and under the action of regular waves. The following two types of loads

are considered to be acting on the platform [18]
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1. The hydromechanical forces and moments induced by the harmonic

oscillations of the rigid body moving in the undisturbed surface of the

fluid

2. The wave exciting forces and moments produced by the action of the

waves over the restrained body

3.2

Hydromechanical Loads

The geometry of the platform was simplified considering that the legs of the

platform have the shape of a cylinder. The hydromechanical loads over a

vertical cylinder will be discussed in the following. The dynamics of a heaving

cylinder is given by [18]

mz̈ = −Wc + ρg(DR− z)Aw − bż − az̈ (3.6)

where m is the solid mass of the cylinder, z is the vertical displacement, P

is the weight of the cylinder, ρ is the specific mass of the water, DR is the

draft of cylinder at rest, Aw is the water plane area of the cylinder, b is the

hydrodynamic damping coefficient and a is the hydrodynamic mass coefficient.

According to Archimedes’ law

Wc = ρgDRAw (3.7)

and Eq. (3.6) becomes

(m+ a)z̈ + bż + cz = 0 (3.8)

where c is the restoring spring coefficient given by

c = ρgAw (3.9)

The vertical oscillations of the cylinder will generate waves which propa-

gate radially from it. Since these waves transport energy they withdraw energy

from the free cylinder oscillations causing its motion die out. This so-called

wave damping is proportional to the velocity of the cylinder and the coeffi-

cient b is called the wave or potential damping coefficient.

The other part of the hydromechanical force, az̈, is caused by the

accelerations that are given to the water particles near to the cylinder. This

part of the force does not dissipate energy and manifests itself as a standing

wave system near the cylinder. The coefficient a is called the hydrodynamic

mass or added mass.

After experiments it could be noted that both the acceleration and the

velocity terms have a sufficiently linear behavior at small amplitudes [18]. The
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term cz is the restoring force and the total reaction forces of the fluid on the

oscillating cylinder, az̈ + bż + cz, are called hydromechanical forces.

3.3

Wave Loads

In this section the steps for obtaining the loads over platform will be explained
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Figure 3.4: Obtaining the loads over platform

The loads due to the waves over the cylinders that represent the legs

of the platform will be determined from the potential theory based on classic

theory of deep water. This classic theory is based on following assumptions

[18]

– The water surface slope is small, therefore terms in the equations of

the waves with magnitude in the order of the steepness-squared can be

ignored

– Harmonic displacements, velocities, accelerations of the water particles

and also harmonic pressures will have a linear relation with the wave

surface elevation, therefore the theory is considered linear

For a single regular wave traveling on x direction, the wave potential is

written as [18]
Φw(x, z, t) = P (z)sin(kx− ωt) (3.10)
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where z is the distance below the still water level (positive upwards), k is the

wave number and ω is the wave frequency. P is a function yet to be defined.

This velocity potential has to fulfill four requirements:

1. Continuity, or Laplace, condition

2. Sea bed boundary condition

3. Free surface dynamic boundary condition

4. Free surface kinematic boundary condition

From the definition of the velocity potential, the velocity of the water

particles in the three translational directions is given by [18]

u = vx =
∂Φw

∂x

v = vy =
∂Φw

∂y
(3.11)

w = vz =
∂Φw

∂z

The continuity condition states that [18]

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (3.12)

and since the fluid is homogeneous and incompressible, this condition results

in the Laplace Equation for potential flows [18]

∇2Φw =
∂2Φw

∂x2
+

∂2Φw

∂y2
+

∂2Φw

∂z2
= 0 (3.13)

Considering that water particles move in the x − z plane only and

substituting Eq. (3.10) into (3.13) yields a homogeneous solution of this

equation [18]
d2P (z)

dz2
− k2P (z) = 0 (3.14)

One of the solutions for P is given by

P (z) = C1e
kz + C2e

−kz (3.15)

Considering the first boundary condition, the wave potential can be

written now with two unknown coefficients as [18]

Φw(x, z, t) =
(

C1e
kz + C2e

−kz
)

sin(kx− ωt) (3.16)
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The vertical velocity of water particles at the sea bed is zero (no-leak

condition) [18]
∂Φw

∂z

∣

∣

∣

∣

z=−h

= 0 (3.17)

where h is the sea depth at considered location. Substituting this boundary

condition in Eq. (3.16) it is obtained

C1e
−kh = C2e

kh (3.18)

and Eq. (3.15) can be written as

P (z) =
C

2

(

ek(h+z) + e−k(h+z)
)

= Ccosh[k(h+ z)] (3.19)

and the wave potential with only one unknown becomes

Φw(x, z, t) = Ccosh[k(h+ z)]sin(kx− ωt) (3.20)

where C is a constant to be determined. The pressure at the free surface of the

fluid is equal to the atmospheric pressure. This requirement for the pressure

is called the dynamic boundary condition at the free surface. The Bernoulli

equation for an unsteady irrotational flow is in its general form [18]

∂Φw

∂t
+
1

2

(

u2 + v2 + w2
)

+
p

ρ
+ gz = C∗ (3.21)

In two dimensions v = 0 and considering that waves have a small

steepness Eq. (3.21) turns into

∂Φw

∂t
+

p

ρ
+ gz = C∗ (3.22)

At the free surface this condition becomes

∂Φw

∂t
+

p0
ρ
+ gζ = C∗ for z = ζ (3.23)

where p0 is the atmospheric pressure. Since p0/ρ − C∗ is a constant the Eq.

(3.23) can be written as

∂Φw

∂t
+ gζ = 0 for z = ζ (3.24)

since this equation is valid for all values of ζ it is valid for z = 0 as well and

the wave profile becomes

ζ = −1
g

∂Φw

∂t
for z = 0 (3.25)

Substituting the Eq. (3.20) into (3.25) it is obtained

ζ =
ωC

g
cosh(kh)cos(kx− ωt) (3.26)
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Eq. (3.26) can be written as

ζ = ζacos(kx− ωt) (3.27)

where
ζa =

ωC

g
cosh(kh) (3.28)

Therefore, the corresponding wave potential, as a function of the water

depth, is given by

Φw =
ζag

ω

cosh[k(h+ z)]

cosh(kh)
sin(kx− ωt) (3.29)

For deep water h→∞ (short waves) and the wave potential becomes

Φw =
ζag

ω
ekzsin(kx− ωt) (3.30)

The pressure on the bottom of the cylinder (z = −DR) can be obtained

from Eq. (3.22) [18]

p = ρgζae
−kDRcos(ωt− kx) + ρgDR (3.31)

where DR is the draft, the distance from undisturbed sea surface to the

bottom of the cylinder, see Fig. 3.2 . Since the diameter of the cylinder is

small compared to the wave length the pressure distribution on the bottom of

the cylinder can be considered uniform and Eq. (3.31) turns into

p = ρgζae
−kDRcos(ωt) + ρgDR (3.32)

and the vertical force on the bottom of the cylinder is given by

F =
[

ρgζae
−kDRcos(ωt) + ρgDR

] π

4
D2

c (3.33)

where Dc is the diameter of the cylinder. The harmonic part of this force is

the regular harmonic wave force and it can be expressed as a spring coefficient

times a reduced or effective wave elevation

FFK = cζ∗ (3.34)

This wave force is called the Froude-Krilov force and the spring coefficient

is given by
c = ρg

π

4
D2

c (3.35)

and the reduced or effective wave elevation for deep water is given by

ζ∗ = e−kDRζacos(ωt) (3.36)

where k is the wave number, given by

ki =
ω2
i

g
for i = 1, . . . , N (3.37)
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The Froude-Krilov forces are obtained from an integration of the pres-

sures on the body in the undisturbed wave. It can be noted that only the

harmonic components of the sea surface elevation with lower frequencies have

significant contribution to the Froude-Krilov forces.

As part of the waves will be diffracted, there are two additional force

components, one proportional to the effective vertical acceleration and one

proportional to the effective vertical velocity, therefore the total wave force on

the bottom of the cylinder is given by

Fw = aζ̈∗ + bζ̇∗ + cζ∗ (3.38)

where a is the hydrodynamic mass coefficient and b is the hydrodynamic

damping coefficient. The terms aζ̈∗ and bζ̇∗ are considered to be corrections

on the Froude-Krilov force due to diffraction of the waves by the presence of

the cylinder in the fluid. Substituting the Eq. (3.36) into 3.38 it is obtained

Fw = ζae−kDR
(

c− aω2
)

cos(ωt)− ζae−kDR(bω)sin(ωt) (3.39)

This wave force can be written independently in terms of the in-phase

and out-of-phase terms

Fw = Facos(ωt+ εFζ) = Facos(εFζ)cos(ωt)− Fasin(εFζ)sin(ωt) (3.40)

Equating Eqs. (3.39) and (3.40), the following equations are obtained

Facos(εFζ) = ζae−kDR
(

c− aω2
)

(3.41)

and
Fasin(εFζ) = ζae−kDR (bω) (3.42)

Adding the square of these two equations results in the wave force

amplitude Fa

ζa
= e−kDR

√

(c− aω2)2 + (bω)2 (3.43)

and the division of the in-phase and the out-of-phase term in Eq. (3.41) results

in the phase shift

εFζ = arctan

{

bω

c− aω2

}

for 0 < εFζ2π (3.44)

Therefore, the equation of motion of a heaving cylinder under the action

of hydromechanical and wave load is given by

(m+ a)z̈ + bż + cz = aζ̈∗ + bζ̇∗ + cζ∗ (3.45)
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3.4

Response in Regular Waves

In this section and in the next one, the steps for obtaining the dynamics of the

platform will be explained.
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Figure 3.5: Obtaining the dynamics of the platform

The heave response to the regular wave excitation is given by [18]

z = zacos (ωt+ εzζ) (3.46)

and substituting the Eqs. (3.36) and (3.46) into (3.45) yields

za
[

c− (m+ a)ω2
]

cos (ωt+ εzζ)− zabωsin (ωt+ εzζ) =

= ζae
−kDR

(

c− aω2
)

cos(ωt)− ζae
−kDRbωsin(ωt) (3.47)

By equating the two out-of-phase terms and the two in-phase terms, the

following two equations are obtained

za
{[

c− (m+ a)ω2
]

cos (εzζ)− bωsin (εzζ)
}

= ζae
−kDR

(

c− aω2
)

(3.48)

and

za
{[

c− (m+ a)ω2
]

sin (εzζ) + bωcos (εzζ)
}

= ζae
−kDRbω (3.49)
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Adding the squares of these two equations results in the heave amplitude

characteristics

za
ζa

= e−kDR

√

(c− aω2)2 + (bω)2

[c− (m+ a)ω2]2 + (bω)2
(3.50)

and eliminating the term za/ζae
−kDR from Eqs. (3.48) and (3.49) yields the

phase shift characteristics

εzζ = arctan

( −mbω3

(c− aω2) [c− (m+ a)ω2) + (bω)2

)

for 0 ≤ εzζ ≤ 2π (3.51)

It can be noted that the requirements of linearity are fulfilled, namely,

the heave amplitude is proportional to the wave amplitude and the phase

shift is not dependent on the wave amplitude. The amplitude and phase

characteristics are called the frequency characteristics of the vessel. The

amplitude characteristic is also called the Response Amplitude Operator

(RAO).

3.5

Response in Irregular Waves

The heave response spectrum can be found by using the transfer function of

the motion and the wave spectrum [18]

Sz(ω) =

∣

∣

∣

∣

za
ζa
(ω)

∣

∣

∣

∣

2

Sζ(ω) (3.52)

The moments of the heave response are given by

mnz =

∫

∞

o

ωnSz(ω)dω for n = 0, 1, 2, . . . (3.53)

The significant heave amplitude, that is the mean value of the highest

one-third part of the amplitudes, is given by

z̄a1/3 = 2RMS = 2
√
m0z (3.54)

where RMS is the Root Mean Square value. A mean period can be found from

the centroid of the spectrum

T1z = 2π
m0z

m1z

(3.55)

The average zero-crossing period is given by

T2z = 2π

√

m0z

m1z

(3.56)

Wu and Hermundstad [43] presented a nonlinear time-domain formu-

lation for ship motions and wave loads and a nonlinear long-term statistics
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method. Initially they presented the theoretical long-term probability of ex-

ceedance per unit time, assuming the linearity of the ship-fluid system and that

the short-term response is a stationary Gaussian narrow-band process with zero

mean and therefore the peak values are distributed according Rayleigh distri-

bution. In this case the probability of exceedance per unit time is given by

PR(y > y1) =

∫

R

∫

β

∫

H

∫

T

e−y
2

1
/2Rnp(β,H, T )dRdβdHdT (3.57)

where y are the wave-induced loads, R is the zeroth spectral moment repre-

senting the mean square of each short-term response, n is the average number

of maxima or minima per unit time in each short-term response, β is the wave

heading, H is the wave height and T is the wave period . A completely inde-

pendent calculation using Eq. (3.57) was carried out for each loading condition.

Since the joint probability p is not available in advance a few simplifications

were necessary and the Eq. (3.57) can be approximated by the following sum-

mation
PR(y > y1) ≈

∑

β

∑

Hs

∑

T1

e−y
2

1
/2RnP1(β)P2(Hs, T1) (3.58)

where the joint probability P2 is presented for a given ocean area in the form

of a scatter diagram. Since the nonlinear response is no longer Gaussian, the

distribution of peak values is not according Rayleigh distribution, and Wu and

Hermundstad used an alternative probability density function

fg(y) =
c

Γ(r)
µcrycr−1e−(µy)

c

0 ≤ y ≤ ∞ (3.59)

where Γ is the Gamma function and µ, c and r are parameters of the

distribution that can be evaluated through certain moments of the histogram

or by a weighted curve fitting. The histogram of peak values, together with

the average number of maxima or minima for each wave heading and sea

state, are obtained from the nonlinear time-domain simulation. The probability

distribution function is given by

Fg(y) =

∫ y

0

fg(x)dx =
Γl (r, (uy)

c)

Γ(r)
(3.60)

where Γl is the Lower Incomplete Gamma function given by

Γl (r, (uy)
c) =

∫ (uy)c

0

ur−1e−udu (3.61)

After some manipulation the long-term probability of exceedance for

nonlinear responses is given by

P (y > y1) ≈
∑

β

∑

Hs

∑

T1

(µy1)
c(r−1) e−(µy1)

c

Γ(r)
nP1(β)P2(Hs, T1) (3.62)
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Wu and Hermundstad compared the long-term obtained bending mo-

ments over the ship with those given by classification societies and a good

agreement has been obtained and intend to use the method for accurately

evaluating the extreme wave loads and other nonlinear responses in ship de-

sign.
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