

Herberth Arturo Vasquez Haro

Simulação de Injeção de CO₂ em Reservatórios de Petróleo para EOR e Armazenamento de Carbono

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientador: Prof. Marcos Sebastião de Paula Gomes Co-Orientador: Dr. Luís Gláuber Rodrigues

Rio de Janeiro Abril de 2014

Herberth Arturo Vasquez Haro

Simulação de Injeção de CO₂ em Reservatórios de Petróleo para EOR e Armazenamento de Carbono

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Marcos Sebastião de Paula Gomes Orientador Departamento de Engenharia Mecânica - PUC-Rio

> > Dr. Luís Gláuber Rodrigues PETROBRAS

Prof. Arthur Martins Barbosa Braga Departamento de Engenharia Mecânica - PUC-Rio

> Prof. Sérgio Augusto Barreto da Fontoura Departamento de Engenharia Civil - PUC-Rio

> > Dr. Marcos Vitor Barbosa Machado PETROBRAS

> > > Dr. Andre Augusto Isnard IFRJ

Jose Eugenio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 25 de abril de 2014

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Herberth Arturo Vasquez Haro

Graduou-se em Engenharia Mecânica na Universidad Nacional del Callao UNAC (Lima, Perú) em 2003. Concluiu o Mestrado na PUC-Rio (Rio de Janeiro, Brasil) em 2009 na área de Termociências estudando numericamente o Processo de Separação de Dióxido de Carbono por Absorção com Amina para Aplicação em Projetos de Armazenamento de Carbono (CCS).

Ficha Catalográfica

Haro, Herberth Arturo Vasquez

Simulação de injeção de CO2 em reservatórios de petróleo para EOR e armazenamento de carbono / Herberth Arturo Vasquez Haro ; orientador: Marcos Sebastião de Paula Gomes ; co-orientador: Luís Gláuber Rodrigues. – 2014.

172 f. : il. (color.) ; 30 cm

Tese (doutorado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2014.

Inclui bibliografia

 Engenharia mecânica – Teses. 2. Dióxido de carbono. 3. Modelo de fluido. 4. CO2-EOR. 5. Simulação de reservatório. 6. Sequestro de carbono. I. Gomes, Marcos Sebastião de Paula. II. Rodrigues, Luís Gláuber.
 III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

Agradecimentos

Ao Professor Marcos Sebastião de Paula Gomes, pela amizade e paciência para transmitir seu conhecimento, pela incansável motivação. Suas sugestões ao longo da elaboração da tese foram importantes para obter o trabalho final.

Em especial ao meu co-orientador Luís Gláuber Rodrigues Engenheiro de Petróleo Sênior da PETROBRAS, por todo apoio e orientação que ele me forneceu para meu crescimento acadêmico, profissional e pessoal. Suas características de companheirismo, atenção, paciência e inteligência foram fundamentais na concepção deste trabalho.

Às minhas irmãs e à minha mãe, por terem me incentivado, sem vocês tudo teria sido muito mais difícil.

Aos meus amigos Alan, Ivan, Gustavo, Mauricio, Ismael, Gerardo e toda a turma do sexto andar de pós - mecânica, por compartir comigo este caminho e sempre estarmos dispostos a ajudar uns aos outros mesmo nos momentos difíceis.

À minha namorada, Cirlene, que esteve presente neste desafio da minha vida e que sempre me deu força e acreditou no meu trabalho. Pelo tempo que me ouviu falar sobre coisas que pouco entendia, pela paciência, amor e carinho.

A todos os professores do Departamento da Mecânica da PUC-Rio especialmente ao grupo de Termociências e Petróleo e Energia.

Ao pessoal administrativo e todas as secretárias do Departamento da Mecânica da PUC, particularmente, a Rosely, a Márcia, a Roberta e o Carlucio pela ajuda nas questões administrativas.

Finalmente, minha gratidão à CAPES e à PUC-Rio pelos auxílios concedidos, sem os quais este trabalho não teria sido possível.

Resumo

Vasquez, Herberth Arturo Haro; Gomes, Marcos Sebastião de Paula; Rodrigues, Luís Gláuber. **Simulação de Injeção de CO₂ em Reservatórios de Petróleo para EOR e Armazenamento de Carbono.** Rio de Janeiro, 2014. 172p. Tese de Doutorado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O sequestro de dióxido de carbono (CO2) em campos de petróleo já desenvolvidos é considerado uma das opções para mitigar o CO₂ antropogênico expelido na atmosfera. O CO2 tem sido utilizado como fluido de injeção em operações de recuperação avançada de petróleo com CO₂ (CO₂-EOR). Como parte deste processo, o CO2 reage com o óleo que expande seu volume, reduz sua viscosidade e a tensão interfacial CO₂/óleo, tornando mais fácil sua recuperação. Enquanto, quantidades significativas de CO₂ ficam retidas no reservatório. O objetivo desses projetos é maximizar a produção de óleo, minimizando a injeção de CO₂. No entanto, em projetos de sequestro para maximizar a produção de óleo com a maior quantidade de armazenamento de CO₂, o gás injetado requer ser maximizado. O objetivo desta pesquisa é entender melhor o potencial tanto para a recuperação avançada de óleo e armazenamento de CO₂, por meio da simulação da CO₂-EOR. Para atingi-lo propõe-se os seguintes objetivos específicos: (1) caracterização dos fluidos, modelagem do comportamento de fases dos fluidos usando a equação de estado (EOS) para aplicação confiável na simulação composicional; (2) investigar diferentes processos EOR, injeção contínua de gás (CGI) e injeção alternada de água e gás (WAG); e, (3) otimização do desempenho do processo CO₂-EOR e a avaliação da capacidade de armazenamento de CO₂ durante a produção de óleo. Os seguintes parâmetros foram considerados no estudo da otimização: i) miscibilidade; ii) a injeção cíclica; iii) a taxa de injeção e produção; iv) segregação gravitacional; v) tipo, número e locação dos poços de injeção e produção; e, vi) razão de WAG e tamanhos dos slugs. São necessárias um grande número de simulações para alcançar uma compreensão abrangente e avaliar as diferentes estratégias de injeção e tempo de injeção, em otimização de recuperação de óleo e capacidade de armazenamento de CO₂.

Palavras-chave

Dióxido de carbono; modelo de fluido; CO₂-EOR; simulação de reservatório; sequestro de carbono.

Abstract

Vasquez, Herberth Arturo Haro; Gomes, Marcos Sebastião de Paula; Rodrigues, Luís Gláuber. Simulation of CO_2 Injection for EOR and Carbon Storage in Oil Reservoir. Rio de Janeiro, 2014. 172p. Doctorate Thesis - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Sequestration of carbon dioxide (CO₂) into already developed oil fields is considered as one of the option for mitigating anthropogenic CO_2 discharge into the atmosphere. In Carbon dioxide Enhance Oil Recovery (CO₂-EOR) operations the CO_2 has been used as the injection fluid. As part of this process, the CO_2 reacts with the oil that increases its volume, reduces its viscosity and interfacial tension CO₂/oil, making easier oil recovery. While, significant quantities of CO₂ remain sequestered in the reservoir. The goal of such projects is maximizing the oil production and minimizing the CO₂ injection. However, in sequestration projects, for maximum oil production with the highest amount of CO₂ storage, the injected CO₂ requires to be maximized. The goal of this research is to better understand the potential for both enhanced oil recovery and storage of CO₂, through the CO₂-EOR simulation. To achieve it propose the following specific objectives: (1) the characterization fluids, modeling of fluid phase behavior using equation of state (EOS) for reliable application on the compositional simulation; (2) investigate different EOR processes, continuous gas injection (CGI) and water alternating gas (WAG) injection; and, (3) optimization the CO₂-EOR process performance and evaluation of the CO₂ storage capacity during oil production. The following parameters were considered in the optimization study: i) miscibility; ii) cyclic injection; iii) injection and production rate; iv) gravity override; v) type, number and location of injection and production wells; and, vi) WAG ratios and WAG slug sizes. A number of simulations are required to achieve comprehensive understanding and evaluate the different injection strategies and injection timing, on optimization of oil recovery and CO₂ storage capacity.

Keywords

Carbon dioxide; model fluid; CO₂-EOR; reservoir simulation; carbon sequestration.

Sumário

1 Introdução	20
1.1 Revisão bibliográfica	23
1.1.1 Inicio e evolução de estudo de processos CO ₂ -EOR	24
1.1.2 Reservatório Candidatos a EOR com CO ₂	25
1.1.3 Caracterização do fluido e comportamento de fases	28
1.1.4 Otimização de processos CO ₂ -EOR	30
1.1.5 Projetos e novas tecnologias de processo CO ₂ -EOR	31
1.1.6 Tecnologias de CO ₂ -EOR	32
1.1.6.1 Injeção contínua de gás (CGI)	33
1.1.6.2 Injeção alternada de água e gás (WAG)	34
1.1.6.3 Injeção de próxima geração CO ₂ -EOR	35
1.1.7 Fatores que influenciam nos métodos EOR	36
1.1.7.1 Molhabilidade	36
1.1.7.2 Curvas de permeabilidade relativa	37
1.1.7.3 Razão de mobilidade	39
1.1.7.4 Eficiência de varrido areal	41
1.1.7.5 Eficiência de varrido vertical	41
1.1.7.6 Eficiência de varrido volumétrica	42
1.1.7.7 Eficiência de deslocamento	42
1.1.7.8 Eficiência de recuperação	43
1.1.7.9 Número de poços injetores e produtores	43
1.2 Motivação	45
1.3 Objetivos	45
1.4 Roteiro da tese	46
2 Comportamento de fases do modelo de fluido	47
2.1 Introdução	47
2.2 Sistema de óleo e CO ₂	48
2.3 Equação de Estado (EOS)	49

2.4 Caracterização do fluido do reservatório	50	
2.4.1 Caracterização da fração pesada		
2.4.2 Método de distribuição (Splitting)		
2.4.3 Método de pseudoização (Lumping or Pseudoization)	54	
2.5 Ajuste da EOS	56	
2.6 Modelagem PVT	57	
2.6.1 Determinação da pressão mínima de miscibilidade (MMP)	58	
2.6.1.1 Correlações empíricas	58	
2.6.1.2 Modelagem EOS	59	
2.6.2 Teste de inchamento	59	
2.6.3 Sistemas ternários	60	
2.6.4 Processo miscível por múltiplo contato	61	
2.7 Conclusão	69	
3 Construção do modelo de reservatório para CO ₂ -EOR	70	
3.1 Construção do modelo de simulação	70	
3.2 Descrição do modelo de reservatório	71	
3.3 Propriedades petrofísicas de rochas reservatório		
3.3.1 Permeabilidade relativa	74	
3.4 Modelo de fluido do reservatório	78	
3.5 Estratégia de produção	78	
3.5.1 Método CO ₂ -EOR	79	
3.6 Parâmetros operacionais para otimização	79	
3.6.1 Número ótimo de poços injetores e produtores	79	
3.6.2 Injeção cíclica (reaproveitamento do gás produzido)	80	
3.6.3 Injeção próxima à miscibilidade e miscível	80	
3.6.4 Segregação gravitacional	80	
3.6.5 Taxa de injeção e taxa de produção	81	
3.7 Submodelos	81	
3.8 Conclusão	81	
4 Principais resultados e discussões	82	
4.1 Discussões dos submodelos	82	
4.1.1 Primeiro submodelo	83	

4.1.2 Resultado da solução analítica e submodelo	89
4.2 Resultados do modelo	95
4.2.1 Otimização do processo CGI	95
4.2.2 Otimização do processo WAG	112
4.2.3 Volumes de CO2 no CGI e WAG	117
5 Conclusões e sugestões para trabalhos futuros	124
5.1 Conclusões	124
5.2 Sugestões para trabalhos futuros	127
Referência bibliográfica	129
A Apêndice A	138
B Apêndice B	151
C Apêndice C	160

Lista de figuras

Figura 1.1- Concentração atmosférica de N ₂ O, CH ₄ e CO ₂ , ao longo	
dos últimos 10 mil anos antes de 2005 e desde 1750 a 2005.	
Adaptado de: IPCC (2007)	21
Figura 1.2- Concentração global de dióxido de carbono na	
atmosfera durante 2008-2012. Adaptado de: Earth System Research	
Laboratory Global Monitoring Division (2012)	22
Figura 1.3- Diagrama ternário de processo de condensação.	
Adaptado de: Sheng (2013)	29
Figura 1.4- Tecnologia da CO ₂ -EOR. Adaptado de: Godec et al.,	
(2013)	35
Figura 1.5- Integração de CO ₂ -EOR e armazenamento de CO ₂ .	
Adaptado de: Godec et al., (2013)	36
Figura 1.6- Distribuição dos fluidos nos diferentes tipos de	
molhabilidade da rocha	37
Figura 1.7- Curvas de permeabilidade relativa : (a) fortemente	
molhável à águas e (b) fortemente molhável ao óleo. Adaptado de:	
Craig (1971)	38
Figura 1.8- Eficiência de varrido em injeção de fluidos no	
reservatório, VpD, é volume poroso deslocável pelo fluido injetado.	
Adaptado de: Claridge et al., (1972)	40
Figura 1.9- Frente de avanço e viscous fingering para diferentes M	
em deslocamento miscível. M, é razão de mobilidade, BT é	
breakthrough e, PV é volume poroso injetado. Adaptado de: Green	
et al., (1998)	40
Figura 1.10- Esquemas de eficiências de varrido macroscópico e	
deslocamento microscópico. Adaptado de: Lyons e Plisga, (2005)	42
Figura 1.11- Configuração de poços five-spot e seven-spot	44
Figura 2.1- Representação típica do petróleo cru. Adaptado de:	
Chaback e Williams, (1988)	50

Figura 2.2- Distribuição da fração C7+ usando a função de	
distribuição gamma representado por pseudocomponentes com	
número de carbonos simples	53
Figura 2.3- Diagrama de fluxo da modelagem PVT para obter um	
modelo de fluido	57
Figura 2.4- Teste de inchamento	60
Figura 2.5- Diagrama ternário típico de pseudocomponentes a uma	
pressão e temperatura especificada	61
Figura 2.6- Composição de CO_2 com: Pressão de saturação (a) e	
fator de inchamento (b)	63
Figura 2.7- Pressão de saturação e fator de inchamento com a	
composição de CO ₂ a temperatura de 55 °C.	63
Figura 2.8- Diagramas ternários do óleo e CO2 injetado fixado a	
uma determinada pressão e temperatura 55 °C	65
Figura 2.9- Diagramas ternários do óleo e CO2 injetado fixado a	
uma determinada pressão e temperatura 55 °C	67
Figura 3.1- Mapa estrutural da formação	71
Figura 3.2- Modelo homogêneo de reservatório 3-D representando a	
espessura da zona de petróleo e água	72
Figura 3.3- Submodelo heterogêneo de reservatório 3-D	
representando a porosidade	72
Figura 3.4- Submodelo heterogêneo de reservatório 3-D	
representando a permeabilidade horizontal (mD)	73
Figura 3.5- Curvas de permeabilidade relativa água-óleo, com	
Swr = 0,1	76
Figura 3.6- Curvas de permeabilidade relativa líquido-gás, com	
Swr = 0,1	76
Figura 3.7- Curvas de permeabilidade relativa água-óleo, com	
Swr = 0,18	77
Figura 3.8- Curvas de permeabilidade relativa líquido-gás, com	
Swr = 0,18	77

Figura 4.1- Recuperação primária, secundária e terciária, simulado	
por Merchant, 2010, e recuperação por injeção contínua de CO_2	
simulado no submodelo	84
Figura 4.2- Recuperação de óleo primária, secundária e terciária,	
estudado por Merchant, 2010, e fator de recuperação por injeção	
alternada de água e CO ₂ simulado	85
Figura 4.3- CO ₂ armazenado nos processos CGI e WAG	86
Figura 4.4- CO ₂ injetado nos processos CGI e WAG	87
Figura 4.5- Taxa de produção de CO2 nos processos CGI e WAG	87
Figura 4.6- Taxa de injeção de CO2 nos processos CGI e WAG	88
Figura 4.7- Taxa de compra de CO ₂ no processo CGI	89
Figura 4.8- Taxa de compra de CO ₂ no processo WAG	89
Figura 4.9- Recuperação de óleo, solução analítica e simulado	91
Figura 4.10- Fluxo molar global de $CO_2(Hg)$ em função da	
concentração global de componente $CO_2(Gg)$	92
Figura 4.11- Variação da velocidade adimensional (uD) em função	
do tempo	93
Figura 4.12- Variação das saturações de óleo e CO2 no poço	
produtor	94
Figura 4.13- Variação da fração molar de óleo e CO2 no poço	
produtor	95
Figura 4.14- Configuração dos poços produtores e injetores	96
Figura 4.15- Saturação de gás em diferentes anos	97
Figura 4.16- Diferentes cenários de recuperação de óleo para	
otimizar o número de poços injetores e produtores	98
Figura 4.17- Recuperação de óleo para 3 poços injetores, e para 11,	
12, 13 e 14 poços produtores	99
Figura 4.18- Recuperação de óleo para 4 poços injetores, e para 11,	
12, 13 e 14 poços produtores	99
Figura 4.19- Comparação da recuperação de óleo a diferentes	
pressões médias do reservatório	101
Figura 4.20- Comparação da diferentes pressões médias do	
reservatório	101

Figura 4.21- Variação da pressão nas camadas do reservatório no	
ano de 2050, quando a pressão média do reservatório é mantida a	
19.656 kPa	102
Figura 4.22- Saturação de óleo na primeira camada no ano de 2050	
à pressão média do reservatório de 19.656 kPa	103
Figura 4.23- Tensão interfacial CO ₂ -óleo na primeira camada no	
ano de 2050 à pressão média de reservatório de 19.656 kPa	104
Figura 4.24- Viscosidade do óleo na primeira camada no ano de	
2050 à pressão média de reservatório de 19.656 kPa	104
Figura 4.25- Variação da pressão nas camadas do reservatório no	
ano de 2050, à pressão média do reservatório de 18.861 kPa	105
Figura 4.26- Saturação de óleo na primeira camada no ano 2050 à	
pressão média do reservatório de 18.861 kPa	105
Figura 4.27- Tensão interfacial CO ₂ -óleo na primeira camada no	
ano 2050, à pressão média de reservatório de 18.861 kPa	106
Figura 4.28- Viscosidade do óleo na primeira camada no ano 2050,	
à pressão média de reservatório de 18.861 kPa	107
Figura 4.29- Razão taxa de injeção/produção	108
Figura 4.30- Taxas de produção de óleo e gás, razão gás-óleo no	
poço produtor 04	109
Figura 4.31- Taxas de produção de óleo e gás, razão gás-óleo no	
campo	110
Figura 4.32- Taxas de injeção, compra e reinjenção de CO ₂ no poço	
injetor 01	111
Figura 4.33- Taxas de injeção, compra e reinjenção de CO ₂ no	
reservatório	111
Figura 4.34- Comparação da recuperação de óleo a razão WAG	
constante e variável, quando a pressão média de reservatório é	
mantida a 18.860 kPa	112
Figura 4.35- Razão WAG 2:1 no tempo à pressão média de	
reservatório de 18.860 kPa	113
Figura 4.36- Razão WAG variável no tempo à pressão media de	
reservatório de 18.860 kPa	114

Figura A.3- Variação da viscosidade do CO ₂ em função da	
temperatura e pressão (Bachu, 2008)	147
Figura A.4- Classificação convencional dos métodos de recuperação	
de petróleo. Adaptado: Lake, (1998)	150

Lista de tabelas

Tabela 1.1- Características do reservatório para projetos CO ₂ -EOR.	
Adaptado de: Bachu (2001)	26
Tabela 1.2- Critérios para seleção de reservatórios de óleo com	
potencial para aplicação de CO_2 . Adaptado de: Shaw et al., (2002) e	
Bachu (2001)	27
Tabela 1.3- Propriedades que caracterizam a molhabilidade a partir	
da curvas de permeabilidade relativa. Fonte: Craig (1971)	39
Tabela 2.1- Composição (% mol) e propriedades do óleo e solvente	
Fonte: Chaback e Williams, (1988)	48
Tabela 2.2 - Caracterização do fluido	55
Tabela 2.3- Composições dos fluidos caracterizados	56
Tabela 2.4- Propriedades da fração mais pesada	56
Tabela 2.5- Resultados de ajuste da pressão de saturação	64
Tabela 2.6- Diferentes cálculos de MMP	68
Tabela 2.7- Composições de equilíbrio de fases e propriedades dos	
fluidos a 17,053 MPa e 55°C	69
Tabela 3.1- Propriedades do Reservatório	74
Tabela 3.2- Pontos terminais da saturação e permeabilidade fluido-	
reservatório carbonato. Fonte: Bennion et al., (2002)	74
Tabela 4.1- Propriedades do submodelo de reservatório five-spot	83
Tabela 4.2- Propriedades do submodelo de reservatório	90
Tabela 4.3- Número de poços produtores e injetores no estudo de	
otimização	100
Tabela 4.4- Recuperação de óleo a diferentes pressões media de	
reservatório	102
Tabela 4.5- Volume de óleo produzido, quantidades de CO_2	
armazenado e CO_2 de emissão, nos diferentes métodos EOR	123

Notações

Nomenclatura e abreviações

HCPV	Volume poroso do hidrocarboneto
MMP	Pressão mínima de miscibilidade
GPL	Gás liquefeito de petróleo
WAG	Injeção alternada de água e gás
GAW	Injeção alternada de gás e água
CGI	Injeção contínua de gás
MPC	Miscíveis ao primeiro contato
MMC	Miscíveis por múltiplos contatos
CO_2	Dióxido de carbono
H_2S	Ácido sulfídrico
N_2	Nitrogênio
°API	Grau API do American Petroleum Institute
GPL	Gás de petróleo liquefeito
PVT	Pressão, volume e temperatura
EOS	Equação de estado
EOR	Enhanced Oil Recovery
EGR	Enhanced Gas Recovery
PR	Peng-Robinson equation of state
RK	Redlich-Kwong equation of state
SRK	Soave-Redlich-Kwong equation of state
VDW	Van der Waals equation of state
SCN	Número de carbonos simples
MCN	Número de carbonos múltiplos
CMG	Computer Modeling Group.
Winprop	Phase Behavior & Fluid Property Program
GEM	Compositional & Unconventional Reservoir Simulator
E_A	Eficiência de varrido areal
E_{VV}	Eficiência de varrido vertical
E_V	Eficiência de varrido volumétrica

E_D	Eficiência de deslocamento
E_R	Eficiência de recuperação
Slug	Volume de fluido
T_c	Temperatura crítica
P_c	Pressão crítica
$V_{ m c}$	Volume crítico
MW	Peso molecular
Р	Pressão
Т	Temperatura
V	Volume
T_R	Temperatura do reservatório
S_j	Saturação na fase j
\vec{u}_j	Velocidade aparente do fluido na fase j
$\overline{\overline{K}}_{ij}$	Tensor da dispersão para componente i na fase j
n _c	Número de componentes
n_p	Número de fases
D _{ij}	Coeficiente de difusão molecular
К	Permeabilidade absoluta
k _{rj}	Permeabilidade relativa na fase <i>j</i>
p_j	Pressão na fase
p _{ckj}	Pressão capilar
G_i	Concentração total do componente i
H_i	Fluxo molar total do componente i
R_g	Fator de recuperação de gás
R _o	Fator de recuperação de óleo
RC	Condições de reservatório
SC	Condições de superfície

Letras gregas

Função objetivo
Fator acêntrico
Coeficiente de interação entre os componentes $i e j$
Fração molar do componente i
Fração molar do componente j
Porosidade
Densidade molar na fase j
Fração molar do componente <i>i</i> na fase <i>j</i>
Dispersividade
Fluxo fracionário da fase j
Angulo de mergulho
Viscosidade na fase j
Densidade mássica na fase j
Aceleração da gravidade
Tempo adimensional
Comprimento adimensional
Velocidade adimensional
Densidade da fase <i>j</i> adimensional
Velocidade do fluido injetado
Densidade do fluido injetado