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Prof. Márcio da Silveira Carvalho

Vice Dean of Graduate Studies
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Abstract

Sampaio, André Lawson Pedral; Aguiar, Alexandre Street
de(Advisor); Valladão, Davi Michel (Co-advisor). On the

Decision-Hazard Approach for the Stochastic Dual Dy-

namic Programming Applied to Hydrothermal Operation

Planning. Rio de Janeiro, 2017. 76p. Dissertação de Mestrado
— Departmento de Engenharia Elétrica, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

Stochastic Dual Dynamic Programming (SDDP) is currently one of

the most employed methods for hydrothermal planning. All previous works

on this subject are based on a hazard-decision approach, whereas reality is

more closely related to a decision-hazard process. This dissonance between

planning and implementation is a source of time-inconsistency, as future

planned decisions under the same conditions may not be put into prac-

tice. If on the one hand the hazard-decision modeling framework allows a

scenario-decomposable efficient solution methodology, on the other hand

the decision-hazard structure provides a more robust (pessimistic) solution

as it does not rely on anticipativity assumptions. In this work, we measure

the inconsistency-gap related to the current methodology and propose an

alternative approach for hydrothermal planning that utilizes an information-

revelation structure and decision process based on a decision-hazard frame-

work, thereby approximating the planning model to realistic operational

actions. Instead of relying on non-anticipativity constraints, which would

prevent the scenario decomposition of each two-stage stochastic subprob-

lem, the proposed methodology considers first-stage decisions as state vari-

ables to be optimized through the SDDP procedure. In this framework,

the complexity and time required to find a solution is considerably reduced

yet ensuring the decision-hazard decision structure and non-anticipativity

of the first-stage decisions. Results based on the Brazilian power system

indicate that this inconsistency may considerably increase generation of

more expensive thermal units, leading to spikes in energy market spot

prices and an increase in overall operational costs. Therefore, the proposed

decision-hazard approach and augmented-state solution methodology con-

stitute timely and relevant contributions to both industry practices and

state of the art literature on the subject of hydrothermal operation plan-

ning under uncertainty.

Keywords

Stochastic Dual Dynamic Programming; Time inconsistency; Hydro-

thermal Operation Planning; Hazard-decision; Decision-hazard.
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Resumo

Sampaio, André Lawson Pedral; Aguiar, Alexandre Street de; Val-
ladão, Davi Michel. Uma Abordagem Decisão-Acaso para
a Programação Dinâmica Dual Estocástica Aplicada ao
Planejamento da Operação Hidrotérmica. Rio de Janeiro,
2017. 76p. Dissertação de Mestrado — Departmento de Engenharia
Elétrica, Pontif́ıcia Universidade Católica do Rio de Janeiro.

A Programação Dinâmica Dual Estocástica (PDDE) constitui

um dos métodos mais utilizados no planejamento hidrotérmico. Trabalhos

anteriores neste campo se baseiam numa abordagem tipo acaso-decisão, en-

quanto a realidade está mais próxima de um processo tipo decisão-acaso. Tal

dissonância entre planejamento e implementação gera um problema de in-

consistência temporal, pois decisões futuras planejadas podem não ser colo-

cadas em prática sob as mesmas condições. Se por um lado a modelagem

acaso-decisão permite uma metodologia de solução cenário-decompońıvel

eficiente, por outro, a estrutura decisão-acaso proporciona uma solução

mais robusta (pessimista), já que desconsidera a antecipatividade. Neste

trabalho, mensura-se o gap de inconsistência relativo à metodolo-gia atual,

assim como se propõe uma abordagem alternativa para o planejamento

hidrotérmico que utiliza uma estrutura de revelação de incertezas e um

processo decisório tipo decisão-acaso, aproximando o modelo de planeja-

mento da realidade operativa. Ao invés de empregar restrições de não-

antecipatividade, o que impossibilitaria a decomposição por cenário de cada

subproblema estocástico de dois estágios, a metodologia proposta considera

decisões de primeiro estágio como variáveis de estado a serem otimizadas

via PDDE. Assim, reduz-se consideravelmente a complexidade e tempo ne-

cessário para se obter uma solução, garantindo ainda a estrutura decisória

tipo decisão-acaso e não-antecipatividade das decisões de primeiro estágio.

Resultados baseados no SIN indicam que tal inconsistência pode levar a

um aumento considerável da geração de termelétricas mais caras, causando

maior volatilidade nos preços de curto prazo e aumento no custo total

de operação. Desta forma, a solução metodológica proposta, baseada na

abordagem decisão-acaso via espaço de estado aumentado, constitui con-

tribuição relevante e oportuna tanto para práticas na indústria quanto para

o estado-da-arte da literatura utilizada para o planejamento da operação

hidrotérmica sob incerteza.

Palavras-chave
Programação Dinâmica Dual Estocástica; Inconsistência temporal;

Planejamento da operação hidrotérmica; Acaso-decisão; Decisão-acaso.
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1
Introduction

A planning process is a set of actions carried out to define the best recourse
allocation policy, given certain restrictions and a planning horizon. In the context
of the Brazilian hydrothermal power system, operation planning determines ther-
mal units energy dispatch for a given period based on demand prediction, a deci-
sion that is made under uncertainty of the water inflow of the period for which it
shall be implemented. The objective is to minimize cost of energy based on water
inflow scenarios [1], which is made by balancing the available water stored in the
hydroelectrical reservoirs and the energy provided by the different power plants that
constitute the National Interconnected Power System (NIPS, or SIN in Portuguese).
A recent study investigated the impacts on operation costs due to ignoring water in-
flow scenario uncertainty on hydrothermal power systems [2], a subject that is also
examined in the present work.

Optimal planning of real life hydrothermal power systems is a multistage
stochastic dynamic programming problem, for which the Stochastic Dual Dynamic
Programming (SDDP) solution method is typically employed [3]. Solving this sort
of problem is a complex task, given the number of variables to be determined at
each stage and the planning horizon. The SDDP algorithm provides a methodology
that allows overcoming the so-called curse of dimensionality and permits to treat
such problems in a reasonable manner. Since its introduction, it has been subject of
many works in order to improve the technique and introduce new features, such as
risk aversion, for which Conditional Value-at-Risk (CVaR) [4] has been utilized in
a considerable range of applications [5–9], and time dependence of water inflow, by
employing a periodic autoregressive model (PAR(p)) [1, 10, 11]. However, in spite
of providing a more precise translation of reality, the incorporation of a PAR(p)
model may increase solution variability, as shown in [12].

Even though the SDDP technique avoided the curse of dimensionality, oper-
ation of hydrothermal power systems are still highly complex, and relaxation of the
real problem is commonly employed in long/medium-term studies. Many of the sys-
tem constraints ignored during the first phase are then taken into account when opti-
mizing for the short-term dispatch. In Brazil, some of the introduced restrictions are
the representation of electrical network transmission losses [13], modeling of hydro
generation plants as a function of turbined outflow, spillage and head in the reser-
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1. INTRODUCTION 11

voir [14], n − k security criteria [15, 16], individual reservoir representation [17],
renewable resources intermittent generation, and demand uncertainty [18]. Cen-
tralized hydrothermal energy dispatch models have also been studied with great
attention. Some of these studies include limitations on the gas network [19], CO2

emission constraints [20], river level and routing restrictions [17], and transmission
constraints with non-linear formulation [21]. In general, apart from the main sub-
ject referred in each of the mentioned works, other important aspects of the problem
are usually disregarded, consequently it is difficult to find a work that properly ad-
dresses all of them.

Another sort of relaxation employed is related to the information revelation
process. Within the SDDP technique, due to computational and conceptual reasons,
the information revelation process utilizes a hazard-decision structure, i.e., thermal
generation decisions are determined assuming perfect knowledge of the water in-
flow over the current period. This approximation process induces time-inconsistent
decisions [22–24], which results in a hidden overcost, not foreseen neither by the
planner or operator, the so-called inconsistency-gap, as proposed in [22] and de-
tailed in [25]. The reason for this overcost may be easily seen from Jensen’s in-
equality, as we consider the convexity of the cost function.

Differently from the planning process, actual decisions are made in real time
all along the period, by observing water inflow and reviewing the planned actions
based on the new set of information revealed over time. Since water inflow presents
low variance on an hourly basis, it is a reasonable approximation to assume that the
decision process is made under perfect information. Although, even on operation
planning implementation for the shortest term possible, the day ahead operation,
energy dispatch of thermal units is still a first-stage decision, obtained based on unit
commitment models. Hydro generation, for its turn, is a recourse decision in the
short-term schedule, determined in order to correctly respond to energy demand.
Therefore, for systems highly dependent on hydro reservoirs, all deviation of the
original plan due to error on scenario assumption is usually compensated by the
hydro units. These deviations are of a different nature from automatic generation
control (AGC), since it is originated on a prediction error of water inflow, while
AGC constitutes a spinning reserve and is properly allocated during operation plan-
ning to ensure system’s reliability within the considered scenario.

The necessity of addressing the energy dispatch problem within an hourly
basis in Brazil has been under discussion for many years, with a first version of the

DBD
PUC-Rio - Certificação Digital Nº 1521410/CA



1. INTRODUCTION 12

DESSEM software presented as early as 2002 [26]. In practice, however, up to the
present time such model has not yet been incorporated to the operation planning
procedure. An overview of the current process is provided in Chapter 2.

Due to computational reasons, on the planning process, calculated for a
medium/long term horizon, energy dispatch of hydro and thermal units is deter-
mined on a monthly or weekly basis, based on an approximation of the short-term
process. From the perspective above, as we extend the time step, water inflow vari-
ability increases as well. Assuming that the information will be known beforehand
within a weekly or monthly time frame is the same to say that it is possible to cor-
rectly predict water inflow in a given period, which is a very optimistic view of the
process. It is much more realistic, however, to acknowledge our limitation on that
matter and to emulate a daily process than placing the decision after the scenario
is revealed, modifying the real scenario-revelation structure. In other words, it is
more accurate to determine the monthly dispatch based on a typical day or typi-
cal week than to assume perfect information of water inflow. Since for the short-
term model baseload suppliers are considered first-stage decisions, while hydro and
fast-response units are considered second-stage, when approximating the monthly
dispatch to the average decision, it is better to proceed in the same fashion. This
effect grows in importance with the adoption of renewable sources, as it augments
uncertainty on the short-term and increases the difficulty on determining first-stage
decisions for daily operation, which demands its correct representation in terms of
costs and viability within the long-term operation planning.

Deviations between planned decisions and the actual hydro generation, after
the information has been revealed, are directly related to water inflow variability.
Therefore, for cases that present low variability, a hazard-decision approach may
be considered a good proxy of the process. But what is the magnitude of the error
related to scenario uncertainty within the planning process?

In order to exemplify it, we take the monthly water inflow observed from 1991
to 2015 for the SE subsystem of the NIPS. Figure 1.1 illustrates the scenario pre-
diction dispersion based on water inflow of December 2014 and an autoregressive
of order 1, as utilized in this work. The expected value of water inflow based on
this sample is 60.9 GWmonth, with a standard deviation equal to 14.8 GWmonth,
which gives a coefficient of variation (cv) of 24%. To put in perspective, the energy
demand in the SE subsystem in January 2015 was 41.4 GWmonth ( [27]) and the
stored water at the end of the month was equal to 34.6 GWmonth ( [28]). Hence, the
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1. INTRODUCTION 13
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Fig. 1.1: Scenario prediction dispersion for the SE subsystem

standard deviation accounts for 36% of the demand and 43% of the observed stored
water at that time, as shown by equations (1-1)-(1-3). Within the hazard-decision
approach, since perfect scenario information is adopted, decisions are determined
ignoring this uncertainty.

cv(t|t− 1) =
σ(wt|wt−1)

E(wt|wt−1)
= 24% (1-1)

σ(wt|wt−1)

Demandt
= 36% (1-2)

σ(wt|wt−1)

V olumet
= 43% (1-3)

In most of the cases, real life operation of a hydrothermal system does not
allow a wait-and-see methodology. Due to energetic restrictions (given either by
technical or economic reasons), many of the thermal plants require a considerable
amount of time to be available for energy supply. Nuclear and coal-fired plants,
for instance, may take several days to start up and shut down, being considered
baseload suppliers. Also, in spite of being peaking power plants due to their fast
response to demand, because of contractual reasons many of the gas-fired units
must be informed of their energy dispatch in advance, so as to purchase the required
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1. INTRODUCTION 14

amount of fuel for a given operation. In Brazil, for instance, liquified natural gas
(LNG) fired units must be notified of their planned dispatch 60 days prior to the
operation. In order to more accurately reflect the implementation procedure, in the
planning process, we argue that energy dispatch of such units should be considered
first-stage decisions, leaving hydro generation and other thermal units as recourse
decisions.

For the study presented on Chapter 5, three different policies were established.
The first one represents the standard solution for hydrothermal systems operation
and utilizes a hazard-decision model (planning policy). For the second one (in-

consistent policy), first-stage decisions are determined based on the expected water
inflow, the same methodology utilized in [2]. The remaining policy (consistent

policy) is obtained following a decision-hazard structure [29,30], for which the em-
ployed methodology is the same utilized to determine the dispatch of LNG fueled
units in Brazil [31].

Another topic under ongoing discussion is related to the algorithm conver-
gence. Analysis on the subject were made in [32–35] and many stopping criteria
have been explored since then ( [12, 36]), but consent is far from being reached. In
this work the convergence criteria adopted follows the methodology utilized in [25]
and [37], which considers stabilization of lower and upper bounds.

1.1 Objective and contributions

The objective of this work is to propose a model for the hydrothermal opera-
tion planning that utilizes an information-revelation structure and decision process
based on a decision-hazard framework, thereby approximating the planning model
to more realistic operational actions. From this perspective, our main contributions
are:

1. Bring to attention the time-inconsistency problem related to the information-
revelation structure simplification of the decision process utilized on hy-
drothermal planning models. Currently, the SDDP technique utilizes a
hazard-decision structure, which is an optimistic view of a decision process.
In this case, decisions taken during a given period assume perfect informa-
tion of the uncertainty factors (water inflow), i.e., decisions are determined
for each scenario. In this work we argue that the real decision process in-
volves first-stage decisions (under uncertainty of the water inflow scenario of
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1. INTRODUCTION 15

the current period) and recourse second-stage decisions (under perfect infor-
mation). First-stage decisions are the energy dispatch of gas and baseload
thermal plants (coal and nuclear), whereas second-stage are the remaining
thermal plants and hydro generators. The importance of satisfactory repre-
sentation of uncertainties during the planning phase augments as the installed
capacity of renewable sources and distributed generation increases.

2. Estimate the impact of this source of inconsistency between planning and
operation based on the time-inconsistency GAP, energy market spot prices
and thermal units generation. As we demonstrate, one of the collateral effects
of using a hazard-decision approximation during the planning phase is an
increase on the energy dispatch of more expensive thermal units, along with
spikes in energy market spot prices and an increase in overall operational
costs.

To fulfill the objectives above, in this work we utilize a multistage model that
incorporates the decision-hazard decision process for each stage. The mathematical
model currently employed considers that, at each period, decisions may be deter-
mined for each scenario, therefore, the optimization problem of each stage, which
computes the expected value of the operation from that stage onward, is scenario-
decomposable. This approach does not consider the decision-hazard alternative.
The implemented model, instead, incorporates the non-anticipativity restriction as-
sociated with first-stage decision variables, coupling the problems related to each
scenario of the current period. Thus, the operation subproblem based on a decision-
hazard framework is a two-stage stochastic model.

Direct application of a decision-hazard SDDP model equipped with non-
anticipativity constraints is challenging, since it demands the solution of a two-stage
model under uncertainty for each scenario and stage. The methodology utilized in
this work conditions the SDDP operation subproblem to the firs-stage decisions.
This is achieved by incorporating first-stage decisions to the state of the system,
turning the model into a non-anticipative and scenario-decomposable problem. Our
approach is based on a similar reformulation idea used on LNG pre-dispatch during
the short-term operation planning in Brazil, briefly explained in Chapter 2. Within
this framework, first-stage decisions are determined in the previous stage and trans-
mitted to the subsequent problem through state parameters. Therefore, by augment-
ing the state, this technique aims to provide a hazard-decision solution methodology
to a decision-hazard problem.
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1. INTRODUCTION 16

1.2 Organization of this work

The remainder of this work is organized as follows. Chapter 2 presents the
Brazilian power system and contextualizes the present work. In Chapter 3, a com-
parison is drawn between the hazard-decision and decision-hazard approaches to
hydrothermal operation planning and their implications to the SDDP algorithm,
bringing to attention the time-inconsistency GAP due to ignoring non-anticipativity
constraints. Chapter 4 presents the proposed decision-hazard framework and the
augmented-state solution methodology. In Chapter 5, a case study based on the
Brazilian power system is presented and the results analyzed. Chapter 6 concludes
this work with its final statements and potential future works.
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2
The Brazilian Power System

The Brazilian National Integrated Power System (NIPS) is one of the world’s
largest power systems both in generation installed capacity and transmission lines
extension. The NIPS comprises most part of the national territory, with the ex-
ception of a few isolated regions in the Amazon area. Country regions are divided
into four subsystems, namely Southeast/Center-West (SE/CO), South (S), Northeast
(NE), and North (N), and energy prices may vary between them due to electrical re-
strictions. Long extension of transmission lines connect the subsystems, allowing
energy exchange between all regions and granting the possibility to explore their
complimentary water inflow. By 2016, the total extension of transmission lines in
the country was 134.765 km, with a prediction to reach 154.748 km in 2021 ( [38]).
Figure 2.1 [39] shows the transmission lines map as in 2017.
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Fig. 2.1: Brazilian transmission system

Hydroelectric power plants constitute the major source of energy, with a total
installed capacity of 101.6 GW in 2016, which corresponds to 72% of the coun-
try’s total. Other power sources, such as gas fired thermal plants, usually located
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Fig. 2.2: Brazilian power system matrix source

closer to major load centers, play an important role on electrical energy generation
to fulfill national demand. More recently, the country experienced an expansion
of renewable energy, particularly wind power, and expects to see this contribution
increase in the upcoming years. Figure 2.2 [38,40] depicts the Brazilian energy ma-
trix source by installed capacity in September 2017 and the scheduled evolution for
2021. In spite of its proportional reduction, by 2021 hydroelectric power is expected
to answer for 68% of total system’s capacity.

Hydro; 38,99 GWavg
60%

Thermal; 17,33 GWavg
27%

Wind; 7,16 GWavg
11%

Nuclear; 1,36 GWavg
2%

Solar; 0,11 GWavg
0%

Fig. 2.3: Energy generation by source - September 2017

As expected, energy generation by source does not correspond to their equiv-
alent installed capacity. Figure 2.3 [41] illustrates the observed generation distri-
bution in September 2017 as an example. It is easily seen that wind generation
responds to an energy share superior to its proportional installed capacity. How-
ever, if we take a closer look and analyze the NE subsystem, where most of the
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Fig. 2.4: Brazilian hydro plants schematic diagram

wind generators are installed, we notice that this particular source responded to
approximately 55% of the total generation of the subsystem.

Hydroelectric plants are distributed in sixteen hydro basins throughout the
country and classified according to their reservoir capacity, which may range from
run-of-river plants to the 54.4 km3 Serra da Mesa reservoir. Many of these plants
are in a cascade configuration, resulting in a highly complex topology, as shown in
Figure 2.4 [42].

Operation of the power system is determined by an ISO, the National System
Operator (ONS), based on results obtained from different softwares developed by
the Electric Power Research Center (CEPEL). With a view to guarantee that the
required energy to meet demand is provided at minimum cost, ensuring operation
security and system’s reliability, the ISO is responsible for managing the available
energy sources. Operation management is separated into two main stages: planning
and implementation, for which the former is also divided into long/medium-term
and short-term planning [43].

At all stages of this process, the ISO faces a similar question: should it use
the stored water in the reservoir for energy generation now or save it for the future?
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Fig. 2.5: The operator’s dilemma

Since the impact of such decision for the system, taken in the present, will only be
known in the future, answering that question may become quite a challenge. This
is the so-called operator’s dilemma, illustrated at Figure 2.5. In real life applica-
tions, one must also consider that water inflow at each period is subjected to high
uncertainty, making the problem even more complex. In order to come up with an
answer to that question, the ISO relies on computational models that optimizes the
decision at each stage of the problem, and the methodology adopted is the Stochas-
tic Dual Dynamic Program (SDDP), which belongs to the Sampling Based Benders
Decomposition Algorithms class and will be discussed in Chapter 3.

The first stage of the operation process in Brazil is the long- to medium-term
planning. At this stage, the implemented model aims to solve the hydrothermal
generation problem at minimum risk-adjusted cost for a 5 to 10 years horizon with
monthly discretization, which is done by executing the NEWAVE software. Since
problem complexity is determined by the number of periods and uncertainty scenar-
ios considered, in order to keep it computationally tractable, many of the system de-
tails are approximated or neglected at this point, as they may be reviewed later. This
approximations include aggregating the storage capacity into four equivalent water
reservoirs [44, 45], each of which located in one of the subsystems. At the end of
this step, the ISO is provided with the expected cost of the operation and a chain of
linear programming models indexed to the period. All along the process, inflow sce-
narios are obtained considering a periodic autoregressive model (PAR(p)) [10, 11],
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in order to incorporate intertemporal effects.
Next, this chain of linear programming models is coupled into a more de-

tailed model to determine short-term planning. This stage is done by means of the
DECOMP software, for which the considered horizon is reduced to 12 months, with
weekly discretization for the first month and monthly discretization for the remain-
ing period. Reducing the horizon, as it also reduces problem complexity, allows
the implementation of a more realistic configuration, with the incorporation of re-
strictions neglected at first, including individual representation of hydro plants and
reservoirs. At this stage, due to contractual reasons, thermal generation for liquified
natural gas (LNG) fueled units are determined in anticipation of scenario revelation
and informed of their energy dispatch 60 days in advance.

Currently, this is the final stage before real-time operation. Beginning in Jan-
uary 2019, with the adoption of hourly prices, daily schedule will be determined by
the DESSEM software. As before, other restrictions are incorporated to the problem
at this stage, such as Kirchhoff’s Second Law (for DC circuits) and ramp generation
limits for the different units of the NIPS, while unit commitment, electrical network
losses, among other restrictions, are yet under validation.

Throughout the whole procedure to determine the hydrothermal dispatch, as
presented above, several simplifications are adopted. Many of them may be per-
fectly justified at early stages, the question is whether they lead to time-inconsistent
decisions or not, and what is the impact to the system due to ignoring certain restric-
tions. As mentioned in Chapter 1, scenario anticipation provides a substantial gain
on computational performance and it has been used for hydrothermal operations
since the introduction of SDDP, however, energy dispatch is determined based on
an optimistic view of reality, which may lead to an inconsistency GAP. In the next
chapters, the impact related to the scenario anticipation methodology considered in
the Brazilian power system is investigated, and an alternative approach is proposed
in order to better address it.
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3
Stochastic Dual Dynamic Programming Ap-
plied to Hydrothermal Power System Opera-
tion

Stochastic Dual Dynamic Program (SDDP) currently represents the state-
of-the-art solution method regarding multistage linear stochastic problems, and is
widely employed in planning studies of hydrothermal power systems, along with
many other applications. Based on the assessment of the recourse function, the
methodology consists of successively approximating from below the expected cost-
to-go function to a piecewise linear function until attaining the convergence cri-
terion. By sampling the set of possible scenarios Ωt at each period t, a series of
forward-backward iterations are executed in order to build the approximated func-
tion. In the forward step, the function is evaluated and trial states are determined.
Next, based on the newly obtained system state of each period t, the backward step
is performed to establish a Benders cut and include it to the set of cuts of the model
related to t− 1.

The ultimate goal of the algorithm is to obtain the expected value of the total
operational cost. At the end of this iteration process, its lower bound is obtained,
along with a chain of linear programming models indexed to the period t that de-
termines the energy policy for the complete horizon T . To estimate its upper bound
a Monte Carlo simulation is carried out, by means of the forward step of the algo-
rithm.

This work does not intend to investigate the aspects of SDDP convergence,
being more focused on the premises of energy planning policies. For analysis on
the subject we refer to [32–34]. Likewise, more detailed discussions of the SDDP
algorithm may be found in [5, 35].

3.1 Hazard-decision

As mentioned in Chapter 1, medium/long-term operation planning of coun-
tries relying on ISOs is usually implemented based on a hazard-decision frame-
work [3,5,12,35,36], i.e. operative decisions are made under perfect information of
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the occurred water inflow scenario. The main objective of the hydrothermal plan-
ning is to minimize the total expected cost of system operation for the given horizon,
and the problem to be optimized is given by (3-1)-(3-5).

Qt(vt−1) = min
gt,ω, ut,ω, vt,ω,

st,ω, ft,ω, θt,ω


ω∈Ωt

∑
ω∈Ωt

pω
[
cT
t gt,ω +Qt+1(vt,ω)

]
(3-1)

subject to

Aft,ω +Bgt,ω + Put,ω = Dt (3-2)

vt,ω = vt−1 −H(ut,ω + st,ω) + wt,ω (3-3)

ft,ω = Sθt,ω (3-4)

(gt,ω, ut,ω, vt,ω, st,ω, ft,ω, θt,ω) ∈ Xt (3-5)

For each stage t in T and scenario ω in Ωt, the decision vector is comprised
of thermal generation, gt,ω; hydro generation, ut,ω; water storage level at the end
of the stage, vt,ω; water spillage, st,ω; power flow in transmission lines, ft,ω; and
bus angle, θt,ω. Demand at each period t is represented by Dt and water inflow
by wt,ω. Additionally, the expected future cost after the end of the considered
horizon, QT+1(·) is fixed and equal to zero. For the sake of simplicity, we de-
fine yt,ω as the vector that encompasses the aforementioned decision variables, i.e.,
yT
t,ω = [gT

t,ω uT
t,ω vT

t,ω sT
t,ω fT

t,ω θT
t,ω]. The decision structure for the hazard-decision

approach is depicted in Figure 3.1.
In the objective function (3-1), ct is the thermal generation row-cost vector.

Nodal power imbalance constraints are translated by equation (3-2), in which A

represents the network incidence matrix, B accounts for the thermal generators bus
location matrix, and P for the bus location matrix for hydro generators, also taking
into account the average productivity transformation from water to energy. Expres-
sion (3-3) guarantees water balance between stages, where H (consisted of +1, 0,
-1 elements) translates the system topology regarding hydro generators. Kircchoff’s
second law is taken into account through expression (3-4), in which the product of
(transposed) incidence matrices and susceptance is represented by matrix S. Con-
straint (3-5) imposes lower and upper limits of the decision variables to form the
feasible set Xt.

Within the hazard-decision approach, decisions are determined individually
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Fig. 3.1: Hazard-decision decision structure

upon the observed scenario, thereby allowing the objective function to be rewritten
as follows.

Qt(vt−1) =
∑
ω∈Ωt

pω

[
min
yt,ω

cT
t gt,ω +Qt+1(vt,ω)

]
(3-6)

Qt(vt−1) =
∑
ω∈Ωt

pω [Qt(vt−1, wt,ω)] (3-7)

Based on equation (3-7), we conclude that, within a hazard-decision frame-
work, for a given initial state vt−1 it is possible to solve the problem individually
for each water inflow scenario subproblem Qt(vt−1, wt,ω) and then compute the ex-
pected value.

Having defined the problem to be solved, we must now determine the future
cost function approximation methodology. The SDDP technique consists of itera-
tively constructing an inferior approximation, which is made by employing Benders
cuts obtained at trial points. Hence, Qt+1(vt,ω) is replaced in the objective function
for the auxiliary variable αt+1, which at iteration m is defined by the following set
of constraints:

αt+1 ≥ Q̃
(k)

t+1(v
(k)
t ) + π̃

(k)
t+1

T
(vt,ω − v(k)

t ) ∀k ≤ m (3-8)
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Where v(k)
t is the final volume trial state at period t iteration k, Q̃(k)

t+1(·) is the
inferior approximation of the expected minimum cost function at period t+1 after k
iterations, and π̃(k)

t+1 translates the expected value of the dual variable π of constraint
(3-3) at t+ 1, iteration k. Thus,

π̃
(k)
t+1 =

∑
ω∈Ωt+1

pωπ
(k)
t+1,ω (3-9)

And the hazard-decision linear program becomes:

Q̃
(m)
t (v

(m)
t−1 , wt,ω) = min

αt+1,yt,ω
cT
t gt,ω + αt+1 (3-10)

subject to

Aft,ω +Bgt,ω + Put,ω = Dt : (τt) (3-11)

vt,ω = v
(m)
t−1 −H(ut,ω + st,ω) + wt,ω : (π

(m)
t,ω ) (3-12)

ft,ω = Sθt,ω (3-13)

αt+1 ≥ Q̃
(k)

t+1(v
(k)
t ) + π̃

(k)
t+1

T
(vt,ω − v(k)

t ) ∀k ≤ m (3-14)

(gt,ω, ut,ω, vt,ω, st,ω, ft,ω, θt,ω) ∈ Xt (3-15)

The adopted convergence criteria in this work follows the methodology uti-
lized in [25] and [37], which considers stabilization both for lower and upper
bounds. Within this technique, the algorithm initially runs a large number of
forward-backward iterations (in this case, 1000). An evaluation step is then per-
formed, for which a simulation for a large number of scenarios is carried out (in
this case, 1000). Next, a few additional forward-backward iterations are executed
(in this case, 100) and a new evaluation step performed. Convergence criteria is met
if lower bound increase between stages lies within an 1% tolerance and a t-test to
check the significance of the difference between the average of both samples does
not reject the null hypothesis. If one of the conditions is not satisfied, 100 more
iterations are carried out and the evaluation process repeated.

After convergence is satisfied, a final Monte Carlo simulation is carried out
for a larger number of scenarios (in this case, 3000). Algorithm 1 summarizes the
SDDP approach for determining the minimal cost of the hydrothermal operation
problem within a hazard-decision framework.
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Algorithm 1 Hazard-decision SDDP
1: procedure FORWARD

2: for t = 1..T do
3: ω ← Rand(Ωt)

4: Solve Q̃(m)
t (v

(m)
t−1 , wt,ω) as in (3-10)-(3-15)

5: end for
6: end procedure
7: procedure BACKWARD

8: for t = T..2 do
9: for every ω ∈ Ωt do

10: Solve Q̃(m)
t (v

(m)
t−1 , wt,ω) as in (3-10)-(3-15)

11: end for
12: Add cut to model at t− 1 as in (3-8)
13: end for
14: end procedure
15: procedure EVALUATION

16: Sample S inflow paths
17: for each sampled path i = 1..S do
18: Forward
19: end for
20: Compute confidence interval
21: end procedure
22: min← 1000, step← 100, S ← 1000, M ← 3000, convergence← false
23: for m = 1..min do
24: Forward
25: Backward
26: end for
27: Evaluation
28: while convergence == false do
29: for m = 1..step do
30: Forward
31: Backward
32: end for
33: Evaluation
34: if lower bound increase ≤ 1% and null hypothesis is not rejected then
35: convergence← true
36: end if
37: end while
38: Sample M inflow paths
39: for each sampled path i = 1..M do
40: Forward
41: end for
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Fig. 3.2: Water inflow scenario tree

3.1.1 Illustrative example

In this section we take a simple example to illustrate the functionality of the
SDDP algorithm based on a hazard-decision approach. The considered system is
constituted by a single bus counting on one hydro generator and two thermal gen-
erators, being one cheap and the other expensive, to attend a constant demand of
100 MWh within a planning horizon equal to T = 3. Water inflow scenarios for
t = 1..T are given by the set Ωt = {100, 50, 30}, all with the same probability,
and illustrated in the scenario tree of Figure 3.2. Hydro production coefficient is
equal to 1 MWh/m3 and the starting volume at the reservoir is 100 m3. Table 3.1
summarizes the data for thermal generators and Table 3.2 for the hydro unit.

Tab. 3.1: Thermal Generators Data

Thermal c G G

Unit (R$/MWh) (MW) (MW)

G1 20 20 0
G2 100 100 0
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Tab. 3.2: Hydro Generator Data (m3)

Hydro Unit V U v0

H 150 105 100

For the given power system, at any t, the linear programming problem to be
solved then becomes as follows:

∼
Q

(m)
t (v

(m)
t−1 , wt,ω) = min

αt+1,g1,t,g2,t
ut,vt,st

20g1,t + 100g2,t + αt+1 (3-16)

subject to

g1,t + g2,t + ut = 100 (3-17)

vt = v
(m)
t−1 − ut − st + wt : (πt) (3-18)

0 ≤ g1,t ≤ 20 (3-19)

0 ≤ g2,t ≤ 100 (3-20)

0 ≤ vt ≤ 150 (3-21)

αt+1 ≥ Q̃
(k)

t+1(v
(k)
t ) + π̃

(k)
t+1

T
(vt,ω − v(k)

t ) ∀k ≤ m (3-22)

At the first iteration (m = 1), supposing scenario w1 = 30 is sampled, we
have:

∼
Q

(1)
1 (100, 30) = min

α2,g1,1,g2,1
u1,v1,s1

20g1,1 + 100g2,1 + α2 (3-23)

subject to

g1,1 + g2,1 + u1 = 100 (3-24)

v1 = 100− u1 − s1 + 30 : (π1) (3-25)

0 ≤ g1,1 ≤ 20 (3-26)

0 ≤ g2,1 ≤ 100 (3-27)

0 ≤ v1 ≤ 150 (3-28)

α2 ≥ 0. (3-29)

Optimizing for (3-23)-(3-29) provides the solution u1 = 100 MW, g1,1 =

g2,1 = 0 MW, which gives the final volume at the reservoir v1 = 30 m3. This is
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the initial volume at t = 2. Then, taking for example w2 = 50 as the randomized
scenario for the next period, we have:

∼
Q

(1)
2 (30, 50) = min

α3,g1,2,g2,2
u2,v2,s2

20g1,2 + 100g2,2 + α3 (3-30)

subject to

g1,2 + g2,2 + u2 = 100 (3-31)

v2 = 30− u2 − s2 + 50 : (π2) (3-32)

0 ≤ g1,2 ≤ 20 (3-33)

0 ≤ g2,2 ≤ 100 (3-34)

0 ≤ v2 ≤ 150 (3-35)

α3 ≥ 0. (3-36)

This time, since there is not enough water to fulfill the demand, the solution
to problem (3-30)-(3-36) is u2 = 80 MW, g1,2 = 20 MW, g2,2 = 0 MW, and the
reservoir is depleted (v2 = 0 m3), with a total cost of $400. Advancing to t = 3,
supposing w3 = 100, the linear program becomes:

∼
Q

(1)
3 (0, 100) = min

α4,g1,3,g2,3
u3,v3,s3

20g1,3 + 100g2,3 + α4 (3-37)

subject to

g1,3 + g2,3 + u3 = 100 (3-38)

v3 = 0− u3 − s3 + 100 : (π3) (3-39)

0 ≤ g1,3 ≤ 20 (3-40)

0 ≤ g2,3 ≤ 100 (3-41)

0 ≤ v3 ≤ 150 (3-42)

α4 ≥ 0. (3-43)

Due to water inflow given by the sampled scenario, there is enough water in
the reservoir to meet the demand. Hence, the solution is u3 = 100 MW, g1,3 =

g2,3 = 0 MW, and the reservoir is once again depleted.
Giving continuity to the SDDP, the algorithm advances to the backward pro-

cedure. At this step, at each period t, every scenario is evaluated in order to define
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the cut to be added at t − 1. Scenario w3 = 100 is the same problem given by
(3-37)-(3-43) solved above, which gives a total cost of $0. Thus, Q1

3(0, 100) = 0

and the dual variable solution is π3 = 0.
Solving for the second scenario w3 = 50, we have:

∼
Q

(1)
3 (0, 50) = min

α4,g1,3,g2,3
u3,v3,s3

20g1,3 + 100g2,3 + α4 (3-44)

subject to

g1,3 + g2,3 + u3 = 100 (3-45)

v3 = 0− u3 − s3 + 50 : (π3) (3-46)

0 ≤ g1,3 ≤ 20 (3-47)

0 ≤ g2,3 ≤ 100 (3-48)

0 ≤ v3 ≤ 150 (3-49)

α4 ≥ 0. (3-50)

Which gives the solution u3 = 50 MW, g1,3 = 20 MW, g2,3 = 30 MW,
depleting the reservoir. This time Q(1)

3 (0, 50) = 3400 and the dual variable solution
is π3 = −100.

Finally, for the third scenario w3 = 30, the problem becomes:

∼
Q

(1)
3 (0, 30) = min

α4,g1,3,g2,3
u3,v3,s3

20g1,3 + 100g2,3 + α4 (3-51)

subject to

g1,3 + g2,3 + u3 = 100 (3-52)

v3 = 0− u3 − s3 + 30 : (π3) (3-53)

0 ≤ g1,3 ≤ 20 (3-54)

0 ≤ g2,3 ≤ 100 (3-55)

0 ≤ v3 ≤ 150 (3-56)

α4 ≥ 0. (3-57)

And the solution is u3 = 30 MW, g1,3 = 20 MW, g2,3 = 50 MW, for a total
cost of Q(1)

3 (0, 50) = 5400 and dual variable solution π3 = −100.
Having solved for all scenarios of t = 3, the algorithm obtains the Benders
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cut that will be used to approximate the recourse function at t = 2, which is given
by:

α3 ≥
0 + 3400 + 5400

3
+

0− 100− 100

3
(v2 − 0) = 2933.33− 66.67v2 (3-58)

The backward step then moves on to t = 2, which now counts with one extra
restriction, given by the newly obtained cut. For the first scenario, w2 = 100, the
problem now becomes:

∼
Q

(1)
2 (30, 100) = min

α3,g1,2,g2,2
u2,v2,s2

20g1,2 + 100g2,2 + α3 (3-59)

subject to

g1,2 + g2,2 + u2 = 100 (3-60)

v2 = 30− u2 − s2 + 100 : (π2) (3-61)

0 ≤ g1,2 ≤ 20 (3-62)

0 ≤ g2,2 ≤ 100 (3-63)

0 ≤ v2 ≤ 150 (3-64)

α3 ≥ 2933.33− 66.67v2. (3-65)

Solving to optimality, we obtain u2 = 86 MW, g1,2 = 14 MW and g2,2 =

0 MW. Notice that, in spite of counting with enough water to attend the immediate
demand, only 86 MW is generated by the hydroelectric, resulting in a final volume
of v2 = 44 m3 and an immediate cost of $280. This water is stored for future
use and is a consequence of the introduction of restriction (3-65), which begins to
translate the future cost function.

The backward procedure continues until reaching t = 1, then moves on to
the next iteration, and repeats it, introducing new cuts to the problems, while the
convergence criteria is not met.

3.2 Time-inconsistency due to perfect information simplification

ISOs often adopt hazard-decision models for determining the operation plan-
ning of hydrothermal power systems. Such an approach may be explained due to
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problem complexity and, consequently, computational effort required to obtain an
acceptable solution. As explained in Section 4.1, incorporation of non-anticipativity
constraints may significantly increase the number of variables and restrictions of the
problem, as it does not allow scenario decomposition. Nevertheless, it is important
to keep in mind that assuming (unrealistic) perfect information of water inflow may
lead to time-inconsistent decisions.

As explained in Chapter 1, due to energetic restrictions of technical or eco-
nomic nature, baseload suppliers and gas-fired units must be informed in advance
of their planned dispatch. Thus, the decision of how much energy each of these
plants shall generate in a given period must be determined before the observation
of water inflow. In other words, this is a stochastic two-stage decision problem, for
which the energy dispatch of slow response suppliers and gas-fueled power plants
is made under uncertainty, while the remaining thermal and hydro units constitute
the second-stage adaptive decision set.

Indeed, after being provided with a cost-to-go function obtained based on a
hazard-decision model, for the short-term operation a different approach must be
adopted to determine first-stage units dispatch. In this work we apply a procedure
that utilizes the expected value of water inflow scenarios to determine first-stage
decision variables.

3.2.1 Illustrative example

In this section, the inconsistency due to the adoption of a hazard-decision
model to determine hydrothermal operation is exemplified. Based on the same
example utilized to illustrate the SDDP methodology in Section 3.1, the results
obtained with an operation conducted within a hazard-decision framework is com-
pared to the one resulted from the approach that determines first-stage decision
variables utilizing the expected value of water inflow, for which the cheap thermal
unit is considered a first-stage decision variable. This approach is closely related to
the short-term operation employed in the Brazilian power system, as explained in
Chapter 2, and was equally employed in [2].

After executing forward-backward iterations a sufficient number of times to
attain convergence, as recorded in Algorithm 1, a final simulation is carried out
for every possible inflow path of the scenario tree depicted in Figure 3.2. Energy
dispatch for the thermal units obtained with each of the procedures described are
compared in Figure 3.3.
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Fig. 3.3: Thermal units dispatch

Note that for the case where the expected value of water inflow is used to
determine first-stage dispatch, the generation of g1 is the same for every branch of
the tree that comes out of a given node and how it differs from the hazard-decision
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approach. The difference presented between the two policies is an exemplification
of time-inconsistency, since the hazard-decision approach is in accordance with the
perfect-information structure assumed by the ISO at the planning stage.

By calculating the expected operational cost as in expression (3-66), we obtain
a result equal to $1,274 for the hazard-decision policy and $1,630 for the expected
value of inflow, an overcost of 27.9% due to suboptimal decisions.

Expected cost =
1

M

M∑
m=1

T∑
t=1

c1g1,m,t + c2g2,m,t (3-66)
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4
Proposed Model: Decision-Hazard

In order to obtain a more consistent solution, in this chapter we analyze a
model that does not consider approximations related to scenario anticipation. Dif-
ferently from the hazard-decision approach, within a decision-hazard framework,
for a given set of variables the decision process is made under scenario uncer-
tainty. Hence, for these variables the decision must be made in anticipation of the
information-revelation process. Figure 4.1 illustrates the decision structure for the
decision-hazard approach.

4.1 Two-stage decision-hazard approach

The most straightforward method to adapt the original hazard-decision oper-
ation planning model consists of including non-anticipativity constraints associated
with the first-stage variables. By introducing the decision variable got , representing
the first-stage dispatch, and expression (4-5), we guarantee that, at period t, for ev-
ery thermal generator j in the first-stage generators set J , power generation must be
the same for every scenario ω in Ωt.

Incorporating the necessary changes, the problem for determining the mini-
mal expected cost for the hydrothermal operation within a decision-hazard frame-
work becomes:

Qt(vt−1) = min
{got ,yt,ω}ω∈Ωt

∑
ω∈Ωt

pω
[
cT
t gt,ω +Qt+1(vt,ω)

]
(4-1)

subject to

Aft,ω +Bgt,ω + Put,ω = Dt ∀ω ∈ Ωt (4-2)

vt,ω = vt−1 −H(ut,ω + st,ω) + wt,ω ∀ω ∈ Ωt (4-3)

ft,ω = Sθt,ω ∀ω ∈ Ωt (4-4)

gj,t,ω = goj,t ∀ω ∈ Ωt,∀j ∈ J (4-5)

(gt,ω, ut,ω, vt,ω, st,ω, ft,ω, θt,ω) ∈ Xt ∀ω ∈ Ωt (4-6)

Inclusion of non-anticipativity constraints, on the one hand provides a more
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Fig. 4.1: Decision-hazard decision structure

precise solution, on the other hand, however, as it couples the subproblems related to
each scenario of the current period, the problem is no longer scenario-decomposable
and rewriting it as in (3-7) is not possible. Nonetheless, it is still possible to solve
the decision-hazard problem using the SDDP methodology. To do so, we must
then define the new Benders cuts that can successfully approximate the future cost
function.

By obtaining the dual of the problem above, since constraint (4-3) is indexed
to the scenarios, its dual variable is determined by the sum of the duals for each
scenario ω in Ωt. Thus,

πt =
∑
ω∈Ωt

πt,ω (4-7)

By analyzing the hazard-decision SDDP problem, we notice that at each back-
ward iteration one single cut, based on the average future cost of the possible sce-
narios at t, is added to t − 1, which, in turn, is valid for every single scenario of
the problem in t− 1. To treat this problem in a similar manner, we must then intro-
duce one restriction for each scenario. Hence, one single cut is formed by a set of
restrictions equal to the number of scenarios, and the set of constraints that define
the auxiliary variable αt+1 in this case becomes
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αt+1,ω ≥ Q̃(k)
t+1(v

(k)
t ) + π̃

(k)
t+1

T
(vt,ω − v(k)

t ) ∀ω ∈ Ωt,∀k ≤ m (4-8)

And the linear programming model within the decision-hazard framework
becomes as given by equations (4-9)-(4-15).

Q̃(m)
t (v

(m)
t−1) = min

{αt+1,ω ,got ,yt,ω}ω∈Ωt

∑
ω∈Ωt

pω
[
cT
t gt,ω + αt+1,ω

]
(4-9)

subject to

Aft,ω +Bgt,ω + Put,ω = Dt ∀ω ∈ Ωt : (τt) (4-10)

vt,ω = v
(m)
t−1 −H(ut,ω + st,ω) + wt,ω ∀ω ∈ Ωt : (π

(m)
t,ω ) (4-11)

ft,ω = Sθt,ω ∀ω ∈ Ωt (4-12)

gj,t,ω = goj,t ∀ω ∈ Ωt,∀j ∈ J (4-13)

αt+1,ω ≥ Q̃(k)
t+1(v

(k)
t ) + π̃

(k)
t+1

T
(vt,ω − v(k)

t ) ∀ω ∈ Ωt,∀k ≤ m (4-14)

(gt,ω, ut,ω, vt,ω, st,ω, ft,ω, θt,ω) ∈ Xt ∀ω ∈ Ωt (4-15)

Despite the more realistic solution provided by the decision-hazard approach,
there is a plausible reason not to employ it: computational effort. As mentioned
above, the introduction of non-anticipativity constraints transforms the problem
into non-scenario-decomposable. Consequently, for every second-stage decision
variable in this method, a number of variables equal to the number of scenarios is
required. Moreover, apart from the number of restrictions that represent each cut,
which is increased by a factor of |Ωt| per iteration, the initial number of restrictions
is equally multiplied by the number of scenarios.

From the SDDP perspective, differently from the hazard-decision approach,
in the forward step, instead of solving the problem for one particular scenario cho-
sen randomly, all scenarios are evaluated at once. Next, one single scenario is se-
lected, which will then determine the final volume to be used as the initial state in
the subsequent period. Analogously, in the backward step, instead of repeatedly
solving the problem for one scenario at a time, every possible outcome of a given
period is evaluated at a single call of the problem. Hence, since a solution cannot
be obtained for one scenario individually, at each iteration k of the algorithm, at
period t the problem solved in the forward stage is exactly the same of the one in
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Algorithm 2 Decision-hazard SDDP
1: procedure FORWARD

2: for t = 1..T do
3: Solve Q̃(m)

t (v
(m)
t−1) as in (4-9)-(4-15)

4: ω ← Rand(Ωt)
5: end for
6: end procedure
7: procedure BACKWARD

8: for t = T..2 do
9: Solve Q̃(m)

t (v
(m)
t−1) as in (4-9)-(4-15)

10: Add cut to model at t− 1 as in (4-8)
11: end for
12: end procedure
13: procedure EVALUATION

14: Sample S inflow paths
15: for each sampled path i = 1..S do
16: Forward
17: end for
18: Compute confidence interval
19: end procedure
20: min← 1000, step← 100, S ← 1000, M ← 3000, convergence← false
21: for m = 1..min do
22: Forward
23: Backward
24: end for
25: Evaluation
26: while convergence == false do
27: for m = 1..step do
28: Forward
29: Backward
30: end for
31: Evaluation
32: if lower bound increase ≤ 1% and null hypothesis is not rejected then
33: convergence← true
34: end if
35: end while
36: Sample M inflow paths
37: for each sampled path i = 1..M do
38: Forward
39: end for

the backward step, apart from the cut obtained in t + 1, formed by a set of |Ωt|
restrictions. Algorithm 2 summarizes the decision-hazard approach solution for the
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problem.
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Fig. 4.2: Thermal units dispatch
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4.1.1 Illustrative example

We take the same example used in section 3.2 to illustrate the difference on
the solution obtained with a decision-hazard consistent methodology. As before,
the results obtained after convergence has been reached are presented for every
possible inflow path of the scenario tree of Figure 3.2. Energy dispatch for each of
the thermal units are shown in Figure 4.2, both for the consistent and inconsistent
approaches.

In both cases, generation of g1, the first-stage variable, is equal for every
branch of the three that comes out of a given node. Notice, however, how the op-
timal solution for each policy differ one from another, due to the approximations
employed in the inconsistent methodology. Even though, at t = 1, thermal gener-
ation is superior within the consistent methodology, incurring a higher immediate
cost, dispatch of the expensive thermal unit is limited to a minimum. As a result,
the expected operational cost is $1,592, inferior to that obtained based on the incon-
sistent approach, equal to $1,630.

4.2 Augmented-state decomposable decision-hazard approach

It is clear that implementation of the decision-hazard model as presented con-
siderably increases the time required to find an appropriate solution. Not only dur-
ing the forward-backward recursion, but specially in the final simulation step that
provides the upperbound of the problem, since the forward procedure of the algo-
rithm is considerably affected.

However, an alternative approach that substantially reduces the number of
variables and restrictions of the subproblem, yet providing similar results is possi-
ble. Instead of handling the immediate cost at each period as a two-stage problem,
it is possible to incorporate the first-stage variables into the system’s state and let
the dispatch of these generators be an argument of the future cost function of the
preceding period. Consequently, the decision vector at period t includes not only
the generation of the second-stage variables at t, but also of the first-stage variables
at t + 1. This is done by means of the decision variable got+1|t, which stands for
the first-stage generation at t + 1 given the conditions at the end of period t, and
guaranteed by expression (4-19). The adaptation results in the following:
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Qt(vt−1, g
o
t|t−1) = min

{got+1|t,yt,ω}ω∈Ωt

∑
ω∈Ωt

pω
[
cT
t gt,ω +Qt+1(vt,ω, g

o
t+1|t)

]
(4-16)

subject to

Aft,ω +Bgt,ω + Put,ω = Dt (4-17)

vt,ω = vt−1 −H(ut,ω + st,ω) + wt,ω (4-18)

gj,t,ω = got+1|t ∀j ∈ J (4-19)

ft,ω = Sθt,ω (4-20)

(got+1|t, gt,ω, ut,ω, vt,ω, st,ω, ft,ω, θt,ω) ∈ Xt (4-21)

By incorporating the first-stage decision variables into the system’s state, we
obtain once again a scenario-decomposable problem. Hence, we are able to rewrite
the objective function as

Qt(vt−1, g
o
t|t−1) =

∑
ω∈Ωt

pω

[
min

go
t+1|t,yt,ω

cT
t gt,ω +Qt+1(vt,ω, g

o
t+1|t)

]
(4-22)

Qt(vt−1, g
o
t|t−1) =

∑
ω∈Ωt

pω
[
Qt(vt−1, g

o
t|t−1, wt,ω)

]
(4-23)

From equation (4-23), similarly to the hazard-decision problem, within the
augmented-state approach, for a given initial state (vt−1, g

o
t|t−1), defined by the ini-

tial volume in the hydro reservoirs and the dispatch for the first-stage generators set
J , it is possible to solve each subproblem determined by the water inflow scenar-
ios wt,ω individually and then obtain the expected value. Therefore, the proposed
methodology results in a decision-hazard structure problem that may be solved
through a hazard-solution methodology.

As before, following the SDDP technique, an inferior approximation of the
future expected cost Qt(vt−1, g

o
t|t−1) based on Benders cuts must be established.

These cuts must take into account all state variables, which now include not only
the dual of restriction (4-17), π, but also the dual of restrictions (4-19), γj . Thus,
the auxiliary variable αt+1 becomes
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αt+1 ≥ Q̃
(k)

t+1(v
(k)
t , g

o(k)
t+1|t) + π̃

(k)
t+1

T
(vt,ω − v(k)

t ) +
∑
j∈J

γ̃
(k)
j,t+1

T
(goj,t+1|t − g

o(k)
j,t+1|t) ∀k ≤ m

(4-24)

Analogously to (3-9), π̃(k)
t+1 translates the expected value of the dual variable

π of constraint (4-18) at t+1, iteration k; and γ̃(k)
j,t+1 translates the expected value of

the dual variable γj of constraint (4-19) for each j ∈ J , represented by expressions
(4-25) and (4-26), respectively.

π̃
(m)
t+1 =

∑
ω∈Ωt+1

pωπ̃
(m)
t+1,ω (4-25)

γ̃
(m)
j,t+1 =

∑
ω∈Ωt+1

pωγ̃
(m)
j,t+1,ω (4-26)

As a result, the proposed augmented-state decision-hazard linear program-
ming model becomes

Q̃
(m)
t (v

(m)
t−1 , g

o(m)
t|t−1, wt,ω) = min

αt+1,got+1|t,yt,ω
cT
t gt,ω + αt+1 (4-27)

subject to

Aft,ω +Bgt,ω + Put,ω = Dt : (τt) (4-28)

vt,ω = v
(m)
t−1 −H(ut,ω + st,ω) + wt,ω : (π

(m)
t,ω ) (4-29)

gj,t,ω = g
o(m)
t+1|t ∀j ∈ J : (γ

(m)
j,t,ω) (4-30)

ft,ω = Sθt,ω (4-31)

αt+1 ≥ Q̃
(k)

t+1(v
(k)
t , g

o(k)
t+1|t) + π̃

(k)
t+1

T
(vt,ω − v(k)

t )+∑
j∈J

γ̃
(k)
j,t+1

T
(goj,t+1|t − g

o(k)
j,t+1|t) ∀k ≤ m (4-32)

(got+1|t, gt,ω, ut,ω, vt,ω, st,ω, ft,ω, θt,ω) ∈ Xt (4-33)

At each iteration, similarly to the original hazard-decision model, at period
t, one cut composed by only one restriction is included in the model of t − 1.
When compared to the hazard-decision model, however, this cut has its dimension
increased in |J |, the number of first-stage generators. Furthermore, the number of
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variables, as well as the initial restrictions, is also augmented by |J |, due to the
additional decision variable got|t−1 and constraint (4-30).

For t = 2..T , first-stage variables gj,t,ω have their values determined by means
of constraint (4-30), obtained at t− 1. Constraint (4-33), which defines the feasible
set, is enough to guarantee that got+1|t will not lead the the model at t + 1 to an
unfeasible solution.

To determine got=1|0, the first-stage decision at t = 1, however, a pre-dispatch
model is necessary. Its objective function is constituted solely by the expected
future-cost function, and its initial restrictions are the upper and lower generation
limits of the first-stage generators, given by (4-35). This constraint is enough to
define a feasible set at t = 0 that does not lead the model at t = 1 to an unfeasible
solution. The pre-dispatch model within the SDDP approach is then:

Q̃
(m)
0 (g

o(m)
t=0 ) = min

α1,got=1|0

α1 (4-34)

subject to

gomin ≤ got=1|0 ≤ gomax (4-35)

α1 ≥ Q̃
(k)

1 (v0, g
o(k)
t=1|0) +

∑
j∈J

γ̃
(k)
j,1

T
(goj,t=1|0 − g

o(k)
j,t=1|0) ∀k ≤ m (4-36)

Notice that in expression (4-36), since vt for t = 0 is the initial state of the
system, cuts of the pre-dispatch model do not depend on the variation of the volume
at the reservoirs. Algorithm 3 summarizes the minimal cost dispatch problem within
a decision-hazard framework using the augmented-state solution methodology.

The SDDP algorithm described in this section provides similar results to the
one presented in section 4.1, but with considerable improvements on computational
performance. For the illustrative example presented in the previous section, where
the difference between upper and lower bounds is null, results are exactly the same.
In Chapter 5, the proposed methodology is employed to estimate the impact due to
ignoring non-anticipativity restrictions on hydrothermal power systems operation
planning.
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Algorithm 3 Hazard-decision SDDP using state variables
1: procedure FORWARD

2: Solve Q̃(m)
0 as in (4-34)-(4-36)

3: for t = 1..T do
4: ω ← Rand(Ωt)

5: Solve Q̃(m)
t (v

(m)
t−1 , g

o(m)
t|t−1, wt,ω) as in (4-27)-(4-33)

6: end for
7: end procedure
8: procedure BACKWARD

9: for t = T..1 do
10: for every ω ∈ Ωt do
11: Solve Q̃(m)

t (v
(m)
t−1 , g

o(m)
t|t−1, wt,ω) as in (4-27)-(4-33)

12: end for
13: if t 6= 1 then
14: Add cut to model at t− 1 as in (4-24)
15: else
16: Add cut to model at t = 0 as in (4-36)
17: end if
18: end for
19: end procedure
20: procedure EVALUATION

21: Sample S inflow paths
22: for each sampled path i = 1..S do
23: Forward
24: end for
25: Compute confidence interval
26: end procedure
27: min← 1000, step← 100, S ← 1000, M ← 3000, convergence← false
28: for m = 1..min do
29: Forward
30: Backward
31: end for
32: Evaluation
33: while convergence == false do
34: for m = 1..step do
35: Forward
36: Backward
37: end for
38: Evaluation
39: if lower bound increase ≤ 1% and null hypothesis is not rejected then
40: convergence← true
41: end if
42: end while
43: Sample M inflow paths
44: for each sampled path i = 1..M do
45: Forward
46: end for
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5
Case Study

In this chapter we analyze the effects of adopting a decision-hazard model
instead of a hazard-decision on the hydrothermal system operation planning. Based
on the time inconsistency concept discussed in Chapter 3, the impact due to ignoring
non-anticipativity restrictions is estimated for the Brazilian power system. To do
so, it is necessary to define the parameters that will be employed to compare the
different policies considered.

5.1 Policies definition

We begin by determining the dispatch policies from which the results are
gathered. In this work, three different policies based on the models presented are
utilized, each one of them defined as follows.

In the first policy, both the planning and simulation are implemented follow-
ing a hazard-decision approach, as illustrated in Algorithm 1. This is the expected
operation behavior from the ISO’s perspective, and will hereinafter be referred to as
planning policy.

Short-term operation, however, does not utilize the hazard-decision approach
to determine the operation. In spite of being provided with a cost-to-go function
obtained using the hazard-decision framework, the implementation put into effect
is a two-stage decision method. In this work, for the second dispatch policy, first-
stage decision variables are determined based on the expected value of water in-
flow scenarios, the same methodology utilized in [2]. From the definition of time-
consistency in [22], a policy to be regarded as consistent must adopt on its cali-
bration process a model that reflects the problem that will be actually going to be
implemented in the future, an approach that does not correspond to the methodology
described. Therefore, this policy will be referred to as inconsistent policy.

The third dispatch policy is the one obtained within the decision-hazard
framework both on planning and implementation phases. Algorithms 2 and 3 corre-
spond to this definition and provide similar results, only with differences on compu-
tational performance. Since this policy agrees with the time-consistency definition
provided, it will be referred to as consistent policy.

It is important to emphasize that this is a reduced study based on the Brazilian
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power system and that reality is more complex than what is reflected here, with
many other uncertainties ignored in this study. The objective is to illustrate how
results could be affected if reality was to be implemented following a decision-
hazard model, but planned based on a hazard-decision structure. In practice, this is
a more complex process and the resulting gap should be greater.

5.2 Time-inconsistency gap and the consistency benefit

The methodology described for the inconsistent policy is an attempt to em-
ulate a decision-hazard implementation, for it predetermines the energy dispatch
for some of the generators before the information-revelation process. Given the
convexity of the cost function, determined by the generators individual costs and
capacities, this water inflow simplification may result in severe discrepancies when
compared to a more precise methodology, easily seen from Jensen’s inequality. Fur-
thermore, within this policy, first-stage decisions are not only determined based on a
non-realistic scenario, but it also utilizes a future-cost function obtained from a per-
fect information decision approach. Consequently, the attained solution may greatly
differ both from the hazard-decision and decision-hazard models, potentially lead-
ing to suboptimal results.

With a view to measure the effect of the inconsistent policy, we will adopt the
time-inconsistency gap introduced in [22] and extended in [25]. The inconsistency
gap is estimated by computing the difference on total operational cost between im-
plemented (inconsistent) and planning policies.

GAP =
1

M

M∑
i=1

T∑
t=1

cT
t g

incon
t,i − 1

M

M∑
i=1

T∑
t=1

cT
t g

plan
t,i (5-1)

Where gincont,i and gplant,i represent the thermal generation decision variable at
period t, simulation path i obtained from the inconsistent and planning policies,
respectively.

It is also possible to estimate the impact due to adopting a consistent policy
instead of an inconsistent one. Based on the time-inconsistency gap, by computing
the difference between inconsistent and consistent policies on the total operational
cost we obtain the consistency benefit:
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Benefit =
1

M

M∑
i=1

T∑
t=1

cT
t g

incon
t,i − 1

M

M∑
i=1

T∑
t=1

cT
t g

con
t,i (5-2)

Where, similarly to (5-1), gcont,i is the thermal generation decision variable at
period t, simulation path i obtained from the consistent policy. The consistency
benefit reflects the potential cost reduction induced by the adoption of a consistent
policy. In order to avoid estimation error due to sampling, in the following study all
policy simulations are executed based on the same inflow paths sample.

5.3 Expected value of one-step ahead information

Both the hazard-decision and decision-hazard approaches, by means of the
algorithms presented on Section 3.1 and Chapter 4, provide an estimation of the
expected cost of system operation, namely planning and consistent policy, respec-
tively. The former translates a perfect information approach of the total operational
cost, assuming that the operator always has perfect knowledge of the water inflow
scenario beforehand, while the latter, in contrast, incorporates scenario uncertainty
to the decision-making process. Hence, from expressions (3-1) and (4-16), by con-
struction, we have:

1

M

M∑
i=1

T∑
t=1

cT
t g

plan
t,i ≤

1

M

M∑
i=1

T∑
t=1

cT
t g

con
t,i (5-3)

Thermal generation for the consistent policy gcont includes both first- and
second-stage decision variables. However, if the scenario is known beforehand, the
first-stage dispatch got|t−1 is determined under perfect information and equality is
attained. Hence, based on the concept of the expected value of perfect information
(EVPI), we define the expected value of the one-step-ahead information (EVOSAI)
as:

EV OSAI =
1

M

M∑
i=1

T∑
t=1

cT
t g

con
t,i −

1

M

M∑
i=1

T∑
t=1

cT
t g

plan
t,i (5-4)
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Which can be viewed as the value the ISO would be inclined to pay to gain
access to perfect scenario information at each period t. EVOSAI can be equally
determined by computing the difference between time-inconsistency gap and the
consistency benefit, given by equations (5-1) and (5-2).

5.4 Price of energy

Another relevant aspect of electrical systems operation is the price of energy.
How to determine the amount to be charged for each megawatt-hour is a matter of
long discussion, particularly for system highly depending on hydroelectric power.
Conditional upon local regulations, prices can be determined either by energy mar-
ket mechanisms alone or according to explicit rules, the latter being the most com-
mon method for system relying on ISOs.

In general, prices are based on the marginal cost of energy for immedi-
ate delivery, commonly referred to as spot prices. As proposed by [46], for this
study we adopt spot prices as the dual variable of power imbalance constraints,
namely expressions (3-11) and (4-28) for hazard-decision and decision-hazard with
augmented-state, respectively. For a given period, spot prices are fixed and deter-
mined individually for each of the buses that compose the system.

5.5 Results analysis

The case study presented in this work is based on the Brazilian power system,
for which the inconsistent policy is closely related to the currently implemented
method throughout the whole operation process determination. The objective here
is to estimate the impact of adopting a decision-hazard approach for hydrothermal
operation planning. To do so, we obtain the results for all three policies presented
in Section 5.1 and compare the effects of each one of them on system’s behavior,
paying special attention to the operational cost and spot prices, as well as computa-
tional performance. All cases were run with Julia version 0.5.1 using an Interl(R)
Xeon(R) CPU E5-2680 v3 @ 2.5GHz with 128GB of RAM memory.

The National Interconnected Power System (NIPS) is constituted of four dis-
tinct subsystems, namely, Southeast/Center-West (SE/CO), South (S), Northeast
(NE), and North (N). In this version, hydro plants are aggregated into four different
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Tab. 5.1: Hydro unit data

Subsystem umax(MWh) vmax(MWmonth) v0(MWmonth)

SE/CO 45829.1 200717.6 119428.8
S 13381.8 19617.2 11535.1

NE 89780.9 51806.1 29548.2
N 7740.2 12679.9 6649.4

Tab. 5.3: Second-stage generator data

Subsystem Units Gmax(MWh) Gmin(MWh)

SE/CO 13 2057 (8.99%) 430 (1.88%)
S 3 277 (1.21%) 34 (0.15%)

NE 30 2953 (12.90%) 0
N 10 1000 (4.37%) 233 (1.02%)

Total 56 6287 (27.47%) 697 (3.05%)

reservoirs, each one of them located in one of the subsystems. The system is also
constituted of 10 transmission lines and 111 thermal plants distributed throughout
the subsystems, from which 55 are to be considered first-stage thermal units (2 nu-
clear, 11 coal, and 42 gas-fired). Table 5.1 summarizes hydro units main details,
while Tables 5.2 and 5.3 present thermal generators data, which are based on the
Brazilian system data utilized in July 2017.

Tab. 5.2: First-stage generator data

Subsystem Units Gmax(MWh) Gmin(MWh)

SE/CO 24 8788 (38.40%) 1600 (6.99%)
S 10 2498 (10.92%) 738 (3.22%)

NE 8 2860 (12.50%) 0
N 13 2451 (10.71%) 0

Total 55 16597 (72.53%) 2338 (10.21%)

The planning horizon considered in this study is 5 years long on a monthly
basis and with a discount rate of 0.5% per month, i.e., approximately 6.2% per
year. In order to avoid end effects ( [47]), the forward-backward iterations step
is conducted considering a total period of 7 years. The simulation step is then
carried out for the first 60 months only, based on a 3000 inflow paths sample. The
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inflow scenarios utilized in this study are based on monthly observations for the
four equivalent reservoirs from 1991 to 2015, totalizing 25 observations per month.
A periodic autoregressive model of order 1 was also utilized, so as to incorporate
intertemporal effects of water inflow. The adopted convergence criteria in this work
follows the methodology utilized in [25] and [37], which considers stabilization
both for lower and upper bounds.

By comparing the results obtained with the planning and inconsistent poli-
cies it is possible to estimate the effects of time-inconsistency due to ignoring non-
anticipativity restrictions during the planning phase. Figure 5.1 shows the differ-
ence on total energy dispatch for first- and second-stage thermal plants, given by
their mean and the 5% and 95% percentiles. For the inconsistent policy, since first-
stage decisions are determined based on the expected water inflow of the upcoming
period, energy generation of these units, on average, are slightly lower than in the
planning policy, as it lessens the impact of the most pessimistic scenarios. How-
ever, the opposite effect is observed for second-stage thermal units, as it is forced to
absorb the difference in order to prevent shortages.

In Brazil, since most of the energy demand is met by hydros, energy prices
augment with the beginning of the dry season, which occurs between the months
of May and November. Such behavior is particularly remarkable in the NE, a sub-
system for which spikes in spot prices is a well-known characteristic during the
mentioned period. Hence, given the fact that cost of energy for first-stage thermal
generators are in general lower, increase of second-stage energy dispatch causes
a similar effect on spot prices. As shown in Figures 5.2 and 5.3, spikes on the
marginal cost of energy correlate with periods of higher generation of thermal units
and is considerably affected by second-stage thermal generation increase, resulting
in higher spot prices for the inconsistent policy.

Increase of energy generation on more expensive thermal units also impact
on operation cost. Based on the planning policy, which corresponds to the ISO’s
perspective, the expected operational cost for a 5 years period is MM$12,467.7.
Meanwhile, the inconsistent policy indicates an expected cost of MM$13,960.4.
Hence, the inconsistency gap related to the hazard-decision approach is equal to
MM$1,492.66, representing an increase of 11.97% over the original expected cost.
The adoption of a consistent policy, however, provides an expected reduction of
$738.14, which is half of this overcost. Figure 5.4 illustrates the inconsistency gap
and consistency benefit obtained within a 95% confidence interval.
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Fig. 5.1: Thermal dispatch for planning and inconsistent policies
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Fig. 5.2: Spot prices for planning and inconsistent policies
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Fig. 5.3: Spot prices for planning and inconsistent policies (cont.)
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Fig. 5.4: Inconsistency gap and consistency benefit

The reason for this reduction may be explained by analyzing the system’s
operation when comparing the thermal dispatch resulted from the inconsistent and
consistent policies. As shown in Figure 5.5, generation of first-stage thermal units
tend to be higher for the latter, however, the spikes on energy dispatch of second-
stage thermal plants observed previously are significantly reduced within this policy.

Again, since cost of energy of second-stage thermal generators is in general
higher than first-stage units, the consistent policy presents much less pronounced
spikes on energy prices with the beginning of the dry season. Moreover, the increase
of first-stage energy generation results in lower variability of the marginal cost of
energy throughout the whole simulated horizon. As before, such behavior is more
easily seen on the NE subsystem.

Another relevant aspect of system’s operation within the consistent policy is
related to hydro reservoirs. Similarly to the behavior of spot prices, water volume in
the reservoirs present lower variability in the consistent policy, and superior levels of
storage for most of the considered period. Figures 5.8 and 5.9 depict the reservoirs
situation.

The elapsed time of the different algorithms tested are summarized in Table
5.4. The HD algorithm is the hazard-decision approach, equivalent to the planning
policy, and corresponds to Algorithm 1; DH Two-stage is the decision-hazard im-
plementation using non-aticipativity constraints, presented in Section 4.1 by means
of Algorithm 2; DH Augmented-state is the proposed methodology presented in
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Fig. 5.5: Thermal dispatch for inconsistent and consistent policies
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Fig. 5.6: Spot prices for inconsistent and consistent policies
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Fig. 5.7: Spot prices for inconsistent and consistent policies (cont.)

DBD
PUC-Rio - Certificação Digital Nº 1521410/CA



5. CASE STUDY 58

0

50000

100000

150000

200000

250000

En
er
gy
 st
or
ag
e 
(M

W
m
on

th
)

Consistent Avg Consistent 5% Consistent 95% Inconsistent Avg Inconsistent 5% Inconsistent 95%

(a) Southeast Subsystem

0

5000

10000

15000

20000

25000

En
er
gy
 st
or
ag
e 
(M

W
m
on

th
)

Consistent Avg Consistent 5% Consistent 95% Inconsistent Avg Inconsistent 5% Inconsistent 95%

(b) South Subsystem

Fig. 5.8: Energy storage at the reservoirs
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Fig. 5.9: Energy storage at the reservoirs (cont.)

DBD
PUC-Rio - Certificação Digital Nº 1521410/CA



5. CASE STUDY 60

Section 4.2 and described in Algorithm 3.

Tab. 5.4: Elapsed time (sec)

Algorithm Iterations Simulation Total

HD 1,535 223 1,758
DH Two-stage 25,003 12,178 37,181

DH Augmented-state 6,699 1,981 8,680

As explained in Chapter 4, the forward procedure of DH Two-stage algorithm
is severely impacted due to problem structure, being the reason of time increasing
both for the iteration and simulation steps, since the former also comprehend an
evaluation procedure to determine stopping criterion. Based on the elapsed time
obtained for this study, we notice that the incorporation of non-anticipativity con-
straints increases the total required time by a factor of 21, which can be limited to
less than 25% of that value by adopting the proposed augmented-state methodology.
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6
Conclusions

Planning and operation of real life hydrothermal power systems regularly ap-
proximate or even neglect some restrictions when translating the problem to math-
ematical models. Precise representation of complex problems may be very difficult
or require excessive computational effort to solve. Literature on the subject in-
dicates that policies based on underestimated future scenarios may lead to worst
operational results.

From that perspective, this work discusses the impacts on the operation of
a hydrothermal power system due to an information-revelation structure simplifi-
cation of the decision process. Furthermore, a solution methodology is presented
in order to incorporate the decision-hazard process to a multistage problem, yet
ensuring computational performance. By incorporating first-stage decision vari-
ables to the system’s state, the proposed methodology ensures that the problem is
non-anticipative and scenario-decomposable, therefore providing a hazard-decision
solution methodology to a decision-hazard problem.

Results based on the Brazilian power system show that adopting a (consistent)
decision-hazard process not only reduces the overall operational cost by diminish-
ing the energy supply of more expensive thermal generators, but also provides re-
duced peaks of spot prices as well as lower variability of both spot prices and water
storage on hydro reservoirs. Moreover, the proposed methodology significantly re-
duces the elapsed time to obtain a solution when compared to a decision-hazard
model that utilizes non-anticipativity constraints.

As announced recently by the Brazilian Electricity Regulatory Agency
(ANEEL), hourly prices will be adopted in the country in 2019. Adequate approx-
imation of the daily process in the long-term operation planning will, therefore,
become even more important in the near future. Increasing participation of renew-
able sources, already experienced presently, will also demand a satisfactory repre-
sentation of the uncertainties during the planning phase. Despite the improvement
presented in this work, there is still room for progress.
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6.1 Next steps

Computational performance may be considerably improved for the
augmented-state solution approach, therefore reducing even more the difference
between the hazard-decision and the decision-hazard approaches, based on the pro-
posed methodology.

Depending on the number of thermal generators to be considered as first-
stage variables, the presented model may excessively increase the number of state
dimensions, and consequently the required memory to treat the problem. However,
reducing the impact on computer memory by taking advantage of the problem’s
characteristics is possible. Given that all electrical restriction are respected, energy
dispatch is determined by economic reasons alone, i.e., thermal units are called to
supply in ascending order of cost until fulfilling the demand. Hence, instead of
treating first-stage generators individually, these units may be assembled based on
bus location. In this manner, increasing of state’s dimension is limited to the number
of buses in the system, each of which determining the total sum of energy supplied
by thermal plants located on that particular bus. Thus, constraint (4-30) is replaced
by (6-1).

∑
j∈J

gj,t,ω = Gs,t|t−1 ∀s ≤ S : (γs,t) (6-1)

Where S represents the number of buses of the system, Gs,t|t−1 is the total
generation of first-stage thermal plants in bus s at period t determined in t− 1, and
J is the set of first-stage generators formed by the partitions indexed to each of the
buses of the system, i.e., J = ∪Ss=1Js. Thus, the problem becomes:

Q̃
(m)
t (v

(m)
t−1 , G

(m)
t|t−1, wt,ω) = min

{αt+1,ω ,Gt+1|t,yt,ω}ω∈Ωt

cT
t gt,ω + αt+1 (6-2)

subject to

Aft,ω +Bgt,ω + Put,ω = Dt : (τt) (6-3)

vt,ω = v
(m)
t−1 −H(ut,ω + st,ω) + wt,ω : (πmt,ω) (6-4)∑

j∈J

gj,t,ω = G
(m)
s,t|t−1 ∀s ≤ S : (γms,t) (6-5)
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ft,ω = Sθt,ω (6-6)

αt+1 ≥ Q̃
(k)

t+1(v(k)t, G
(k)
t+1|t) + π̃

(k)
t+1

T
(vt,ω − v(k)

t )+

S∑
s=1

γ̃
(k)
s,t+1

T
(Gs,t+1|t −G(k)

s,t+1|t) ∀k ≤ m (6-7)

(Gt+1|t, gt,ω, ut,ω, vt,ω, st,ω, ft,ω, θt,ω) ∈ Xt (6-8)

And the pre-dispatch model is given by

Q̃
(m)
0 (Gt=0) = min

α1,Gt=1|0
α1 (6-9)

subject to

Gmin ≤ Gt=1|0 ≤ Gmax (6-10)

α1 ≥ Q̃
(k)

1 (v0, G
(k)
t=1|0) +

S∑
s=1

γ̃
(k)
s,1

T
(Gs,t=1|0 −G(k)

s,t=1|0) ∀k ≤ m (6-11)

This approach limits state increase to the number of buses of the system. Tak-
ing the case study presented in Chapter 5 as an example, instead of including 56
extra state dimensions to the problem, only 4 are incorporated.

Besides, the implementation of parallel computing techniques may greatly
reduce the total elapsed time.
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A
Data For Case Studies From Chapter 5

Transmission lines data:

Tab. A.1: Transmission line data for case studies from Chapter 5

Transmission
line From To F (MWavg) x (pu)

1 SE S 7710 1
2 SE S 7700 1
3 SE NE 1010 1
4 SE NE 1000 1
5 SE Imperatriz 4010 1
6 SE Imperatriz 4000 1
7 NE Imperatriz 3970 1
8 NE Imperatriz 3960 1
9 N Imperatriz 3159 1

10 N Imperatriz 3149 1

Thermal generators data:

Tab. A.2: Thermal generators data for case studies from Chapter 5

Thermal
Unit

Subsystem c (R$/MWavg) G(MWavg) G(MWavg) Fuel

1.0 SE 29.13 640.0 520.0 Nuclear
2.0 SE 20.12 1350.0 1080.0 Nuclear
3.0 SE 88.08 530.0 0.0 Gas
4.0 SE 937.0 36.0 0.0 Oil
5.0 SE 300.89 157.0 0.0 Gas
6.0 SE 300.62 59.0 0.0 Gas
7.0 SE 511.77 529.0 0.0 Gas
8.0 SE 751.48 44.0 0.0 Diesel
9.0 SE 0.0 255.0 216.34 Waste

10.0 SE 173.66 235.0 201.5 Waste
11.0 SE 282.58 321.0 0.0 Gas
12.0 SE 305.82 65.0 0.0 Gas
13.0 SE 399.02 572.0 0.0 Gas
14.0 SE 779.03 140.0 0.0 Diesel
15.0 SE 303.29 226.0 0.0 Gas
16.0 SE 653.43 131.0 0.0 Oil
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17.0 SE 213.84 87.0 0.0 Gas
18.0 SE 190.44 204.0 52.57 LNG
19.0 SE 50.93 400.0 0.0 Gas
20.0 SE 59.94 100.0 0.0 Gas
21.0 SE 114.06 200.0 0.0 Gas
22.0 SE 232.56 127.0 0.0 Gas
23.0 SE 592.66 176.0 0.0 Diesel
24.0 SE 470.34 200.0 0.0 Gas
25.0 SE 630.47 25.0 0.0 Diesel
26.0 SE 310.41 436.0 0.0 Oil
27.0 SE 127.40 500.0 0.0 LNG
28.0 SE 182.55 134.0 0.0 Gas
29.0 SE 301.94 216.0 0.0 Gas
30.0 SE 678.04 340.0 0.0 Oil
31.0 SE 504.65 929.0 0.0 Gas
32.0 SE 216.31 770.0 0.0 Gas
33.0 SE 304.51 266.0 0.0 Gas
34.0 SE 1047.38 10.0 0.0 Diesel
35.0 SE 392.3 175.0 12.86 Oil
36.0 SE 297.27 206.0 0.0 Gas
37.0 SE 1077.29 54.0 0.0 Diesel
38.0 S 710.65 485.0 0.0 Gas
39.0 S 77.96 350.0 202.71 Coal
40.0 S 698.14 249.0 34.49 Diesel
41.0 S 278.12 4.0 0.0 Biomass
42.0 S 486.49 20.0 8.05 Coal
43.0 S 238.56 100.0 27.8 Coal
44.0 S 217.89 132.0 70.21 Coal
45.0 S 209.48 262.0 175.87 Coal
46.0 S 178.91 363.0 253.78 Coal
47.0 S 780.0 24.0 0.0 Oil
48.0 S 115.9 126.0 0.0 Coal
49.0 S 248.31 20.0 0.0 Coal
50.0 S 486.2 640.0 0.0 Gas
51.0 NE 645.84 13.0 50.5 Diesel
52.0 NE 645.84 11.0 66.6 Diesel
53.0 NE 513.35 31.0 0.0 Oil
54.0 NE 645.84 11.0 182.0 Diesel
55.0 NE 943.88 347.0 0.0 Diesel
56.0 NE 599.17 150.0 0.0 Oil
57.0 NE 392.31 169.0 0.0 Oil
58.0 NE 645.84 13.0 10.8 Diesel
59.0 NE 645.84 15.0 320.1 Diesel
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60.0 NE 645.84 13.0 6.8 Diesel
61.0 NE 645.84 15.0 6.2 Diesel
62.0 NE 301.36 138.0 0.0 Gas
63.0 NE 139.88 327.0 0.0 Gas
64.0 NE 446.22 149.0 0.0 Oil
65.0 NE 446.22 149.0 0.0 Oil
66.0 NE 645.84 15.0 75.8 Diesel
67.0 NE 645.84 15.0 84.7 Diesel
68.0 NE 374.8 168.0 0.0 Oil
69.0 NE 645.84 13.0 7.8 Diesel
70.0 NE 599.17 147.0 0.0 Oil
71.0 NE 645.84 13.0 110.7 Diesel
72.0 NE 139.13 720.0 0.0 Coal
73.0 NE 149.25 365.0 0.0 Coal
74.0 NE 863.5 94.0 0.0 Diesel
75.0 NE 327.22 201.0 0.0 Oil
76.0 NE 657.39 136.0 0.0 Oil
77.0 NE 757.4 53.0 0.0 Diesel
78.0 NE 757.4 66.0 0.0 Diesel
79.0 NE 384.73 381.0 0.0 Oil
80.0 NE 510.12 30.0 0.0 Biomass
81.0 NE 279.04 186.0 0.0 Gas
82.0 NE 387.78 50.0 0.0 Oil
83.0 NE 318.53 223.0 0.0 Gas
84.0 NE 863.5 143.0 0.0 Diesel
85.0 NE 393.88 171.0 0.0 Oil
86.0 NE 393.88 171.0 0.0 Oil
87.0 NE 107.04 533.0 0.0 Gas
88.0 NE 314.63 368.0 0.0 Gas
89.0 N 302.19 166.0 0.0 Gas
90.0 N 0.0 85.0 85.7 Gas
91.0 N 794.72 40.0 0.0 Diesel
92.0 N 808.99 40.0 0.0 Diesel
93.0 N 392.29 166.0 0.0 Oil
94.0 N 392.29 166.0 0.0 Oil
95.0 N 784.21 25.0 0.0 Oil
96.0 N 0.0 75.0 83.2 Gas
97.0 N 0.0 67.0 83.2 Gas
98.0 N 74.91 519.0 0.0 Gas
99.0 N 118.63 338.0 0.0 Gas

100.0 N 118.63 338.0 0.0 Gas
101.0 N 411.92 110.0 0.0 Gas
102.0 N 575.0 150.0 0.0 Oil
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103.0 N 203.0 178.0 0.0 Gas
104.0 N 88.97 56.0 0.0 Gas
105.0 N 0.0 66.0 0.0 Gas
106.0 N 144.29 360.0 0.0 Coal
107.0 N 898.56 50.0 0.0 Diesel
108.0 N 640.96 58.0 0.0 Diesel
109.0 N 828.01 50.0 0.0 Diesel
110.0 N 0.0 255.0 233.41 Waste
111.0 N 0.0 93.0 83.2 Gas

Demand data:

Tab. A.3: Demand data for case studies from Chapter 5 (MWmonth)

Period (month) SE S NE N

1 40117 11127 9248 4344
2 41110 11383 9020 4365
3 41221 11473 9257 4502
4 40360 11114 9302 4539
5 38621 10446 9049 4600
6 38079 10387 8701 4578
7 38223 10291 8680 4553
8 38652 10128 8492 4602
9 39095 10102 8677 4620

10 39004 10151 8839 4583
11 38809 10431 8862 4574
12 38770 10469 8781 4517
13 40117 11127 9248 4344
14 41110 11383 9020 4365
15 41221 11473 9257 4502
16 40360 11114 9302 4539
17 38621 10446 9049 4600
18 38079 10387 8701 4578
19 38223 10291 8680 4553
20 38652 10128 8492 4602
21 39095 10102 8677 4620
22 39004 10151 8839 4583
23 38809 10431 8862 4574
24 38770 10469 8781 4517
25 40117 11127 9248 4344
26 41110 11383 9020 4365
27 41221 11473 9257 4502
28 40360 11114 9302 4539
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29 38621 10446 9049 4600
30 38079 10387 8701 4578
31 38223 10291 8680 4553
32 38652 10128 8492 4602
33 39095 10102 8677 4620
34 39004 10151 8839 4583
35 38809 10431 8862 4574
36 38770 10469 8781 4517
37 40117 11127 9248 4344
38 41110 11383 9020 4365
39 41221 11473 9257 4502
40 40360 11114 9302 4539
41 38621 10446 9049 4600
42 38079 10387 8701 4578
43 38223 10291 8680 4553
44 38652 10128 8492 4602
45 39095 10102 8677 4620
46 39004 10151 8839 4583
47 38809 10431 8862 4574
48 38770 10469 8781 4517
49 40117 11127 9248 4344
50 41110 11383 9020 4365
51 41221 11473 9257 4502
52 40360 11114 9302 4539
53 38621 10446 9049 4600
54 38079 10387 8701 4578
55 38223 10291 8680 4553
56 38652 10128 8492 4602
57 39095 10102 8677 4620
58 39004 10151 8839 4583
59 38809 10431 8862 4574
60 38770 10469 8781 4517
61 40117 11127 9248 4344
62 41110 11383 9020 4365
63 41221 11473 9257 4502
64 40360 11114 9302 4539
65 38621 10446 9049 4600
66 38079 10387 8701 4578
67 38223 10291 8680 4553
68 38652 10128 8492 4602
69 39095 10102 8677 4620
70 39004 10151 8839 4583
71 38809 10431 8862 4574
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72 38770 10469 8781 4517
73 40117 11127 9248 4344
74 41110 11383 9020 4365
75 41221 11473 9257 4502
76 40360 11114 9302 4539
77 38621 10446 9049 4600
78 38079 10387 8701 4578
79 38223 10291 8680 4553
80 38652 10128 8492 4602
81 39095 10102 8677 4620
82 39004 10151 8839 4583
83 38809 10431 8862 4574
84 38770 10469 8781 4517
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