
5  
SCENARIO GENERATION 

 

 

5.1  
Difficulty in scenario generation 

 

While the number of possible network realizations is computationally 

tractable, the algorithm presented in Chapter 4 may be used in order to obtain a 

solution which is within a tolerance level ߝ  from the global optimum of the 

original problem. However, if one wants to be able to solve large-scale problems, 

it becomes imperative to have an estimate of the expected value of the second 

stage cost function which is not based on the complete enumeration of all possible 

network configurations.  

Standard two-stage stochastic programming models usually resort to 

scenario generation to allow for the evaluation of these multi-dimensional 

integrals. However, unlike the vast majority of problems studied in the literature, 

in the humanitarian logistics problem – and, more generally, in the class of 

problems presented in Section 1.5 – the probability distribution of the random 

variables is not known before first-stage decisions are determined.  

As already pointed out in Section 2.3, this makes it impossible to utilize 

traditional scenario generation methods such as Monte Carlo sampling, moment 

matching or minimization of distances between probability measures. In this 

work, we propose to overcome this obstacle by merging the concepts from 

importance sampling into a stochastic programming framework, as presented next. 

 

5.2  
Importance sampling 

 

In statistics, importance sampling is a technique used to estimate the 

properties of a certain distribution while only having samples drawn from a 

different one. In the context of simulation studies, importance sampling is usually 

employed as a variance reduction technique used in conjunction with the Monte 
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Carlo method. The basic idea is that certain values of the random variable may 

have a stronger effect upon the parameter being estimated than others, so it might 

be interesting to sample these values more frequently than what would otherwise 

be expected based on the original probability distribution.  

As detailed in Rubinstein (1981) [51], the method relies on a simple 

observation to compute the expected value of a random variable ܺ~ܨଵሺݔሻ based 

on samples from another distribution ܨଶሺݔሻ: 
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ሼݔሽ ൌ න ݔ ଵ݂ሺݔሻ݀ݔ

௫
ൌ න ݔ ଵ݂ሺݔሻ

ଶ݂ሺݔሻ ଶ݂ሺݔሻ݀ݔ
௫

ൌ ॱ௙మ ൜ݔ ଵ݂ሺݔሻ
ଶ݂ሺݔሻൠ (5.1)  

 

For a given set of samples ݔ௜ ሺ݅ ൌ 1, … , ܰሻ drawn according to a probability 

density function ଶ݂ሺܺሻ , the importance sampling estimator of the mean of 

distribution ଵ݂ሺܺሻ is then defined as: 
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1
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ଶ݂ሺݔ௜ሻ

ே
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 (5.2)  

 

Following expression (5.1), each sample is weighted differently based on 

the likelihood ratio, i.e. the ratio between the probability of occurrence of that 

sample under the distribution of interest and the one from which the samples were 

drawn.   

Again according to [51], this estimator is proved to be consistent – it 

converges to ߤ௑  with probability 1 as the sample size grows to infinity – and 

unbiased – its expected value is ߤ௑, whatever the sample size. In the next section, 

this technique is incorporated into the optimization problem so as to allow for the 

estimation of the second stage cost function based on scenarios. 

 

5.3  
Reformulation 

 

Although the final (post-investment) probability distribution of the 

availability of the edges is not known a priori, the initial distribution (i.e., the one 
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which does not consider any reinforcement investments) may be used to generate 

scenarios of network configuration, for which the probability of occurrence may 

be easily calculated. This is also the case of the more general class of stochastic 

programming problems with endogenous uncertainty defined in Chapter 2: the 

initial probability distribution of the random variables is always known, even 

though it might change after first-stage decisions are determined. 

Additionally, since the linearization technique proposed in Chapter 3 makes 

it possible to compute the probability of occurrence of any scenario given the 

first-stage investment decisions (or, at least, an approximation to its value), we 

may join these pieces of information in order to compute the importance sampling 

estimator of the expected value of the second stage cost function.  

By examining expression (5.2) for the importance sampling estimator, we 

may identify the corresponding elements of the optimization problem being 

studied: ଵ݂ሺݔሻ and ଶ݂ሺݔሻ are, respectively, the final and initial probability density 

functions of the scenarios, ܰ is obviously the number of sampled scenarios and 

the samples ݔ௜ represent the values of the scenario-specific second-stage problems 

which are solved separately, as discussed in Chapter 3. Once again, it is important 

to stress that the scenarios of network realization are to be sampled according to 

the initial probability distribution of the edges’ availabilities. 

This analogy allows us to reformulate problem (3.12) – (3.17) in a way 

which does not require the full enumeration of all possible network configurations 

but relies on a smaller subset of randomly generated scenarios, as shown below: 
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 (5.3)  

ݔܣ :݋ݐ ݐ݆ܾܿ݁ݑݏ ൑ ܾ  (5.4)  

௦ݓ  ൌ ෍ሼlnሺp௘௦
஼ ሻ ൅ ሾlnሺp௘௦

ூ ሻ െ lnሺp௘௦
஼ ሻሿ · ௘ሽݔ

௘אா

ݏ׊  א ܵ (5.5)  

௦̂݌  ൒ ௞ߙ ൅ ௞ߚ  · ݏ׊ ௦ݓ א ܵ, ݇׊ א   (5.6) ܭ

̂݌  א Թା, ݓ א Թ   (5.7)  

ݔ  א ሼ0,1ሽ|ா|  (5.8)  

 

where: 
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௦݌
ூேூ probability of sampled scenario ݏ, calculated based on the initial 

probability distribution of the availability of each edge, i.e. 

௦݌
ூேூ ൌ ∏ ௘௦݌

஼
௘אா  

 
Based on a set of scenarios of network realizations, sampled according to 

the initial probability distribution of the edges’ availabilities, a solution to 

problem (5.3) – (5.8) may be found using the algorithm outlined in Chapter 4. 

 

5.4  
Solution robustness 

 

As with any two-stage stochastic program, the solution to these problems 

depends, essentially, on balancing the trade-off between deterministic first-stage 

costs and the expected value of probabilistic second-stage costs. It is thus 

imperative that we have a reasonable estimate of second stage costs in order to be 

able to have confidence in the quality of the solution obtained.  

On the one hand, the larger the set of sampled scenarios, the better the 

estimate of second-stage expected costs will be. On the other hand, having fewer 

scenarios makes the problem smaller and solution times are usually faster. 

Anyhow, once a solution is found for a given set of scenarios, a Monte Carlo 

simulation – in which the probability distribution of the edges’ availabilities takes 

into account the determined first-stage decisions – may then provide a confidence 

interval against which the estimate of the expected costs of the second-stage 

provided at the solution of the problem can be compared in order to assess the 

need for a larger number of samples. This is discussed in Appendix B, where an 

algorithm for determining an adequate number of scenarios is described. 
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