
1  
INTRODUCTION 

 

 

1.1  
Decision under uncertainty  

 

In a vast range of practical applications, the input data necessary for the 

solution of mathematical programs cannot be precisely determined beforehand. In 

general, that may happen either because data is inherently random or due to 

inevitable errors in measurement. In 1955, Dantzig [20] and Beale [6] first 

recognized that even a relatively small deviation from the values used as input 

data could compromise the quality of the optimal solution to a problem. Since 

then, two main methodologies have been developed with the aim of incorporating 

– into the modeling and solution procedures – the uncertainties which are part of a 

diverse set of problems: robust optimization and stochastic programming. 

 

1.2  
Robust Optimization  

 

The field of robust optimization was founded in 1973 by Soyster’s seminal 

work [54] which proposed the solution to a problem similar to that in standard 

form ( min୶אX ݔܣ | ݔ்ܿ  ܾ ) with the additional requirement that the optimal 

solution should be feasible for all elements of the set ࣛ ൌ ሼܣ, ݆ א ሽܬ  of 

technology matrices.  

Following the notation of Bertsimas and Sim (2004) [15], let ܬ denote the 

set of coefficients in row ݅ of matrix ܣ which are subject to uncertainty and each 

element ܽ, ሺ݆ א  ሻ be modeled as a symmetric and bounded random variableܬ

with support ሾܽ െ ොܽ, ܽ  ොܽሿ. The formulation proposed by Soyster may be 

written as: 

 

  (1.1)  ݔ்ܿ ݊݅ܯ
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 :ݐ ݐ݆ܾܿ݁ݑݏ ܽݔ


  ොܽݕ
א

 ܾ ݅ 
(1.2)  

 െݕ  ݔ    (1.3) ݆ ݕ

 ݈  ݔ    (1.4)  ݑ

ݕ   0  (1.5)  

 

where ݈ and ݑ are vectors of appropriate dimension which represent, respectively, 

lower and upper bounds on variables ݔ. 

Such an approach is shown by Soyster to be equivalent to a worst-case 

scenario analysis. This extreme conservativeness leads the value of the objective 

function at the optimal solution to be usually significantly worse than that of the 

original (or nominal-value) problem and motivated the search for different 

approaches which could provide a balance between feasibility and optimality. 

A quarter of a century after Soyster’s work, Ben-Tal and Nemirovksi ([9], 

[10], [11] and [12]) and El-Ghaoui et al. ([22] and [23]) proposed an alternative 

way to model the uncertainty by defining “ellipsoidal regions of uncertainty” 

around the nominal values of the coefficients, inside which one admits that the 

realization of the unknown parameters will be. The proposed approach results in a 

modification of the original constraints of the problem which turns it into a second 

order conic program, thus requiring specific solution procedures (which are, in 

general, not guaranteed to find the global optimum solution to a problem): 

 

  (1.6)  ݔ்ܿ ݊݅ܯ

 :ݐ ݐ݆ܾܿ݁ݑݏ ܽݔ


  ොܽݕ
א

 Ωඨ ොܽ
ଶ ݖ

ଶ

א

 ܾ 
  (1.7) ݅

   (1.8)  

 െݕ  ݔ െ ݖ    (1.9) ݆ ݕ

 ݈  ݔ    (1.10)  ݑ

ݕ   0  (1.11)  
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where Ω is a user-defined parameter related to the probability of violation of each 

constraint – the authors prove that the probability of each constraint ݅  being 

violated is less or equal to expሺെΩ
ଶ/2ሻ. 

Robust optimization was again boosted in 2003 with the publication of [13], 

[14] and [15] by Bertsimas and Sim. The novel approach assumes a polyhedral 

uncertainty set and its major advantage is the fact that the formulation of the 

robust counterpart of a problem does not modify its structure, maintaining all the 

original properties such as linearity. In summary, the proposed approach 

introduces a parameter Γ that takes values in the interval ሾ0,  |ሿ and determinesܬ|

the maximum number of coefficients in row ݅ which will be allowed to vary from 

their respective nominal values ܽ. The robust counterpart is initially formulated 

as: 

 

  (1.12)  ݔ்ܿ ݊݅ܯ

 :ݐ ݐ݆ܾܿ݁ݑݏ ܽݔ


 ,ݔሺߚ Γሻ  ܾ (1.13) ݅  

 െݕ  ݔ    (1.14) ݆ ݕ

 ݈  ݔ    (1.15)  ݑ

ݕ   0  (1.16)  

 

where: 

 

,ݔሺߚ Γሻ ൌ  ݔܽܯ ොܽหݔหݖ
א

  (1.17)  

 :ݐ ݐ݆ܾܿ݁ݑݏ ݖ
א

 Γ (1.18) ݅  

 0  ݖ  ݆ 1 א    (1.19)ܬ

 

As shown in [15], this is equivalent to the linear formulation presented 

below: 

 

  (1.20)  ݔ்ܿ ݊݅ܯ
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 :ݐ ݐ݆ܾܿ݁ݑݏ ܽݔ


 Γݖ   
א

 ܾ (1.21) ݅  

ݖ     ොܽݕ ݅, ݆ א    (1.22)ܬ
 െݕ  ݔ    (1.23) ݆ ݕ

 ݈  ݔ    (1.24)  ݑ

,ݕ  ,ݖ   0  (1.25)  

 

 

1.3  
Stochastic programming 

 

The stochastic programming approach relies on the assumption – which is 

perfectly reasonable in various settings – that one might be able to know or 

estimate the probability distribution of the unknown parameters. Generally 

speaking, the objective of stochastic programming models is to determine a 

solution that is feasible for all possible data realizations (or for a given percentage 

of them) and that minimizes the expected value of a function of the decision and 

random variables.  

The objective of this Section is not to provide a comprehensive overview on 

the subject – which the interested reader may find in Birge and Loveaux (1997) 

[16], Kall and Wallace (1994) [40], Ruszczynski and Shapiro (2003) [52], 

Shapiro, Dentcheva and Ruszczynski (2009) [55] and Haneveld and van der Vlerk 

(2005) [33] – but to introduce the topic so that the reader may grasp the basic 

difference between standard stochastic programming models in the literature and 

the one studied in this thesis. In addition to the basic references just mentioned, 

the state-of-the-art in various applications may be found in Wallace and Fleten 

(2003) [67] (energy), Dupacova, Hurt and Stepan (2002) [21] (finance), Poojari, 

Lucas and Mitra (2006) [49] (supply chain and logistics) and Gaivoronski (2005) 

[26]  (telecommunications). 

The majority of research and applications of stochastic programming is 

done on the so-called two-stage stochastic programming linear models, although 

multistage stochastic programs are also the subject of great interest – a graphical 

depiction of the conceptual difference between two-stage and multistage models is 
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presented in Figure 1-1. In the former case, one usually seeks to determine a first 

stage decision which is then succeeded by the realization of a random event that 

affects the outcome of the action taken. Recourse actions may then be taken in the 

second stage so as to compensate for potential damages caused by the realization 

of the random variable(s). While in the second stage there might be a different set 

of corrective decisions for each scenario, according the possible outcomes of the 

random event, first stage decisions for all scenarios are required to be the same – a 

condition usually referred to as non-anticipativity. 

 

  
(A) (B) 

Figure 1-1 – Two-stage (A) and multistage (B) scenario-tree structure of 

stochastic programming models 

 

The general formulation of a two-stage stochastic program is presented next:  

 

ݔ்ܿ ݊݅ܯ  ॱሼܳሺݔ,   ሻሽ  (1.26)ߦ

ݔܣ :ݐ ݐ݆ܾܿ݁ݑݏ  ܾ  (1.27)  

ݔ  א ܺ  (1.28)  

 

where ܳሺݔ,  ሻ is defined as the value of the optimal solution of the second stageߦ

problem:  

 

  (1.29)  ݕሻ்ߦሺݍ ݊݅ܯ

DBD
PUC-Rio - Certificação Digital Nº 0610797/CA



1. INTRODUCTION 

  

 

17

ݔሻߦሺܶ :ݐ ݐ݆ܾܿ݁ݑݏ  ܹሺߦሻݕ  ݄ሺߦሻ  (1.30)  

ݕ  א ܻ  (1.31)  

 

The actions to be taken before the random parameters are known are 

determined by the vector of first stage decision variables ݔ, whose feasible region 

is defined by the set of constraints ݔܣ  ܾ and by the set ܺ – which may include 

integrality constraints. The vector of second stage decision variables is denoted by 

ݕ  and the the vector of coefficients of the objective function ݍ , technology 

matrices ܶ and ܹ and the right-hand side vector ݄ may all depend on the vector 

of random variables ߦ. 

Difficulties in evaluating multi-dimensional integrals imply that the 

determination of a numerical solution to these problems usually require the 

enumeration of a finite number ܵ  of possible outcomes for the vector ߦ ൌ

ሼߦଵ, ,ଶߦ … ,  ௌሽ. Each one of these outcomes is called a scenario, to which thereߦ

must also be an associated probability of occurrence  ൌ ሼଵ, ,ଶ … , ௌሽ . This 

discretization allows the expression for the expected value in equation (1.22) to be 

written as:  

 

ॱሼܳሺݔ, ሻሽߦ ൌ  ௦ · ܳሺݔ, ௦ሻߦ
௦אௌ

 (1.32)  

 

Finally, problems (1.26) – (1.28) and (1.29) – (1.31) may now be jointly re-

written as follows: 

 

ݔ்ܿ ݊݅ܯ  ∑ ௌא௦௦ݕ௦ݍ௦    (1.33)  

ݔܣ :ݐ ݐ݆ܾܿ݁ݑݏ  ܾ  (1.34)  

 ௦ܶݔ  ௦ܹݕ௦  ݄௦ ݏ א ܵ (1.35)  

ݔ  א ܺ, ݕ א ܻ  (1.36)  

 

 

1.4  
Motivation and related bibliography  
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A common hypothesis concerning the two approaches discussed above is that 

the realization of the uncertain parameters is independent of the decision 

variables, as illustrated in Figure 1-2. This conjecture is valid in a variety of 

applications, such as portfolio optimization, hydrothermal scheduling for 

electricity generation, communication network planning under demand 

uncertainty, etc. Not surprisingly, the vast majority of the body of work both in 

robust optimization and in stochastic programming deals with problems in which 

this hypothesis is satisfied and the uncertainty is said to be exogenous.  

 

 

Figure 1-2 – Stochastic programming model with exogenous uncertainty – 

probabilities , ,  and  are independent of decision ࢞ 

 

On the other hand, the literature on problems where the knowledge of the 

probability of occurrence of random events depends on the decisions taken (i.e., 

when the uncertainty is said to be endogenous) is very limited. According to Goel 

and Grossmann (2006) [31], out of the 4300+ works in the Stochastic 

Programming Bibliography compiled by van der Vlerk [65], only 8 ([48], [66], 

[2], [39], [36], [30], [31] and [61]) involve the case of endogenous uncertainty 

(references [54] and [47] are other works on the subject, not yet included in the 

database).  

The work on stochastic programs with endogenous uncertainty may be 

further sub-divided into two categories with respect to the particular way in which 

decisions affect the knowledge of the probability distributions.  
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The first group involves problems where the probability distribution of the 

random variables is not directly affected but, rather, uncertainty may be partially 

resolved depending on actions performed by the decision-maker. This is 

essentially related to the timing of information discovery and to an anticipation or 

delay of the moment at which more accurate information is revealed. Such 

situation is pictured in Figure 1-3 below, in which the dashed line represents a 

possible relaxation of non-anticipativity constraints between scenarios related to 

first-stage decisions. 

 

 

Figure 1-3 – Endogenous uncertainty related to the time of information discovery 

 

This group includes the work of Jonsbraten (1998) [39], Goel and 

Grossmann (2004, 2006) [30][31], Held (2003) [36] and Senay (2007) [54]. The 

type of uncertainty dealt with in these works is exemplified by that studied in [39] 

and [30] where an oil and gas exploration company must choose among different 

testing and probing methods in order to try and find the size and quality of 

reserves – the installation of a facility does not change the likelihood of the 

company actually finding oil, but may provide evidence as to what are the most 

probable scenarios. Other examples lie in the areas of project management [54] 

and network interdiction.  

Finally, the second group of stochastic programs with endogenous 

uncertainty refers to those in which decisions directly affect the probability 

distribution of the random parameters i.e., the actions performed at a given stage 
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may change the probability of occurrence of future events – as conceptually 

illustrated in Figure 1-4. 

 

 

Figure 1-4 – Endogenous uncertainty and decision-dependent probabilities 

 

Pflug (1990) [48] was the first to address this issue by discussing an 

application in stochastic queuing networks – decisions affect the arrival and 

service rates of each element in the queue – and proposing a stochastic 

quasigradient algorithm which requires repeated simulations of the system’s 

functioning for each fixed first-stage solution. Talluri and Ryzin (2004) [61] 

worked on a revenue management problem from the point of view of an airline 

who must choose which combination of fares to offer at each moment in time 

preceding the departure of a flight. Under some assumptions regarding consumer 

behavior, they developed a dynamic programming algorithm to determine the 

pricing policy which results in the maximum total expected revenue. In 2000, 

Ahmed [2] presented some examples related to network design, server selection 

and facility location. These problems were formulated under a hyperbolic 

programming framework and a specialized algorithm was developed. An 

application to the stochastic PERT (Program Evaluation and Review Technique) 

problem is developed by Plambeck et al. in [47] where one seeks to minimize two 

conflicting objectives: a project’s cost and its completion time. A sample-path 

algorithm is proposed and results are presented under the assumption of uniform 

distributions with a fixed spread around the mean. Viswanath et al. (2004) [66] 
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studied the humanitarian logistics problem – briefly described in Section 1.5 

below and then again discussed in Chapter 2 in a more detailed fashion – and 

proposed an approximation to the objective function which allows the 

simplification of the problem down to an ordinary knapsack problem.  

Given the diminished amount of research on the topic, it is expected that 

there should be many questions to be answered. In the next section a brief 

description of the specific problem to be tackled is given, along with a 

characterization of a more general class of problems for which the results obtained 

in the thesis are also valid.  

 

1.5  
Objective and contributions 

 

This thesis will focus on the second group of stochastic programs with 

endogenous uncertainty discussed above and, in this sense, the humanitarian 

logistics problem (as defined in Viswanath et al. [66]) will be used as the main 

motivating example.  

A detailed description of the problem is provided in Chapter 0 but, 

essentially, it refers to the problem of determining the optimal set of investments 

on the reinforcement of the links of a network which are subject to random 

failures – the decision to reinforce a link increases the probability that it will be 

available afterwards. 

The results presented in the thesis, although discussed in the context of the 

humanitarian logistics problem, should also hold for a more general class of 

problems, including some of those discussed above – namely the ones related to 

stochastic queuing networks, stochastic PERT and revenue management. The 

general formulation of such problem class is given by: 

 

ݔ்ܿ ݊݅ܯ  ॱ௫ሼܳሺݔ,   ሻሻሽ  (1.37)ݔሺߦ

ݔܣ :ݐ ݐ݆ܾܿ݁ݑݏ  ܾ  (1.38)  

ݔ  א ܺ  (1.39)  

 

where the function ܳሺݔ, ሻሻݔሺߦ  is now defined as the optimal solution of the 

following second stage problem: 
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  (1.40)  ݕሻሻ்ݔሺߦሺݍ ݊݅ܯ

ݕሻሻݔሺߦሺܹ :ݐ ݐ݆ܾܿ݁ݑݏ  ݄ሺߦሺݔሻሻ  (1.41)  

ݕ  א ܻ  (1.42)  

 

It is important to observe that the coupling between the first and second 

stages is not given by the existence of the term ܶݔ as in the set of constraints 

(1.35) of problem (1.33) – (1.36) but by the dependence of the probability 

distribution of the random variables with respect to first stage decision variables ݔ 

– evidenced by the subscript ݔ in the expression ॱ௫ሼܳሺݔ,  .ሻሻሽݔሺߦ

The methodology proposed in the thesis will allow the determination of 

provably optimal solutions to instances of problems much larger then those 

currently solved in the literature. Specifically, the contributions of the thesis are: 

 

1) Reformulation scheme which avoids the non-linearities due to products of 

first and second stage variables and due to the calculation of scenarios 

probabilities. 

 

2) Provably finite cut generation algorithm that overcomes a potential 

pitfall of the proposed linearization technique and allows the solution of 

moderately-sized instances for a given error tolerance level; 

 
3) Incorporation of importance sampling concepts into the stochastic 

programming framework. This overcomes the problem of not knowing the 

probability distribution of the random variables beforehand and allows the 

solution of large sample-based instances of the problem. 

 

1.6  
Outline 

 

The remainder of this work is organized as follows: Chapter 2 describes the 

humanitarian logistics problem in detail, with a special emphasis on the 

difficulties that arise out of its formulation; Chapter 3 presents the re-formulation 
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scheme which solves the obstacles related to existing non-linearities; Chapter 4 

introduces the approximation algorithm based on cut generation and Chapter 5 

extends this algorithm into a statistical framework in order to consider instances 

of the problem that are not amenable to complete scenario enumeration; Chapter 6 

presents computational results, Chapter 7 concludes and discusses future work 

alternatives and how the developments presented in the previous chapters may be 

extended to other contexts. 
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