

Alexandre Reis Saré

Análise das condições de fluxo na barragem de Curuá-Una, Pará

Dissertação de Mestrado

Dissertação apresentada ao Departamento de Engenharia Civil da PUC-Rio como parte dos requisitos para obtenção do título de Mestre em Ciências de Engenharia Civil: Geotecnia.

> Orientadores: Alberto S. F. J. Sayão Denise M. S. Gerscovich

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização do autor, do orientador e da universidade.

Alexandre Reis Saré

Graduou-se em Engenharia Civil, pela Universidade Federal do Pará, em março de 2001. Participou do programa de sanduíche Escola graduação com a Politécnica da Universidade de São Paulo (USP) em 1998. Ganhou o Prêmio Vale Estudar (2001) concedido pela Companhia Vale do Rio Doce. Ingressou no curso de mestrado em Engenharia Civil da PUC-Rio no ano de 2001, atuando na área de Geotecnia Experimental. Participou do projeto de pesquisa e desenvolvimento da U.H.E. de Curuá-Una: Estudos de estabilidade e comportamento em 2002.

Ficha Catalográfica

Saré, Alexandre Reis

Análise das condições de fluxo na barragem de Curuá-Una, Pará / Alexandre Reis Saré; orientadores: Alberto de Sampaio Ferraz Jardim Sayão; Denise Maria Soares Gerscovich. – Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2003.

[18]., 149 f.: il. ; 30,0 cm

1. Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

1. Engenharia Civil – Teses. 2. Barragens de terra. 3. Fluxo. 4. Análise numérica. I. Sayão, Alberto S. F. J. (Alberto de Ferraz Jardim). II. Gerscovich, Denise Maria Soares. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

Para os meus queridos pais, Charles e Jacira, por acreditarem nos meus sonhos e por sonharem junto comigo. Todo este trabalho é fruto do amor que sentimos uns pelos outros.

Agradecimentos

Aos meus queridos pais pelo apoio, confiança, educação e amor. Muito obrigado por sempre me ajudarem nos momentos difíceis e me aplaudirem nos felizes. Muito obrigado por sempre terem investido no quê há de mais importante para o Ser Humano: A Educação, somente ela nos torna felizes por completo.

Ao meu orientador Alberto Sayão pela sua amizade, orientação e pela sua grande capacidade técnica. Obrigado pela objetividade, por sua sensatez e compreensão.

À minha orientadora Denise Gerscovich pela sua amizade, capacidade e orientação precisa. Obrigado por ter contribuído no meu aperfeiçoamento técnico e acadêmico. Obrigado por me fazer enxergar as melhores soluções, pelo seu carinho e paciência.

Ao meu tio (primo) Alberto Saré pelo incondicional apoio ao longo do meu curso. Você foi fundamental para esta conquista, seja pelo apoio material, emocional ou moral.

À minha namorada, Amina, por sempre me incentivar e me fazer acreditar em minha capacidade. Muito obrigado por sempre me acolher e pelo seu amor.

A minha querida avó Lúcia por sempre me mostrar o caminho da felicidade. Obrigado pelas orações e pelos conselhos e seu amor e de toda a minha família, que sempre me incentivou.

À minha família da sala 329L, Ana Cristina Sieira, Laryssa Ligocki, Luis Eduardo Formigheri e Maristâni Spannenberg, pelo apoio, amizade, companheirismo e paciência.

Ao professor Franklin Antunes pelos seus conselhos e seu enorme conhecimento.

À minha grande amiga, Ana Roxo, pela sua paciência e compreensão. Obrigado à todos os funcionários, em especial: Amaury, Cristiano, Lenilson, Marcel e William. Aos meus amigos da PUC-Rio, em especial: Ana Júlia, Ataliba, Cassiane, Fred e Luciana.

Aos meus amigos de Belém, em especial: Ingrid, Maurício, Rodolpho e Vanessa.

À REDE Celpa pelo apoio e confiança, especialmente da Eng. Giorgiana.

À CAPES pela ajuda financeira indispensável ao desenvolvimento deste trabalho.

Resumo

Saré, Alexandre Reis; Sayão, Alberto de Sampaio Ferraz Jardim; Gerscovich, Denise Maria Soares. **Análise da condições de fluxo na barragem de Curuá-Una, Pará.** Rio de Janeiro, 2003. 167p. Dissertação de Mestrado – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

A análise das condições de fluxo na barragem de Curuá-Una (Pará) tem como objetivo avaliar a viabilidade geotécnica quanto à elevação do nível de operação do reservatório. A Usina de Curuá-Una (operada pela REDE Celpa) é responsável pelo abastecimento elétrico de Santarém. No entanto, nos horários de grande consumo, a produção de energia tem se mostrado insuficiente. O alteamento do reservatório de Curuá-Una é uma alternativa para o aumento de geração energética. Curuá-Una destaca-se por ser fundada em terreno arenoso, solução poucas vezes utilizada no mundo. A barragem de terra é do tipo zonada, com altura máxima de 26m e comprimento de 600m. Os parâmetros geotécnicos necessários para as análises do presente trabalho foram obtidos em ensaios de laboratório, em informações referentes à construção e em dados de instrumentação durante a operação da barragem. As análises numéricas foram realizadas com o programa FLOW3D. A retroanálise do regime de fluxo, feita com base na piezometria, possibilitou a estimativa das permeabilidades dos diversos materiais. A partir destes dados foi possível simular as poropressões associadas a diferentes níveis do reservatório. Foram definidos três níveis de alerta (normal, atenção e emergência) referentes à segurança da barragem. As análises indicam que a barragem opera atualmente dentro do nível normal e que um alteamento de 1,5m do reservatório não afeta a condição de segurança. O aumento das subpressões na base da barragem foi também avaliado, com os resultados mostrando um incremento máximo de 5%.

Palavras-chave

Geotecnia; barragens de terra; fluxo bidimensional; análise numérica.

Saré, Alexandre Reis; Sayão, Alberto de Sampaio Ferraz Jardim; Gerscovich, Denise Maria Soares. **Analysis of flow regime in Curuá-Una Dam, Pará.** Rio de Janeiro, 2003. 167p. MSc. Dissertation – Department of Civil Engineering, Pontifícia Universidade Católica do Rio de Janeiro.

The analysis of flow conditions in Curuá-Una Dam, State of Pará, has the objective of evaluating the geotechnical feasibility of raising the operation level of the reservoir. Curuá-Una Power Plant, operated by REDE Celpa, is responsible for the electric supply of Santarém city. However, in periods of peak consumption, the energy production has been insufficient. Raising of Curuá-Una reservoir is an attractive alternative for increasing energy production. Curuá-Una Dam is distinguished for being constructed on sandy alluvial soil, which is a solution rarely used in the world. The earth dam is zoned, with maximum height of 26m and crest length of 600m. The geotechnical parameters were obtained from laboratory tests, field instrumentation data and construction reports. The numerical analyses were carried out with FLOW3D program. A back-analysis of flow behavior was performed for evaluating permeability parameters, taking into account results from piezometers installed in the dam and in the foundation materials. These parameters were used to predict pore pressures associated to different reservoir levels. Three levels of alert conditions (normal, attention and emergency) referring to the safety of the dam have been defined. The analyses indicated that the dam is operating within normal levels and a 1.5m rising of the reservoir shall not affect dam's safety. The uplift pressures, due to different reservoir levels, have also been evaluated, with results showing a maximum increment of 5%.

Keywords

Geotechnical engineering; earth dams; bidimensional seepage; numerical analysis.

Sumário

1 Introdução	19
1.1. Conhecimento do Problema	19
1.2. Objetivo	20
1.3. Metodologia	21
2 Revisão Bibliográfica	22
2.1. Fluxo em Barragens	22
2.1.1. Equação de Fluxo	23
2.1.2. Solução da Equação de Laplace	24
2.1.3. Métodos Analíticos	25
2.1.4. Métodos Analógicos	26
2.1.5. Modelos Reduzidos	27
2.1.6. Método Gráfico – Rede de Fluxo	28
2.1.7. Métodos Numéricos	29
2.2. Coeficiente de Permeabilidade (k)	30
2.2.1. Índice de Vazios e Grau de Saturação	31
2.2.2. Estrutura	32
2.2.3. Anisotropia	33
2.2.4. Temperatura	34
2.2.5. Nível de Tensões	34
2.3. Determinação Experimental da Permeabilidade	35
2.3.1. Ensaios de Laboratório	35
2.3.2. Ensaios de Campo	36
2.4. Controle de Fluxo em Barragens	38
2.4.1. Erosão Regressiva	39
2.4.2. Liquefação	40
2.4.3. Subpressões	40
2.5. Instrumentação	41
2.5.1. Tipos de Instrumentos	43
2.5.2. Piezometria em Barragens	51
2.6. Problemas de percolação em Barragens	56
2.7. Controle de Percolação em Barragens	63
2.7.1. Filtros e Drenos	64

2.7.2. Restrição do Nível do Reservatório	65
2.7.3. Injeções de Impermeabilização	65
2.7.4. Poços de Alívio	66
2.7.5. Tapetes Impermeáveis	66
2.7.6. Tapetes Drenantes	67
2.7.7. Trincheiras de Vedação Vertical ("cut-off")	67
2.7.8. Exemplos de Controle de Percolação	69
2.8. Segurança de Barragens	73
3 Caso da U.H.E de Curuá-Una	76
3.1. Histórico	78
3.2. Projeto executivo	79
3.2.1. Aspectos geológicos-geotécnicos	82
3.2.2. Materiais de Construção	85
3.2.3. Barragem de Terra e Dique Direito	88
3.2.4. Tapetes Impermeável e Drenante	89
3.2.5. Estruturas de Concreto	90
3.2.6. Ensecadeiras	91
3.3. Instrumentação	92
3.4. Reavaliações e intervenções realizadas	93
3.5. Estudos Atuais	97
3.6. Resumo	100
4 Programa de Investigação Geotécnica	101
4.1. Ensaios de Laboratório	101
4.1.1. Ensaios de Caracterização	103
4.1.2. Ensaios de Adensamento	104
4.1.3. Ensaios de Cisalhamento Direto	105
4.1.4. Ensaios Triaxiais	106
4.1.5. Ensaios de Permeabilidade	107
4.1.6. Ensaios de Difratometria de Raios-X	109
4.2. Instrumentação de Campo	111
4.2.1. Piezômetros Casagrande ("Antigos")	114
4.2.2. Piezômetros Elétricos ("Novos")	120
4.2.3. Comparação entre os Piezômetros Novos e Antigos	124
4.2.4. Seção Típica	127

5 Regime de Fluxo	129
5.1. Programa Flow 3D	129
5.2. Validação do programa	131
5.2.1. Homogênea e Isotrópica	133
5.2.2. Homogênea e Anisotrópica	134
5.2.3. Heterogênea e Isotrópica	136
5.3. Definição dos Dados de Entrada	138
5.3.1. Geometria	138
5.3.2. Parâmetros Hidráulicos	140
5.3.3. Tempo de Execução do Programa	141
5.3.4. Condições Iniciais	142
5.3.5. Condições de Contorno	143
5.4. Simulação do Regime de Fluxo para Reservatório no Nível Atual	144
5.4.1. Eficiência do Sistema Interno de Drenagem	145
5.4.2. Condição atual sem sistema de drenagem vertical	147
5.5. Simulação do Regime de Fluxo após Aumento da Cota do Reservatório	149
5.6. Avaliação das condições de segurança	150
5.6.1. Níveis Críticos de Operação	151
5.6.2. Subpressões na Fundação	153
6 Conclusões e Sugestões	155
7 Referências Bibliográficas	158

Lista de Figuras

Figura 1 - Desenvolvimento do fluxo – estágio inicial (Santos e Gerscovich, 19	97)
	28
Figura 2 - Rede de fluxo para barragem com fundação permeável. (Cedergre	en,
1977)	28
Figura 3 – Medidor de NA (Cruz, 1996)	44
Figura 4 - Esquema de piezômetro de tubo aberto (Cruz, 1996)	45
Figura 5 - Esquema de piezômetro pneumático (Dunnicliff, 1988 – adaptado)	47
Figura 6 - Esquema de instalação de piezômetro hidráulico de tubo du	ıplo
(Dunnicliff,1988 – adaptado)	48
Figura 7 - Esquema de piezômetro de corda vibrante (Dunnicliff, 1988	3 —
adaptado)	50
Figura 8- Esquema de piezômetro elétrico (Dunnicliff, 1988 – adaptado)	51
Figura 9 - Linhas piezométricas da Barragem de Atibainha (Massad e Gehrin	ng,
1981).	53
Figura 10 - Ruptura da Barragem de Teton – Estados Unidos (USBR, 2003)	59
Figura 11 - Ruptura da barragem de Centralia (USBR, 2003)	60
Figura 12 - Ruptura da barragem de Kelle Barnes (USGS, 2003)	60
Figura 13 - Ruptura da barragem de Fontenelle (FEMA, 2003)	61
Figura 14 - Ruptura da barragem de Iwiny (Polônia-1967) (IMWM, 2003)	63
Figura 15- Profundidade do " <i>cut-off</i> " e a vazão pela fundação (Amorim, 1976)	68
Figura 16 - Níveis piezométricos na seção da Est. 181 + 10 em outubro de 19	979
- Barragem de Água Vermelha (Silveira et al., 1981).	70
Figura 17 - Vista de satélite da Barragem Aswan - Egito. (NASA, 2002)	72
Figura 18 – Principais rios brasileiros	76
Figura 19 - Localização da barragem	77
Figura 20 - Planta esquemática da U.H.E. de Curuá-Una (Pierre et al., 1982)	80
Figura 21 - Vista aérea do projeto em fase de execução (Pierre et al., 1982)	81
Figura 22 - Bacia hidrográfica amazônica (Pierre et al., 1982)	83
Figura 23 - Curvas granulométricas do material das áreas de emprésti	mo
(Ferrari, 1973)	87
Figura 24 - Carta de plasticidade de Casagrande das áreas de empréstir	no
(Ferrari, 1973)	87
Figura 25 - Seção típica do projeto original (Pierre et al., 1982).	89
Figura 26 - Seção esquemática da casa de força.	91

Figura 27 - Seção transversal da estaca 35 após o reforço do sistema	de
drenagem (Ferrari, 2000 – adaptado)	92
Figura 28 - Seção transversal da estaca 38 após o reforço do sistema	de
drenagem (Ferrari, 2000 – adaptado)	92
Figura 29 - Posicionamento dos piezômetros no reforço (Eletroprojetos, 1979)) 93
Figura 30 - Pé do talude de jusante antes e após a execução do reforço.	95
Figura 31 - Vista do Talude de Jusante e Localização dos Piezômetros	98
Figura 32 - Vista Parcial do Talude de Montante e Reservatório.	99
Figura 33 - Vista do Vertedouro da Usina	99
Figura 34 - Bloco indeformado M33	102
Figura 35 - Bloco indeformado M39	102
Figura 36 - Curvas granulométricas referentes aos blocos	104
Figura 37 - Carta de plasticidade do material ensaiado	104
Figura 38 - Envoltória de resistência no diagrama de Lambe	106
Figura 39- Variação do coeficiente de permeabilidade em função da ten	são
confinante.	108
Figura 40- Permeabilidade x Tensão Efetiva	109
Figura 41 - Difratogramas da amostra M33 natural	111
Figura 42 - Difratograma da amostra M33 glicolada	111
Figura 43 - Piezômetro instalado no vertedor (PZV-06)	112
Figura 44 - Planta baixa da barragem de terra com as seções instrumentadas	113
Figura 45 - Detalhamento das seções instrumentadas da barragem	114
Figura 46 - Piezômetros na seção da estaca 35	115
Figura 47 - Piezômetros na seção da estaca 38	115
Figura 48 - Piezometria na estaca 35 em 2001 (B=barragem; F=fundação).	116
Figura 49 - Piezometria na estaca 38 em 2001 (B=barragem; F=fundação)	117
Figura 50 - Cotas Piezométricas no corpo da barragem em 2001 (estaca 35)	117
Figura 51 - Cotas Piezométricas na fundação da barragem em 2001 (estaca	35)
	118
Figura 52 - Cotas piezométricas na fundação da barragem em 2001 (estaca	38)
	118
Figura 53 - Linhas Piezométricas no ano de 2001 - Estaca 35	119
Figura 54 - Linhas Piezométricas no ano de 2001 - Estaca 38	120
Figura 55 – Piezômetros elétricos na seção da estaca 35	121
Figura 56 - Piezômetros elétricos na seção da estaca 38	121
Figura 57 - Cotas piezométricas na estaca 35 em agosto de 2002 (corpo	da
barragem)	122

Figura 58 – Cotas piezométricas na estaca 38 em agosto de 2002 (fundação)	123
Figura 59 - Linhas Piezométricas em agosto de 2002 - Estaca 35	124
Figura 60 - Linhas Piezométricas em agosto de 2002 - Estaca 38	124
Figura 61 - Comparação dos piezômetros na barragem - Estaca 35	125
Figura 62 – Comparação dos piezômetros na fundação - Estaca 35	126
Figura 63 – Comparação dos piezômetros na barragem - Estaca 38	126
Figura 64 - Comparação dos piezômetros na fundação - Estaca 38	126
Figura 65 - Seção típica com os piezômetros do corpo da barragem	127
Figura 66 - Seção típica com os piezômetros da fundação	128
Figura 67 - Parâmetros hidráulicos em simulações de fluxo permanente	130
Figura 68 - Malha utilizada na validação do programa	131
Figura 69 - Regiões da barragem consideradas na validação	132
Figura 70 - Superfície livre adotada na validação	132
Figura 71 - Parâmetros hidráulicos da validação: ψ (carga de pressão), θ (teo	or de
umidade volumétrico) e kr (condutividade hidráulica relativa)	133
Figura 72 - Distribuição de carga de pressão: homogênea isotrópica (escala	em
metros)	133
Figura 73 - Comparação das cotas piezométricas obtidas pelos méto	odos
numérico e gráfico (Barragem Homogênea e Isotrópica)	134
Figura 74 - Distribuição de carga de pressão: homogênea anisotrópica (es	cala
em metros)	135
Figura 75 - Comparação das cotas piezométricas obtidas pelos méto	odos
numérico e gráfico (Barragem Homogênea e Anisotrópica)	136
Figura 76 - Regiões consideradas para a barragem heterogênea e isotrópica	136
Figura 77 - Distribuição de carga de pressão: heterogênea isotrópica (escala	em
metros)	137
Figura 78 - Comparação das cotas piezométricas obtidas pelos méto	odos
numérico e gráfico (Barragem Heterogênea e Isotrópica)	138
Figura 79 - Seção típica da barragem na estaca 38	139
Figura 80 - Malha de elementos finitos utilizada	139
Figura 81 – Dimensões da malha e materiais analisados	139
Figura 82 - Parâmetros Hidráulicos: ψ (carga de pressão) θ (teor de umid	lade
volumétrico) e kr (condutividade hidráulica relativa)	141
Figura 83 - Avaliação da sensibilidade ao tempo para diferentes materiais	142
Figura 84 - Superfície com carga prescrita	143
Figura 85 - Localização da superfície com fluxo prescrito em 4 nós	143
Figura 86 - Superfície livre considerada nas análises	144

Figura 87 - Cotas piezométricas para nível do reservatório de 66,84m 144 Figura 88 - Cotas piezométricas de campo e numéricas no corpo da barragem, considerando o dreno vertical 146 Figura 89 - Distribuição das poropressões na barragem sem dreno vertical 147 (escala em metros) Figura 90 - Comparação entre as linhas piezométricas de campo e numérica 148 (sem dreno vertical) Figura 91 - Distribuição de carga de pressão para o nível do reservatório de 67,0 149 Figura 92 - Distribuição de carga de pressão para o nível do reservatório de 69,5 149 Figura 93 - Comparação das linhas piezométricas para diferentes níveis do 150 reservatório Figura 94 - Comparação gráfica entre níveis piezométricos previstos e níveis de alerta para os piezômetros instalados no corpo da barragem. 151 Figura 95 - Previsão da variação da carga piezométrica do piezômetro B35-02 152 Figura 96 - Previsão da variação da carga piezométrica do piezômetro B35-02 153 Figura 97 - Subpressões atuantes na fundação para o reservatório na cota 66,84m 153 Figura 98 - Subpressões atuantes na fundação para o reservatório na cota 69,50m 154 Figura 99 Aumento percentual das subpressões x nível do reservatório 154

Lista de Tabelas

Tabela 1 - Programas que Empregam os métodos numéricos	30
Tabela 2 - Classificação quanto ao grau de permeabilidade (Terzaghi e Pe	eck,
1967)	31
Tabela 3 - Valores Típicos do Coeficiente de Permeabilidade (adaptado) de
Cruz, 1996)	31
Tabela 4 - Coeficientes de Permeabilidade do Solo Compactado da Barragen	ו de
Ilha Solteira (Souza Pinto, 2000)	33
Tabela 5 - Comparativo de alívio de subpressões (Andrade 1981).	41
Tabela 6 - Comparação entre valores de campo e numéricos na barragem	de
Água Vermelha (Vincenzo e Silveira, 1987)	54
Tabela 7 - Comparação entre valores de campo e numéricos em Itaipu (Vince	nzo
e Silveira, 1987)	54
Tabela 8 – Monitoramento de barragens na Alemanha (Renner, 1994)	55
Tabela 9 – Levantamento de acidentes em barragens (Middlebrooks, 1953)	57
Tabela 10 - Evidências de problemas de percolação (Gould e Lacy, 1973)	57
Tabela 11 - Acidentes em grandes barragens de terra no Brasil (Sayão, 2001)) 58
Tabela 12 - Incidentes em barragens da Índia (Kulkarni e Kulkarni, 1994)	62
Tabela 13 - Relações entre a redução do fluxo de percolação pela fundação	e a
profundidade de instalação dos <i>"Cut-Offs"</i> (Amorim, 1976)	68
Tabela 14 - Gradientes de saída sob diferentes condições (Amorim, 1976).	69
Tabela 15 - Eficiência da cortina de injeção (Silveira et al.,1981).	71
Tabela 16 - Eficiência da trincheira de vedação (Silveira et al., 1981).	71
Tabela 17 – Incidentes na República Tcheca (Simek e Pretl, 1994)	75
Tabela 18 – Metodologia de avaliação (Simek e Pretl, 1994)	75
Tabela 19 - Propriedades geotécnicas da fundação da casa de força	a e
vertedouro	84
Tabela 20 - Coeficientes de permeabilidade dos materiais envolvidos (Amo	rim,
1976)	85
Tabela 21 - Propriedades geotécnicas da empréstimo (Pierre et al., 1982)	86
Tabela 22 - Resultados dos ensaios de caracterização	103
Tabela 23 - Resultados do ensaio de adensamento	105
Tabela 24 - Resultados dos ensaios de cisalhamento direto	105
Tabela 25 - Parâmetros de Deformabilidade	107
Tabela 26 - Valores do coeficiente de permeabilidade saturada	107

Tabela 27 - Distâncias interplanares típicas para argilominerais (Santos, 1975)
110
Tabela 28 - Piezômetros tipo Casagrande ("antigos").115
Tabela 29 - Cotas piezométricas médias (2001) - NA_{Mont}: 67.87m e NA $_{\rm Jus}$:
46.35m 119
Tabela 30 –Piezômetros elétricos ("novos").121
Tabela 31 - Leituras comparativas dos sensores (Fraiha Neto e Pacheco Neto,
2002) 122
Tabela 32 - Cotas piezométricas médias em agosto de 2002123
Tabela 33 - Coeficientes de permeabilidade para barragem homogênea e
isotrópica 133
Tabela 34- Comparação dos métodos numérico e gráfico: Homogênea e
Isotrópica 134
Tabela 35 - Coeficientes de permeabilidade para barragem homogênea
anisotrópica 135
Tabela 36 - Comparação do métodos numérico e gráficos: Homogênea e
Anisotrópica 135
Tabela 37 - Coeficientes de permeabilidade para barragem homogênea
anisotrópica 137
Tabela 38 - Comparação do métodos numérico e gráfico: Homogênea e
Anisotrópica 138
Tabela 39 - Faixa de valores para os coeficientes de permeabilidade ($k_{\mbox{\tiny sat}})$ 140
Tabela 40 – Cargas de pressão e cotas piezométricas em agosto de 2002145
Tabela 41 - Coeficientes de permeabilidades utilizados considerando o dreno
vertical 146
Tabela 42 - Comparação entre a simulação numérica e a instrumentação de
campo 147
Tabela 43 - Coeficientes de permeabilidade para condição atual148
Tabela 44 – Velocidades prescritas adotadas nas simulações149
Tabela 45 - Cotas piezométricas previstas para os diversos níveis do
reservatório 150
Tabela 46 - Classificação dos níveis de alerta (Sayão et al., 2002)151
Tabela 47 - Comparação entre cotas piezométricas medidas, previstas e

•	
A	Area transversal do elemento
a'	Parâmetro de resistência de Lambe: coeficiente linear
С	Coeficiente de forma
c'	Parâmetro de resistência de Mohr-Coulomb: Coesão efetiva
Ċ.	Coeficiente de compressão virgem
	Compacidade relativa
C _r	
Cs	Coeficiente de expansão
Cv	Coeficiente de adensamento
D	Diâmetro de uma esfera equivalente ao tamanho dos grãos
D ₁₅	Diâmetro abaixo do qual se situam 15% em massa das partículas
d	Distância internlanar hasal
F	Módulo de deformabilidade (Módulo de Young)
	Índigo do vezion
e F	
Ec	
Ee	Energia de elevação
Ep	Energia de pressão
Et	Energia total
E ₅₀	Módulo de deformabilidade correspondente a 50% da carga máxima
FS	Fator de seguranca
G	Densidade real dos grãos
С Ц	Carga Total
11 b	Carga de velocidade (cinética)
n _c	
n _e	Carga de elevação
h _p	Carga de pressão
i	Gradiente hidráulico
İ _{crit}	Gradiente hidráulico crítico
IP	Índice de Plasticidade
i	Forca de percolação
J k	Coeficiente de permeabilidade
k	Coeficiente de permeabilidade relativo
K _r	
K _x	Coeficiente de permeabilidade na direção x
k y	Coeficiente de permeabilidade na direção y
k _z	Coeficiente de permeabilidade na direção z
k ₂₀	Coeficiente de permeabilidade de referência (20°C)
L	Comprimento do elemento
LL	Limite de liquidez
LP	Limite de plasticidade
m	Coeficiente de variação volumétrica
n n	Porocidado
5	
t	Tempo
V	Velocidade de fluxo
W	Coeficiente de umidade
W _f	Coeficiente de umidade final
Wo	Coeficiente de umidade inicial
W _{ot}	Coeficiente de umidade ótimo
α'	Parâmetro de resistência de Lambe: coeficiente angular
۸h	Diferenca de carga (desnível notencial)
ـــــــــــــــــــــــــــــــــــــ	Derêmetre de registêncie de Mohr Caulembr êngule de strite statius
ψ	Parametro de resistencia de ivioni-Coulomb: angulo de atrito efetivo
γsub	Peso específico submerso do solo

λ	Comprimento de onda
μ U20	Viscosidade do líquido Viscosidade do líquido de referência (20ºC)
\mathbf{v}	Coeficiente de Poisson
θ	Teor de umidade volumétrico
σ _c σ₁	Tensão continante Tensão principal maior
σ_3	Tensão principal menor
Ψ	Carga de pressão numérica
ABNT	Associação Brasileira de Normas Técnicas
ASCE	American Society of Civil Engineering
CBGB	Comitê Brasileiro Grandes Barragens
Celpa	Centrais Elétricas do Pará
CID	Consolidado Is otropicamente Drenado
CIU	Consolidado Isotropicamente Não-Drenado
COPPE	Inst. Alberto L. Coimbra de Pós-Graduação em Engenharia
FEMA	Federal Emergency Management Agency
ICE	International Committee of Engineering
ICOLD	International Congress on Large Dams
ISSMFE	International Society of Soil Mechanics and Foundation Engineering
IMWN	Institute of Meteorology and Water Management - Polônia
IPT	Instituto de Pesquisas Tecnológicas
MAESA	Machadinho Engenharia S.A.
MDF	Método das Diferenças Finitas
MEF	Método dos Elementos Finitos
NASA	National Aeronautics and Space Administration
NBR	Norma Brasileira
PVC	Policloreto de Vinila
SPT	Standard Penetration Test
UERJ	Universidade do Estado do Rio de Janeiro
UFPA	Universidade Federal do Pará
UFRJ	Universidade Federal do Rio de Janeiro
UHE	Usina Hidrelétrica
USBR	United States Bureau of Reclamation
USGS	United States Geological Survey
USP	Universidade de São Paulo