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Abstract

Santos, Rodrigo Costa Mesquita; Rodriguez, Noemi de la Roc-
que (Advisor). A GALS Approach for Pogramming Distri-

buted Interactive Multimedia Applications. Rio de Janeiro,
2018. 143p. Tese de Doutorado – Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.

In this, work we investigate how to guarantee two properties in the de-

velopment of interactive distributed multimedia applications: determinism

and consistency. Determinism is a property of individual nodes in a dis-

tributed application and states that a program always produces the same

output when fed with the same input. Consistency is a property of the whole

system and states that all nodes should have the same view of the order of

events. We evaluate the use of the synchronous language Céu in the context

of multimedia programming for guaranteeing the determinism property. Re-

garding consistency, we evaluate the GALS (Globally Asynchronous Locally

Synchronous) architecture for enforcing consistency. Traditionally, multime-

dia applications are developed using either a domain specific language or

a general purpose language supported by specialized frameworks. Neither

of the two approaches promotes the development of deterministic and con-

sistent interactive distributed multimedia applications. Our investigation of

the use of synchronous languages in the multimedia field led to the develop-

ment of Céu-Media, a deterministic multimedia library for the synchro-

nous language Céu, and Mars, a GALS middleware for interactive distri-

buted multimedia applications. The results of this thesis indicate that using

the guarantees of the synchronous language Céu it is possible to develop de-

terministic multimedia applications using Céu-Media. Furthermore, they

also indicate that the consistency model enforced by the GALS middleware

Mars guarantees that all nodes always agree upon the order of events in a

distributed presentation. We validate our proposal by discussing the deve-

lopment of real-world distributed multimedia applications proposed by the

research community using both, Céu-Media and Mars, highlighting the

main advantages and also the drawbacks of using our approach.

Keywords

Céu; Multimedia; Multi-device; Determinism; Consistency
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Resumo

Santos, Rodrigo Costa Mesquita; Rodriguez, Noemi de la Rocque.
Uma Abordagem GALS para a Programação de Aplicações
Interativas Multumídia Distribuídas. Rio de Janeiro, 2018.
143p. Tese de Doutorado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Neste trabalho, investigamos como garantir duas propriedades no de-

senvolvimento de aplicações multimídia distribuídas interativas: determi-

nismo e consistência. Determinismo é uma propriedade individual dos nós

em uma aplicação distribuída e refere-se à característica de um programa

sempre produzir a mesma saída a partir de uma mesma entrada. Consis-

tência é uma propriedade de todo o sistema e está relacionada a todos os

nós terem sempre a mesma visão da ordem dos eventos. Avaliamos o uso da

linguagem síncrona Céu no contexto de programação multimídia para ga-

rantir o determinismo. Em relação à consistência, avaliamos se a arquitetura

GALS (Globally Asynchronous Local Synchronous) é capaz de prover consis-

tência. Tradicionalmente, aplicações multimídia são desenvolvidas usando

linguagens de domínio específico ou linguagens de propósito geral utilizando

frameworks especializados. Nenhuma dessas duas abordagens promove o de-

senvolvimento de aplicações multimídia distribuídas interativas determinís-

ticas e consistentes. Nossa investigação sobre o uso de linguagens síncronas

no campo de multimídia levou ao desenvolvimento de Céu-Media, uma bibli-

oteca multimídia determinística para a linguagem síncrona Céu, e Mars,

um middleware GALS para aplicações multimídia distribuídas interativas.

Os resultados desta tese indicam que, usando as garantias da linguagem

síncrona Céu, é possível desenvolver aplicações multimídia determinísti-

cas usando Céu-Media. Além disso, eles também indicam que o modelo de

consistência implementado pelo middleware GALS Mars garante que todos

os nós sempre concordem com a ordem dos eventos em uma apresentação

distribuída. Nós validamos nossa proposta discutindo o desenvolvimento de

aplicações multimídia distribuídas propostas pela comunidade de pesquisa

usando Céu-Media e Mars, destacando as principais vantagens e também

as desvantagens em usar nossa abordagem.

Palavras-chave
Céu; Multimedia; Multi-dispositivos; Determinismo; Consis-

tência
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1
Introduction

The proliferation of personal multimedia-enabled devices, such as smart-

phones, tablets, smartwatches, etc., has encouraged the development of multi-

media applications running on multiple devices, known as distributed or multi-

device multimedia applications. The term distributed multimedia applications

is overloaded in literature. Some works use it to refer to applications in which

the multimedia content is distributed among different servers, regardless of

whether the presentation occurs in single or multiple devices [5, 6, 7]. Others

use this very same term to describe applications whose presentation is designed

to be executed across multiple devices [8, 9]. In this work, we use distributed

multimedia applications with this second meaning. We use the terms multi-

device and distributed (multimedia) applications interchangeably.

There are different types of multi-device applications. Here we are inter-

ested in applications in which each device complements one another, creating

an experience as a connected group. Following Levin’s terminology [10], this

class of applications is called complementary. Consider the following scenario

as an example of these applications: Alice teaches an online course. Slides and

videos, controlled by Alice, are presented on her device and on all students’

devices. At some point, one of the students has a question related to the class.

Alice temporarily gives the student access to control the video in all connected

devices, and the student rewinds it to explain the origin of his question. Af-

terwards, Alice withdraws the control from the student and continues.

Complementary applications involve users interaction with multiple de-

vices at the same time. There are two types of interactions in these applica-

tions: collaboration-based and control-based [10]. Devices working together to

achieve a goal characterizes the former type. A device partially controlling an

application running on another device is an example of the latter.

For the collaboration and/or control be effective, all devices should have

the same view of the whole system. However, the lack of an accurately synchro-

nized global clock and asynchronous user interactions can hinder that [11]. In

the example above, let’s suppose that multiple students concurrently request

control over the video. Depending on how the system coordinates the response

to those interactions, devices may reach inconsistent states. For instance, con-
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sider that the system should grant control over the video to the first student

that requests it. If not all devices agree upon who made the first request (a

feasible assumption due to the absence of global time) multiple students may

try to control the video at the same time.

The development of interactive distributed multimedia applications in-

volves issues from at least two different fields: multimedia and distributed

systems. On the one hand, one has to be familiar with low level details of

how media content is stored, coded, decoded and synchronized to program the

multimedia aspect of applications. On the other hand, one must tackle classi-

cal problems of distributed systems, such as clock synchronization, consistency

maintenance, and distributed consensus, when programming the interactions

among devices. Even though the research community has made significant

progress in both areas, there is still a lack of comprehensive proposals that

combine these advances into a unified programming model.

In this thesis, we aim to investigate the development of these applications

from the programming perspective. Specifically, our main concern is to guar-

antee two properties: determinism and consistency. The former is a property of

individual processes, therefore whenever we use the term determinism we are

referring to local1 applications. The latter is a property of the whole system, so

whenever we use the term consistency we are referring to distributed systems.

The definition of determinism in the multimedia domain should consider

the timing aspect because it can impact the synchronization of applications.

We say that a multimedia application behaves deterministically if, in any

execution, it always produces the same sequence of outputs, executing the

same sequence of steps at the same time instants, when submitted to the

same sequence of inputs. As stated by Benveniste and Gary, "there is no

reason the engineer should want his [system] to behave in some unpredictable

manner" [12]. In general, the use of deterministic languages helps programmers

to better reason about their source codes, because they can precisely compute

the sequence of steps that programs will execute for a given input.

Regarding the second property, there are different consistency models

and definitions proposed in literature. Here we use a definition that is based

on the sequential consistency model defined by Lamport [4], but with an

extension to accommodate the timing aspect—we call it timing-sequential

consistency model. The sequential consistency model states that a system is

said consistent if "the result of any execution is the same as if the operations of

all the [processes] were executed in some sequential order, and the operations

1Throughout this thesis, the term local is used as synonym of a stand-alone (and antonym
of distributed) application and should not be confused with applications running on a LAN.
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of each individual [process] appear in this sequence in the order specified by

its program" [4]. However, for multimedia applications just the ordering of

messages is not enough for a consistency model: different processes may reach

completely different states if they execute the same operations at different time

instants. Thus, the consistency model that we adopt adds the constraint that

all operations should not only be executed in the same order, but also at the

same time in all processes. In this work, the consistency property is defined in

terms of this model.

The timing-sequential consistency model implies that: i) there is a total

ordering of events on which all processes agree; ii) all messages sent from a

given process are received in the same order by all others; and iii) all processes

receive messages at the same time. If a system enforces this consistency model,

one does not have to worry about implementing algorithms to ensure that all

processes of a distributed system have the same global view.

One can develop (local or distributed) multimedia applications either us-

ing domain specific (DSLs) or general purpose languages. DSLs for multimedia,

hereafter called multimedia languages, can be used for developing applications

without directly programming low-level operations. NCL [13], SMIL [14], and

HTML5 [15] are examples of such languages. An alternative to DSLs is to

use general purpose languages, combined with multimedia frameworks (e.g.,

GStreamer, FFmpeg, Libav) following a more imperative approach. We argue

that it is hard to ensure determinism and consistency using these approaches.

And this is not just an implementation matter, it is because the programming

models they promote were not designed to embrace these properties.

Multimedia languages, in general, do not have deterministic semantics.

A direct consequence is that there is no guarantee that an arbitrary program

written in these languages behaves identically in multiple executions. Usually,

they also lack support for programming distributed applications. NCL and

IPML (a SMIL-based language) are exceptions because of their constructs

for developing multi-device programs, but they fail to guarantee consistent

executions in all cases. Multimedia frameworks, on their part, are intrinsically

multithreaded. Ensuring determinism when multithreading is involved is a

well-known problem [16]. And these frameworks usually do not implement

typical functionalities of distributed systems.

We advocate the use of the synchronous model for programming interac-

tive distributed multimedia applications and investigate whether it can guaran-

tee the properties we are interested in. Synchronous languages were originally

proposed for programming real-time reactive embedded systems. They rely on

the synchronous hypothesis which states that programs take no time to produce
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PUC-Rio - Certificação Digital Nº 1412733/CA



Chapter 1. Introduction 18

outputs when reacting to inputs. The precise notion of time in these languages

is suitable for programming operations that should be performed respecting a

given timing constraint, which are common case in multimedia.

In this thesis, we approach the problem of developing distributed ap-

plications in two steps. First, we tackle local applications and explore how

synchronous languages can provide the support necessary for programming

deterministic interactive multimedia applications. Second, we investigate how

we can explore the advantages of the local case to the distributed setting while

guaranteeing the consistency property. Here we have used the synchronous

programming language Céu. However, our theoretical findings extend to any

synchronous language that can provide properties that Céu’s semantics guar-

antees [17].

One of these theoretical findings is the suitability of Céu for implement-

ing some of the most common causal relationships among media objects. We

discuss in this work how Céu constructs and semantics can be used for im-

plementing the operations defined in the Interval Expression model [2], which

is a model based on set of operators that expresses causal relations between

intervals.

Céu-Media, a library for programming local multimedia applications in

Céu, is the practical result of the first part of this thesis. It is an evidence that

our argument in favor of synchronous languages holds: with Céu-Media, we

managed to reproduce the accuracy and determinism of Céu’s semantics in

the final multimedia presentation output, thus guaranteeing determinism for

local applications.

For the distributed scenario, we assume network architectures with no

QoS guarantees. Several works approach such networks using the GALS (Glob-

ally Asynchronous, Locally Synchronous) architectural style [1]. In GALS

systems, computations within individual synchronous nodes are determinis-

tic, with the communication latency as the only source of non-determinism.

Mars, the practical result of the second part of this thesis, is a middleware

that follows the GALS style and supports consistent execution (following the

timing-sequential consistency model) of distributed interactive multimedia ap-

plications. Moreover, the programming model promoted by Mars separates

the concerns regarding application logic and inter-application communication

bindings. The source code of a Mars application has no explicit communica-

tion primitive. In fact, these codes can be compiled and executed as a local

application. The specification of how processes communicate is external to the

application code.

In sum, in this thesis we advocate the use of the programming model
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of synchronous languages and a consistency model that guarantees total

ordering and timing synchronization of operations for programming distributed

applications. We argue that by combining these two models, it is possible to

guarantee deterministic and consistent executions without having to deal with

low-level synchronization and communication issues. We discuss the gains and

limitations of our proposal by investigating how some real-world use cases

proposed by the research community can be developed using Céu-Media and

Mars.

1.1
Outline

The rest of this thesis is organized as follows: Chapter 2 presents

our theoretical background. Chapter 3 discusses the suitability of Céu for

programming multimedia applications. Chapter 4 presents our approach to

explore the synchronous programming model in the multimedia domain and

presents Céu-Media. Chapter 5 describes how we have approached distributed

settings and presents the Mars middleware. Chapter 6 describes some use

cases defined by the research community and shows how they can be developed

using Mars. Chapter 7 discusses related works and compares them to our

proposal. Finally, Chapter 8 presents our final remarks and points out future

works.
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2
Background

There are several types of multi-device applications. Levin [10] proposes

the 3C framework as an attempt to categorize these applications in three

groups. As pointed out by the author, these categories are not mutually

exclusive, i.e., applications can lie in the intersection between them.

The first group, called consistent, refers to applications that replicate the

same experience among different devices, adjusting the content to accommo-

date device-specific attributes. Spotify1 is an example of consistent application,

because it offers the same experience to users (discover and listen to music)

in different devices, but adapts its interface according to the features of each

appliance.

The second group is called continuous and allows users to transfer and

continue the same activity between several devices. An e-commerce service

which allows users to choose an item to buy in a given device and to complete

the purchase in another is an example of continuous application.

The third group, called complementary, is our focus in this thesis. In

complementary applications, each device complements one another creating

an experience as a connected group. YouTube2 and Netflix3 are well-known

examples of complementary applications: both allow users to control the

playback of videos in a device (usually a smart TV) by using their smartphones.

Complementary applications are typically designed to run on multi-

ple devices at the same time. The interactions among devices can either be

collaborative-based, in which each device has its own role and works col-

laboratively to construct the whole user experience, as in Figure 2.1(a); or

control-based, in which an application running on a device controls part of the

exhibition on another device, as in Figure 2.1(b).

This Chapter reviews the theoretical background used throughout this

research. As our proposal for supporting the programming of these applications

relies on the use of synchronous languages, we first describe their main char-

acteristics in Section 2.1. Then we present an overview of current approaches

for programming multimedia applications in Section 2.2. Finally, we introduce

1https://www.spotify.com/
2https://www.youtube.com/
3https://www.netflix.com/
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2.1(a): Car racing multiplayer game [18]. 2.1(b): Remote control second screen appli-
cation [19]

Figure 2.1: Example of complementary applications

the synchronous language Céu in Section 2.3. We focus our discussion on the

problem of guaranteeing determinism (for local applications) and consistency

(for distributed systems) as defined in Chapter 1.

2.1
Synchronous Languages

Synchronous reactive languages [20] (synchronous languages, as short-

hand) rely on the synchronous hypothesis [12] which considers that programs

produce outputs synchronously with their inputs. Reactive languages divide

computations into a sequence of discrete steps called reactions. Each reaction

executes to completion before the system can process any other input. The syn-

chronous hypothesis adds the constraint that inside each reaction the time does

not advance. In practice, this model assumes that computing reactions is much

faster than the minimum time interval between external events, which is a fea-

sible assumption in real-time embedded systems [21]. Esterel [22], Lustre [23],

StateChart [24], Céu [25] are some examples of synchronous languages.

The guarantees provided by most synchronous languages can solve some

problems of the multimedia programming field. In synchronous languages, time

advances in a sequence of discrete input events, defining what is known as

logical time—also known as logical control.

Timing is crucial for multimedia applications. Some authors regard to

these applications as soft real-time systems [26, 27, 28]: the correctness of

their executions depends not only on the accuracy of computations, but also

on the time the result is presented [29]. Consider the rendering of a media file

having a video and an audio streams. For a player correctly present this file, it

should be able to decode both streams and render each video buffer and audio

sample respecting their timestamps. The logical notion of time supplants the

physical notion for programming such scenarios [30].
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Most synchronous languages have deterministic semantics, which guar-

antees that multiple executions of programs always yield the same output.

Likewise, it guarantees that the execution of the same program in different

(but compliant) implementations of compilers or interpreters also yields the

same output. Furthermore, it supports the implementation of validation tools

that statically check programs for analysing their properties. In the embedded

systems domain, these tools may be used for checking programs correctness. In

the multimedia domain, they can be used for ensuring presentation properties

(e.g., audio overlapping, video/images shadowing, contradictory constraints).

Synchronous languages have native support for concurrency, while pre-

serving determinism. This means that one can develop programs that concur-

rently react to multiple events and still have deterministic behavior. Traditional

multimedia languages such as NCL and SMIL allow the programming of con-

current lines of execution, but their predictability cannot be guaranteed (next

section discusses some practical examples of this issue).

Support for event handling, in general, is a major concern of reactive

languages. The programming of event-driven applications using traditional

programming models is typically performed around the notion of asynchronous

callbacks. One of the main issues when using callbacks is that program control

jumps around multiple functions, leading to codes that are hard to follow

and/or understand. In fact, control flow is driven by events and not by an

order specified by the programmer. Synchronous languages overcome these

problems by providing abstractions to express how programs should react to

events. Besides, compilers usually guarantee safe access to shared variables,

which has the advantage that programmers do not need to worry about the

order and computation dependencies [31].

The approach of applying synchronous languages in the multimedia field

is not novel. In the 90’s, several authors explored the use of these languages for

addressing the problem of real-time synchronization of streamed media con-

tent [31, 32, 33, 34, 35, 36]. ChucK [37], Pure Data [38], Csound [39], Faust [40]

and SuperCollider [41] are some examples of synchronous DSLs developed for

audio processing (also know as music programming languages). Because human

hearing can detect even small latencies and delays in audio signals, the use of

the synchronous approach represents an interesting alternative for providing

timing guarantees over sample-level operations in the audio signal.

Smix [30] is a more recent proposal for high-level multimedia program-

ming that also relies on the synchronous hypothesis. This DSL has been pro-

posed as an alternative for traditional informal and ambiguous high-level mul-

timedia languages and it was designed to have deterministic semantics since
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its conception. However, it has no support for distributed applications.

These works help to illustrate how the research community has been

for long investigating the use of synchronous languages for approaching prob-

lems of the multimedia field. However, none of them has explored the use of

these languages in the context of programming interactive multi-device appli-

cations. They all have in common the assumption that the characteristics of

synchronous languages constitute a suitable framework for programming the

control part of multimedia systems. Here we borrow this assumption under the

programming perspective and apply it in the distributed domain. However,

approaching distributed systems using synchronous languages is not straight-

forward.

Synchronous Programming and Distributed Systems

In the late 90’s, the arising of Integrated Architectures led to the de-

velopment of safety critical embedded systems composed of several nodes that

communicate to perform a given function [42]. The deployment of synchronous

applications in such architectures rises some issues that has driven several re-

searches. Asynchronous interactions [1, 43], synchronous semantic preserva-

tion [44, 45], automatic distributed code generation [46, 47, 48], verification

of synchronous distributed applications [49, 50] are some examples of these

problems. Here we focus on the asynchronous interactions issue.

To better frame this discussion, let’s consider the abstract service model

composed of three layers depicted in Figure 2.2. It aims to better characterize

the different models involved when developing synchronous distributed appli-

cations. Layer 0 comprises network architectures, that is, the set of protocols,

connections, controllers, and guarantees that a given platform implements for

allowing data to flow from a node to others. In Layer 1 lies the Distributed

Synchronous Model of Computation (MoC) with two main goals. First, it im-

plements a set of techniques for properly realizing the synchronous semantics in

a distributed setting using the services provided by a particular network archi-

tecture. Second, it hides the complexities of the underlying network by offering

a set of architecture-independent programming interfaces. Programmers de-

velop applications (Layer 2) targeting a specific distributed synchronous MoC,

which has the advantage of shielding softwares from the idiosyncrasies of a

particular network architecture [51].

We can roughly divide network architectures into two main categories:

those that can provide accurate clock synchronization and/or timing guaran-

tees and those that cannot.
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Applications

Distributed Synchronous MoC

Network Architecture

Layer 2

Layer 1

Layer 0

Figure 2.2: Three layers abstract service model for programming distributed
synchronous applications.

Within the embedded software community, the TTA (Time-Triggered

Architecture) [52] is one of the most remarkable example of the first category,

followed by a more recent proposal called PALS (Physically Asynchronous

Logically Synchronous) [53]. TTA systems assume a maximum network delay

and rely on the notion of physical time consistently maintained synchronized

throughout nodes. The PALS architecture is similar to TTA, but it makes

stronger assumptions and has the abstraction of perfectly synchronized virtual

clocks that drive computations in individual nodes. These timing guarantees

support the deployment of systems in which all nodes operate in lockstep,

changing their state synchronously [51].

Both architectures favor a distributed synchronous MoC whose seman-

tics is close to those of synchronous languages targeting local applications. For

instance, in [54] the authors discuss an approach for the design and implemen-

tation of distributed applications based on the synchronous language Lustre

with a few extensions targeting the TTA architecture. These extensions aim

to direct the compiler for correctly generating distributed code and "do not

change the high-level (logical-time) semantics of Lustre" [54]. The works de-

scribed in [55, 56, 57] are other examples of proposals that use TTA or PALS

for supporting the development of distributed synchronous MoCs.

IntServ [58] and ATM [59] are other examples of networks that can pro-

vide some QoS (Quality of Service) guarantees (e.g., maximum network trans-

mission delays) and could be used as target architectures for soft real-time

applications (e.g., multimedia). How to exploit the characteristics and guaran-

tees of these architectures to provide an appropriate distributed synchronous

MoC is still an underinvestigated problem.

Architectures that can provide timing guarantees rely on very strong re-

quirements on their underlying networks. Some of them are not feasible to

assume in unmanageable environments such as the Internet or even in wire-

less local networks [51, 60]. Network architectures in the second category, that

make no assumption regarding clock synchronization, clock paces or bounded

communication delays (e.g., LTTA (Loosely Time-Triggered Architecture) [60],
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Ethernet, WiFi, Internet) generally implement the GALS (Globally Asyn-

chronous Locally Synchronous) [1] architectural style.

GALS is an alternative for developing systems in which individual

modules take advantage of the synchronous approach and the communication

latency and jitter are usually the only source of non-determinism. The GALS

architectural design was originally proposed for programming multi-clock

digital circuits, in which each synchronous block has its own clock running

in its own frequency and they are interconnected through an asynchronous

bus [1]. Figure 2.3 schematically illustrates the idea.

Figure 2.3: High-level diagram of a GALS multi-clock chip [1].

There are several flavors of Layer 1 systems that implement a GALS-

like MoC. These systems may offer a programming interface based either on

a synchronous or asynchronous framework. In the former approach, regular

synchronous languages and tools are stressed for accommodating the asyn-

chronous behaviour. Multiclock Esterel [61], CRP [62] and CRSM [63] are

examples of Esterel-like languages that follow this concept. On the one hand,

the asynchronous communication may be modelled using regular events with-

out modifying the semantics of the languages, on the other hand, properties

like liveness and fairness cannot be properly checked exactly because their

semantics do not consider the distributed aspect of the system [64].

Alternatively, there are asynchronous languages designed with native

support for programming GALS systems. Such languages have constructs and

abstractions to reason about asynchronous concurrent systems. Furthermore,

asynchronous verification frameworks can verify complex properties of these

systems, for instance, succession of events in time, infinite executions and

fairness [64]. However, these frameworks tend to be more complex when

compared with their synchronous counterpart. SystemJ [65], DSystemJ [66]

and GRL [64] are examples of asynchronous languages for GALS.

In the multimedia domain, network architectures that have timing guar-

antees could be used for devising a distributed synchronous MoC that provides

some level of distributed playout synchronization. However, the global synchro-

nization can introduce coordination issues. For instance, if all nodes are in the
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exact same global state (logical time), concurrent users’ interactions in a given

state, but in different nodes, should be considered as occurring in parallel.

This can lead to the classical distributed consensus problem4 [67], with the

peculiarity that the multimedia presentation can halt if the system takes too

many rounds to reach the consensus.

Architectures without timing guarantees make the problem of implement-

ing synchronized distributed playouts harder to solve, but they accommodate

the implementation of techniques for enforcing total or partial ordering of

events. In this work, we investigate how to devise a suitable synchronous MoC

for programming interactive distributed multimedia applications in networks

of this category. The Layer 1 GALS middleware Mars, which offers a program-

ming interface based on the Céu language, is the result of this investigation.

2.2
Overview of Distributed Multimedia Programming Approaches

Traditionally, multimedia (local or distributed) applications are pro-

grammed either by using multimedia languages or by using general purpose

languages supported by specialized frameworks. In this section we review these

approaches and discuss how they fail to guarantee the determinism and con-

sistency properties. Next chapter takes back the code excerpts discussed in

this section and explains how the synchronous programming model solve their

idiosyncrasies.

2.2.1
Multimedia Languages

Multimedia languages have been traditionally designed aiming to hide

the complexity of implementing low-level operations and synchronization of

media content by using high-level abstractions. Here we take NCL and SMIL

as representative examples of multimedia languages. NCL is an ITU-T Rec-

ommendation [68] and adopts a synchronization model based on causal sen-

tences: link elements define a set of conditions (e.g., onBegin, onEnd, onPause)

that, when satisfied, triggers a set of actions (e.g., start, stop, pause). SMIL is

a W3C Recommendation that has a constraint-based synchronization model:

temporal containers (par, seq and excl) and attributes (e.g., begin, end, dur)

define a set of constraints that must be satisfied at runtime.

Ambiguity, caused by the lack of deterministic semantics, is a problem of

most high-level multimedia languages [30]. In general, these languages do not

4It is well-known that the distributed consensus problem is undecidable in the case of
asynchronous communication with at least one faulty node. For the synchronus case, there
are known solutions, but they usually requires some rounds to reach the consensus.
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1 <ncl >
2 < ... >
3 <body >
4 <port id="p1" component ="m1"/>
5 <port id="p2" component ="m2"/>
6 <port id="p3" component ="m3"/>
7 <...>
8 <port id="pN" component ="mN"/>
9

10 <media id="m1" .../ >
11 <media id="m2" .../ >
12 <media id="m3" .../ >
13 <...>
14 <media id="mN" .../ >
15 </body >
16 </ncl >

Listing 2.1: An NCL code that starts N media objects when the program
begins. The language does not guarantees that all objects start at the same
time.

have a well-defined execution model (evidenced by the number of corner cases

in their manuals) hindering formal definitions of their semantics. Therefore,

their specifications lie in verbose manuals written in a natural language using

normative definitions. In some cases, the ambiguity is acknowledged by the

specification itself: the SMIL 3.0 manual explicitly states that some constructs

of the language may have different interpretations in different players [14].

Besides ambiguity, the absence of a precise definition of the execution

model can also lead to synchronization problems. Let’s take as example the

passage of time in NCL. Following only its semantics (that is, without relying

on a specific player) there is no way to program a set of objects to start

exactly at the same time. The problem is that the language semantics does

not enforce that the presentation time should not advance while players react

to an event. Even though occasionally two objects indeed start at the same

time, the language does not impose that they should be rendered at the same

pace. Therefore, one cannot assume that they will remain in sync.

To make matters concrete, let’s consider the NCL code depicted in List-

ing 2.1 (the following discussion has been adapted from [69]). This code excerpt

specifies an NCL program that has N media objects (m1, m2, m3, ..., mN)—

lines 10–14. As soon as it starts, all N objects should be started (note the port

statements in lines 4–8) intuitively at instant 0s. Because the language does

not impose, the presentation time may keep running while a player starts each

media object. Thus, even though for a small N it is possible that all objects

start at the same time, as N gets larger, the dyssynchrony problem becomes

more evident. That is, delays accumulate and some objects that are executed

later will have a start time different from those started earlier.
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Now let’s examine another problem also caused by the lack of a precise

execution model in NCL: the order of evaluation and execution of link elements

is arbitrary. Bearing this in mind, consider the code in Listing 2.2. It defines

a simple program that has only one media object (m1, line 5) that is started

when the program starts (port statement in line 4). The link l1 in lines 6–9

defines the following causal relationship: when object m1 begins, stop m1; and

the link l2 in lines 10–13 defines another relationship: when object m1 begins,

start m1.

1 <ncl >

2 < ... >

3 <body >

4 <port id="p1" component ="m1"/>

5 <media id="m1" .../ >

6 <link id="l1" xconnector =" onBeginStop ">

7 <bind role =" onBegin " component ="m1"/>

8 <bind role =" stop" component ="m1"/>

9 </link >

10 <link id="l2" xconnector =" onBeginStart ">

11 <bind role =" onBegin " component ="m1"/>

12 <bind role =" start" component ="m1"/>

13 </link >

14 </body >

15 </ncl >

Listing 2.2: NCL code with multiple accepted behaviors. The player can

execute l1 and l2 in arbitrary orders when m1 starts at the beginning of the

program. Depending on the player’s choice, the final result may be different.

There are different accepted executions for this simple program. When

m1 starts, the triggering conditions of l1 and l2 are satisfied. At this point, that

are two scenarios: the player executes first either l1 or l2. The simpler case

is when it executes l2 first. In this situation, the start in line 12 is ignored

(because m1 is already playing). The player then executes l1 and stops m1 due

to the stop action in line 8.

The second case is more tricky. If the player executes l1 first, the

behavior depends on whether it implements state changes synchronously or

asynchronously. In the synchronous case, the stop in line 8 immediately stops

m1 and, when l2 is executed, the start in line 12 immediately starts it, causing

the recursive triggering of l1 and l2. In this situation, if l1 is always executed

before l2, we have an infinite loop. Now let’s consider the asynchronous case in

which the stop in line 8 schedules the stop of m1. The behavior when the player

evaluates l2 and is about to execute the start in line 12 depends on whether

the asynchronous stop has completed or not. If the stop completes before the
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start, then m1 is started again, triggering l1 and l2 recursively. Otherwise, the

start should be ignored because m1 is still playing.

The stricter SMIL’s synchronization model reduces, but does not elimi-

nate, problems similar to those discussed above. The language has constructs

to specify that multiple objects should have exactly the same start time and

also has attributes for specifying the maximum tolerable dyssynchrony among

objects. However, its synchronization model allows the programming of incon-

sistencies that may be difficult to detect statically [70, 71, 72]. Furthermore,

SMIL also admits an implementation-dependent propagation delay between

the generation of an event and its processing, which may lead to different

behaviors in different players [14].

As an example, consider the SMIL code depicted in Listing 2.3 (we

have adapted this example from the official test suite [14]). The par element

in lines 3–6 defines a temporal container that may playback its children in

parallel. The object img1 (line 4) starts 3s after the beginning of its parent

composition (begin="3s") and ends immediately, because its end attribute is

also set to 3s. The object img2 (line 5) is set to start when the img1 starts

(begin="img1.beginEvent") and it has 4s duration (dur="4s").

1 <smil >

2 <body >

3 <par id =" par1">

4 <img id =" img1" begin ="3s" end ="3s" ... />

5 <img id =" img2" begin =" img1. beginEvent " dur ="4s" ... />

6 </par >

7 </body >

8 </smil >

Listing 2.3: SMIL code with multiple accepted behaviors. The object img2 may

be presented or not depending on how the player processes internal timing

events.

The SMIL specification defines that a temporal container should end if

the following two conditions hold:

i. it has no children being executed;

ii. no children has its begin time resolved.

According to [14], "the delivery of the [img1].beginEvent to the [img2]

element may not occur until after the par has ended at 3s". This may happen if

between the raising of the event img1.beginEvent and its processing by img2, the

player checks conditions i and ii: i is true because img1 has 0s duration and img2

has not yet started; ii is true because the restriction begin="img1.beginEvent"
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is said unresolved until the given event is processed. Therefore, a compliant

player must show img1 for 0s and then either end the container or show img2

for 4s.

There are some proposals for solving the ambiguities discussed in the

examples above. For the NCL case, in [69] the authors propose converting

NCL documents to the synchronous language SMIX, aiming to fix semantic

problems. For the SMIL case, the specification itself suggests that "it is

desirable for [players] to behave as if they responded to the internal timing

events instantaneously[...]". That is, in both cases, the proposed solutions

resort to the implementation of the synchronous execution model advocated

in this thesis5.

Following the discussion in [30], multimedia languages are over-

engineered, which in part justifies their complexity and ambiguity. That is,

"their specifications try to accommodate many, sometimes conflicting, [fea-

tures]" [30]. Sometimes (notably SMIL, NCL, and HTML), the standardization

process itself, led by heterogeneous groups, leads to ambiguous specifications:

the documents that define the languages must somehow embrace, into coherent

definitions, interests of all people involved in the process. The lack of formal

semantics makes difficult the detection of conflicting definitions during this

process.

Several works in the literature address these problems by proposing an

alternative formal and deterministic semantics [74, 75, 76, 77] to support the

implementation of tools that statically check presentation properties (audio

overlapping, video/images shadowing, contradictory constraints) [78, 79, 70,

80]. Due to the complexity of the languages, these works tend to consider just

a subset of their constructs. Another drawback is that there is no guarantee

that the properties checked by these tools will hold at runtime, because players

tend to implement the official (and ambiguous) semantics.

Now let’s consider the support for programming interactive distributed

applications. SMIL, HTML, SVG, X3D and XMT have no native support

for multi-device applications. On the contrary, NCL and IPML (a SMIL-

based language) natively implement declarative constructs for distributed

applications: both languages allow one to program in which device a given

media content should be presented. While NCL admits the programming of

interactive distributed applications, it is not clear whether IPML supports

distributed interactivity (the authors state nothing about interactivity in their

proposal). Nevertheless, neither NCL nor IPML enforce total ordering of events

5On the contrary of all other multimedia languages cited in this section, the SVG spec-
ification defines that when reacting to events, all consequential actions must be performed
at the same timing instant [73], assuming implicitly the synchronous model.
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in distributed applications. So, even if peers running applications developed in

these languages behaved deterministically (which is not the case) the system

would fail to guarantee consistent executions according to the consistency

model defined in [4] and used in this thesis. That is, it is possible to develop

distributed applications in NCL and IPML in which each peers’ view of the

order that events have occurred may be different from others.

Finally, most systems that adopt one of these multimedia languages also

admit the use of a scripting language to overcome the limited-expressiveness

problem of DSLs. In some cases, there are APIs specifically designed aiming to

support the programming of distributed multimedia applications. Consider the

case of HTML and JavaScript. At the time of this writing, there are at least

two W3C Working Groups whose main focus is to propose JavaScript APIs for

supporting multi-device presentations in the Web ecosystem: the Multi-Device

Timing Community Group6 and the Second Screen Community Group7. The

first group is proposing the TimingObject concept which is capable of proving

a synchronized clock among different devices. The second group’s proposal

consists of the Presentation API, which aims to favor the development of

applications that present web content on a secondary display connected to a

device.

Each of these proposals target a specific feature and does not aim to im-

plement a full-fledged framework for interactive multi-device applications. The

TimingObject supports the development of distributed multimedia presenta-

tion that can provide some level of synchronized playouts in different devices.

The Presentation API allows a device to control the presentation in another

device. Functionalities such as ordering of messages should be implemented

from scratch, similar to the approach discussed in next section.

2.2.2
General Purpose Languages

Programming multimedia using general purpose languages usually im-

plies in using specialized frameworks. GStreamer8, FFmpeg9, libav10, libVLC11,

DirectShow12 and AV Foundation13 are some examples of multimedia frame-

6https://www.w3.org/community/webtiming/
7https://www.w3.org/community/webscreens//
8https://gstreamer.freedesktop.org/
9https://ffmpeg.org/

10https://libav.org/
11http://www.videolan.org/vlc/libvlc.html
12https://msdn.microsoft.com/en-us/library/windows/desktop/dd375454(v=

vs.85).aspx
13https://developer.apple.com/av-foundation/
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works for general purpose languages. Flexibility is a strength of this approach,

but it comes with the price of complexity.

Most of these frameworks have an API that exposes low-level operations

to programmers. For instance, functions for manipulating video buffers, au-

dio samples, color spaces, bitrates are typically implemented by all of them. In

general, they favor operations at intra-stream level over the composition of mul-

tiple objects. As a consequence, high-level operations, such as synchronization

of different streams, users’ interaction, detection of the end of objects (consid-

ering a single object may have multiple streams) should be programmed on

top of the low-level API.

In applications that handle concurrent multiple media objects, the use of

threads is common. In these cases, it is possible to guarantee the determinism,

but it should be done programmatically by synchronizing threads and access

to shared variables, which can be complex [16].

These frameworks have limited support for distributed applications, fo-

cusing mainly on media streaming. GStreamer goes a step further by imple-

menting clock synchronization in different devices for synchronized rendering.

However, there is no native support for communication among devices that

guarantees ordering of messages (consistency). Again, programmers can en-

force consistency by implementing a communication layer that ensures this

property or using a communication library that guarantees it. Note that this

reinforces our point of lacking unified proposals for programming distributed

multimedia applications.

2.3
Céu

Céu [25] is a reactive synchronous language originally developed as a safe

alternative for programming soft real-time embedded systems. Céu programs

advance in a sequence of discrete reactions to external events received from

their environments. Reactions are synchronous (i.e., instantaneous, according

to the synchronous hypothesis), run atomically and to completion.

Céu has been designed for control-intensive applications, therefore it

has structured mechanisms, such as await (to suspend lines of execution) and

par (to create logical concurrent lines of execution) which favor one to write

code in direct style, as opposed to the inversion of control in event-driven

executions relying on callbacks. Let’s take the example in Listing 2.4 to present

the language. This Céu code generates a program that toggles Led1 and Led2

on and off at each 2s and 4s, respectively, until a key is pressed.

This code first declares the input event KEY (line 1). In lines 2–19 there

DBD
PUC-Rio - Certificação Digital Nº 1412733/CA



Chapter 2. Background 33

1 input void KEY;
2 par/or

3 do /* trail 1 */
4 loop do

5 await 2s;
6 _Led1_on ()
7 await 2s;
8 _Led1_off ()
9 end

10 with /* trail 2 */
11 loop do

12 await 4s;
13 _Led2_on ()
14 await 4s;
15 _Led2_off ()
16 end

17 with /* trail 3 */
18 await KEY;
19 end

Listing 2.4: A Céu code that toggles Led1 at each 2s and Led2 at each 4s
until one presses a key.

is a parallel composition, that creates concurrent lines of executions known

as trails. In this example, we use a par/or (parallel-or) composition, which

finishes whenever one of its trails finishes. Céu also has the compositions

par/and (finishes only when all of its trails finish) and par (never finishes).

The par/or composition in Listing 2.4 creates 3 trails. The first one

(lines 3–10) has a loop (lines 4–9) that suspends its execution for 2s (line 5),

toggles Led1 on (line 6), suspends its execution for another 2s (line 7) and

toggles Led1 off (line 8), restarting the loop. The second trail (lines 10–17) is

similar to the first, but it toggles Led2 on and off at each 4s (lines 12 and 14).

Note that neither the first nor the second trails finish because both run an

infinite loop. Finally, the last trail (lines 17–19) simply suspends its execution

until the program receives a KEY event (line 18), which causes its end and,

consequently, finishes the whole composition (i.e., other trails are aborted). At

this point, all trails rejoin at line 19 and the program finishes.

Execution Model

Céu’s semantics enforces deterministic execution of programs even when

using parallel compositions: when multiple trails are activated by the same

event, they are scheduled in lexical order (the order they appear in the

source code). Céu also detects at compile time conflicting access to shared

variables to guarantee safe executions [81]. However, this check is optional and

is not essential for providing deterministic behaviors. The following algorithm
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summarizes how a Céu program executes:

1. The program initiates a boot reaction in a single trail. Parallel composi-

tions may create new trails.

2. Active trails execute until they block in an await or terminate.

3. When all trails block (i.e., the reaction finishes) the control goes back to

the environment.

4. If an event E occurs, all trails waiting for E are resumed in order and

the execution goes back to the step 2.

Note that following this execution model, reactions are triggered always

in response to a single external event. Suppose that a Céu program receives

the event E. Thus, according to step 4, all trails waiting for that event wake

and execute. If during this reaction the program receives an event E ′, then it is

queued and processed in the next reaction, i.e., trails waiting for E ′ will wake

when the current reaction ends.

Given this execution model, combined with the synchronous hypothesis,

Figure 2.4 depicts a timeline that precisely represents the operations (and their

order) executed by the program in Listing 2.4. Here it is worth noting that, as

other synchronous languages, Céu adopts a logical notion of time. Thus, for

instance, the 2s written in lines 5 and 7 of the Listing 2.4 corresponds to two

logical seconds (i.e., two occurrences of the event second) and not necessarily

two physical seconds. In Céu, await statements are the only instructions that

actually takes time and all other statements are instantaneous (that is, the

logical time does not advance while the program executes them).

Figure 2.4: Timeline of the toggling Leds program.

So, the program in Listing 2.4 executes as follows. At exactly 2s of

logical time the program executes the function _Led1_on(). At 4s, the program

executes two functions in the following order: it first calls _Led1_off() and
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then _Led2_on(). At 6s, the program calls _Led1_on(). Again, at 8s, it executes

two functions (in this order): first _Led1_off() and then _Led2_off(). The

deterministic semantics of Céu guarantees that this execution pattern repeats

indefinitely until one presses a key.

Abortion and Finalization

Céu par/or construct provides a natural means for implementing an

orthogonal abortion mechanism. Consider again Listing 2.4, which finishes

when one presses a key. Let’s adapt that program to also finish when one

presses a mouse button (MOUSE_CLICK event). In this situation, it is enough to

add a fourth trail that just waits for the event MOUSE_CLICK and finishes, without

having to tweak any other trail (e.g., add synchronization primitives or state

variables). Orthogonal abortion is an intrinsic characteristic of synchronous

languages and cannot be expressed effectively when using threads [82].

However, preempting the execution of a trail may lead to undesirable

situations. A classical example is when a trail that has opened a file is aborted

without having the chance to properly close it. For such cases, Céu has

the finalize construct that always executes when its enclosing block ends.

Listing 2.5 illustrates an example. The first trail of the par/or composition

opens a file using the C fopen function, which returns a pointer to a file

descriptor (line 5). When the first trail ends, either by receiving the E event

(line 10) or it is aborted after 10s (line 12), the with clause of the finalize

construct is executed, ensuring the program always closes that file (lines 4–8).

1 <...>

2 par/or do

3 var _FILE *f;

4 finalize

5 f = _fopen ( <... >);

6 with

7 _fclose (f);

8 end

9 _fwrite (<...>, f);

10 await E;

11 with

12 await 10s;

13 end

Listing 2.5: The finalize block always executes whenever the first trail ends.
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Internal Events

In addition to external events, Céu implements the concept of internal

events that are emitted internally by the program via emit statements. Céu

runtime processes internal events in a stack-based manner, instead of the

queue-based processing of external events. Internal events serve as a signalling

and communication mechanism among trails and produce micro-reactions

within external reactions. They can be used to implement a limited form of

subroutines, as depicted in Listing 2.6.

1 event (int *) inc;

2 par/or do

3 var int* p;

4 every p in inc do

5 *p = *p + 1;

6 end

7 with

8 var int v = 1;

9 emit inc (&v); //v == 2

10 emit inc (&v); //v == 3

11 end

Listing 2.6: Céu processes internal events in a stack-based manner, which can

be used for implementing "subroutines".

Line 1 declares the internal event inc. The Céu every statement continu-

ously wait for its identifying event, executing its body on each occurrence (this

statement is known as event iterator). The first trail of the par/or composition

uses an event iterator to react to occurrences of the inc event and increments

the value received as reference (lines 4–6). In practice, this trail behaves as if

it had defined a subroutine called inc.

The second trail defines the variable v with the value 1 (line 8) and emits

twice the internal event inc, passing v by reference (lines 9–10). Whenever a

trail emits an internal event, it pauses and the control goes to any previously

executed trail which is waiting for that event. In the example, when the second

trail emits the inc event in line 9, it pauses, the every iterator in line 4 wakes,

executing its body, and only after it finishes the second trail is resumed. At

this point, the variable v has the value 2. When the second trail emits that

same internal event in line 10, it pauses and the every block executes again,

which makes v to hold the value 3.

Céu supports nested emitting of internal events. Thus, the event iterator

in the first trail could emit another internal event, which would create a new

level in the stack. The stack serves as a record for nested micro reactions.
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A limitation of this form of subroutines is that it cannot express recursion,

because an emit to itself is always ignored (a running trail cannot be waiting

on itself).

Compilation

The compilation of a Céu source code is performed in two stages.

First the Céu compiler generates a corresponding C program, that is then

compiled, using a standard C compiler, to machine code. During the first

phase, Céu checks the code to make sure that the properties guaranteed by

its semantics (synchronicity, termination, consistency and determinism) indeed

hold, otherwise it rejects that code and the compilation fails. Here, exceptions

are native C calls (any statement starting with underscore)—Céu passes those

statements as is to the C compiler. If on the one hand this integrates seamlessly

with C favoring the calling of native functions, on the other hand these calls

cannot be checked by Céu. Thus, if a native function performs blocking

operations or takes a non-negligible time to execute, the logical time may

diverge from the physical time. But from the Céu perspective, all those calls

are considered instantaneous.

Next chapter discusses the suitability of Céu for programming some of

the most used patterns in multimedia applications.
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3
Céu and Multimedia

In this chapter we discuss the advantages of using Céu and its syn-

chronous semantics in the multimedia domain. First, in Section 3.1 we demon-

strate how one can express common causal relationships among media objects

in Céu. Second, in Section 3.1 we discuss the implementation of a minimalist

media player controller in Céu. And third, in Section 3.3 we discuss through

examples how the synchronous semantics of the language prevents the prob-

lems discussed in Section 2.2.1.

3.1
Expressing Causal Relationships in Céu

Programming multimedia applications is all about defining how media

objects relate to each other. In a seminal work, Allen introduced an interval-

based temporal algebra that defines a set of thirteen relations that "can be used

to express any relationship that can hold between two intervals" [83]. Several

works use this algebra either as basis for a formal timing model [84, 85, 86] or

as an evaluation criteria for the expressiveness of languages or frameworks [87,

88, 89].

However, using Allen relations for programming the behavior of a multi-

media application faces several problems: "First, the relations are descriptive:

they do not reflect causal dependency between intervals, but they rather rep-

resent temporal coincidence. Second, since the relations depend on interval

duration, changing duration may modify the relation that exists between the

intervals. Third, composition based on the relations may lead to temporal in-

consistency, because contradictory relations may be specified for intervals" [2].

Here we use an alternative model proposed by Duda and Keramane,

known as Interval Expression [2], as basis for our discussion regarding the

suitability of Céu for programming multimedia applications. Similarly to

Allen’s model, the Interval Expression is also interval-based, but it uses causal

relationships (instead of restrictions) for expressing multimedia presentations.

Figure 3.1 depicts the operators defined in that model. Each operator takes

time intervals as arguments and yield another interval as a result.
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Figure 3.1: Temporal composition operators defined by Duda and Kera-
mane [2].

The semantics of these operators is defined as follows:

– a seq b: the end of interval a starts interval b;

– a par b: the beginning of interval a starts interval b;

– a par − min b: the beginning of interval a starts interval b and the result

interval is stopped when the first of the two interval terminates;

– a par −max b: the beginning of interval a starts interval b and the result

interval is stopped when the last of the two interval terminates;

– a equal b: interval a starts and stops interval b;

– a ident b: the beginning of interval a starts b and the end of interval b

stops a;

Table 3.1 depicts Céu patterns that implement each of these operators.

For that discussion, suppose that Céu statements a and b are expressions that

halt their trails to execute a media object and wake when the respective object

finishes. And the await FOREVER; expression halts its trail indefinitely, i.e., it

never wakes.

The following discussion briefly outlines the execution of codes in Ta-

ble 3.1:

– a seq b: because there is no await between a and b, when the object a

finishes, the object b starts immediately;
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Table 3.1: Expressing the operators of Interval Expression in Céu.

Relation Céu Relation Céu

a seq b
a;
b; a par b

par do

a;
with

b;
end

a par − min b

par/or do

a;
with

b;
end

a par − max b

par/and do

a;
with

b;
end

a equal b

par/or do

a;
with

b;
await FOREVER ;

end

a ident b

par/or do

a;
await FOREVER ;

with

b;
end

– a par b: the par composition starts a and b together.

– a par−min b: the par/or composition starts a and b together and finishes

when the first of the two objects terminates.

– a par − max b: the par/and composition starts a and b together and

finishes when the last of the two objects terminates.

– a equal b: the par/or composition starts a and b together. The

await FOREVER prevents the second trail to finish, therefore the compo-

sition ends when a terminates.

– a ident b: the par/or composition starts a and b together. The

await FOREVER prevents the first trail to finish, therefore the composition

ends when b terminates.

It worth mentioning that the semantics of the SMIL containers <par>

and <seq> can be directly expressed by the Interval Expression operators

par − max/par − min (depending on whether the endsync attribute has the

value last or first) and seq, respectively. Likewise, NCL connectors that have

as condition onBegin or onEnd and as action start or stop1 can be expressed by

means of operators seq, par, equal and ident.

1 By design, the Interval Expression model only relates the beginning and ending of
intervals, therefore only NCL connectors whose conditions are onBegin or onEnd and actions
are start or stop can be expressed by them. For instance, the operators par and seq
correspond to the connectors onBeginStart and onEndStart, respectively. Mapping other
NCL relationships is a matter of creating other operations with the corresponding semantics.

DBD
PUC-Rio - Certificação Digital Nº 1412733/CA



Chapter 3. Céu and Multimedia 41

This discussion indicates that one can program in Céu multimedia

applications that causally relates media objects, similarly to NCL and SMIL.

Section 3.3 supports this claim by discussing that the Céu semantics avoids

several ambiguities of these multimedia languages.

3.2
A Simplistic Multimedia Player in Céu

To demonstrate the use of Céu constructs for programming multimedia,

Listing 3.1 depicts the implementation of a simplistic player in Céu used

throughout this chapter. Assume that the Céu expression await Play (<URI>)

calls the function Play and halts the execution of its trail until the function

returns. That function executes the media object pointed by <URI> and finishes

when its presentation ends.

The code of this player interacts with other trails via four internal events:

start (line 3), stop (line 5), started (line 10) and stopped (line 13). Trails emit

the start event to signal to the player that it should start the execution of

a given media object. The player stops the execution of that object when it

receives the event stop. When the player starts to execute an object, it emits

the event started. Finally, when the object stops (either naturally or due to a

stop event) it emits the event stopped. Let’s say that when the player is waiting

for the event start it is in sleeping mode, and when it is executing an object it

is in playing mode.

1 /* player .ceu */

2 loop do

3 var [] byte uri = await start;

4 par/or do

5 await stop;

6 with

7 par/and do

8 await Play (uri );

9 with

10 emit started ;

11 end

12 end

13 emit stopped ;

14 end

Listing 3.1: A Céu player that starts an object when one emits the event start

and finishes it when one emits the event stop. It also emits the event started

when the object begins and the event stopped when it ends.

To implement this behavior, the player runs a loop which waits for

the event start (line 3). When it wakes from this await, it creates a par/or

DBD
PUC-Rio - Certificação Digital Nº 1412733/CA



Chapter 3. Céu and Multimedia 42

composition (lines 4–12) with two trails. The first trail simply waits for the

event stop (line 5) to abort the presentation of the media object (i.e., this code

uses the Céu orthogonal abortion mechanism). The second trail, in parallel,

calls the function Play (line 8) and emits the event started (line 10). Note that

emitting a start event when the player is in playing mode has no effect, because

it is no longer halted in the await in line 3. When the par/or composition ends,

either because it has received the event stop (line 5) or because the media

object has finished (line 8), the player emits the event stopped (line 13) and

the loop completes an iteration, going back to the sleeping mode.

Consider a generic hardware to play multimedia files with two buttons:

start and stop. Listing 3.2 implements a minimalist controller to this hardware

using the player depicted in Listing 3.1.

1 par do

2 # include " player .ceu"

3 with

4 loop do

5 await START_BUTTON ;

6 var [] byte file = <URI to play >;

7 emit start (file );

8 par/or do

9 await STOP_BUTTON ;

10 emit stop;

11 with

12 await stopped ;

13 end

14 end

15 end

Listing 3.2: A minimalist media player controller in Céu.

The controller has a parallel composition with two trails. The first

includes the code of the player (line 2). The second trail (lines 3—15)

implements the controller logic. It runs a loop that waits the event START_BUTTON

(line 5) to then emit the event start (line 7) leading the player to the playing

mode. The trail then creates a par/or composition with two trails. The first

waits the event STOP_BUTTON (line 9) to then emit the event stop (line 10)

stopping the execution of the file. The second trail simply waits the event

stopped to then finish. That is, this composition finishes either if one presses

the stop button or if the media object finishes naturally. The loop completes

an iteration and the controller is waiting again for the event START_BUTTON.
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3.3
Fixing Semantic Problems of Multimedia Applications Using Céu

In this section, we take back the source codes discussed in Section 2.2.1

and present, side by side, alternative Céu versions for them. Here our goal is to

demonstrate that Céu semantics shields programmers from the problems that

arise when using non-deterministic multimedia languages. We focus mainly

on the synchronous semantics rather than on the multimedia aspect of these

codes. In fact, this discussion was the basis for our requirement analysis for

developing a synchronous multimedia library able to guarantee deterministic

behaviors for local applications.

First, let’s consider again the NCL code in Listing 2.1, on page 27, which

starts N media objects when the program begins. Remember that the NCL

semantics does not guarantee that all objects start exactly at the same time.

Here we discuss how the synchronous semantics and the logical time guarantees

the precise synchronization of the start time of multiple objects. Consider the

code in Listing 3.3. It has a par/and composition in lines 1–10 which creates N

trails, each for playing a different media content. The program ends after the

presentation of all objects.

1 par/and do

2 await Play (<URI_1 >);
3 with

4 await Play (<URI_2 >);
5 with

6 await Play (<URI_3 >);
7 <...>
8 with

9 await Play (<URI_N >);
10 end

11

1 <ncl >
2 < ... >
3 <body >
4 <port id="p1" component ="m1"/>
5 <port id="p2" component ="m2"/>
6 <port id="p3" component ="m3"/>
7 <...>
8 <port id="pN" component ="mN"/>
9

10 <media id="m1" .../ >
11 <media id="m2" .../ >
12 <media id="m3" .../ >
13 <...>
14 <media id="mN" .../ >
15 </body >
16 </ncl >
17

Listing 3.3: A Céu code that starts N media objects when the program begins.

Let’s analyze how this program guarantees the synchronization of the

beginning of all objects according to the execution model discussed in Sec-

tion 2.3. At logical instant 0s, the program initiates the boot reaction, evalu-

ates the par/and composition, and then starts to create the N trails following

the lexical order. First, it creates the first trail, which calls the Play function

to start the object pointed by <URI_1>, and then halts until that object fin-

ishes (line 2). The program then creates the second trail, which also calls the
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Play function, but it starts the object pointed by <URI_2>, and then halts wait-

ing its end (line 4). The boot reaction follows, creating the third trail, executing

it until it halts (line 6), to then create the next trail. This process goes on until

the program creates and halts the last trail (line 9). At this point, the boot

reaction finishes and the control goes back to the environment.

Note that the creation of all N trails occurs during the boot reaction, that

is, all calls the program does to the function Play happen at the same logical

instant 0s. This means that, from Céu perspective, all objects have exactly

the same start time (0s), regardless of how large N is2.

Consider now the NCL code discussed in Listing 2.2, on page 28, which

has different results depending on the order the player executes link elements.

Because Céu has a deterministic trail scheduler, given an input event we can

always accurately compute the sequence of operations the program executes.

The code in Listing 3.4 is a Céu alternative for that NCL program.

1 par/and

2 do /* link id=l2 */
3 every started do

4 emit start (<URI >);
5 end

6 with /* link id=l1 */
7 every started do

8 emit stop;
9 end

10 with

11 # include " player .ceu ";
12 with /* port id=p1 */
13 emit start (<URI >);
14 end

15

1 <body >
2 <port id="p1" component ="m1"/>
3 <media id="m1" ... />
4 <link id="l1"
5 xconnector =" onBeginStop ">
6 <bind role =" onBegin "
7 component ="m1"/>
8 <bind role =" stop"
9 component ="m1"/>

10 </link >
11 <link id="l2"
12 xconnector =" onBeginStart ">
13 <bind role =" onBegin "
14 component ="m1"/>
15 <bind role =" start"
16 component ="m1"/>
17 </link >
18 </body >
19

Listing 3.4: In Céu, the order of execution of trails is always known and the
output can be previously computed.

The first trail implements the behavior of the NCL link l2: it reacts to

each occurrence of the event started (equivalent to the NCL onBegin event),

emitting the event start (lines 3–5). The second trail (lines 7–9) is similar to

the first, but it emits the event stop (as the NCL link l1). The third trail

imports the player in Listing 3.1. And the last trail simply emits the event

start (line 13) which has the same effect of the NCL port p1 statement.

2 The pattern presented in Listing 3.3 behaves similarly to the SMIL par container with
endsync="last", regarding the beginning of its child elements.
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During the boot reaction the program evaluates the par/and and creates

the four trails, always following the lexical order. When the fourth trail emits

the event start, the player which was in sleeping mode wakes and goes to

playing mode, emitting the event started. The first and second trails, which

are waiting for that event, wake in order. The first trail starts to react and

emits the event start, but because there is no trail waiting for it (remember

that the player is in playing mode) nothing happens. The second trail then

wakes and emits the event stop. The player wakes again, but now it aborts the

execution of the media object, and completes a loop iteration, going back to

sleeping mode. At this point, all internal micro-reactions have finished, as well

as the boot reaction. So, at the end of the boot the player is in sleeping mode.

Now let’s make a slight change in the code of Listing 3.4: swap the first

and second trails (Listing 3.5). This modification leads to a program with

different execution.

1 par/and

2 do /* link id=l1 */
3 every started do

4 emit stop;
5 end

6 with /* link id=l2 */
7 every started do

8 emit start (<URI >);
9 end

10 with

11 # include " player .ceu ";
12 with /* port id=p1 */
13 emit start (<URI >);
14 end

15

1 <body >
2 <port id="p1" component ="m1"/>
3 <media id="m1" ... />
4 <link id="l1"
5 xconnector =" onBeginStop ">
6 <bind role =" onBegin "
7 component ="m1"/>
8 <bind role =" stop"
9 component ="m1"/>

10 </link >
11 <link id="l2"
12 xconnector =" onBeginStart ">
13 <bind role =" onBegin "
14 component ="m1"/>
15 <bind role =" start"
16 component ="m1"/>
17 </link >
18 </body >
19

Listing 3.5: Swapping the first two trails leads to a different sequence of
operations.

As in the previous example, when the fourth trail emits the event start,

the player wakes and goes to playing mode, emitting the event started and

waking the first two trails in order. The first trail wakes and emits the event

stop. The player wakes due to that event, aborts the execution of the media

object, and goes to sleeping mode. The second trail then wakes and emits the

event start, which wakes again the player. At this point, the player goes to

playing mode and emits the event started for the second time. This event wakes

again the first trail, which emits the event stop and the player goes to sleeping

mode.
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At first sight, it seems this program goes into a loop when the second trail

wakes again due to the second event started. But, as stated in Section 2.3, the

use of internal events has an important limitation: recursion is not supported.

Thus, the second trail cannot wake in this micro-reaction because it has been

indirectly triggered by this very same trail (remember that a "running trail

cannot be waiting on itself "). At this point all micro-reactions finish. At the

end of the boot reaction the player is in sleeping mode, as in the previous

example.

These two examples serve mainly to illustrate two points of the Céu

semantics. First, changes in the order of trails can lead to different (but

deterministic) executions. Second, the program never goes into a loop—as

proved by Santos et. al, reactions in Céu always finish, that is, they never go

into an infinite loop [17].

Now let’s move to the SMIL code depicted in Listing 2.3, on page 29,

in which depending on how the player processes internal timing events, the

object img2 may be presented or not. Listing 3.6 illustrates a version for that

program written in Céu, whose well-defined execution model disallows that

non-deterministic behavior. The outermost par/and implements the behavior

of the SMIL par1 composition: it executes in parallel the object img1 and

img2, the former according to restrictions begin="3s" and end="3s" specified

by the SMIL element img1, and the latter according to restrictions dur="4" and

begin="img1.beginEvent" specified by the SMIL element img2.

During the boot reaction, the program in Listing 3.6 evaluates the par/and

in lines 1–22 (let’s call it par1) and creates its two trails. The first (lines 2–13)

has a par/or (par2) whose first trail just includes the player (line 4) i.e., it halts

waiting for the event start, and the second trail (lines 6–12) creates a par/and

composition (par3) whose both trails halts for 3s (lines 7 and 10). The second

trail of par1 (lines 14–22) halts waiting for the event started (line 15). At this

point, all activated trails are waiting and the boot reaction finishes.

At 3s of the logical time, the program wakes both trails of par3, executing

them in order. The first emits the event start (line 8). This event wakes the

player in line 4, which goes to playing mode to execute <img1> and emits the

event started. The program then wakes from the await in line 15, evaluates the

par/or in lines 17–21 (par4) and creates two trails: the first (line 18) executes

<img2> and halts until that object finishes; and the second halts for 4s (line 20).

The reaction follows, and the second trail of par3 executes and emits the

event stop (line 11). This event wakes the player, which goes to sleeping mode,

and the reaction finishes. At the end of this reaction, par3 has ended because

both of its trails have executed and terminated. From now on, the program,
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1 par/and /* par1 */
2 do /* img id=img1 */
3 par/or do /* par2 */
4 # include " player .ceu ";
5 with

6 par/and do /* par3 */
7 await 3s; /* begin =3s */
8 emit start (<img1 >);
9 with

10 await 3s; /* end =3s */
11 emit stop;
12 end

13 end

14 with /* img id=img2 */
15 await started ;
16 /* begin=img1. beginEvent */
17 par/or do /* par4 */
18 await Play (<img2 >);
19 with

20 await 4s; /* dur ="4s" */
21 end

22 end

23

1 <par id =" par1">
2 <img id =" img1" begin ="3s"
3 end ="3s".../ >
4 <img id =" img2" dur ="4s"
5 begin =" img1. beginEvent ".../ >
6 </par >
7

Listing 3.6: A Céu program handles internal events immediately when they
are emitted following a stack-based processing.

which has only the second trail of par1 active, is halted waiting for 4s.

At 7s of the logical time (i.e., 4s after the last reaction) the program

wakes from the await in line 20. As there is no other statement, that trail ends,

aborting par4, therefore, the execution of img2 finishes. Now both trails of par1

have finished, which ends that composition, as well as the whole program.

Summing up, the program in Listing 3.6 executes at 3s img1 for 0s (its

starting and its ending occur within the same reaction) and img2 for 4s. There

is no other possible execution for that code.

The discussion in this section illustrates how the Céu synchronous se-

mantics prevents the programming of non-deterministic multimedia applica-

tions. However, because Céu is a general purpose language, it has no primitives

for performing multimedia operations. Next chapter describes Céu-Media, a

multimedia library for programming multimedia in Céu. Céu-Media is not

just yet another multimedia framework that implements high-level functions

for executing low-level operations. Céu-Media realizes the synchronous se-

mantics of the language in the final multimedia application, guaranteeing not

only the determinism, but also the precise intermedia synchronization.
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4
The Design and Implementation of Céu-Media

In this chapter we present Céu-Media, a practical contribution of this

thesis. We first discuss in Section 4.1 the gains of having a multimedia engine

that follows the synchronous semantics. Then, in Section 4.2 we introduce Céu-

Media, its implementation and the code of three multimedia applications that

use it. In Section 4.3 we present the low-level C multimedia backend used by

Céu-Media. We close this chapter by discussing the scientific contributions

of Céu-Media in Section 4.4.

4.1
Synchronous Multimedia Engine

Figure 4.1 illustrates a generic workflow that most multimedia players

implement (of course, each one with its own specificities). This workflow

has two macro components: the Controller and the Multimedia Engine. The

Controller maintains the logic and state of programs; and the Multimedia

Engine synthesizes and synchronizes audio samples and video buffers, creating

the Multimedia Output. The Controller uses the API of the Multimedia Engine

to control (e.g., start, stop, pause etc.) objects in the Multimedia Output. The

Multimedia Engine also notifies the controller about events occurred in the

presentation (e.g., end of an object, input events, etc.).

Figure 4.1: General architecture of multimedia players.

So far in this thesis we have mainly discussed issues related to the

Controller component. Our claim is that the lack of deterministic semantics

of traditional multimedia languages may lead to the development of players
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(controllers) whose behavior cannot be fully predicted. And we argue in favor

of controllers that follow the synchronous semantics, because this execution

model prevents several problems, as discussed in Chapter 3.

However, using a synchronous language to program the Controller com-

ponent solves just part of the problem of developing deterministic multimedia

applications. A comprehensive approach for this problem should also address

the Multimedia Engine component. To illustrate, consider the code in List-

ing 4.1. A Céu programmer expects that the object VID_1 in line 2 starts at

the beginning of the program; the object VID_2 in line 6 starts exactly 2s (log-

ical time) after VID_1; and that the program presents only 5s of VID_1 and 3s

of VID_2 (also logical time). In this example, the function Play () is part of the

Multimedia Engine API.

1 par/or do

2 await Play (<VID_1 >);

3 with

4 await 2s;

5 < non - blocking statements (no await ) >

6 await Play (<VID_2 >);

7 with

8 await 5s;

9 end

Listing 4.1: The programmer expects that the Multimedia Ouput respects the

synchronous semantics of Céu.

In Chapter 1 we have highlighted that the definition of determinism

should consider the timing aspect. Thus, in this simple example, if the

Multimedia Engine follows the "physical" time, there is no guarantees that

VID_2 would start exactly after 2s of presentation of VID_1 and the duration

of both objects would be as expected. Furthermore, in multiple executions

of this program the difference between the beginning of VID_2 and VID_1 can

be different. That is, even though this program has been developed using a

deterministic language, the Multimedia Output would be non-deterministic.

The approach we adopt to address this problem is to ensure that the

Multimedia Engine also follows the synchronous semantics and the logical time

to synthesize the presentation. In this case, as both components (Controller

and Multimedia Engine) have the same execution model and timing reference,

the operations issued by the Controller would be performed at the appropriate

timing in the Multimedia Output, guaranteeing its determinism.
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4.2
Céu-Media

Céu-Media[90] is a Multimedia Engine designed with two main goals:

to provide high-level abstractions for programming multimedia in Céu; and, to

realize the synchronous semantics in the Multimedia Output. The designing of

its API has been inspired by the languages NCL and SMIL. Here we describe

Céu-Media1 internals and the programming model promoted by its API.

4.2.1
A Hello World in Céu-Media

Céu-Media API implements three abstractions: Scene, Properties, and

Player. A Scene represents a top-level OS window. Properties define a map of

key/values corresponding to different properties of each media object. And a

Player renders an object on a Scene following a given set of Properties. List-

ing 4.2 depicts a simple Céu-Media application that uses these abstractions

to present two videos side-by-side for 15s on screen, restarting them whenever

both end.

1 var int width = 1080;
2 var int height = 720;
3 var [] byte uri = [].." resources / animGar .mp4 ";
4 var Properties .Video prop1 = Properties .Video (
5 Region (0, 0, width /2, height /2, 1), 1.0, 1.0);
6 var Properties .Video prop2 = Properties .Video (
7 Region (width /2, 0, width /2, height /2, 1), 1.0, 1.0);
8 var &? Scene scene = spawn Scene(Size(width , height ));
9 watching (scene) do

10 watching 15s do

11 loop do

12 par/and do

13 await Play (uri , prop1 , scene );
14 with

15 await Play (uri , prop2 , scene );
16 end

17 end

18 end

19 end

Listing 4.2: Two videos side-by-side in Céu-Media.

Lines 4–7 define two video Properties variables, prop1 and prop2. The

first defines that an object is to be played on the region delimited by the

given rectangle (Region (0,0,width/2,height/2,1)) with its normal volume (1.0)

and opacity (1.0). Similarly, the second defines that an object is to be

played on another region (Region (width/2,0,width/2,height/2,1)) also with its

1The Céu-Media source code is publicly available at http://rodrimc.github.io/ceu-
media.
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normal volume and opacity. Note that these Properties declarations are only

descriptions used by Players to determine how they should render a video on

a Scene. Thus at this point (line 7) nothing has happened and the screen is

empty—in fact, time has not even passed.

Line 8 creates a Scene with 1080x720 pixels and store it in variable scene.

Céu spawn statement executes code abstractions (Céu mechanism for defining

subprograms) in parallel with the caller code, returning a handle to that

subprogram instance. The watching block in lines 9–19 aborts its execution

when the Scene ends (either due to a normal end or due to an error). Next

statement defines another watching block (lines 10–18). It defines an execution

block with a duration of 15s, that is, a block that executes its body for at

most 15 seconds, and terminates. Here the body (lines 11–17) consists of an

infinite loop whose sole statement is a par/and composition (lines 12–16) with

two execution trails, each also consisting of a single statement (line 13 and 15).

Once executed, the par/and statement starts its trails in parallel and terminates

only after both of them terminate. In this case, the first trail creates a Player

to render the file pointed by the variable uri, with Properties prop1 on Scene

scene, starts it, and waits for its end. Similarly, the second trail creates another

Player to render the same file, but according to Properties prop2 on the same

Scene, starts it, and waits for its end.

When the program in Listing 4.2 starts, the two players are created

and start to render the same video in parallel. Whenever both of them end,

the whole par/and statement terminates and is immediately restarted by

the outermost loop, which means that new players are created and started.

This process goes on until the 15th second is reached, at which point the

inner watching block terminates. At this point, the outer watching block also

terminates, because there is no other statement to execute, thus the whole

program ends. Figure 4.2 presents a screenshot of this program.

Figure 4.2: Screenshot of the execution of program in Listing 4.2
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Note in the screenshot that both Players are presenting exactly the

same video frame. This is not a coincidence, but rather a feature enforced

by Céu-Media synchronization model: it uses the program’s logical time for

synchronizing all objects in the presentation. Section 4.2.4 and Section 4.3

detail how Céu-Media achieves this frame-level synchronization precision.

4.2.2
Céu-Media Programming Model

Céu-Media programming model is based on the usual idea of multime-

dia scenes, which are responsible for composing and synchronizing the output

of different multimedia objects into a unified presentation. Each Scene has an

internal clock that rules the rendering synchronization. Scenes also provide a

limited form of compositionality2: pausing and resuming a Scene pauses and

resumes all of its objects; and destroying a Scene also destroys all of its objects.

Player is the Céu-Media abstraction that represents a multimedia object

in a Scene. The main responsibility of a Player is to decode the object pointed

by an URI and output a sequence of raw audio and/or video buffers. To create

a Player, one has to pass a given set of Properties. Thus, the Player applies

a sequence of low-level operations for ensuring that the output buffers match

the values specified in that Properties set.

Figure 4.3 depicts a schematic illustration of these abstractions. In

our current implementation, a Scene opens a OS-level window to render

the presentation. Given this programming model, developing a multimedia

application using Céu-Media becomes a matter of creating a Scene and

starting a Player at the precise moment a multimedia object should be started.

The API has functions to manipulate the properties of a Player while it is

running, as well as functions to pause, resume and stop it.

4.2.3
Implementation

Under the hood, the Scene, Player and Properties abstractions are imple-

mented using a mix of Céu and native code that invokes functions of the C

multimedia library LibPlay3 used as backend. However, Céu-Media exposes

a pure Céu API, that is, users do not need to call any low-level native C

function to use it.

2Limited compositionality because our current implementation does not support adding
a scene to another scene. There are some engineering and researching challenges to address
for implementing this feature. More on that in the conclusion chapter.

3https://github.com/TeleMidia/LibPlay
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Figure 4.3: Schematic illustration of the abstractions implemented by Céu-
Media.

The Properties data type

The Properties type is a Céu tagged data type. Each tag groups

properties related to one of the following media types: text, image, audio,

or video. A simplified version of the Céu code that defines the Properties type

is presented in Listing 4.3.
1 data Properties .Text with

2 var [] byte text = [] .. "";

3 var [] byte font = [] .. "";

4 var Region region = val Region (0, 0, 0, 0, 1);

5 var uint color = 0 xffffffff ;

6 end

7

8 data Properties . Image with

9 var Region region = val Region (0, 0, 0, 0, 1);

10 var real alpha = 1.0;

11 end

12

13 data Properties . Audio with

14 var real volume = 1.0;

15 end

16

17 data Properties . Video with

18 var Region region = val Region (0, 0, 0, 0, 1);

19 var real alpha = 1.0;

20 var r64 volume = 1.0;

21 end

Listing 4.3: The Properties tagged data type.

A variable of type Properties holds a set of key/values, but has no

behavior associated to it. Although more verbose, this design promotes reuse:

different Players can share the same Properties description. It is somehow

similar to the use of the <descriptor> element in NCL.
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The Scene code

A Scene is implemented as a Céu code. Listing 4.4 depicts a simplified

version of its execution body (lines 4–19).
1 code/ await Scene (var Size? size)

2 -> (var& IScene handle )

3 -> none

4 do /* body */

5 < create LibPlay objects >

6 finalize do

7 < clear LibPlay memory >

8 end

9 par/and do

10 loop do

11 evt = < get next event > ();

12 emit (evt );

13 end

14 with

15 every FREQ ms do

16 _advance_time (FREQ );

17 end

18 end

19 end

Listing 4.4: The Scene code.

When one defines a variable of type Scene, this code starts to run

immediately: it executes in parallel with the surrounding code until the variable

goes out of scope. The Scene body performs two main tasks: (i) it emits scene-

level events to programs (mouse click, key press, etc); and (ii) it controls

the scene clock. The Scene clock only advances through explicit calls to the

function advance_time (line 16, in the previous listing). The inner workings

of the scene clock and its impact on the synchronization of the Multimedia

Output presentation are discussed in Section 4.2.4. Note the finalize block

in the Scene body, it ensures that all allocated resources are properly cleared

when the code finishes.

The Player code

Each Player is another code that, when instantiated, immediately

presents a media file according to a Properties description on the given Scene.

When there is no more content to be presented (i.e., the Player has drained

all of its media data), the Player stops (the code ends). Listing 4.5 depicts a

sketch of the Player code. The function Play takes an uri4, a Properties, and a

Scene and returns a new Player. As in the Scene code, the Player finalize block

guarantees that the LibPlay player stops whenever the corresponding Player

variable goes out of scope, and that allocated resources are properly released.

4 Even though our Player implementation takes an uri as input and supports streaming,
the execution of remote objects rises issues that we do not tackle in this thesis. Thus, here
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1 code/ await Play (var& [] byte uri , var& Properties prop , var& IScene scene )

2 -> (var& IPlayer handle )

3 -> none

4 do /* body */

5 p = < LibPlay player >;

6 finalize

7 _start (p);

8 with

9 _stop (p);

10 end

11 await p;

12 end

Listing 4.5: The Player code.

4.2.4
Synchronization: realizing the synchronous semantics in the Multimedia
Output

Every Scene has an internal monotonic clock that rules the Multimedia

Output. This clock starts with 0 and advances only through explicit calls to the

function advance_time(). Such calls are triggered by the scene code itself (i.e.,

Céu-Media users should not worry about calling this function). For instance,

in Listing 4.4, the Scene advances its clock every FREQ milliseconds (lines 15–

17), where FREQ is an internal constant, by the corresponding amount of time.

This call binds the logical time events of Céu with the “physical” clock used to

synchronize all players in a scene as follows. A buffer generated by a Player has

a presentation timestamp (PTS) and a duration (dur), it is rendered when the

Scene clock matches its PTS, and it is presented respecting the dur value. To

illustrate the consequence of this binding of logical and physical time, consider

the program depicted in Listing 4.6.
1 var &? Scene s = spawn Scene (Size (width , height ));

2 var Properties . Video prop1 = Properties . Video (<...>, 0.0);

3 var Properties . Video prop2 = Properties . Video (<...>, 0.0);

4 var Properties . Video prop3 = Properties . Video (<...>, 0.0);

5 var Properties . Video prop4 = Properties . Video (<...>, 0.0);

6 var Properties . Audio prop5 = Properties . Audio (<...>, 1.0);

7

8 await 5s;

9 watching (s) do

10 spawn Play (" video .ogv", prop1 , s);

11 spawn Play (" video .ogv", prop2 , s);

12 spawn Play (" video .ogv", prop3 , s);

13 spawn Play (" video .ogv", prop4 , s);

14 await Play (" audio .oga", prop5 , s);

15 end

Listing 4.6: Binding logical and physical time.

we consider that all media objects are locally available upon program execution.
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The program first spawns a Scene in line 1, which immediately runs in

parallel the code in Listing 4.4. The Scene code creates its internal objects

and then starts to react to each FREQ timing events for advancing its clock.

It worth remembering that the Céu compiler produces a single-threaded

program, which means that there is no way the Scene advances its clock while

the program is running another piece of code. In other words, during a reaction

Céu-Media guarantees that the Scene clock remains the same.

The program proceeds and creates five Properties, four for videos and

one for audio (lines 2–6). The program then waits for five seconds (line 8)

and creates a watching block whose body spawns four Players (lines 10–13),

initializing each with the same video URI and a corresponding Properties set;

these are started as soon as they are created. Finally, it creates a Player (line 14)

to play the audio, starts it, and waits for its end (stop event).

The only instructions that actually take time in this program are the

await statements in lines 8 and 14, and the code that advances the scene clock

(Listing 4.4, lines 15–17)—and they all consume exactly the specified amount

of logical time. This means that logical time does not pass while the players

are being spawned and started. Moreover, because the logical clock drives the

physical (scene) clock, this also means that no samples are timestamped with

distinct values during this time. Because the physical time actually passes

while the program creates the players, without this precise control over the

scene clock, each Player would set a different timestamp value on the produced

samples. This would happen even though they have been created in the same

reaction.

From the above we can say that the program in Listing 4.6 produces a

Multimedia Output that renders four videos and an audio track in-sync.

4.2.5
Céu-Media Sample Applications

In this section we discuss the implementation of three different multi-

media applications using Céu-Media. But before that, we introduce some

terminology. Thinking in terms of modeling concepts and their relative level

of abstraction, we regard the process of writing a multimedia application in

Céu-Media as consisting of four layers, depicted in Figure 4.4.

Layer 0 is the base layer; it is a C API for programming multimedia.

(LibPlay). Layer 1 is Céu-Media itself; it is written in Céu upon Layer 0,

hides its complexity, and exposes to the upper layer a pure high-level Céu

API (the Properties types and the Scene and Player codes). Layer 2 consists

of Céu-Media applications, i.e., Céu programs that use the Céu-Media
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Figure 4.4: Abstraction layers when programming applications in Céu-Media.

extensions for developing multimedia presentations. One could stop in Layer 2,

but it is possible to go further. Using Céu mechanisms we can combine the

basic abstractions of Céu with those of Céu-Media into novel abstractions

that are better suited to the description of particular scenarios. For instance,

below we discuss the definition of a abstraction for constructing multimedia

slideshows. These Céu-Media extensions appear in Layer 3, the uppermost

layer in terms of level of abstraction. Another possibility would be to implement

an NCL or SMIL player using Céu-Media. In this scenario, the player would

fit in Layer 2, and high-level declarative presentations written in NCL or SMIL

would fit in Layer 3. From now on, whenever a code listing is presented, we

indicate its position in this abstraction scale.

A SRT Reader

Listing 4.7 depicts the partial Céu code that renders SRT subtitles. When

instantiated, it reads a SubRip text file and, for each subtitle entry, obtains

its start time, end time, and text (lines 5–7), awaits for the amount of time

corresponding to its start time (line 8), and creates a Player that renders the

subtitle text for the duration of the entry (lines 9–13) .
1 code/ await SRT (var& Scene scene , var [] byte file , var int y_offset ) -> none

2 do

3 var int now = 0;

4 loop entry in < subtitle entries in file > do

5 var int from = get_start_time ( entry );

6 var int to = get_end_time ( entry );

7 var [] byte text = get_subtitle_text ( entry );

8 await (from - now)ms;

9 watching (to - from)ms do

10 var Properties .Text text = Properties .Text (text , [] .. "sans 40" ,

11 Region (0, y_offset , 800 , 100 , 1), 0 xffff0000 );

12 await Play(_, text , scene );

13 end

14 now = to;

15 end
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16 end

Listing 4.7: The SRT organism (Layers 1–2).

Listing 4.8 depicts a code excerpt that uses the SRT code for executing a

video with its subtitle.
1 var [] byte video = < video URI >;

2 var [] byte subtitle = < subtitle URI >;

3

4 var int width = 1080;

5 var int height = 720;

6

7 var Properties . Video p = Properties . Video (

8 Region (0, 0, width , height , 1), 1.0 , 1.0);

9

10 var &? Scene scene = spawn Scene (Size(width , height ));

11 watching ( scene ) do

12 par/and do

13 await Play (video , p, scene );

14 with

15 await SRT (scene , subtitle , 650);

16 end

17 end

Listing 4.8: Playing a video with subtitles (Layer 2).

The complete implementation of the SRT code demands the use of

asynchronous I/O operations for reading the SRT file, along with await

statements for synchronizing the asynchronous calls, as the use of traditional

blocking I/O would violate the synchronous hypothesis. Thus a programmer

writing this code needs to work on Layers 1 (asynchronous I/O) and 2 (text

rendering via Céu-Media). However, using this abstraction to render subtitles

does not require writing any C code neither synchronizing asynchronous I/O

operations, that is, programmers write code that fits in Layer 2, as illustrated

in Listing 4.8.

In the Céu-Media repository one can find the complete implementation

of this code using the asynchronous I/O library Céu-libuv5 (a wrapper for the

C library LibUV6).

A Multimedia Slideshow

The slideshow we consider consists of three images. Each one is presented

for five seconds while a piano soundtrack is played in background (in a

loop) and synchronized subtitles are shown over the images. The slideshow

terminates when all three images are displayed or when there are no more

5https://github.com/fsantanna/ceu-libuv
6https://github.com/libuv/libuv
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subtitles to be presented or any key is pressed. Listing 4.9 depicts the Céu-

Media code of this application.

1 var int width = 800;

2 var int height = 585;

3

4 var Properties . Image p1 = Properties . Image (

5 Region (0,0, width ,height ,1) , 1.0);

6 var Properties . Audio p2 = Properties . Audio (0.5);

7

8 var &? Scene scene = spawn Scene (Size(width , height ));

9 watching ( scene ) do

10 par/or do

11 loop do

12 await Play (" piano .oga", &p2 , & scene );

13 end

14 with

15 watching 5s do

16 await Play (" img1.jpg", &p1 , & scene );

17 end

18 watching 5s do

19 await Play (" img2.jpg", &p1 , & scene );

20 end

21 watching 5s do

22 await Play (" img3.jpg", &p1 , & scene );

23 end

24 with

25 await SRT (& scene , " subtitle .srt", 485);

26 with

27 await CM_SCENE_KEY ;

28 end

29 end

Listing 4.9: A multimedia slideshow (Layer 2).

The previous par/or composition (lines 10–28) and the sequence of

watching statements (lines 15–23) resemble the par (with its endsync attribute

equals to first) and seq SMIL containers. The watching blocks resemble SMIL’s

dur attribute, while the counterpart of the previous loop statement (lines 11–13)

is the repeatCount attribute of SMIL, with its value set to indefinite. Similar

analogies can be made with NCL. But the crucial difference here is that the

semantics of Céu is unambiguous and guarantees that the trails are, at any

time, precisely and deterministically synchronized.

A Multimedia Slideshow "Reader"

The code that implements the slideshow semantics can be encapsulated in

a Céu code abstraction. Next example goes in this direction, but it generalizes

the Slideshow code to read from a Lua table some parameters to be used in

the presentation. Here we chose Lua for mere convenience—Céu integrates

seamlessly with Lua: codes within tokens [[ and ]] are executed by the Lua
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interpreter. Any higher-level syntax could be used, provided that there is a

corresponding Céu parser to it.

As an example, consider the Lua table depicted in Listing 4.10, it defines

the width and height of a slideshow presentation, as well as the time each image

should be presented. The table also defines the uris of the images, background

audio and the subtitle to be presented.
1 SLIDESHOW = {

2 width = 800 ,

3 he ight = 585 ,

4 time = 5 ,

5 audio = " p iano .oga " ,

6 s u b t i t l e = { u r i = " s u b t i t l e . s r t " , y_o f f s e t = 485} ,

7 images = { " img1. jpg " , " img2. jpg " , " img3. jpg " }

8 }

Listing 4.10: A Lua table defining some parameters of a slideshow (Layer 3).

Listing 4.11 depicts the source code of a Slideshow Reader. It assumes a

global Lua table called SLIDESHOW that sets the parameters of the slideshow.
1 code/ await Slideshow_Reader ( none ) -> none

2 do

3 var int width = [[ SLIDESHOW . width ]];

4 var int height = [[ SLIDESHOW . height ]];

5 var int dur = [[ SLIDESHOW .time ]];

6

7 var Properties . Image p1 = val Properties . Image (

8 Region (0, 0, width , height , 1), 1.0);

9 var Properties . Audio p2 = val Properties . Audio (0.5);

10

11 var &? Scene scene = spawn Scene (Size (width , height ));

12 watching ( scene ) do

13 par/or do

14 var [] byte audio = [[ SLIDESHOW . audio ]];

15 loop do

16 await Play (audio , p2 , scene );

17 end

18 with

19 var ssize n = [[ # SLIDESHOW . images ]];

20 var ssize i;

21 loop i in [1 -> n] do

22 var [] byte uri = [[ SLIDESHOW . images [@i] ]];

23 watching (dur)s do

24 await Play (uri , p1 , scene );

25 end

26 end

27 with

28 var [] byte uri = [[ SLIDESHOW . subtitle .uri ]];

29 var int y_offset = [[ SLIDESHOW . subtitle . y_offset ]];

30 await SRT (& scene , uri , y_offset );

31 with

32 await CM_SCENE_KEY ;

33 end

34 end

35 end
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Listing 4.11: A slideshow code abstraction that reads some parameters from a

Lua table (Layer 2).

It worth mentioning that the codes in Listing 4.9 and Listing 4.10 are

equivalent, i.e., they produce the same Multimedia Output, but in the latter

case the objects of the presentation were specified declaratively without any

Céu code. The point of this example is to illustrate how from a small set of

abstractions exposed by Céu-Media one can create higher-level constructs

targeting nonspecialist (regarding Céu and multimedia) users. Such usage

resembles the use of template languages such as TAL [91] or XTemplate [92]

in the domain of XML languages.

A TV Controller

The last example discussed in this chapter regards the implementation

of a TV-like controller that allows users to choose a video to watch from a set

of five videos. At any time, users can switch videos and increase or decrease

the audio volume.

Listing 4.12 depicts the code of this controller. The set of videos

is defined through a Lua table in lines 8–12. This example illustrates

that using Céu internal events, one can decouple the handling of external

events with the application logic. The code below uses four internal events:

previous_video, next_video, increase_volume and decrease_volume (lines 1–4).

The second trail of the par/and implements the logic of the controller itself: it

reacts to each of those internal events for updating its internal state (lines 14–

55). Céu-Media Player_Set_Int () function takes as argument a handler for

a Player instance, the name of a property and an int value and sets this value

to that property of that Player (lines 39 and 37).
1 event ( none ) previous_video ;

2 event ( none ) next_video ;

3 event ( none ) increase_volume ;

4 event ( none ) decrease_volume ;

5

6 [[

7 videos = {

8 "vid1.ogv", "vid2 ,ogv", "vid3.ogv", "vid4.ogv", "vid5.ogv"

9 }

10 ]]

11

12 par do

13 # include " inputs .ceu ";

14 with

15 var &? Scene scene = spawn Scene (1080 , 720);

16 watching ( scene ) do

17 var real vol_level = 1.0;

18 var int = 1;
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19 loop do

20 var [] byte uri = [[ videos [@i] ]];

21 var Properties . Video p = Properties . Video (

22 Region (0, 0, 1080 , 720 , 1), 1.,0, vol_level );

23

24 var &? Play player = spawn Play (uri , &p, & scene );

25 par/or do

26 every increase_volume do

27 if vol_level < 1.0 then

28 vol_level = vol_level + 0.1;

29 end

30 call Player_Set_Int (player , " volume ", vol_level );

31 end

32 with

33 every decrease_volume do

34 if vol_level > 0.0 then

35 vol_level = vol_level - 0.1;

36 end

37 call Player_Set_Int (player , " volume ", vol_level );

38 end

39 with

40 await next_video ;

41 i = i + 1;

42 if i == 6 then

43 i = 1;

44 end

45 with

46 await previous_video ;

47 i = i - 1;

48 if i == 0 then

49 i = 5;

50 end

51 with

52 await CM_PLAYER_STOP ;

53 end

54 end

55 end

56 end

Listing 4.12: A TV-like controller in Céu. (Layer 2).

The first trail of the par/and in the code above includes the file inputs.ceu,

which is responsible for handling external input events and emitting the

internal events the controller expects. Listing 4.13 illustrates a possible input

handler for this controller. It reacts to each occurrence of the Céu-Media

CM_SCENE_KEY event and emits an appropriate internal event if the key pressed

is one of the keyboard arrow keys.
1 var uint scene_id ;

2 var [] byte key;

3 var bool is_pressed ;

4

5 every (scene_id , key , is_pressed ) in CM_SCENE_KEY do

6 if is_pressed then

7 if key == "LEFT" then

8 emit next_video ();

9 else/if key == " RIGHT " then

10 emit previous_video ();

DBD
PUC-Rio - Certificação Digital Nº 1412733/CA



Chapter 4. The Design and Implementation of Céu-Media 63

11 else/if key == "UP" then

12 emit increase_volume ();

13 else/if key == "DOWN" then

14 emit decrease_volume ();

15 end

16 end

17 end

Listing 4.13: An input handler for the TV-like controller. (Layer 2).

4.3
The low-level Multimedia Backend

LibPlay, the supporting C library Céu-Media uses, is a wrapper to

the industry-grade multimedia framework GStreamer. It has been designed to

hide part of the complexity of GStreamer through a simple and high-level API.

In this section we present the most relevant aspects of both GStreamer and

LibPlay to describe how we managed to reproduce the synchronous model in

the final multimedia output.

GStreamer and LibPlay

GStreamer is an open source framework that supports the development

of applications that process multimedia content (e.g., media players, video

editors, transcoders, media streamers, and so on). It has a modular, flexible and

plugin-oriented architecture, and runs on all current major operating systems.

The framework adopts a pipeline-based programming model: processing

elements are connected in an acyclic and directed graph to process multimedia

data. Figure 4.5 illustrates a typical GStreamer pipeline for rendering an Ogg

file—Ogg is a format for multiplexing audio, video and text content into a

single container. In the figure, vertices are elements that process the data and

edges connect the output of an element to the input of other.

filesrc oggdemux

vorbisdec alsasink

theoradec xvimagesink

A

V

Figure 4.5: A GStreamer pipeline that plays an Ogg file [3].

Elements that have no incoming edges are called source, that is, they

are data producers. In Figure 4.5, the filesrc is the only source element and is
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responsible for reading an Ogg file and outputting a multiplexed byte stream

having its content. The next element in the graph is the oggdemux, which

receives as input that byte stream, demultiplexes it, and produces two coded

byte streams, one for audio and other for video. This pipeline assumes that

the Ogg file has just a single audio and a single video streams, encoded using

the Vorbis and Theora codecs, respectively. The vorbisdec and theoradec are

the elements that decode the content and output raw audio samples and video

buffers. Elements that have no outcoming edges are called sinks. Our example

has two sinks: alsasink and xvimagesink. Sink elements are the final data

consumers in a pipeline and, in general, responsible for the actual rendering.

Thus, the alsasink element receives raw audio samples and reproduces them

in the sound card, while the xvimagesink receives raw video buffers and opens

an window for rendering the video.

This pipeline-based programming model is very flexible. For instance,

to adapt the example above to play another file format it is enough to

replace the demuxer and decoder elements to others more suitable to that

file. Thus, roughly speaking, programming multimedia applications using

GStreamer involves instantiating adequate elements and properly linking them

for processing the media data flow.

The framework is also able to provide fine-grained synchronization of

different media streams. Pipelines have a clock (GstClock) that monotonically

returns an absolute time, which is used for synchronizing the output. Each

audio sample and video buffer have a PTS (Presentation timestamp) and

dur (duration) fields. The synchronization procedure is usually executed by

sink elements following this general idea: samples/buffers received before

their presentation time are buffered; and samples/buffers received after their

presentation time are discarded. Then, sinks guarantee that each buffered

data is presented when the presentation time (ruled by the internal pipeline

GstClock) matches their PTS, and also that samples/buffers are presented

only for their appropriate durations.

The GStreamer flexibility comes with the price of complexity: program-

ming some usual operations (e.g., dynamically change a running pipeline, paus-

ing a single media stream, etc.) can be very complex. Furthermore, the exten-

sive use of callbacks for event handling requires that programmers design their

codes protecting shared variables from concurrent access. Thus, to overcome

these issues and other idiosyncrasies, we have developed LibPlay.

LibPlay is a multimedia library built on top of GStreamer that tries

to hide most of the complexity of that framework through a multimedia

scene-based API. This library has three abstractions: scene, media and events.
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LibPlay programming model is similar to Céu-Media: a scene composes and

synchronizes multiple multimedia objects (called media) and interacts with

applications through events.

A LibPlay scene (lp_Scene) manages a GStreamer pipeline that have

mixers and sinks for audio and video. Figure 4.6 depicts an overview of this

pipeline. Each Media Bin in the figure represents a LibPlay media, which can

produce a stream of video or audio (or both). The element compositor is the

video mixer, which is responsible for receiving the video output of each media

bin and composing them into a single video stream. Similarly, the element

audiomix receives audio outputs of media bins and composes them into a

single audio stream. The final video and audio streams are then received by

the respective sink elements (xvimagesink and alsasink) for rendering.

Media Bin

Media Bin

Media Bin

compositor

audiomix

xvimagesink

alsasink

V

V

V

A

A

A

Figure 4.6: An overview of a LibPlay pipeline.

A LibPlay media (lb_Media) is implemented as a GStreamer bin. A

bin is a generic container that groups linked elements into one logical element

that can be added to a pipeline. Figure 4.7 illustrates an overview of a media

bin. The uridecodebin source element is responsible for opening a file pointed

by an URI and decoding it. Depending on the file content, this element can

produce different media streams. For instance, decoding a typical video file

outputs a video and an audio stream, and possibly a text stream if it has

embedded subtitles. Each stream then goes to an appropriate sequence of filters

that applies operations (e.g., cropping, scaling, changing volume, changing

transparency, etc.) according to the properties set of that media. Finally, the

transformed stream goes either to scene’s compositor or audiomix for being

composed with other streams before the actual rendering.

As usual, the LibPlay scene’s pipeline has a clock for synchronization.

But the library implements its own clock (lp_Clock) for fine-grained control

over the pipeline time. The lp_Clock has two operations mode: normal and

lock − step. When operating under the normal mode, the clock time increases

following the "physical" clock. But when operating under the lock − step
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uridecodebin

Video Filters

Image Filters

Text Filters

Audio Filters

Media Bin

compositor

audiomix

Figure 4.7: An overview of a LibPlay Media.

mode, the internal clock time only changes through a call to the function

lp_clock_advance().

Listing 4.14 illustrates the difference among the operation modes. In the

left-side code, the lp_Clock is instantiated in line 2 under the normal mode.

The assert() in line 5 may fail or not: if the running machine is fast enough,

the physical time difference between the execution of lines 2 and 5 may be

smaller than the clock time precision, then the assert() passes; otherwise it

fails. The sleep(2) in line 7 suspends the execution of the program for 2s.

However, according to the POSIX.1-2017 specification, "the suspension time

may be longer than requested due to the scheduling of other activity by the

system"[93]. Thus, the assert() in line 11 may also fail depending on the system

scheduling.

1 /∗ normal mode ∗/
2 lp_Clock ∗c = lp_clock_new (NORMAL) ;
3

4 /∗ t h i s a s s e r t may f a i l ∗/
5 a s s e r t ( lp_clock_get_time ( c ) == 0 ) ;
6

7 s l e e p ( 2 ) ;
8

9

10 /∗ t h i s a s s e r t may f a i l ∗/
11 a s s e r t ( lp_clock_get_time ( c ) == 2 0 0 0 ) ;
12

1 /∗ lock −s t e p mode ∗/
2 lp_Clock ∗c = lp_clock_new (LOCKSTEP) ;
3

4 /∗ t h i s a s s e r t never f a i l s ∗/
5 a s s e r t ( lp_clock_get_time ( c ) == 0 ) ;
6

7 s l e e p ( 2 ) ;
8 lp_clock_advance ( c , 2 0 0 0 ) ;
9

10 /∗ t h i s a s s e r t never f a i l s ∗/
11 a s s e r t ( lp_clock_get_time ( c ) == 2 0 0 0 ) ;
12

Listing 4.14: When a lp_Clock operates under the lock-step mode, users has
a fine-grained control over its time.

When the clock operates in lock − step mode the user controls how its

time advances. Thus, in the right-side code of Listing 4.14, the assert() calls

never fail. Because there is no call to the function lp_clock_advance() between

the clock instantiation in line 2 and the assert() in line 5, the clock is guarantee

to remain in 0s. And regardless for how long the program remains suspended
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in the sleep(2) call (line 7) when it wakes it advances the clock exactlly 2000ms

(line 8). Therefore, the second assert() also passes.

Ceu-Media and LibPlay

In Céu-Media implementation, we have used LibPlay as follows. A Céu-

Media Scene internally creates a lp_Scene and sets its clock to operate in

lock−step mode. Similarly, a Céu-Media Player instantiates a lp_Media and

adds it to the Scene’s lp_Scene. And when the lp_Scene notifies the Céu-

Media Scene that a LibPlay event has occurred, that event is transformed to

a Scene- or Player-level event, that is then passed to the application as a Céu

input event.

4.4
Discussion

Even though its development has demanded a substantial engineering

work, Céu-Media is not just yet another multimedia library. It is another

evidence that the synchronous hypothesis might be an adequate solution

to semantical problems of traditional multimedia languages. For instance,

developing a SMIL or NCL player in Céu using Céu-Media would indirectly

"fix" the non-determinism problem in that particular implementation.

The implementation of Céu-Media indicates the feasibility of realizing

the synchronous semantics in the final Multimedia Output. But, if for one hand

the approach of enslaving the presentation clock to the logical time is crucial to

our solution, for the other hand it leads to some glitches in the presentation,

notably for aural media. The larger the skew between real time and logical

time, the more noticeable are these glitches. An explanation for this issue is

the way most sound cards work: they operate at high values of sampling rates

and expect that an audio sample is available at each cicle. A discontinuity in

this process leads to audio imperfections (glitches).

Céu-Media is also an evidence that Céu is a suitable alternative

for programming multimedia. The language was originally designed for the

domain of wireless sensor networks and since then has been applied to different

domains. Thus, the development of Céu-Media and its applications without

any "hack" in the language (that is, using plain Céu) indicates that Céu

constructs and abstractions can be used in different fields than those originally

glimpsed by the language designers.

Last, this work points that the synchronous execution model is a good

fit for developing multimedia engines. In this sense, the use of Céu and Céu-
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Media is a comprehensive proposal that uses the synchronous hypothesis

in both, the Controller and the Multimedia Engine components to produce

deterministic applications.

Céu-Media, however, has been designed without any support for dis-

tributed multimedia applications. In such scenarios, the synchronous hypoth-

esis does not hold due to communication latency. Mars is a middleware that

uses Céu-Media as Multimedia Engine, but it implements a set of function-

alities for approaching distributed applications. The design, implementation

and rationale behind Mars is discussed in the next chapter.
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5
Mars: GALS Middleware for Programming Distributed Inter-
active Multimedia Applications

As discussed in Chapter 2, deploying a synchronous distributed system

in a network without bounded communication delay and/or jitter rises several

issues. In particular, the one we are interested in is consistency. More precisely,

our concern is to guarantee that all processes in a distributed multimedia

application have the same global view of the system, that is, they all agree

upon the order of events, including the timing they occurred.

In this thesis we investigate the GALS architecture for enforcing consis-

tency. This chapter describes the results of this investigation, whose practical

result is the Mars middleware. Mars supports the development of distributed

multimedia applications using Céu and Céu-Media following the GALS de-

sign. It has a centralized architecture, whose central component, known as

Mars server, plays a key role for guaranteeing the consistency of the dis-

tributed system.

We first briefly discuss the problem of consistency in distributed sys-

tems, and then we frame this problem to the domain of distributed inter-

active multimedia applications in Section 5.1. Then, we give an overview of

Mars in Section 5.2, which is deepened when we present it by example in

Section 5.3. Section 5.4 details how the middleware executes applications. Sec-

tion 5.5 describes how we have approached the consistency problem in Mars.

Section 5.6 presents the internal components of the Mars middleware. Sec-

tion 5.7 discusses the compilation of a Mars application. Section 5.9 presents

some samples applications developed using this middleware. And Section 5.10

discusses some points covered in this chapter.

5.1
Consistency in Distributed Systems

A well known problem in the distributed systems field is that of guaran-

teeing consistency. To illustrate, consider Listing 5.1 (adapted from Lamport’s

work [4]).

Suppose processes A and B run concurrently on a shared-data distributed

system. When process A begins, it sets variable a to 0. Likewise, process B
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1 /* Process A */

2 a = 0
3 <...>
4 a = 1;
5 if (b == 0)
6 {
7 /* <...> critical section */

8 a = 0;
9 }

10

1 /* Process B */

2 b = 0;
3 <...>
4 b = 1;
5 if (a == 0)
6 {
7 /* <...> critical section */

8 b = 0;
9 }

10

Listing 5.1: If the system does not guarantee consistent access to shared
variables, processes A and B might be both in their critical section at the
same time [4].

sets variable b to 0 at the beginning of its execution. Both processes have a

critical section, and our concern is to devise a simple protocol for preventing

they execute such a section at the same time.

The protocol works as follows. Process A sets variable a to 1, checks if

the value of variable b is 0, and, if so, A enters in its critical section. Process

B executes similarly: it sets variable b to 1, and checks whether the value of

variable a is 0 before entering in its critical section.

Let’s call w(x, y) the operation that assigns the value y to variable x

and r(x) the operation that reads and returns the value stored in variable x.

If processes A and B run concurrently on different machines or on different

cores of the same machine, writing operations issued by a process take some

time (likely non-negligible) to be perceived by the other. Let’s say that both

processes have executed lines 4 and 5 in parallel nearly at the same time. Then,

we have the situation depicted in Listing 5.2.

1 /* Process A */

2 t0: w(a, 1)
3 t1: r(b) // returns 0

4

1 /* Process B */

2 t0: w(b, 1)
3 t1: r(a) // returns 0

4

Listing 5.2: Operations issued concurrently by processes A and B.

At t0, process A issues the operation w(a, 1) and, at the same time, B

issues the operation w(b, 1). Before these writings have taken effect to the

other process, each one executes a reading operation. At t1, process A does

a r(b), which returns 0. Also at t1, process B does a r(b), which returns 0

too. This may happen, for instance, due to network latency or cache coherence

problems. In other words, process A sees the following sequence of operations:

w(a, 1), r(b), w(b, 1); and process B sees this sequence: w(b, 1), r(a), w(a, 1).

The research community has been historically tackling this problem

by means of defining consistency models. Each one has its advantages and
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drawbacks, and the choice of which model to implement should consider the

peculiarities of the applications a given system has to support. Our work is

based on the sequential consistency model and adds a timing restriction to it.

Sequential Consistency

Proposed by Lamport [4], the sequential consistency model provides total

ordering of messages. According to this model, a system is said consistent if

the following conditions are met [4]:

– the result of any execution is the same as if the operations of all processes

were executed in some sequential order;

– the operations of each individual process appears in this sequence in the

same order it has executed them.

The first condition defines that all processes agree upon the same ordering

of events, which is not necessarily the same order seen by an outside observer

that can timestamp each operation using a perfectly synchronized wall-clock.

The second condition states that the order of operations issued by any

particular process should be maintained in the global ordering.

Under the sequential consistency model, in each execution of the system

all processes always see the same order of operations, but in successive runs

such ordering may change due to the non-deterministic communication delay. If

one can somehow enforce the same delay in multiple executions, then successive

runs hold the same global ordering.

Other consistency models

There are other models proposed in literature. The strict consistency

is the strongest model proposed. It states that all writing operations should

be immediately seen by all processes. This model is supported in single-

core architectures and generally impossible to implement in multi-core or

distributed systems.

The causal consistency is a weaker model than the sequential and

provides a partial ordering of messages. It enforces that just causal-related

operations should be executed in the same order. Thus, if operation A is said

to cause operation B, then all processes should execute A before B. Any other

operation that is not causally related can be executed in any order.
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Another important model is the eventual consistency, that states that the

value of a specific data will eventually converge in all processes given enough

time without updates in the system.

Consistency in Distributed Interactive Multimedia Applications

In essence, consistency models define how operations should be propa-

gated throughout a distributed system and the properties the system should

guarantee to its supported applications. In a distributed interactive mul-

timedia application, such operations may be higher-level events, such as

START, STOP, PAUSE, etc., instead of writings and readings to variables in tradi-

tional shared-memory distributed systems.

In this work, as described in Chapter 1, our focus is on distributed appli-

cations characterized by cooperating processes running on different devices. In

these applications, control-based and collaboration-based communication are

the most common types of interactions.

To properly support the development of these applications, the underly-

ing system should guarantee that all processes have the same view of the order

of events, otherwise the control or collaboration is harder to achieve. Consider,

for instance, a LAN-based distributed game in which each player uses his/her

personal device for controlling the corresponding avatar, and the composition

of all interactions is presented on a TV. If different devices see different order

of events, it is likely that some glitches may happen during the game, like the

dead-man shoots situation [94]: an avatar that is dead for some players, but

lives for others, shoots another avatar.

Consider now a scenario of two remote controls and multiple TV sets.

Assume that each of these remote controls may change the channel of all

TVs. If users interact concurrently with both controls and the system does

not guarantee that all TVs see the same order of events, at the end of the

interaction each TV may be on a different channel.

In this chapter we describe how we have tackled this consistency problem

in distributed interactive multimedia applications.

5.2
Mars in a Nutshell

When one moves from local to distributed applications, the properties

that Céu-Media guarantees cannot be maintained due to the violation of

the synchronous hypothesis. This led us to investigate an approach for devel-

oping distributed multimedia systems whose processes rely on Céu-Media
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and communicate asynchronously through a network without communication

guarantees. This scenario typically suggests the use of the GALS architectural

style.

The Mars middleware is part of the result of this investigation. It has a

centralized architecture, it supports the communication of processes running on

different devices and it implements the timing-sequential consistency model. In

a Mars distributed application there is no notion of global synchronized clock

or assumption regarding maximum communication latency. Each process runs

synchronously and may emit asynchronous events that are received by others.

The middleware guarantees two properties: i) processes receive events in

the same order; and ii) processes receive all events at the same logical time

(different from the logical time at which they were emitted). Thus, Mars

guarantees that all nodes agree not only upon the global ordering of events

(property i) but also upon their timing (property ii).

Furthermore, the programming model enforced by Mars promotes the

decoupling between the application logic and the specification of how devices

communicate one another. That is, the application logic has no explicit com-

munication primitives, but rather inter-application communication bindings

are defined by an external script. Next section presents Mars in more details.

5.3
Mars by Example

We introduce Mars through a practical example. Let’s take again the

TV Controller sample application discussed in Section 4.2.5 and modify it

to run on a distributed setting. For didactic purposes, first we consider the

scenario of only two devices connected to the same LAN. One of them runs a

program that handles user inputs (remote control) and the other runs another

program that renders the videos (TV). When one presses one of the remote

control arrow keys, the TV should respond as follows: Left and Right should

replace the current video with the previous or next one, respectively; Up and

Down should increase or decrease the audio volume, respectively.

The local version of this application has two source files, one for imple-

menting the TV controller logic (Listing 4.12) and another one for handling

input events (Listing 4.13). In the distributed version, each of these source

codes generates a standalone program that is executed on the appropriate de-

vice. In essence, both source codes are the same discussed in last chapter, with

a slight change: in the distributed version we use Céu external events instead

of internals, because the latter type serves only for communication among trails

within the same program. Listing 5.3 depicts a shortened version of these codes
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using Céu external events.

1 input ( none ) PREVIOUS_VIDEO ;
2 input ( none ) NEXT_VIDEO ;
3 input ( none ) INCREASE_VOLUME ;
4 input ( none ) DECREASE_VOLUME ;
5

6 < ... >
7

8 var &? Scene s = spawn Scene ( <... >);
9 watching ( scene ) do

10 loop do

11 var [] byte uri = <... >;
12

13 var &? Play player =
14 spawn Play ( <... >);
15 par/or do

16 every INCREASE_VOLUME do

17 < ... >
18 end

19 with

20 every DECREASE_VOLUME do

21 < ... >
22 end

23 with

24 await NEXT_VIDEO ;
25 < ... >
26 with

27 await PREVIOUS_VIDEO ;
28 < ... >
29 with

30 await CM_PLAYER_STOP ;
31 end

32 end

33 end

1 output ( none ) LEFT_KEY ;
2 output ( none ) RIGHT_KEY ;
3 output ( none ) UP_KEY ;
4 output ( none ) DOWN_KEY ;
5

6 var [] byte key;
7 var bool press ;
8

9 every (_, key , press ) in CM_SCENE_KEY do

10 if press then

11 if key == "LEFT" then

12 emit LEFT_KEY ();
13 else/if key == " RIGHT " then

14 emit RIGHT_KEY ();
15 else/if key == "UP" then

16 emit UP_KEY ();
17 else/if key == "DOWN" then

18 emit DOWN_KEY ();
19 end

20 end

21 end

Listing 5.3: A distributed version of the TV controller application. The code
on the left renders the videos and the code on the right handles users input.

Up to this point we have taken the local version of this application and

split it into two standalone programs that run on different devices. Note,

however, that there is a key part missing: the specification of how both

programs interact with each other.

In the listing above, the source code on the right emits an output event

whenever an arrow key is pressed. In the source code on the left, the program

reacts to four distinct input events: PREVIOUS_VIDEO, NEXT_VIDEO, INCREASE_VOLUME

and DECREASE_VOLUME—we have omitted the codes that implement these actions

because they are identical to their corresponding in Listing 4.12. For this

example to work as expected, we have to map the remote control output events

to the TV input events, as shown in Table 5.1.

In Mars, such mapping is specified through a Lua script (called mapping

script). But before we present it, let’s introduce the concept of interface. In a

distributed Mars application, each device implements an interface that defines

the set of input and output events it exposes. A Lua table (called interface

table) defines these interfaces. The interface table is used in the pre-compilation

phase and by the Mars server when it computes whether an event received
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Table 5.1: Remote control output events should be mapped to the correspond-
ing TV input event.

Events Mapping

OUTPUT INPUT

RIGHT_KEY −−→ NEXT_VIDEO

LEFT_KEY −−−→ PREVIOUS_VIDEO

UP_KEY −−−−−→ INCREASE_VOLUME

DOWN_KEY −−→ DECREASE_VOLUME

by a device should be forwarded to others (these topics are covered later

in this chapter). Listing 5.4 depicts the interface table of the TV controller

application.
1 −−[[ he l l o_mars_in ter face . lua ] ]

2 i n t e r f a c e s {

3 REMOTE_CONTROL = {

4 outputs = {

5 LEFT_KEY = {} , RIGHT_KEY = {} , UP_KEY = {} , DOWN_KEY = {}

6 }

7 } ,

8 TV = {

9 inputs = {

10 PREVIOUS_VIDEO = {} , NEXT_VIDEO = {} ,

11 INCREASE_VOLUME = {} , DECREASE_VOLUME = {}

12 }

13 }

14 }

Listing 5.4: Interface table defining two interfaces: REMOTE_CONTROL and

TV.

Let’s go back to the mapping script. Listing 5.5 shows a script that maps

the output events of the remote control to the input events of the TV according

to the mapping in Table 5.1.
1 −−[[ hel lo_mars_mapping.lua ] ]

2 local tv = ni l

3 local c o n t r o l = ni l

4

5 function map_events ( )

6 map ( cont ro l , "LEFT_KEY" , tv , "PREVIOUS_VIDEO" )

7 map ( cont ro l , "RIGHT_KEY" , tv , "NEXT_VIDEO" )

8 map ( cont ro l , "UP_KEY" , tv , "INCREASE_VOLUME" )

9 map ( cont ro l , "DOWN_KEY" , tv , "DECREASE_VIDEO" )

10 end

11

12 MARS.onConnect = function (p)

13 local i n t e r f a c e s = p : g e t I n t e r f a c e s ( )

14

15 for i ,_ in pairs ( i n t e r f a c e s ) do

16 i f i == "TV" then

17 tv = p
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18 e l s e i f i == "REMOTE_CONTROL" then

19 c o n t r o l = p

20 end

21 end

22

23 i f tv ~= ni l and c o n t r o l ~= ni l then

24 map_events ( )

25 end

26 end

Listing 5.5: Mapping script that maps remote control output events to TV

input events.

The function onConnect() (lines 12–26) is executed by the Mars server

whenever a new device connects. The script above maps all events of the remote

control to the TV using the function map() (lines 5–10) which is part of the

Mars API.

This is all we have to implement for programming the remote control

and TV sample application: the Céu source codes of the remote control and

the TV, besides the interface table and the mapping script. Note that there

is no need to use low-level communication primitives because the middleware

handles all data exchange transparently.

Now let’s change our sample distributed application to accommodate

scenarios in which there are multiple remote controls and multiple TVs.

The only change that we need to do is in the mapping script, because the

interfaces are the same and the logic of applications also did not change. Thus,

Listing 5.13 depicts a mapping script that maps output events of multiple

remote controls to input events of multiple TVs. The major change is that

instead of having a single variable for storing the remote control and TV

instances as we have in Listing 5.5 (variables tv and control) we now have

a table for storing all connected instances of those interfaces. When a new

device connects, the mapping script iterates over these tables and defines the

appropriate mappings.
1 −−[[ hel lo_mars_mapping.lua ] ]

2 local tvs = {}

3 local c o n t r o l s = {}

4

5 function map_events ( cont ro l , tv )

6 map ( cont ro l , "LEFT_KEY" , tv , "PREVIOUS_VIDEO" )

7 map ( cont ro l , "RIGHT_KEY" , tv , "NEXT_VIDEO" )

8 map ( cont ro l , "UP_KEY" , tv , "INCREASE_VOLUME" )

9 map ( cont ro l , "DOWN_KEY" , tv , "DECREASE_VIDEO" )

10 end

11

12 MARS.onConnect = function (p)

13 local i n t e r f a c e s = p : g e t I n t e r f a c e s ( )

14 local isTv = fa l se

15

16 for i ,_ in pairs ( i n t e r f a c e s ) do
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17 i f i == "TV" then

18 table. insert ( tvs , p )

19 isTv = true

20 e l s e i f i == "REMOTE_CONTROL" then

21 table. insert ( c o n t r o l s , p )

22 c o n t r o l = p

23 end

24 end

25

26 i f isTv then

27 for _, i n s t in ipairs ( c o n t r o l s ) do

28 map_events ( in s t , p )

29 end

30 else

31 for _, i n s t in ipairs ( tvs ) do

32 map_events (p , i n s t )

33 end

34 end

35 end

Listing 5.6: Mapping script that maps multiple remote controls to multiple

tvs.

At runtime, the middleware guarantees that all TVs receive the events in

the same order. Next section provides more details of how a Mars distributed

application is executed.

5.4
Executing a Mars Distributed Application

When the Mars server starts, it receives as argument a mapping script

and an interface table, and it creates a session. Devices may join a session at

any time by sending a join message to the server passing the interfaces they

implement. The server rejects a device if it implements an unknown interface

(i.e., an interface that is not specified in the interface table). We assume that

the interface table is known by all joining devices.

In the Listing 5.5 and Listing 5.6, the mapping scripts implement the

onConnect() function, which is a callback executed by the server whenever it

accepts a new device in the session. There are other two callbacks the mapping

script may define, which are explained ahead.

The onConnect() callback receives as argument an object (table) of the

class Peer (metatable) with information about the joining device. The method

Peer.getInterfaces(), used in the mapping scripts above, returns a list of

interfaces the joining device implements.

These mapping scripts use the function map() to bind the output

events of the remote controls to the input events of the TVs. For in-

stance, consider the line 6 of Listing 5.6, which contains the following code:

map(control,"LEFT_KEY",tv,"PREVIOUS_VIDEO"). This statement indicates that
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the output event LEFT_KEY emitted by the process control should trigger the

input event PREVIOUS_VIDEO on the device tv.

When one uses the Mars compilation process to compile a Céu source

code, the Mars client runtime is attached to the final program and runs in

parallel with the application. This runtime is responsible for connecting and

communicating with the Mars server. It also catches all output events emitted

by the program and sends them to the server. Likewise, when the server sends

an input event to a device, the runtime receives this message and properly

generates the corresponding Céu input event to the application.

Note that all this process is hidden from applications. For instance, the

codes in Listing 5.3 have no communication primitive (e.g., send/receive) or

even include any odd library. Instead, they are regular Céu codes that use the

Céu-Media library, and if one compiles them using a typical Céu compilation

process, the output is a valid program that runs locally with no communication

with any other program (unless explicitly programmed). The compilation of a

Mars application has a precompilation phase that embeds the runtime into

the final binary.

5.5
Implementation of the timing-sequential consistency model in Mars

In the centralized Mars architecture, the server acts as moderator that

defines the order of events. To illustrate, consider again the remote controls and

TVs distributed application in Section 5.3. Suppose one presses the RIGHT

arrow key of one control and immediately presses the LEFT arrow key of the

other control.

Each output event is always sent to the Mars server in an output

message. The server processes output messages following a FIFO (First In

First Out) policy. Thus, suppose the second message, viz. the LEFT arrow

key, arrives first in the server. The server will check its mapping mapping table

and send an input message carrying the input event PREVIOUS_VIDEO to

all TVs in the session. Some time later, the LEFT arrow key message arrives.

Again, the server checks its mapping table and then sends the NEXT_VIDEO

event to the TVs.

Because the nodes maintain a connection to the server using a protocol

that guarantees message ordering (i.e., TCP) all TVs receive first the PREVI-

OUS_VIDEO event and then the NEXT_VIDEO. Figure 5.1 illustrates this

scenario. Following this approach, the real-world time that peers send output

messages is disregarded in favor of the order that messages arrive at the server.
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Figure 5.1: Input events are sent to peers in the same order the server processes
output messages.

Note that this approach ensures the two conditions that a system should

guarantee following Lamport’s sequential consistency definition (page 71):

– After processing an output message, the server sends input messages in

the exact same order to all processes triggered by that event, according

to the current state of the mapping table—this guarantees the first

condition.

– The transport protocol ensures that the server receives all messages from

any process in the same order that processes send them—this guarantees

the second condition.

From the distributed system point of view, this indeed guarantees con-

sistency for applications, but this naive approach leaves room for glitches in

some distributed interactive multimedia applications. For instance, consider

a distributed car driving simulator operated by two users, an instructor and

a student. At some moment during the simulation, an obstacle pops up and

the student must dodge from it. If the student turns the steering wheel after

the car exceeds the minimum safe distance from the obstacle (critical point)

the car hits it. Assume that the student and the instructor are in separate

rooms, and that this application runs on the following distributed setting: a

student steering wheel controller device, and two simulators devices, one for

the student and other for the instructor.

If one implements this application using Mars, whenever the student

turns the steering wheel, an output message is sent to the server, which

then sends an input message to update the simulators. However, the scenario

depicted in Figure 5.2 may happen.

Note the student turns the steering wheel some time before reaching the

critical point and the student simulator receives the UPDATE message on time

to prevent the car to hit the obstacle. However, the instructor simulator receives

DBD
PUC-Rio - Certificação Digital Nº 1412733/CA



Chapter 5. Mars: GALS Middleware for Programming Distributed Interactive
Multimedia Applications 80

Figure 5.2: The UPDATE event reaches the instructor’s simulator after the car
has passed the critical point, but the student’s simulator receives this message
on time to dodge from the obstacle.

this message only when it is too late to avoid the car from crashing. And this

may happen despite the system’s guarantees regarding sequential consistency.

This problem arises because in distributed interactive multimedia applications

consistency is not only about ensuring total ordering of messages, but also

about guaranteeing that operations are executed at the correct time [95].

Guaranteeing timing consistency to distributed input events

Mars implements an algorithm that ensures that all Céu applications

react to input events coming from the server at the same logical time.

Before the server sends input messages, it sets a timestamp to the input

event. When a process receives an input message, it delays the generation of the

input event until the application logical time matches with the value indicated

by the event timestamp. Thus, all processes generate the input event at the

same logical time, which is defined by the server.

A key point in this approach is how to define the value of this timestamp.

If it is too short, input messages will likely arrive delayed at the peers, that is,

the logical time of applications will be ahead of the timestamp value. If it is

too long, the system responsiveness can become compromised, as well as users

experience.

Our approach uses the maximum RTT (Round Trip Time) value between

the Mars server and peers in the calculation of events timestamp, and the

current logical time of processes in the session. Algorithm 1 depicts the pseudo-

algorithm the server executes when it receives an output message.

First, the server checks the mapping table to get the list of all events that

should be generated from the received output message (line 2). The return is

a list of pairs <I, P>, in which I is an input event and P is a set of peers that
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Algorithm 1: Algorithm that the Mars server runs to calculate the
timestamp of input events.

1 foreach Output event O do
2 list<I, P> ← {check the mapping table and get triggered events

from O};
3 T0 ← now();
4 foreach <Ii, Pi> in list<I, P> do
5 {send a message to all peers in Pi asking for the current

logical time };
6 Tmax ← 0;
7 RTTmax ← τ ;
8 N ← |Pi|;
9 while N > 0 do

10 N ← N − 1;
11 msg ← { await a response message};
12 t ← { unpack current logical time of msg };
13 if t > Tmax then
14 Tmax ←t;
15 end
16 RTT ← { get RTT of msg };
17 if RTT > RTTmax then
18 RTTmax ←RTT ;
19 end

20 end
21 Ttimestamp ← Tmax + RTTmax + (now() − T0) + ∆;
22 { set timestamp Ttimestamp to Ii };
23 { send Ii to all peers in Pi };
24 end

25 end

should receive the input event I. At this point, the current time is saved in

variable T0 (line 3).

For each pair <Ii, Pi>, the server sends a message to all peers in Pi

asking for the current logical time (line 5) and then waits for the responses.

Upon receiving each reply, the server updates the variables Tmax, which

should store the most advanced logical time reported, and RTTmax, which

should store the longest RTT calculated (lines 9–20). Note that the algorithm

initializes RTTmax with the value τ , which corresponds to an estimate of the

mean RTT of the underlying network. This ensures a minimum value for the

RTTmax variable, whose implication is explained when we discuss the algorithm

executed on the peers for ensuring the consistency.

After the server has received all responses, it can calculate the timestamp

Ttimestamp of the input event Ii, which is the sum of the most advanced logical

time reported (Tmax), with the maximum RTT calculated or τ , whichever is
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greater (RTTmax) and with the total time elapsed waiting for the responses

(now() - T0) – line 21. Additionally, we add a ∆ value for compensating eventual

network jitter, which in our current implementation is a tenth of the maximum

RTT (∆ = 0.1 ∗ RTTmax).

To illustrate, consider Figure 5.3. When the server receives the TURN

event, it asks the current logical time of the simulators. Let’s say the Student

Simulator reports 4s and the Instructor Simulator reports 5s. The value of

the variable Tmax then is 5s. Imagine the RTT of the message to the Student

Simulator was 80ms and to the Instructor Simulator was 60ms. Assuming

that the value of τ is less than 80ms, the RTTmax then has the value 80ms.

Consider that 100ms have elapsed until the server receives all responses.

In this scenario, the timestamp Ttimestamp of the event UPDATE is 5.188s

(Ttimestamp = 5000 + 80 + 100 + (80 ∗ 0.1)).

Figure 5.3: Messages exchange between the server and simulators to calculate
the timestamp of the UPDATE event.

The server then sends the input messages carrying the UPDATE event

with that timestamp. When the simulators receive this message, they both

delay the generation of this input event until the application logical time

reaches the value 5.188s. And note that this happens even though both

simulators receive the UPDATE input message at different instants.

However, occasionally the logical time of an application may be ahead of

the timestamp set to the event of an input message because the server cannot
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Algorithm 2: Algorithm that the Mars runtime runs to halt the
application if it does not receive an input message before the timer
expires.

1 foreach Message msg do
2 if msg requests the current time then
3 t ← now();
4 {send t as response};
5 spawn start_timer (τ);
6 else if msg is an input message then
7 emit cancel_timer ();
8 {Parse msg and schedule the generation of the event };
9 end

10 end
11 Function start_timer(τ):
12 par/or do

13 await τ ;
14 {halt application};
15 with

16 await cancel_timer;
17 end

18 {Resume the application if it is halted};

always accurately predict network delay and jitter. For instance, if the time

difference between the instant the Instructor Simulator receives the UPDATE

message and the instant it replied back the server with its current logical time

is greater than 188ms, it will not be able to generate the UPDATE event to the

application precisely at the time 5.188s because this instant is in the "past".

To prevent such cases, we have developed a control mechanism that runs

on peers’ side. Following the simple protocol described above, whenever a peer

receives a message asking for its current time, the server will subsequently send

an input message. Thus, after the peer replies back the server, it starts a timer.

If the timer expires before the input message arrives, the Mars runtime halts

the whole application until it receives the message. In this context, by halt we

mean the application stops to receive events, including timing. The timer is

canceled if the peer receives the input message before the timer expires.

Algorithm 2 depicts the pseudocode that implements this control mech-

anism on clients. When a message asking for the current time arrives, the

runtime replies and creates a timer using the Céu spawn construct (line 5) that

is, the timer starts to run immediately in parallel with this chunk of code.

The function start_timer uses the Céu par/or composition for implementing

the timer: in the first trail, it waits for the time passed as argument (line 15)

and halts the application when it wakes from this await (line 16); the second
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trail just waits for the event cancel_timer (line 18)—emitted when the runtime

receives the input message (line 7)—to then abort the timer (i.e., the par/or

composition). After that, the runtime resumes the application if it has been

halted due to the expiration of the timer.

This algorithm works as intended if the timer necessarily expires before

the timestamp of the input event. For instance, consider a case that a process

receives a message asking for its current time and it replies back with the value

5s. At this point, the runtime starts a timer of, let’s say, 20ms. If the server

sets the value of Ttimestamp to 5.015s and the message delays, when the timer

expires the logical time will be ahead of the instant the event should have been

generated.

In our implementation, we set the value of the timer to be the same τ

value (an estimate of the mean network RTT) used by the server to initialize

the variable RTTmax. With this trick, we ensure that the timer is always

less than the value of Ttimestamp because the server adds other components

to calculate this value (see Algorithm 1, line 21).

5.6
Mars Internals

This section presents the main internal components of the Mars mid-

dleware. We first discuss the server side to then present the client side.

5.6.1
Server Side

Figure 5.4 illustrates the main components of the Mars server. The

mapping script and the interfaces table are passed as argument to the server

when it starts. The other components in the figure are intrinsic parts of the

server.

Figure 5.4: Mars server main components.
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The communication layer deals with all low-level data exchange among

the server and other devices in a session. It serializes messages to send and

deserializes received messages. It is also responsible for managing messages

sequencing and ordering.

The message handler is the logical component that interprets received

messages and takes appropriate actions to handle them. If it is a join message,

this component checks if the joining device implements a known interface. If

it is an output message, the messages handler interacts with the synchronizer,

which executes Algorithm 1.

The main goal of the mapping script is to construct the mapping table.

It may define the following callbacks:

– Mars.onConnect(): executed when a device is accepted in the section;

– Mars.onDisconnect(): executed when a device disconnects;

– Mars.onOutputEvent(): executed when the server receives an output

message.

Mapping scripts call the map() function (defined in the Mars API) to

build the mapping table. This function has the following signature:

map ( instanceFrom ,OUTPUT_EVT ,instanceTo ,INPUT_EVT , filterFunc )

A call to the map() function creates an entry in the mapping table binding

the OUTPUT_EVT from instanceFrom process to the INPUT_EVT of instanceTo. The

last parameter is an optional filter function that defines when a mapping

should be triggered. When the server receives the event OUTPUT_EVENT from

instanceFrom, it calls filterFunc function if it has been defined. If this function

returns true, then the server sends an input message to instanceTo carrying

the event INPUT_EVT. Otherwise this mapping is ignored.

By default, OUTPUT_EVT arguments are passed to INPUT_EVT. The filterFunc

may change this behavior by returning a table in addition to the first boolean

value. The most trivial example of this feature is in the case that the types of

the arguments of OUTPUT_EVT and INPUT_EVT are different. The filterFunc receives

as input the arguments of OUTPUT_EVT and should return the appropriate values

that will become arguments to INPUT_EVT. We explore this feature in some

examples discussed throughout this thesis.
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5.6.2
Client Side

The client side consists of codes that run on devices and communicate

with the Mars server. These programs, referred to as Mars applications,

are composed of two parts: the application code and the Mars runtime. The

former are regular Céu codes (i.e., the Céu compiler accepts them as is)

that implement the application logic. The latter is part of the Mars client

middleware and takes care of all low-level communication to interact with the

server. Figure 5.5 illustrates the main logical components of the Mars runtime.

Figure 5.5: The Mars runtime runs in parallel with the application code.
Its main logical components are: Events Listener, Events Dispatcher, Timing
Controller and Messages Handler.

The communication layer is similar to the corresponding layer in the

server side: it serializes, deserializes, sequences and orders messages.

The message handler is the component that sends and receives messages

to/from the server. When it receives an input message, it activates the timing

controller that runs Algorithm 2.

The event dispatcher is responsible for generating an application-level

input event in response to an input message. And the event listener reacts to

output events emitted by the application, sending them to the server.

The compilation of a Mars application has a pre-compilation phase

that attaches the Mars runtime to the final program. The runtime is a non-

intrusive component, i.e., it runs in parallel with the application code without

interfering in its behavior. In fact, the application is neither aware that it is

being executed along with the Mars runtime nor that it is part of a distributed

application. Next section discusses the compilation of a Mars application.

5.7
Compilation

The Mars middleware is implemented using Céu and Lua. The compi-

lation of Mars server follows the usual process as any other Céu program.
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Mars runtime is attached to applications according to the precompilation

phase illustrated in Figure 5.6.

Figure 5.6: Precompilation phase of Mars applications.

The first step receives as input a Céu source code and adds to it the

components of the runtime that are independent of the application code,

namely the timing controller and the message handler. If the application source

code is in file prog.ceu, then the output of the first step is similar to the skeleton

depicted in Listing 5.7. The original source code is included in the second trail

of a par/or composition (line 22), which has the message handler and timing

controller components in the first trail (lines 2–19).
1 par/or do

2 par/and do // messages handler

3 < send join message >

4 loop do

5 await new_message ();

6 < ... >

7 if joined then

8 emit ok;

9 end

10 < ... >

11 end

12 with // timing controller

13 loop do

14 await time_requested ();

15 <...>

16 spawn Start_Timer ();

17 <...>

18 end

19 end

20 with

21 await ok;

22 # include "prog.ceu ";

23 end

Listing 5.7: Output code from step 1 of precompilation phase.

Note the application does not start to run immediately when the program

starts because the second trail halts waiting for the internal event ok (line 21).
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When the runtime receives a message from the server informing that the device

was accepted in the session, the message handler emits this event (line 8) which

starts the application (line 22).

The second step adds the event listener component to the code. For each

output event declared in the application source code, a listener is created that

reacts to that event, sending it to the server. Listing 5.8 illustrates the output

of the second step of the prog.ceu precompilation phase.
1 par/or do

2 par/and do

3 // messages handler

4 with

5 // timing controller

6 with

7 par do

8 output O1 do

9 < send O1 to the server >

10 end

11 with

12 output O2 do

13 < send O2 to the server >

14 end

15 with

16 <...>

17 end

18 end

19 with

20 await ok;

21 # include "prog.ceu ";

22 end

Listing 5.8: Output code from step 2 of precompilation phase.

The last step reads the interface table and creates a native C function

for each input event. These functions use the Céu C API for generating input

events to programs. Besides, this step also creates a Céu function for handling

input messages and calling the corresponding native function. The output of

this last transformation is illustrated in Listing 5.9. When the logical time of

the application reaches the timestamp of an internal event sent by the server,

the timing controller calls the Céu function Emit_Input_Event() (lines 26–34).

This function checks the value passed as argument and calls the appropriate

C function that generates the input event to the program (lines 1–11).
1 native /pre do

2 function emit_I1 (...)

3 {

4 <generate input event I1 >

5 }

6 function emit_I2 (...)

7 {

8 <generate input event I2 >

9 }

10 <...>

11 end
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12

13 par/or do

14 par/and do

15 // messages handler

16 with

17 // timing controller

18 with

19 // events listener

20 end

21 with

22 await ok;

23 # include "prog.ceu ";

24 end

25

26 function Emit_Input_Event ( char [] byte evt) -> none

27 do

28 if evt == "I1" then

29 _emit_I1 (...);

30 else/if evt == "I2" then

31 _emit_I2 (...);

32 <...>

33 end

34 end

Listing 5.9: Output code from the step 3 of the precompilation phase.

The output of this last step is passed to the Céu compiler, which compiles

it using the standard compilation steps. The final output is a binary having

the original application and the Mars runtime attached to it.

Quantitative analysis of the Mars Runtime impact on disk footprint

The Mars runtime has a non-negligible impact on the disk footprint

of the final binary program. Table 5.2 presents the result of a quantitative

comparison among programs compiled with and without the Mars runtime,

regarding the size footprint. These numbers were obtained compiling the source

code of nine applications in a Ubuntu 16.04 64-bits machine using Céu v0.30.

In this discussion, we call static runtime (SR, in the table) the output

of step 1 of precompilation phase, that is, the part of the runtime that

is independent of any analysis of application source code (i.e., the timing

controller and message handler components). We compiled an empty Céu

source code with an empty interface table using Mars compilation steps. The

output was a dummy binary having just the runtime, i.e., the smallest valid

Mars program possible in our current implementation. The size of this binary

was 452kB.

The first column of the table presents the size of binaries compiled using

regular Céu compilation process, that is, without Mars runtime. The second

column presents the size of binaries with this runtime. The third column shows
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Table 5.2: Disk footprint of Mars runtime.

Size Footprint (kB)

Program P P + R P + R − SR R(%)

program 1 236 476 24 50.42
program 2 228 480 28 52.50
program 3 232 468 16 50.43
program 4 260 496 44 47.58
program 5 256 488 36 45.54
program 6 244 488 36 50.00
program 7 228 460 08 50.43
program 8 252 488 36 48.36
program 9 256 500 48 48.80

P: Program compiled without the Mars runtime.
P+R: Program compiled with the Mars runtime.
P+R-SR: Difference between the program compiled
with the Mars runtime (P + R) and the static part of
the runtime (SR).
R(%): The percentage of the runtime in the binary
size.

the difference between the size of final binary with the runtime minus the size

of the dummy binary discussed in last paragraph. And finally, the last column

presents the percentage of the Mars runtime in the final binary size.

These numbers indicate that for relative small Céu programs, the Mars

runtime has a significant impact on the final binary size. The smallest Mars

program possible has almost 500kB, which is non-negligible especially if we

consider the original domain that Céu targets, which is embedded systems.

The main reason for such a footprint is that the runtime does substantial

work to hide the underlying distributed infrastructure from applications.

Even though we consider this footprint size acceptable, this is a point for

improvement.

For completeness, it worth mentioning that the size of the Mars server

is 288kb, which is similar to the size of programs compiled without the Mars

runtime depicted in the first column of Table 5.2.

5.8
Evaluation

We have assessed Mars performance by evaluating how the middleware

behaves as the number of messages exchanged increases in a session. For this

test, we have used the following setup:
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– Three processes (one server and two clients) running on different ma-

chines connected via WLAN.

– All machines had the same setup: Intel Core I7 and 8Gb RAM.

One of the clients (Client 1) periodically emits an output event (called

PING). The server receives these messages and generates input events (called

PONG) to the other client (Client 2). Listing 5.10 illustrates the source code used

in this evaluation (we have omitted the interfaces table and the mapping script

in this discussion).
1 var s64 sum = 0;

2 var int count = 0;

3 watching 60s do

4 par do /* Client 1 */

5 every FREQ ms do

6 var s64 payload = _now ();

7 emit PING ( payload );

8 end

9 with /* Client 2 */

10 var s64 payload = await PONG;

11 every ( payload ) in PONG do

12 count = count + 1;

13 var s64 time_now = _now ();

14 var s64 diff = time_now - payload ;

15 sum = sum + diff;

16 end

17 end

18 end

Listing 5.10: Céu application used in the evaluation.

Client 1 executes the first trail of the par composition (lines 4–8). At

each FREQ milliseconds it emits the event PING passing as payload the current

wall clock (real) time. Client 2 executes the second trail (lines 9–17). It reacts

to each occurrence of the event PONG, extracts the payload and calculates the

difference between the time it received the event and the time it was generated.

We have synchronized the clock of the machines before the tests.

Both programs run for 60s and, at the end of the execution, Client 2

calculates the mean of the time differences, that is, the mean timing offset

between the generation of an event and its actual processing. We have tested

this program using different values to the FREQ macro. Table 5.3 shows the

events mean timing offset for different values of FREQ.

As depicted in the table, the changes in the events mean timing offset

were not significant for values between 1000ms to 20ms of FREQ (we expect

similar behavior for FREQ > 1000ms). That is, we can say that this value

remained constant. However, anomalous behaviors were observed for values of

FREQ below than 20ms.
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Table 5.3: Mean timing offset between the generation of an event and its
processing.

FREQ Mean timing offset (ms)

1000 17.242
500 16.924
300 17.624
100 16.329
80 16.860
50 16.439
30 16.616
20 16.843

When Client 1 sends the PING event to the server in intervals less than

20ms, the server is not able to handle all the events: its internal buffer becomes

full and some messages are dropped. This happens because the rate of input

events in these cases is in the same order of magnitude than the events

processing time. That is, the reaction time cannot be considered negligible,

which violates the synchronous hypothesis. In other words, for these rates of

input events, Mars server does not behave as a synchronous program. Similar

pattern is observed in Client 2: its internal buffer becomes full and it does not

receive some input messages, which results in a inconsistent value for the mean

timing offset.

From this discussion, we concluded that Mars supports applications in

which the rate of input events that arrives at the server is greater than 20ms.

5.9
Sample Applications

Here we discuss the implementation of two sample applications using

Mars. The first is a modified version of the remote controls and TVs appli-

cation discussed at the beginning of this chapter, and the second is a typical

example of second screen applications used in the context of interactive digital

TV.

Remote Controllers and TVs (version 2)

In this version of the remote controllers and TVs, users may pause

the content presented on TVs by pressing the remote control PAUSE button.

The modified version of the remote control and TV codes are depicted in

Listing 5.11.
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1 input ( none ) PREVIOUS_VIDEO ;
2 input ( none ) NEXT_VIDEO ;
3 input ( none ) INCREASE_VOLUME ;
4 input ( none ) DECREASE_VOLUME ;
5

6 < ... >
7

8 var &? Scene s = spawn Scene ( <... >);
9 watching ( scene ) do

10 loop do

11 var [] byte uri = <... >;
12

13 var &? Play player =
14 spawn Play ( <... >);
15 par/or do

16 every INCREASE_VOLUME do

17 < ... >
18 end

19 with

20 every DECREASE_VOLUME do

21 < ... >
22 end

23 with

24 await NEXT_VIDEO ;
25 < ... >
26 with

27 await PREVIOUS_VIDEO ;
28 < ... >
29 with

30 await CM_PLAYER_STOP ;
31 with

32 var bool isPaused = false ;
33 every PAUSE do

34 if not isPaused then

35 call Scene_Pause (s);
36 isPaused = true ;
37 else
38 call Scene_Resume (s);
39 isPaused = false ;
40 end

41 end

42 end

43 end

44 end

1 output (int) KEY_PRESSED ;
2

3 var [] byte key;
4 var bool press ;
5

6 every (_, key , press ) in CM_SCENE_KEY do

7 if press then

8 if key == "LEFT" then

9 emit KEY_PRESSED (1);
10 else/if key == " RIGHT " then

11 emit KEY_PRESSED (2);
12 else/if key == "UP" then

13 emit KEY_PRESSED (3);
14 else/if key == "DOWN" then

15 emit KEY_PRESSED (4);
16 else/if key == " PAUSE " then

17 emit KEY_PRESSED (5);
18 end

19 end

20 end

Listing 5.11: An alternative version of TV controller application. In this
version, users may pause the video on TV by pressing the PAUSE button
on the remote control.

The main difference regarding the TV source code (on the left) and the

previous version is the last trail of the par/or composition (lines 31–42) that

waits for the event PAUSE and then either pauses or resumes the Scene depending

on its previous state. The remote control code (on the right) has major changes.

Instead of emitting a different output event to each button, it emits the same

event (KEY_PRESSED) passing a different code (argument) to identify the pressed

button. Therefore, this requires a change in the interface table, as well as in

the mapping script.

Listing 5.12 depicts the modified interface table. Note the REMOTE_CONTROL

interface has only one output event (KEY_PRESSED) with an int parameter. The

TV interface is similar to the original example, but it has an additional PAUSE
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input event, with no parameters.
1 −−[[ he l lo_mars_inter face_v2. lua ] ]

2 i n t e r f a c e s {

3 REMOTE_CONTROL = {

4 outputs = {

5 KEY_PRESSED = { " i n t " }

6 }

7 } ,

8 TV = {

9 inputs = {

10 PREVIOUS_VIDEO = {} , NEXT_VIDEO = {} ,

11 INCREASE_VOLUME = {} , DECREASE_VOLUME = {} ,

12 PAUSE = {}

13 }

14 }

15 }

Listing 5.12: A modified version of the interface table.

The modified mapping script is depicted in Listing 5.13. This script

is similar to the previous version, but it uses filter functions when defining

the events mapping. Because the remote control interface only defines the

KEY_PRESSED output event, it is used in all mappings (lines 6–15) and filter

functions define when these mappings are valid.

Consider the user has pressed the LEFT button. In this case, the argument

of the KEY_PRESSED event is 1 (see Listing 5.11). Therefore, only the mapping

in lines 6-7 is triggered, because it is the only one for which the filter

function returns true as the first argument. Because the PREVIOUS_VIDEO has

no arguments, the filter function returns nil as second value (remember from

Section 5.6 that the second value returned becomes the arguments for the

input event). The same reasoning applies to other output events emitted by

the remote control.
1 −−[[ hello_mars_mapping_v2.lua ] ]

2 local tvs = {}

3 local c o n t r o l s = {}

4

5 function map_events ( cont ro l , tv )

6 map ( cont ro l , "KEY_PRESSED" , tv , "PREVIOUS_VIDEO" ,

7 function ( from , to , key ) return key == 1 , ni l end)

8 map ( cont ro l , "KEY_PRESSED" , tv , "NEXT_VIDEO"

9 function ( from , to , key ) return key == 2 , ni l end)

10 map ( cont ro l , "KEY_PRESSED" , tv , "INCREASE_VOLUME"

11 function ( from , to , key ) return key == 3 , ni l end)

12 map ( cont ro l , "KEY_PRESSED" , tv , "DECREASE_VIDEO"

13 function ( from , to , key ) return key == 4 , ni l end)

14 map ( cont ro l , "KEY_PRESSED" , tv , "PAUSE"

15 function ( from , to , key ) return key == 5 , ni l end)

16 end

17

18 MARS.onConnect = function (p)

19 local i n t e r f a c e s = p : g e t I n t e r f a c e s ( )

20

21 for i ,_ in pairs ( i n t e r f a c e s ) do
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22 i f i == "TV" then

23 table. insert ( tvs , p )

24 isTv = true

25 e l s e i f i == "REMOTE_CONTROL" then

26 table. insert ( c o n t r o l s , p )

27 c o n t r o l = p

28 end

29 end

30

31 i f isTv then

32 for _, i n s t in ipairs ( c o n t r o l s ) do

33 map_events ( in s t , p )

34 end

35 else

36 for _, i n s t in ipairs ( tvs ) do

37 map_events (p , i n s t )

38 end

39 end

40 end

Listing 5.13: A modified version of the mapping script.

Our approach for maintaining the consistency of the system ensures that

all TVs react at the same logical time to input events generated. In this

application, a practical implication is that when one presses the PAUSE button,

Mars guarantees that all videos pause at the exact same frame, as illustrated

by the screenshot of this application in Figure 5.7.

Figure 5.7: Mars guarantees that all TVs always pause on the same frame.

Second Screen

The application discussed in this section is a typical example of second

screen applications used in the context of interactive digital TV. A content

is presented on TV, and at a given moment the user is asked to choose

on a personal device which content s/he wants to watch. Depending on the

choice, the application shows a different content on TV. The source code of
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the program running on the TV and on the personal device is depicted in

Listing 5.14.

1 input (int) USER_CHOICE ;
2 output ( none ) INTERACTIVITY ;
3

4 var [] byte video = "vid.mp4 ";
5 var Properties . Video prop = val
6 Properties . Video ( <... >);
7

8 var &? Scene s = spawn Scene ( <... >);
9 watching s

10 do

11 var int choice = 1;
12 par/or do

13 await Play (& video , &prop , &s);
14 with

15 await 30s;
16 emit INTERACTIVITY ();
17 choice = await USER_CHOICE ;
18 end

19 var [] byte path;
20 if choice == 1 then

21 path = [] .. " path1 .mp4 ";
22 else
23 path = [] .. " path2 .mp4 ";
24 end

25 prop = val
26 Properties . Video ( <... >);
27 await Play (& path , &prop , &s);
28 end

1 input ( none ) SHOW_OPTIONS ;
2 output (int) FINAL ;
3

4 var &? Scene s = spawn Scene ( <... >);
5 watching s
6 do

7 var [] byte op1 = [] .. "op1.png ";
8 var [] byte op2 = [] .. "op2.png ";
9

10 var Properties . Image prop1 = val
11 Properties . Image ( <... >);
12 var Properties . Image prop2 = val
13 Properties . Image ( <... >);
14

15 await SHOW_OPTIONS ;
16 var Play p1;
17 var Play p2;
18 par/or do

19 par do

20 p1= spawn Play (&op1 ,& prop1 &s);
21 with

22 p2= spawn Play (&op2 ,& prop1 ,&s);
23 end

24 with

25 var uint obj;
26 obj= await CM_PLAYER_MOUSE_CLICK ;
27 if obj == p1 then

28 emit FINAL (1);
29 else
30 emit FINAL (2);
31 end

32 end

33 end

Listing 5.14: A typical example of second screen application. The code on the
left runs on the TV and the code on the right runs on a personal device.

Let’s first discuss the code that runs on TV. As usual, it spawns a Céu-

Media Scene (line 8) and creates a par/or composition (lines 12–28). First trail

plays the main video (line 13) and second trail waits 30s, emits the output event

INTERACTIVITY, and then waits the input event USER_CHOICE.

The par/or composition may end either when the second trail wakes from

this await (i.e., the user has chosen a content to watch) or when the main video

ends (i.e., first trail ends). If the user has interacted on his/her personal device,

the chosen content will be presented, otherwise the default content is selected

(lines 20–27).

The code that runs on secondary device also starts spawning a Scene

(line 4). The program halts waiting for the input event SHOW_OPTIONS in line 15.

When it wakes from this await, two options are displayed in parallel (lines 19-

23) and the program waits for the user to select one of them (line 26).

Depending on the user choice, the program emits the output event FINAL

passing the proper argument (lines 27–31).
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The interface table for this application is depicted in Listing 5.15. It

defines two interfaces, namely MAIN and SECONDARY. The former has one input

(USER_CHOICE, with an int argument) and one output (INTERACTIVITY, with no

argument) event. Similarly, the latter also has one input (SHOW_OPTIONS, with

no argument) and one output (FINAL, with an int) event.
1 −−[[ second_screen_inter face . lua ] ]

2 i n t e r f a c e s {

3 MAIN = {

4 inputs = {

5 USER_CHOICE = { " i n t " }

6 } ,

7 outputs = {

8 INTERACTIVITY = {} ,

9 }

10 } ,

11 SECONDARY = {

12 inputs = {

13 SHOW_OPTIONS = {}

14 } ,

15 outputs = {

16 FINAL = { " i n t " } ,

17 }

18 }

19 }

Listing 5.15: The interface table of second screen application.

Listing 5.16 shows the mapping script of this application. It also imple-

ments the onConnect callback and suits scenarios in which there are multiple

MAIN and/or SECONDARY devices, which are saved in tables main and sec, respec-

tively (lines 1–2). When a device joins the session, the script adds it to the

appropriate table, depending on the interfaces it implements (lines 5–17). The

script then loops through the main and sec tables for mapping events of the

already joined devices to the joining instance. This mapping happens as fol-

lows: when a MAIN device emits output event INTERACTIVITY, in SECONDARY devices

the input event SHOW_OPTIONS should be generated; likewise, output event FINAL

emitted by a SECONDARY device should trigger input event USER_CHOICE in MAIN

devices (lines 19–31).
1 local main = {}

2 local s e c = {}

3

4 MARS.onConnect = function (p)

5 local i n t e r f a c e s = p : g e t I n t e r f a c e s ( )

6 local isMain = fa l se

7 local i s S e c = fa l se

8

9 for i in pairs ( i n t e r f a c e s ) do

10 i f i == "MAIN" then

11 isMain = true

12 table. insert ( main , p)

13 e l s e i f i == "SECONDARY" then

14 i s S e c = true
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15 table. insert ( sec , p )

16 end

17 end

18

19 i f isMain then

20 for _, sec in ipairs ( s ec ) do

21 map (p , "INTERACTIVITY" , sec , "SHOW_OPTIONS" )

22 map ( sec , "FINAL" , p , "USER_CHOICE" )

23 end

24 end

25

26 i f i s S e c then

27 for _, main in ipairs ( main ) do

28 map ( main , "INTERACTIVITY" , p , "SHOW_OPTIONS" )

29 map (p , "FINAL" , main , "USER_CHOICE" )

30 end

31 end

32 end

Listing 5.16: The mapping script of the second screen application.

Note that the behavior of this application may be used for implementing

several different second screen applications, with minor tweaks. And, again,

there is no need for users to program the communication among devices,

because Mars middleware takes care of all data exchange following the

mapping table built from the mapping script.

5.10
Discussion

One of the conclusions of the work described in this chapter is that it

is possible to use the GALS approach for guaranteeing the timing-sequential

consistency model to applications. The development of Mars is an indication

that this is possible using a centralized architecture.

Our investigation has also pointed out that guaranteeing sequential

consistency is not enough for distributed interactive multimedia applications.

Besides consistency, timing guarantees should be implemented, otherwise

applications can reach consistent but incorrect states. Again, Mars is an

evidence that the GALS approach is suitable for providing such guarantees.

In fact, our approach strongly relies on the locally synchronous behavior of

process to define algorithms with a precise control over the application time.

A drawback of our approach is that it does not scale well. It has a single

point of failure (the Mars server) and the entire execution of the system

depends on it. This middleware has not been designed for supporting massive

distributed applications, with hundreds or thousands of nodes exhaustively

emitting output events, which breaks the synchronous hypothesis on local

processes as discussed in the next chapter. But rather, it was designed for

small to medium distributed applications (few dozen devices) running on a
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local network and exchanging data. Even though failure is an important topic

of any distributed system, it is out of the scope of this thesis and is left for

future works.

Finally, but not least, Mars promotes the decoupling of the application

logic and communication among devices. One of our main goals when designing

Mars was to support the development of distributed interactive multimedia

applications without programmers have to worry about implementing the low-

level communication layer. As discussed in Chapter 1, the distributed systems

and multimedia research communities have been doing important advances in

their fields, and this work intends to contribute for filling the gap among these

both research areas.

In the next chapter we discuss how real-world distributed interactive mul-

timedia applications proposed by the research community may be implemented

using Mars.
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6
Distributed Interactive Multimedia Applications: Using Mars
in Real-World Examples

In this chapter we describe how real-world distributed interactive mul-

timedia applications may be implemented using Mars. These use cases were

proposed by researchers from the multimedia field, being one of them discussed

in a research paper [94] and the others proposed by W3C Groups [96, 97].

We have chosen these use cases because they cover different aspects of

multi-device applications. The first use case requires that both devices process

events at the same time so they can pause the video in the same frame. The

second use case requires that all students receive messages from the teacher

in order so they can properly update their states and be notified about who

has the control over the video. The third use case requires that both players

always execute the events in the same order and at the same time, otherwise

the playability of the game may be compromised. And the fourth use case

requires distributed synchronization.

Here we point out which features of Mars are suitable for implementing

part of these use cases, but we also discuss some limitations of our approach.

6.1
Use Case 1: Social Viewing and Media Control

Alice and Bob would like to watch a video episode together, even if Alice

is on a train and Bob stays at home. If Alice pauses the video while briefly

speaking with the conductor, Bob’s video pauses too. Alice and Bob may

always trust the other to see the exact same thing, making it very easy for

them to maintain a conversation, for instance by using a chat service or the

phone. It would also be possible for Alice and Bob to split temporarily, that is,

each having his/her own experience without synchronization points (adapted

from the W3C Web and TV Interest Group [97]).

Listing 6.1 depicts a chunk of Céu code that implements this application.

It has one input event (TOGGLE_VIDEO_STATE, line 1) and two output events

(TOGGLE_TOGETHERNESS and SPACE, lines 2–3). The application spawns a Céu-

Media scene (line 9) and starts to play a given video (line 11). From this

point on, the program executes two trails in parallel (lines 12–31). The first
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reacts to each occurrence of the event TOGGLE_VIDEO_STATE and pauses or resumes

the scene depending on its current state (lines 15–22). The second reacts to

Céu-Media key input events (lines 23–30). If the key is "space", it emits the

event SPACE, or if the key is "escape", it emits the event TOGGLE_TOGETHERNESS.
1 input ( none ) TOGGLE_VIDEO_STATE ;

2 output ( none ) TOGGLE_TOGETHERNESS ;

3 output ( none ) SPACE ;

4

5 var [] byte video = <video >;

6

7 var Properties . Video p = val Properties . Video ( <... >);

8

9 var &? Scene scene = spawn Scene ( <... >);

10 watching scene do

11 spawn Play (& video , &p, & scene );

12 par do

13 var bool isPaused = true ;

14 every TOOGLE_VIDEO_STATE do

15 if isPaused then

16 call Scene_Resume ( scene );

17 else

18 call Scene_Pause ( scene );

19 end

20 isPaused = not isPaused ;

21 end

22 with

23 var char key = _;

24 every (key) in CM_SCENE_KEY do

25 if key == " space " then

26 emit SPACE ();

27 else/if key == " escape " then

28 emit TOGGLE_TOGETHERNESS ();

29 end

30 end

31 end

32 end

Listing 6.1: Céu application that implements the first use case.

Listing 6.2 defines the interface table of this application. It has only one

interface (USER) which has one input event and two output events.
1 i n t e r f a c e s {

2 USER = {

3 inputs = {

4 TOGGLE_VIDEO_STATE = {}

5 } ,

6 outputs = {

7 TOGGLE_TOGETHERNESS = {} , SPACE = {}

8 } ,

9 }

10 }

Listing 6.2: Interface table of the first use case.

The mapping script is depicted in Listing 6.3. It stores peer instances in

the table peers (line 1). The variable together controls whether peers should

pause together or not. The function handler is used as filter function (lines 4–
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6). This script implements two Mars callbacks: onConnect (lines 8–16) and

onOutputEvent (lines 18–22). In the onConnect callback, the script connects the

output event SPACE to the input event TOGGLE_VIDEO_STATE of the joining instance.

The onConnect callback then iterates over the peers table and properly connects

the output event of the joining device to the input event of other peers, and

vice-versa. The onOutputEvent toggles the boolean value stored in the variable

together whenever any peer emits the output event TOGGLE_TOGETHERNESS.

1 local peer s = {}

2 local tog e th e r = true

3

4 function handler ( from , to , args )

5 return together , ni l

6 end

7

8 MARS.onConnect = function (p)

9 map (p , "SPACE" , p , "TOGGLE_VIDEO_STATE" )

10

11 for _, i n s t a n c e in ipairs ( pee r s ) do

12 map (p , "SPACE" , ins tance , "TOGGLE_VIDEO_STATE" , handler )

13 map ( ins tance , "SPACE" , p , "TOGGLE_VIDEO_STATE" , handler )

14 end

15 table. insert ( peers , p )

16 end

17

18 MARS.onOutputEvent = function ( from , evt , a rgs )

19 i f ( evt == "TOGGLE_TOGETHERNESS" ) then

20 to g e th e r = not to g e th e r

21 end

22 end

Listing 6.3: Mapping script of the first use case.

When any peer emits the output event SPACE, the input event

TOGGLE_VIDEO_STATE is generated for that peer, according to the mapping in

line 9. However, due to the mappings in lines 12 and 13, the server should

also generate the TOGGLE_VIDEO_STATE to all peers for which the handler function

returns true. This function simply returns the current value of the variable

together. Therefore, when any peer emits the event SPACE, all peers receive the

input event TOGGLE_VIDEO_STATE if together == true holds, otherwise only the

peer that has emitted that event receives the corresponding input.

In sum, if the togetherness is enabled, all devices pause together at the

same frame when one presses the key "space". If not, only the device that has

generated the SPACE event pauses (i.e., devices split temporally, as described in

the use case).
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6.2
Use Case 2: Online Education

Alice teaches an online course for international students from across the

globe. At the time of the class, she requests the video and the first slide

to be presented. Slides are presented, on her view and on all the views of

her connected students, at exactly the same time. At some point one of the

students has a question related to the movie. Alice temporarily gives the

student access to control the video, and the student rewinds it to explain

the origin of his question. Afterwards, Alice withdraws the controls from the

student and continues (adapted from the Timing Object W3C draft spec [96]).

Our implementation of this use case is composed of two programs: one

that runs on Alice’s device (teacher program) and another that runs on

students’ devices (student program). Listing 6.4 depicts the source code of the

former. It has three output events: NEW_SLIDE, REPLY_CONTROL and PERFORM_SEEK;

and four input events: REQUEST_CONTROL, SEEK_REQUEST, SHOW_SLIDE and SEEK.

The program emits the NEW_SLIDE event when a new slide should be presented on

all devices (Alice’s included). The REPLY_CONTROL event is emitted when Alice

gives/withdraws the control over the video to/from some student. And the

PERFORM_SEEK event is emitted to indicate to all devices that a seek operation

should be executed. When the program receives the event REQUEST_CONTROL, it

means that a student has requested control over the video, and the control

should be granted if there is no other student currently controlling it. When a

student wants to rewind the video, the program receives the event SEEK_REQUEST.

After receiving the event SHOW_SLIDE, The teacher program should exhibit the

slide indicated in the argument of the event. And the SEEK event should trigger

a seek operation.
1 output (int) NEW_SLIDE ;

2 output (int) REPLY_CONTROL ;

3 output (int) PERFORM_SEEK ;

4

5 input (int) REQUEST_CONTROL ;

6 input (int) SEEK_REQUEST ;

7 input ( char ) SHOW_SLIDE ;

8 input (int) SEEK;

9

10 <...>

11

12 var &? Scene scene = spawn Scene ( <... >);

13 var int control ;

14 watching scene do

15 var &? Play player = spawn Play (& video , &prop , & scene );

16 emit NEW_SLIDE (0);

17 par do

18 var int slide = 0;

19 var char key = _;

20 every (key) in CM_SCENE_KEY do
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21 if key == " space " == 0 then

22 slide = slide + 1;

23 emit NEW_SLIDE ( slide );

24 end

25 end

26 with

27 var int id = 0;

28 every (id) in REQUEST_CONTROL do

29 if control == 0 then

30 control = id;

31 end

32 emit REPLY_CONTROL ( control );

33 end

34 with

35 var int position = _;

36 every ( position ) in SEEK_REQUEST do

37 emit PERFORM_SEEK ( position );

38 end

39 with

40 var char path = _;

41 every path in SHOW_SLIDE do

42 spawn Slide_Player (& path , & scene );

43 end

44 with

45 var int position = _;

46 every ( position ) in SEEK do

47 call Player_Seek (& player , position );

48 control = 0;

49 emit REPLY_CONTROL ( control );

50 end

51 end

52 end

Listing 6.4: Céu source code of the teacher program.

After creating a Scene (line 12) the program starts the video and emits

the NEW_SLIDE event passing 0 as argument, which indicates that the first

slide should be presented (lines 15–16). The program then creates a parallel

composition with 5 trails (lines 17–51). The fist requests a new slide to be

presented whenever Alice presses the "space" key (lines 18–25). The second

waits for event REQUEST_CONTROL and, if there is no student controlling the

video (i.e., the variable control is 0) it broadcasts to all students that one

of them is now controlling it (i.e., it emits the event REPLY_CONTROL passing a

student identifier)—lines 27–33. The third just waits for event SEEK_REQUEST and

emits event PERFORM_SEEK (lines 35–38). The fourth changes the current slide in

response to the event SHOW_SLIDE (lines 40–43). And finally, the last trail reacts

to each occurrence of the event SEEK, performing a seek operation, and then

withdraws the control from the student (i.e., it sets the variable control to 0)

broadcasting this to all students (lines 45–50).

Now let’s focus on the students program, whose source code is depicted

in Listing 6.5. It has two output events: TRY_GET_CONTROL and REWIND; and

DBD
PUC-Rio - Certificação Digital Nº 1412733/CA



Chapter 6. Distributed Interactive Multimedia Applications: Using Mars in
Real-World Examples 105

three input events: SHOW_SLIDE, SEEK and CONTROL_CHANGED. When a student

wants to ask a question, it emits the event TRY_GET_CONTROL, and the event

REWIND to actually request a rewind operation on the video. The input events

SHOW_SLIDE and SEEK have similar purposes than their corresponding in the

teacher program. The input event CONTROL_CHANGED is received when the student

controlling the video changes.
1 output (int) TRY_GET_CONTROL ;

2 output (int , int) REWIND ;

3

4 input ( char ) SHOW_SLIDE ;

5 input (int) SEEK;

6 input (int) CONTROL_CHANGED ;

7

8 var int self = < student ID >;

9

10 <...>

11

12 watching scene do

13 var &? Play player = spawn Play (& video , &prop , & scene );

14 par do

15 var char path = _;

16 every path in SHOW_SLIDE do

17 spawn Slide_Player (& path , & scene );

18 end

19 with

20 var char key = _;

21 every (key) in CM_SCENE_KEY do

22 if key == " Return " then

23 emit TRY_GET_CONTROL (self );

24 else/if key == " space " then

25 var int position = < get rewind video position >;

26 emit REWIND (self , position );

27 end

28 end

29 with

30 every (id) in CONTROL_CHANGED do

31 if id == self then

32 <this student is now controlling the video >

33 else

34 <someone else is controlling the video >

35 end

36 end

37 with

38 var int position = _;

39 every ( position ) in SEEK do

40 call Player_Seek (& player , position );

41 end

42 end

43 end

Listing 6.5: Céu source code of the students program.

Each student has an id, which is stored in the variable self (line 8). After

creating a Scene, the program starts to render the video of the class (line 13).

It then creates a parallel composition with four trails (lines–14–42). The first
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reacts to the input event SHOW_SLIDE and changes the current slide being

presented (lines 15–18). The second reacts to key events as follows: if the

key pressed is "Return", then the program emits the TRY_GET_CONTROL event;

otherwise, if it is "space", the program gets the position to which the student

wants to rewind the video and then emits the REWIND event passing the

student identifier and the position (lines 20–28). The third waits for the event

CONTROL_CHANGED: if the argument is equals the variable self, then this student

has the control—at this point, the program could show some message on

the screen to inform the student that s/he can seek the video (lines 30–36).

And the last trail reacts to SEEK events, updating the current position of the

video (lines 38–42).

The interface table of this use case is presented in Listing 6.6. There are

two interfaces: TEACHER and STUDENT, each with its own set of input and output

events.
1 i n t e r f a c e s {

2 TEACHER = {

3 inputs = {

4 SHOW_SLIDE_ = { " char " } , SEEK = { " i n t " } ,

5 REQUEST_CONTROL = { " i n t " } , SEEK_REQUEST = { " i n t " }

6 } ,

7 outputs = {

8 NEW_SLIDE = { " i n t " } , REPLY_CONTROL = { " i n t " } , PERFORM_SEEK = { " i n t " }

9 } ,

10 } ,

11 STUDENT = {

12 inputs = {

13 SHOW_SLIDE = { " char " } , SEEK = { " i n t " } , CONTROL_CHANGED = { " i n t " }

14 } ,

15 outputs = {

16 TRY_GET_CONTROL = { " i n t " } , REWIND = { " i n t " , " i n t " }

17 }

18 }

19 }

Listing 6.6: Interface table of the online education use case.

In this example, the mapping script is a bit more complex than the others

discussed so far. Listing 6.7 presents its code.
1 local t eacher = ni l

2 local s tudents = {}

3

4 MARS.onConnect = function (p)

5 local i n t e r f a c e s = p : g e t I n t e r f a c e s ( )

6

7 for i ,_ in pairs ( i n t e r f a c e s ) do

8 i f i == "TEACHER" then

9 t eache r = p

10 map (p , "NEW_SLIDE" , p , "SHOW_SLIDE" , s l i d e T r a n s f )

11 map (p , "PERFORM_SEEK" , p , "SEEK" )

12

13 for _, s in pairs ( s tudents ) do

14 l i n k ( teacher , s )
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15 end

16 e l s e i f i == "STUDENT" then

17 table. insert ( students , p )

18 i f t eacher ~= ni l then

19 l i n k ( teacher , p )

20 end

21 end

22 end

23 end

24

25 local hasControl = ni l

26 MARS.onOutputEvent = function ( from , evt , a rgs )

27 i f ( from == teacher and evt == "REPLY_CONTROL" ) then

28 i f ( args [ 1 ] == 0) then

29 hasContro l = ni l

30 else

31 hasContro l = args [ 1 ]

32 end

33 end

34 end

35

36 function l i n k ( teacher , student )

37 map ( teacher , "NEW_SLIDE" , student , "SHOW_SLIDE" , s l i d e T r a n s f )

38 map ( teacher , "REPLY_CONTROL" , student , "CONTROL_CHANGED" )

39 map ( teacher , "PERFORM_SEEK" , student , "SEEK" )

40 map ( student , "TRY_GET_CONTROL" , teacher , "REQUEST_CONTROL" )

41 map ( student , "REWIND" , teacher , "SEEK_REQUEST" ,

42 function ( from , to , args )

43 i f ( from == hasControl ) then

44 return true , { args [ 2 ] }

45 else

46 return false , ni l

47 end

48 end)

49 end

50

51 function s l i d e T r a n s f ( from , to , args )

52 return true , { " s l i d e " . . a rgs [ 1 ] . . " . j p g " }

53 end

Listing 6.7: Mapping script of the online education use case.

The mapping script implements two callbacks: onConnect (lines 4–23) and

onOuputEvent (lines 26–34). It assumes that there is only one teacher (variable

teacher, line 1) and many students (table students, line 2). The onConnect

callback gets a list of interfaces each joining peer implements. If it implements

the TEACHER, then the script saves this instance in the variable teacher

and maps its output events "NEW_SLIDE" and "PERFORM_SEEK" to its input events

"SHOW_SLIDE" and "SEEK", respectively.

Note, however, that the events "NEW_SLIDE" and "SHOW_SLIDE" are incom-

patible because their arguments have different types: the former event has a int

argument, and the latter has a char argument. Thus, we use the filter function

slideTransf (lines 51–53) as follows: this function always returns true as first

value because we always want to trigger the mapping; the second argument
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creates a table having just a string (the argument of the "SHOW_SLIDE" event)

which converts the value of the event "NEW_SLIDE" into a string having the path

of the slide to be presented.

Back to the mapping script, it iterates over the student table in lines 13–

15 and 18–20, calling the function link (lines 36–49) to define the other

mappings of this application. These maps are:

– teacher’s "NEW_SLIDE" event to students’ "SHOW_SLIDE" event, also using the

slideTransf function;

– teacher’s "REPLY_CONTROL" event to students’ "CONTROL_CHANGED";

– teacher’s "PERFORM_SEEK" event to students’ "SEEK";

– students’ "TRY_GET_CONTROL" event to teacher’s "REQUEST_CONTROL";

– students’ "REWIND" event to teacher’s "SEEK_REQUEST", using a filter func-

tion that tests if the student who has emitted the "REWIND" indeed is the

one who has the control over the video.

And in the callback onOutputEvent, the mapping script updates the value

of the variable hasControl, which stores the identifier of the student who is

controlling the video.

6.3
Use Case 3: Multiplayer Shooting Game

Alice and Bob like to play a multiplayer shooting game. Each player

controls his/her own avatar and plays against the other. The avatars are in

a virtual world having obstacles and hiding spots. The goal of each player is

to find the opponent’s avatar and shoot him. In Listing 6.8 there is a Céu

code that implements the main functionalities of this game (adapted from a

distributed consistency problem discussed by Mauve et al. [94]).
1 input (int , int) OPPONENT_POS ;

2 input (int , int) OPPONENT_MOVE ;

3 input (int , int) MY_MOVE ;

4 input (bool , int , int) SHOT;

5

6 output (int , int) MY_POS ;

7 output (int , int) UPDATE_POS ;

8 output (int , int) FIRE;

9

10 event ( none ) update ;

11

12 var Position self;

13 var Position opponent ;

14

15 par/and do

16 self = < get initial position () >;

17 emit MY_POS (self.x, self.y);
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18 with

19 var int x;

20 var int y;

21 (x, y) = await OPPONENT_POS ();

22 opponent .x = x;

23 opponent .y = y;

24 end

25

26 var &? Scene scene = spawn Scene ( <... >);

27 watching scene

28 do

29 par do

30 <draw virtual world >

31 with

32 var char key;

33 var int delta = 10;

34 every key in CM_SCENE_KEY do

35 if key == "Left" then

36 emit UPDATE_POS (self.x - delta , self.y);

37 else/if key == " Right " then

38 emit UPDATE_POS (self.x + delta , self.y);

39 else/if key == "Up" then

40 emit UPDATE_POS (self.x, self.y - delta );

41 else/if key == "Down" then

42 emit UPDATE_POS (self.x, self.y + delta );

43 else/if key == " space " then

44 var int x;

45 var int y;

46 (x, y) = <get shoot direction >;

47 emit FIRE (x, y);

48 end

49 end

50 with

51 var int x;

52 var int y;

53 every (x, y) in MY_MOVE do

54 self.x = x;

55 self.y = y;

56 emit update ;

57 end

58 with

59 var int x;

60 var int y;

61 every (x, y) in OPPONENT_MOVE do

62 opponent .x = x;

63 opponent .y = y;

64 emit update ;

65 end

66 with

67 every update do

68 <update the position of avatars >

69 end

70 with

71 var int is_my_shot ;

72 var int x;

73 var int y;

74 every ( is_my_shot , x, y) in SHOT do

75 if is_my_shot then

76 <check if opponent was hit >
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77 else

78 <check if my avatar was hit >

79 end

80 end

81 end

82 end

Listing 6.8: Céu source code of the multiplayer shooting game.

For simplicity, this code assumes a two-player game, each runnning this

program in his/hers own device. The program has four input and three outputs

events (lines 1–8). The event OPPONENT_POS informs the program the initial

position of the opponent. Whenever the opponent or the player makes a

movement, the program receives the events OPPONENT_MOVE or MY_MOVE to update

the game state, respectively. And when one of the players shoots the other,

the event SHOT is received.

At the beginning of the game, the program assigns a random position to

each player. The game emits the event MY_POS to update the other player about

this initial position. When players want to change the position of their avatar,

they should use one of the arrow keys, which makes the program emit event

UPDATE_POS. And when a player wants to shoot the other, event FIRE is emitted.

The program begins creating a par/and composition that calculates a

random position and emits event MY_POS in the first trail, and waits for opponent

position in the second trail (lines 15–24). The player and opponent positions

are stored in the variables self and opponent, respectively.

After this initial setup, the program creates a Scene and the game actually

begins (lines 26–82). The whole logic of the game is implemented in the par

composition in lines 29–81. In the first trail, the program draws the virtual

world interface (omitted in this code for simplicity). The second trail reacts

to input key events as follows: arrow keys lead the program to emit the

event UPDATE_POS, passing the updated position as argument; and the space

key makes the program to emit the event FIRE, passing the direction of the

shot as argument.

The third and fourth trails are similar: they react to the event MY_MOVE

or OPPONENT_MOVE to update the variables self and opponent, and then emit the

internal event update. The fifth trail reacts to each occurrence of the event

update to refresh the avatars’ position according to the values in those two

variables.

The last trail reacts to the event SHOT, whose first parameter indi-

cates whether the shot was fired by the player (is_my_shot == true) or not

(is_my_shot == false). Depending on this first value, the program checks if the

shot in direction x,y hit the opponent or the player’s avatar.
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This application has just one interface (PLAYER), as shown in Listing 6.9.

The events exposed in the interface table are the same discussed above:

OPPONENT_POS, OPPONENT_MOVE, MY_MOVE, SHOT, MY_POS, UPDATE_POS and FIRE.
1 i n t e r f a c e s {

2 PLAYER = {

3 inputs = {

4 OPPONENT_POS = { " i n t " , " i n t " } , OPPONENT_MOVE = { " i n t " , " i n t " } ,

5 MY_MOVE = { " i n t " , " i n t " } , SHOT = { " bool " , " i n t " , " i n t " }

6 } ,

7 outputs = {

8 UPDATE_POS = { " i n t " , " i n t " } , MY_POS = { " i n t " , " i n t " } ,

9 FIRE = { " i n t " , " i n t " }

10 }

11 }

12 }

Listing 6.9: Interface table of the game.

Now let’s discuss the mapping script in Listing 6.10. This script defines

only the onConnect callback. The event MY_POS of each player is mapped to the

event OPPONENT_POS of the other. The event UPDATE_POS of each player has two

mappings: one to the event OPPONENT_MOVE in the opponent device (lines 13–

14), and another to the event MY_MOVE in the same device (line 20). That is,

when this event is emitted (i.e., when one presses an arrow key) the Mars

server generates two input messages, one to the opponent and other to the

same device. The event FIRE from any device is mapped to the event SHOT in

both devices (lines 16–17 and 21) but here we use a filter function (line 24–30).

Such function sets the first argument of the event SHOT to true, if the source

and target devices are the same, or false otherwise.
1 local player1 = ni l

2 local player2 = ni l

3

4 MARS.onConnect = function (p)

5 i f p layer1 == ni l then

6 player1 = p ;

7 else

8 player2 = p ;

9

10 map ( player1 , "MY_POS" , player2 , "OPPONENT_POS" )

11 map ( player2 , "MY_POS" , player1 , "OPPONENT_POS" )

12

13 map ( player1 , "UPDATE_POS" , player2 , "OPPONENT_MOVE" )

14 map ( player2 , "UPDATE_POS" , player1 , "OPPONENT_MOVE" )

15

16 map ( player1 , "FIRE" , player2 , "SHOT" , tansfFunc )

17 map ( player2 , "FIRE" , player1 , "SHOT" , tansfFunc )

18 end

19

20 map (p , "UPDATE_POS" , p , "MY_MOVE" )

21 map (p , "FIRE" , p , "SHOT" , trans fFunc )

22 end

23

24 function tansfFunc ( from , to , args )
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25 i f from == to then

26 return true , {true , a rgs [ 1 ] , a rgs [ 2 ] }

27 else

28 return true , { false , a rgs [ 1 ] , a rgs [ 2 ] }

29 end

30 end

Listing 6.10: Mapping script of the shooting game.

6.4
Use Case 3: Video Wall

Bob wants to present in a multi-monitor setup the new video advertise-

ment he has been working on in the last months. Because this video is too large

and Bob has only regular computers without much computational power, he

sets up the environment in a way that each computer is connected to a single

monitor and it processes only part of the video. Bob wants that during the

presentation all monitors work as if they were connected to a single computer,

showing the video in-sync. Additionally, Bob also has a controller that he can

use to seek the video whenever one asks to (also adapted from the Timing

Object W3C draft spec [96]).

Our implementation of this use case has two Céu programs, one that

runs on devices connected to a monitor, and other that runs on a controller

device. The former (Listing 6.11) only presents the video on the monitor, and

the latter (Listing 6.12) reacts to inputs events and controls the video wall.
1 input ( none ) START ;

2 input (int) SEEK;

3

4 var double crop_x ;

5 var double crop_y ;

6 var double crop_w ;

7 var double crop_h ;

8

9 (crop_x , crop_y , crop_w , crop_h ) = <get values from command line >;

10

11 await START ;

12

13 var &? Scene scene = spawn Scene ( <... >);

14 watching scene

15 loop do

16 var &? Play video = spawn Play ( <... >);

17 call Player_Set_Double (& video , "crop -left", crop_x );

18 call Player_Set_Double (& video , "crop -top", crop_y );

19 call Player_Set_Double (& video , "crop - right ", crop_w );

20 call Player_Set_Double (& video , "crop - bottom ", crop_h );

21

22 par/or do

23 await video ;

24 with

25 var int position ;

26 every ( position ) in SEEK do

27 call Player_Seek (& video , position );
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28 end

29 end

30 end

31 end

Listing 6.11: Céu source code of program that presents part of the video in a

given monitor.

1 output (int) COMMAND ;

2

3 var &? Scene scene = spawn Scene ( <... >);

4 watching scene

5 var char key;

6 every key in CM_SCENE_KEY do

7 if key == " space " then

8 emit COMMAND (0);

9 else/if is_a_number (key) then

10 emit COMMAND ( to_number (key ));

11 end

12 end

13 end

Listing 6.12: Céu source code of the video wall controller.

The program that presents the video (Listing 6.11) has two input events:

START and SEEK (lines 1–2). This code assumes that the region of the video the

program should present is passed as command line arguments, whose values

are stored in the variables starting with the prefix crop_ (lines 4–9). The await

in line 11 makes the program to halt until it receives the event START. From

this point, it creates a Scene and a cropped video following the values passed

as argument (lines 13–20). At this point, the par/or composition creates two

trails (lines 22–29). The first only waits the video to end (line 23). The second

reacts to occurrences of the event SEEK, seeking the video to the proper position.

The surrounding loop statement (lines 15–30) makes the program to start the

video again whenever it ends, presenting the advertisement in a loop.

The controller program (Listing 6.12) is simple and straightforward,

having only one output event (COMMAND). It just reacts to key inputs (lines 6–

11) and emits that event passing the value 0 if the key pressed is "space", or it

passes an integer value if the key pressed is a number.

Listing 6.13 presents the interface table of this application. It has two

interfaces: VIDEO and CONTROLLER. The first has two input events, START and SEEK.

The second one output event, COMMAND.
1 i n t e r f a c e s {

2 VIDEO = {

3 inputs = {

4 START = {} , SEEK = { " i n t " }

5 }

6 } ,

7 CONTROLLER = {

8 outputs = {

9 COMMAND = { " i n t " }
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10 }

11 }

12 }

Listing 6.13: Interfaces table of the video wall application..

And the mapping script is depicted in Listing 6.14. It stores the video

instances in the table videos, and the controller in the variable controller. This

script implements the onConnect callback, mapping the event COMMAND from the

controller to the events START and SEEK of the videos. The filter functions define

when these mappings should be triggered: if the argument of the event COMMAND

is 0, then the event START is triggered and the SEEK is not, otherwise the event

SEEK is triggered and the START is not.
1 local c o n t r o l l e r = ni l

2 local v ideos = {}

3

4 MARS.onConnect = function (p)

5 local i n t e r f a c e s = p : g e t I n t e r f a c e s ( )

6

7 for i ,_ in pairs ( i n t e r f a c e s ) do

8 i f i == "CONTROLLER" then

9 c o n t r o l l e r = p

10 for _, v in pairs ( v ideos ) do

11 map ( c o n t r o l l e r , "COMMAND" , v , "START" , t r a n s f S t a r t )

12 map ( c o n t r o l l e r , "COMMAND" , v , "SEEK" , t r a n s f S e e k )

13 end

14 e l s e i f i == "VIDEO" then

15 table. insert ( videos , p )

16 i f c o n t r o l l e r ~= ni l then

17 map ( c o n t r o l l e r , "COMMAND" , p , "START" , t r a n s f S t a r t )

18 map ( c o n t r o l l e r , "COMMAND" , p , "SEEK" , t r a n s f S e e k )

19 end

20 end

21 end

22 end

23

24 function t r a n s f S t a r t ( from , to , args )

25 return args [ 1 ] == 0 , ni l

26 end

27

28 function t r a n s f S e e k ( from , to , a rgs )

29 return not args [ 1 ] == 0 , { args [ 1 ] }

30 end

Listing 6.14: Interfaces table of the video wall application..

6.5
Discussion

Mars programming model separates the concerns when developing

distributed interactive applications in two phases: the development of the

application logic (Céu source code) and the definition of how programs

communicate (mapping script). Note that these phases can be carried out in
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any order (or even in parallel) or by different programmers. In fact, the same

Céu application may be used with different mapping scripts due to the loose

coupling among these two codes.

Besides this programming model, we have explored the Mars consistency

guarantees for implementing these use cases. For instance, consider the first

application (Social Viewing and Media Control). If the "togetherness" is

enabled, whenever Alice or Bob pauses the video, both presentations will pause

at exactly same frame. This may be useful in the scenario considered, in which

they are in separate environments and may pause the video to discuss a specific

scene.

Still in the first use case, the lack of perfect playout synchronization

usually is not a problem for social viewing applications. Geerts et al. [98]

report in a study that users communicating using voice while watching the

same content together start to notice synchronization problems only above 2

seconds delays. When considering users using chat applications, the difference

is noticeable above 4 seconds delays.

The second use case (Online Education) also explores Mars consistency

property. Even when multiple students request at the same time the control

over the video, there is no divergence regarding to whom Alice has granted

the control. Regarding the synchronization of playouts, the same reasoning of

the first use case can be applied in this scenario. That is, because students

and the teacher are geographically apart and communicate using online tools,

some differences in the playback is acceptable and does not compromise the

overall experience.

In [94], Mauve has discussed some issues in distributed virtual environ-

ments induced by the absence of consistency guarantees. One of the examples

he cites in that work is the dead man that shoots, which is illustrated by an

action game whose state of the avatars are different in each device due to net-

work delays and jitter. This situation may lead to a scenario that an avatar,

which is dead to a given player, shoots and kills another avatar.

The implementation of the third use case in Mars is an alternative for

this type of game that does not have this problem. Even if both avatars shoot

each other nearly at the same time, all players will receive event SHOT in the

same order and will therefore reach the same final state. This property will

hold even if we change our implementation to a multiplayer game having more

than two players. Again, the Mars consistency guarantees is vital for assuring

that no device stays in a state that is different from others.

However, in this application we have a responsiveness penalty due to the

communication protocol implemented in Mars. When a player presses one of
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the arrow keys or space, the corresponding action is not immediately reflected

on the game. Instead, the Mars runtime sends an output message to the

server, that computes whether this message should trigger an input event in

other devices, to then send the appropriate input messages. Furthermore, the

synchronization of input events discussed in Section 5.5 introduces an addi-

tional delay for generating the events that update the game. Thus, even though

Mars guarantees the consistency for this application, its communication pro-

tocol may hinder the "playability" of the game.

Now let’s discuss the last application. Mars guarantees that all monitors

start and seek at the same time, but it does not provide any support for playout

synchronization. Thus, because devices run at their own pace, it is likely that

the video wall does not show the video in-sync. An alternative to bypass this

problem is for the controller to generate an event for each frame. That is, the

program continuously waits for a given event to then change the frame being

presented. Because of the Mars input events synchronization property, all

devices would change frames in-sync.

There are some problems with this alternative approach. For this discus-

sion, consider a video with frame rate of 30 fps (frames per second). To exhibit

each frame (i.e., at each 33ms) the controller sends a message to the server,

that then sends a message to each device, leading to a frame changing. How-

ever, because the server adds an offset to each input event to compensate for

network delays, the 30fps frame rate would not be possible to be maintained.

There is a conceptual problem with this approach. According to the zero-

delay synchronous hypothesis that Céu relies on, reactions are conceptually

instantaneous. In practice, the synchronous hypothesis holds if reactions

execute faster than the rate of incoming events [17]. Typically, a program

takes some milliseconds to compute the reaction to an event, which is the

same order of magnitude of incoming events if we generate an event for each

frame. That is, this scenario violates the synchronous hypothesis, leading the

program to continuously accumulate delays between occurrences and reactions

to events [17]. This rationale explains why Mars is not designed for massive

distributed applications in which the message exchanging rate is high.

In sum, the development of these use cases indicates that our approach

can be used for programming real-world distributed applications. From the

point of view of programming distributed interactive multimedia applications,

the programming model and guarantees of Mars are handy for implementing

use cases in which consistency is required. To the best of our knowledge, there

is no proposal in this field that provides this consistency guarantee without

requiring programmers to explicitly implement it. However, our approach is
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not a silver bullet for programming all interactive multi-device applications,

as it fails to support the execution of use cases that require fine-grained

synchronization or have a high rate of interactions.
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Related Work

In this work we have explored the use of the synchronous hypothesis

for supporting the development and execution of multi-device interactive

multimedia applications and we have proposed a programming model for

developing these applications. In this chapter we revisit some related works

and compare them with our proposal.

Most of the recent work within the multimedia community approaching

multi-device applications focuses on the infrastructure for supporting their

execution with certain guarantees, disregarding the programming support at

language level. Distributed multimedia synchronization is one of the most

tackled problems in this domain in the last decade. Some of the approaches

for this problem have proposed extensions to transport protocols [99, 100, 101,

102], network-level techniques [103, 104, 105, 106], audio fingerprinting-based

synchronization [107, 108, 109] or adaptation of media playout [110, 111, 112].

Even though some of these works represent an advance in the state of the

art of distributed multimedia synchronization, none of them is concerned

with proposing programming abstractions for supporting the development of

distributed applications. That is, their main targets are system developers

rather than application developers. Besides, most of these techniques do not

consider user interactivity.

Our work in multi-device applications does not approach the distributed

multimedia synchronization problem. Our main focus is on supporting pro-

grammers in developing these applications considering interactivity. In fact,

Mars consistency approach was designed exactly to solve problems that arise

from the interaction of users with applications. However, our work could be

enhanced by implementing some of those proposals for distributed synchro-

nization, which is a point that we left for future work as discussed in next the

chapter.

Recent advances in the digital TV industry has leveraged research

in the multi-device applications landscape. Three of the most prominent

digital TV systems in the world are ATSC (North America) [113], DVB-T

(European-based) [114] and ISDB-Tb (Japan-based, but adopted mostly in

Latin America) [13] and they all support multi-device interactive multimedia
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applications (often called companion or second screen applications).

The ATSC system specification defines a communication protocol be-

tween a primary device (usually TVs or set-top boxes) and secondary devices

(e.g, laptops, tablets and smartphones). This protocol supports the follow-

ing main features: automatically launch an application in secondary devices

from a primary device, application to application communication, and service

discovery. The DVB system also supports these features, but it goes a step fur-

ther and defines a protocol for clock synchronization between the primary and

secondary devices for applications that require fine-grained synchronization.

Both ATSC and DVB do not restrict the language in which companion

applications should be programmed, but rather they define a set of protocols

that compliant (web-based or native) applications should adhere to. The main

advantage of this design is that programmers are not tied to a single technol-

ogy for developing multi-device applications. However, this characteristic also

prevents the system to ensure further guarantees, such as determinism. Even

though it is possible to develop deterministic applications to run on ATSC

and DVB systems (e.g., programmatically enforcing the determinism or using

a deterministic language) one cannot assume that all companion applications

have this property. Likewise, the specifications of both systems do not impose

any consistency guarantees, which should be implemented at application-level

when needed. Furthermore, developers should either implement the communi-

cation protocol or use a compliant communication library so applications can

properly exchange messages.

The ISDB-Tb system adopts NCL and Lua as languages for application

development. Unlike ATSC and DVB, the ISDB-Tb defines a communication

API (instead of a protocol) for both languages. From the programming

perspective, it means that developers can use this API for communicating

with other applications. Internally, the system is responsible for implementing

this API and the devices’ communication layer. Thus, even though developers

still use communication primitives in their codes, they need not worry about

implementing lower-level communication protocols. Regarding determinism, as

discussed throughout this thesis the NCL language has some non-deterministic

constructs, therefore we cannot say that the ISDB-Tb system can guarantee

this property. Regarding consistency, similar to ATSC and DVB, the system

specification does not impose it, making it an implementation-dependent

feature.

In our approach, we can ensure not only the ordering of messages (se-

quential consistency) but also that each application always behaves determin-

istically because we rely on a deterministic language. Additionally, we have
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designed Mars in a way that the use of explicit communication primitives

in source codes is unnecessary—in fact, it is discouraged because the runtime

may not be able to guarantee the total ordering in this case.

In the web panorama, there have been some recent efforts promoting

distributed (in this context, called cross-device) applications. Cross-device are

web-based applications whose user interfaces (UIs) are designed to be rendered

on multiple devices, in which each device acts either as a mirror or renders

part of a larger interface. Most of the research in this area focuses on defining

languages [115, 116, 117], frameworks [118, 119, 120, 121], and development

tools [122, 123, 124, 125] for supporting cross-device applications.

We can say that cross-device applications fall into Levin’s complementary

category [18] (applications that complement one another creating an experience

as a connected group), therefore consistency is a concern. Devices running

part of a distributed UI share data whose state must be synchronized. In

literature, there are centralized [118, 120, 126] and decentralized [127, 128, 129]

approaches for handling consistency in cross-device applications.

Despite sharing some similarities, there are some differences between the

type of applications we target in this work and cross-device web-based UIs.

We approach distributed interactive multimedia applications, in which timing

is a crucial aspect. On the other hand, even though the number of video- and

audio-based applications/services has dramatically increased on the web in the

last two decades (e.g., Spotify, YouTube, Google Play Music, Amazon Music,

Dailymotion, etc.) web pages, in general, are still atemporal. Thus, the con-

sistency techniques implemented by works targeting cross-device applications

are mainly concerned in guaranteeing data consistency disregarding timing

constraints. As pointed by Mauve et al. [95], consistency in systems that tar-

get continuous objects is not just about defining a global order of events, but

also about guaranteeing that each operation is executed at the correct point

in time. In our work we have considered this issue when designing the Mars

consistency algorithm.

Although not common, there are some timing sensitive use cases on the

web (e.g., timing sensitive Twitter widget that can replay timestamped tweets).

Arntzen et al. [96] have proposed the web timing object JavaScript API for

supporting those use cases. The main goal of that work is to encapsulate

the complexity of clock synchronization across devices into an object that

implements a synchronized and shared timeline (aka timing object).

The timing object work is not directly related to ours, but we have cited

it here for completeness. This JavaScript API was designed specifically for

implementing a synchronized timeline, that is, it per se does not provide any
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consistency guarantee. However, combining the timing object with frameworks

for cross-device applications can enable the development of consistency ap-

proaches that consider timing constraints, similarly to our work.

Collaborative Virtual Environments (CVEs) have some characteristics

similar to applications we are targeting. A CVE is a system in which multiple

users are immersed in a virtual world visualizing and interacting with shared

objects [130]. Massively multi-player or serious games, large-scale virtual

cities, and open space military training are examples of CVEs [131]. In a

CVE application, users’ updates must be propagated to others with low-

latency maintaining the system responsive, otherwise participants may become

frustrated [132] and even lose interest in the application [133]. Additionally,

the system should guarantee that those updates are applied in each device

consistently because users may be interacting with the same shared object

concurrently. And a third requirement of these applications is scalability, as

CVEs are generally designed to scale for hundreds or thousands of users.

Dead-reckoning [134] is a classic technique often used in CVEs for tackling

the consistency problem. It is based on a combination of state prediction and

state transmission. As each device "knows" how shared objects behave over

time without users’ interaction, they can predict locally the position of those

objects as the time passes. When the state of an object changes in a device

in a way that prediction of positions of that object in other peers become

inconsistent, an update message is issued to all devices. Upon receiving this

message, devices update the state of that object and use this new state in future

predictions. Mauve et al. [95] have demonstrated that this technique cannot

prevent continuous applications to reach consistent, but incorrect states, such

as the distributed driver instructor application described in Chapter 5 (page

80).

In that same work [95], the authors have proposed an approach that

provides consistency for continuous applications based on two complementary

techniques: local-lag and timewarp. Local-lag consists in decreasing the system

responsiveness by delaying the execution of actions for a certain amount of

time. Consider a distributed setting with 3 devices. If device D1 generates

the operation O1 at timestamp t1, then the system adds the timing offset t∗

to O1 (i.e., the timestamp for that operation will be t1 + t∗) and sends this

operation to D2 and D3. All three devices should execute O1 when their local

clock reaches the time t1 + t∗. The authors also propose a method based on

the maximum average of network delays for determining a minimal value to t∗

so the probability of all devices receive the message before the time t1 + t∗ is

high, without compromising the system responsiveness.
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Because it is likely that eventually messages arrive at devices after

the operation timestamp has passed, the authors complement the local-lag

technique with timewarp. Timewarp is a mechanism for recovering consistency

when network delay and/or jitter are greater than the initial estimate. It

consists in storing in a list, ordered by timestamp, the last N operations

received. When a new operation arrives, the system adds it to the list and

computes whether its current state is consistent or not: the state is consistent

if that insertion occurs in the last position (or in the first, depending on the

sorting order) of the list. If an inconsistency is detected, the system rolls back

its state until the last known consistent state and reapplies all the operations

from that point and on. The authors prove that the timewarp algorithm has

the complexity O(n2), where n is the number of participants in a session.

Our consistency approach has some similarities with the local-lag tech-

nique, as both add a timing offset (based on network delay estimates) to oper-

ations for executing them synchronously some time later in all devices1. How-

ever, there are some fundamental differences between our work and that one.

First, Mauve’s approach is decentralized, while Mars’s is centralized, which

means that the former is more robust to failures. Second, their approach assume

a synchronized clock between devices, otherwise the maximum offset between

any two clocks should be added to the t∗ value in the local-lag algorithm. Mars

adopts the GALS style in which there is no assumption regarding clock syn-

chronization. Third, their work admits some short-term inconsistencies (which

are repaired by the timewarp algorithm) so the responsiveness of systems is

not compromised. Mars favors consistency rather than responsiveness, halt-

ing applications when messages experiment unusual network delays. In sum,

the Mauve’s approach is more suitable for applications in which peers’ clocks

are synchronized (or the maximum clock drift between devices are known) and

that can tolerate some short-term inconsistencies in favor of responsiveness. In

contrast, our approach is more applicable when there is no assumption regard-

ing clocks synchronization and the system’s consistency should be maintained

even if it means decreasing its responsiveness.

The approach of halting the execution of an application to prevent incon-

sistencies is also used in the bucket synchronization algorithm implemented in

the game Age of Empires [136]. This algorithm is based on executing actions

in a lock-step way on all clients. The communication timeline is divided into

frames (or buckets) of fixed length (set to 200ms in the authors’ work). Inputs

gathered in a given frame are applied two frames after that. If a given device

1 It worth mentioning that delaying the execution of an operation is not a novelty from
neither of these works (see [135]).
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experiences the end of a frame before it has received the next one, the game

pauses until the expected frame arrives. At this point, a routine to adjust the

frame length starts to execute.

That work is an evidence that both, delaying the execution of actions in

response to user interactions and halting applications to avoid inconsistencies,

are feasible approaches in real-world applications. The responsiveness require-

ments in multiplayer games such as Age of Empires are more strict than the

ones of applications we target in our work. Despite that, there is no indication

that the bucket synchronization approach compromise the user experience of

that game.

Among other consistency techniques, the remote lag [137] and local

perception filters [138, 139] are two of the most commonly used in real-

world games. These algorithms are mainly concerned in increasing the game’s

responsiveness while admitting some degree of inconsistencies, unlike the

Mars’s consistency approach that does not accept them.

To the best of our knowledge, there is no work in literature that targets

distributed interactive multimedia applications guaranteeing deterministic be-

haviors for local applications and consistency, considering timing constraints

of multimedia (continuous) applications, for the whole system. Furthermore,

few works in literature approach the problem of supporting the development

of these applications at language-level. And the works that address such a

problem are not concerned in promoting a programming model in which pro-

grammers do not have to explicit use communication primitives.
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Conclusion

In this thesis we have approached the problem of supporting the devel-

opment and execution of distributed interactive multimedia applications using

Céu. Our work can be divided into two complementary proposals: first, the use

of a synchronous language for approaching local applications, and second the

instantiation of a GALS architecture for distributed applications. Therefore,

in essence our work is about investigating whether the synchronous hypothesis

and the GALS design are suitable in this domain.

Regarding local applications, we already had evidences that synchronous

languages could be used for low-level multimedia processing, without consid-

ering any user interactivity, especially due to the existence of languages such

as ChucK and Pure Data. More recently, the development of Smix has pointed

out the feasibility of designing a synchronous domain specific language for

high-level multimedia programming that supports interactive applications. Our

work is partially inspired by those and it studies how well the general-purpose

synchronous language Céu can be used in this domain.

One of the main results of this thesis is the indication that Céu is

suitable for multimedia. Our study has covered both aspects, viz. syntactic

and semantic. Syntactically, we have managed to directly implement the causal

operators of the Interval Expression model using Céu constructs, that is, Céu

can express the most common causal relationships between media objects.

Semantically, we have concluded that the synchronous execution model and

the semantics of the language avoid non-determinism, even in interactive

multimedia applications, and can enforce intermedia synchronization. We

believe that language creators can benefit from these results and consider

the use of the synchronous hypothesis when designing or evolving existing

multimedia languages.

Céu-Media, one of the practical results of this thesis, reifies the devel-

opment of deterministic multimedia applications in Céu. By ruling the pre-

sentation clock to the program’s logical time, it provides frame-level synchro-

nization accuracy enforced by the language’s execution model. That is, the

synchronization of media objects in a Céu-Media application is enforced at

language-level.
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The main drawback of this approach focused on correctness is it possible

impact on user experience. When the drift between the real-world and the

logical time increases, the general presentation frame rate drops, which slows

down the video or leads to audio glitches. However, from the synchronization

perspective, all objects are presented at the correct (logical) time.

The limitations of the synchronous model became more evident when

we moved from local to distributed applications. We wanted to keep taking

advantage of Céu and Céu-Media, but using a global synchronous clock in

a network without timing guarantees is impracticable. The use of GALS in

this context was our approach to explore the synchronous execution model

locally, while asynchronously exchanging messages. In fact, the assumptions

we have made regarding the underyling network infrastructure and the use of

a synchronous language necessarily led us to the GALS architectural style.

However, GALS per se does not guarantee consistency. Thus, we pre-

sented a consistency algorithm for Mars that guarantees that all intended

devices react at the same logical time to input events sent by the server. As

discussed in Chapter 5, consistency in distributed multimedia applications is

not only about messages ordering, but also about executing actions at the

correct time. We could not find any work in the multimedia literature that

provides consistency with timing guarantees in a network with no bounded

delay or without relying on clock synchronization.

Mars consistency model focuses on correctness and has as drawback its

possible impact on user experience, similarly to Céu-Media. When we admit

that applications may halt due to late messages, users may be affect by this

design. Defining a good RTT estimate helps to avoid recurrent application

haltings, but this is out of the scope of this thesis.

Another result of our work is the programming model that separates

concerns during the development of distributed applications. Conceptually,

there are two actors involved when programming a Mars application: one

that programs the application logic and other that defines the inter-application

communication bindings. This approach allows existing regular Céu codes to

be compiled as is using the Mars compilation process, generating programs

ready for joining a distributed session. The same program may also be executed

in Mars sessions using different mapping scripts, indicating the flexibility of

this programming model.

Our centralized architecture has some drawbacks. First, there is the single

point of failure problem, that is, if the server fails the whole session ends. It

also limits the scalability of Mars, which is not able to satisfactorily handle

dozens of simultaneous clients. Because the server must be initiated with a
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mapping script, it should be restarted each time one wants to run a different

application in the same network, which means that each application requires

a dedicated server to coordinate the session.

We point as the main weakness of our approach not meeting all require-

ments of use cases in Chapter 6. The communication delay breaks the syn-

chronous hypothesis in the distributed scenario, leading to an offset between

the generation of events and their actual processing on devices. This hinders

achieving distributed synchronization as demanded in some use cases. And in-

creasing message exchanging rate to create several synchronization points does

not work well because this also violates the synchronous hypothesis. That is,

this problem is intrinsic to GALS systems.

In sum, we highlight the following points as main contributions of this

thesis:

– A study about the suitability of Céu for programming multimedia

applications covering syntactic and semantic aspects;

– An approach based on Céu for guaranteeing deterministic executions

and frame-level synchronization accuracy enforced at language-level;

– The implementation of a consistency model for distributed applications

that guarantees that all devices process messages in the same order and

at the same time.

8.1
Future Works

There are several future works that can extend this thesis. Some of them

are:

– To extend Céu-Media programming model for compositionality. A

Céu-Media Scene does not provide a full-fledged composition feature, as

it cannot be added recursively to other Scenes. There are some different

design choices for this feature. For instance, a Scene could be dynamically

moved to another, which would result in all objects switching windows

while maintaining their states. In this case, how to proper synchronize

these objects in the current Céu-Media execution model is a question

that is not trivially answered.

– To extend Céu-Media for handling novel media modalities. Recently,

part of the multimedia research community is investigating the integra-

tion of novel media modalities, such as olfactory, haptic, and thermo-

ceptic with traditional audiovisual content. The synchronization require-
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ments of these modalities are still under investigation. Extending Céu-

Media to integrate these modalities with the ones already supported

can help to better understand these requirements.

– To investigate non-GALS architectures for multimedia. If one uses a net-

work with timing guarantees, it is possible to use the synchronous exe-

cution model with different distribution approaches. For instance, if the

maximum delay is negligible, one can design a distributed synchronous

system having a global common clock, which would facilitate the devel-

opment of distributed synchronization. However, one has to deal with

other problems such as distributed consensus.

– To decentralize Mars. There are some practical implications if one

decentralizes Mars and tries to provide the same guarantees described

in this work. The first is to design a proper consistency algorithm,

which could be based on Lamport’s logical clock. Another challenge is to

compute the correct timing offset of messages to guarantee that devices

react synchronously to input events.

– To improve the robustness of the system. As Mars has a single point of

failure, the system depends on the server to work. One could implement

replication approaches for replacing the server if it fails or even select

one of the clients to be the new server.

– To experiment weaker consistency models. Our study has indicated

that the sequential consistency model ensures the guarantees we were

interested in providing to applications. One could investigate whether

weaker consistency models, such as causal or eventual consistency, can

provide similar guarantees without disregarding the timing aspect.
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