

José Daniel Hernández Vásquez

Proposição e validação de sistema gravimétrico para calibração de medidores de vazão de líquidos

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Metrologia (Área de concentração: Metrologia para Qualidade e Inovação) da PUC-Rio.

> Orientador: Prof. Mauricio Nogueira Frota Co-orientador: Prof. Alcir de Faro Orlando Co-orientador: Prof. Elcio Cruz de Oliveira

> > Rio de Janeiro Fevereiro de 2014

José Daniel Hernández Vásquez

Proposição e validação de sistema gravimétrico para calibração de medidores de vazão de líquidos

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Metrologia (Área de concentração: Metrologia para Qualidade e Inovação) da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Mauricio Nogueira Frota

Programa de Pós-Graduação em Metrologia (PósMQI/PUC-Rio)

Dr. Alcir de Faro Orlando INMETRO, ANE

Dr. Elcio Cruz de Oliveira

Petrobras Transporte S.A.

Dr. Sidney Stuckenbruck Olympus Software Cientifico e Engenharia Ltda

> Dra. Maria Helena Farias INMETRO

Jose Eugênio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 22 de fevereiro de 2014

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

José Daniel Hernández Vásquez

Formado em Engenharia Mecânica pela Universidad del Atlántico (Barranguilla-Colômbia), em 2011. Possui experiência área da metrologia industrial. na específicamente, na calibração de instrumentos para o controle metrológico de diferentes grandezas: temperatura, umidade, massa, velocidade, físico-química, entre outras. Bolsista do CNPq no Programa de Pós-graduação em Metrologia. Pesquisador do projeto de P&D Petrobras/PUC-Rio: desenvolvimento de metodologia de calibração e avaliação de desempenho de medidores ultrassônicos de vazão de líquido e gás natural.

Ficha Catalográfica

Hernández Vásquez, José Daniel

Proposição e validação de sistema gravimétrico para calibração de medidores de vazão de líquidos / José Daniel Hernández Vásquez; orientador: Mauricio Nogueira Frota; co-orientadores: Alcir de Faro Orlando, Elcio Cruz de Oliveira. – 2014.

132 f.: il. (color.) ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Programa de Pós-Graduação em Metrologia para a Qualidade e Inovação, 2014. Inclui bibliografia

 Metrologia – Teses. 2. Sistema gravimétrico.
 Calibração. 4. Confiabilidade metrológica. 5. Medição de vazão de líquidos. I. Frota, Mauricio Nogueira. II. Orlando, Alcir de Faro. III. Oliveira, Elcio Cruz de. IV. Pontifícia Universidade Católica do Rio de Janeiro. Programa de Pós-Graduação em Metrologia para a Qualidade e Inovação. V. Título.

CDD: 389.1

Dedico esta dissertação primeiramente a Deus pelas todas as benções concedidas a mim e à minha família ao longo das nossas vidas. A minha mãe, Anayibe Vásquez, meu padrasto Miguel Rodriguez, meus irmãos: Pedro Luis, Sandra Patricia, Rosdely, Pedrito e Stefania. A meus avós Judith Vásquez e Juan Vásquez. À memória do meu pai Pedro Rafael Hernández Urdaneta e à minha família: o motor e a principal motivação para seguir na conquista de novas vitórias e triunfos.

Agradecimentos

Preliminarmente, agradeço a Deus pelo dom da vida, por dar-me saúde para concluir este maravilhoso sonho.

A minha mãe Anayibe Vásquez, meu padrasto Miguel Rodriguez, meu irmão Pedro Luis Hernández e minha irmã Sandra Hernández, que sempre me incentivaram ao longo destes dois anos e são a minha principal motivação para seguir conseguindo logros importantes na minha vida.

Ao CNPq, pela bolsa de estudo e à PUC-Rio, pelo acesso ao Programa de Pósgraduação em Metrologia para Qualidade, Inovação e Sustentabilidade que permitiu a conclusão do Mestrado em Metrologia.

Aos meus orientadores, Dr. Mauricio Nogueira Frota, Dr. Alcir de Faro Orlando e Dr. Elcio Cruz de Oliveira, pela confiança depositada ao longo do desenvolvimento da pesquisa, pela dedicação, ensinamentos e oportunidade de ser orientado por eles. Foi para mim um grande motivo de orgulho tê-los como orientadores.

Aos demais membros da banca examinadora, Dr. Sidney Stuckenbruck e Dra. Maria Helena Farias, pela disponibilidade e sugestões construtivas que certamente enriqueceram o trabalho.

Aos todos os professores do Programa de Pós-graduação em Metrologia para Qualidade, Inovação e Sustentabilidade (PósMQI), especialmente aos Professores Dr. Mauricio Nogueira Frota e Dr. Reinaldo Castro Souza, pela confiança depositada e pelo todo o apoio recebido ao longo destes maravilhosos dois anos no Brasil. À equipe técnica e administrativa do PósMQI, Márcia Ribeiro, Paula Guimarães e Jaime Ticona, pelo apoio técnico e administrativo.

À equipe técnica do Laboratório de Avaliação Metrológica e Energética (LAME) da PUC-Rio pelo apoio e auxilio na realização dos experimentos.

Aos meus avós Judith Vásquez e Juan Vásquez, que sempre acreditam em mim e estão me apoiando em todo momento da minha vida.

A minha tia Patrícia Vásquez, meu primo Armando Vásquez e meu cunhado Luis David Atencia, pelo importante apoio para a minha viagem ao Brasil. A todos os membros da minha família, que para eles é um motivo de orgulho ver-me conseguir este importante logro fora da minha querida Colômbia.

Aos Professores da Universidad del Atlántico, MSc. Luis Sogamoso e Dr. Francisco Racedo, pelo apoio, orientação e motivação para seguir meus estudos de Mestrado em Metrologia no Brasil.

À minha amiga, Sra. Alicia de Antolinez que foi o primeiro anjo que Deus colocou na minha viagem ao Brasil. Às minhas amigas Pilar Aragon Farkas e Beatriz Cantor Lopez, que são a minha família no Rio de Janeiro.

Ao meu amigo de mestrado Alex Rubem, pelo todo o apoio recebido na minha chegada ao Rio de Janeiro.

A minha amiga de mestrado Gilcinea (minha mãe no Brasil!), pelos todos os conselhos dados, apoio, amizade e por me fazer sentir membro da sua família.

Aos meus amigos do mestrado, especialmente a Carolina, Thiago, Danilo, Leonardo, Vagner, Javier, Gabriel, Julián, Iván, Velfe, Fagner, Cícera, Vanessa, Antonio e Sergio, pelo companheirismo e por fazerem que cada momento de estudo tenha sido inesquecível. A minha amiga de mestrado Khrissy, pela sua valiosa amizade, compreensão, apoio e ajuda no aperfeiçoamento do português.

A minha colega de mestrado Gisele, pelo apoio e conselhos dados nos momentos bons e difíceis vividos durante um período do mestrado.

Aos meus amigos Colombianos, especialmente a Kiara, Marcos, Harold, César, Neilteh, Robben, David Lopez, Rodolfo, Cristopher, David, Francisco, Alex e José Joaquin, pelos momentos de descontração, força e estímulo à distância.

A todos que, de alguma forma, contribuíram para a realização deste trabalho.

Resumo

Hernández Vásquez, José Daniel; Frota, Maurício Nogueira; Orlando, Alcir de Faro; Oliveira, Elcio Cruz. **Proposição e validação de sistema gravimétrico para calibração de medidores de vazão de líquidos.** Rio de Janeiro, 2014. 132p. Dissertação de Mestrado – Programa de Pós-Graduação em Metrologia (Área de concentração: Metrologia para Qualidade e Inovação), Pontifícia Universidade Católica do Rio de Janeiro.

A dissertação tem por objetivo propor e validar um sistema gravimétrico para a calibração de medidores de vazão de líquidos. A motivação pela escolha do tema resultou da necessidade identificada junto ao setor de petróleo e gás para assegurar que as medições de vazão demandadas pelo setor sejam rastreáveis a padrões nacionais e satisfaçam as exigências contratuais e regulatórias aplicáveis. A metodologia utilizada permitiu avaliar a confiabilidade metrológica dos instrumentos não-automáticos de pesagem (em conexão ao sistema gravimétrico) e intercomparar, metrologicamente, diferentes alternativas de medição do volume dos reservatórios integrados ao sistema gravimétrico. Os resultados da pesquisa permitiram (i) estimar a confiabilidade metrológica dos instrumentos nãoautomáticos de pesagem em 0,04 kg para a balança Alfa modelo 3107 e 0,14 g para a balança OHAUS modelo Explorer Pro; e (ii) definir uma faixa de incerteza de 0,02% a 0,05% associada à calibração do sistema gravimétrico, dependendo do volume de fluido de trabalho transferido no processo de calibração. Como conclusão, o sistema gravimétrico para calibração de medidores de vazão de líquidos foi considerado validado à luz das incertezas reportadas, assim contribuindo para o avanço do conhecimento na área da metrologia de vazão.

Palavras-chave

Metrologia; sistema gravimétrico; calibração; confiabilidade metrológica; medição de vazão de líquidos.

Abstract

Hernández Vásquez, José Daniel; Frota, Maurício Nogueira (Advisor); Orlando, Alcir de Faro (Co-advisor); Oliveira, Elcio Cruz (Co-advisor). **Proposition and validation of a gravimetric system for calibration of flow rate meters for liquids.** Rio de Janeiro, 2014. 132p. MSc. Dissertation – Programa de Pós-Graduação em Metrologia (Área de concentração: Metrologia para Qualidade e Inovação), Pontifícia Universidade Católica do Rio de Janeiro.

The objective of this MSc. dissertation is to propose and to validate a gravimetric system for the calibration of flow meters for liquids. The motivation for the choice of this theme resulted from the need identified by the oil and gas sector to ensure that measurements of flow rate demanded by the sector can be traceable to national standards and attend the contractual and regulatory requirements. The methodology used allowed to evaluate the metrological reliability of non-automatic weighing instruments (in connection with the gravimetric system) and compare, metrologically, different options for measurement of volume of reservoirs in connection with the gravimetric system. The research results allowed (i) to estimate the metrological reliability of nonautomatic weighing instruments in 0,04 kg for the balance Alfa model 3107 and 0,14 g for the balance OHAUS model Explorer Pro; and (ii) to define an uncertainty range of 0.02% to 0.05% associated with the gravimetric system, depending of volume of the working fluid transferred in the calibration process. In conclusion, the gravimetric system for calibration of flow meters liquid was considered valid with the reported uncertainties, thus contributing to the advancement of knowledge in the area of flow metrology.

Keywords

Metrology; gravimetric system; calibration; metrological reliability; flow rate measurement of liquids.

Abreviaturas e Termos

A	Área da seção transversal do tubo					
A _{0,20}	Aréa do conjunto pistao-chinaro da balança de pressao					
ANP A _T	Ágência Nacional de Petróleo, Gás Natural e Biocombustíveis Área da seção transversal da torre					
CNPE	Conselho Nacional de Política Energética					
CNPq	Conselho Nacional de Desenvolvimento Científico e Tecnológico					
Conama	Conselho Nacional de Meio Ambiente					
E	Fator de empuxo					
F _b	Força medida pela célula de carga					
F _E	Força de empuxo					
Fo	Força aplicada pelo objeto					
g	Grama					
g _{puc}	Aceleração da gravidade na PUC-Rio					
gref	Aceleração da gravidade no local de fabricação da balança (gravidade de referência)					
Ibama	Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis					
Ind _{mA}	Indicação em miliampere do multímetro					
Ind _{mv}	Indicação em milivolt do multímetro					
Ind_{pa}	Indicação da pressão do padrão					
INMETRO	Instituto Nacional de Metrologia, Qualidade e Tecnologia					
IPT	Instituto de Pesquisas Tecnológicas do Estado de São Paulo					
J	Joule					
К	Kelvin					
k	Fator de abrangência					
kg	Kilograma					
LAME	Laboratório Avaliação Metrológica e Energética					
m	Metro					
m _{ar1}	Massa do ar na etapa 1 do processo de medição de volume					
m _{ar2}	Massa do ar na etapa 2 do processo de medição de volume					
m _{ar3}	Massa do ar na etapa 3 do processo de medição de volume					
m _{ar4}	Massa do ar na etapa 4 do processo de medição de volume					
mA	Miliampere					
ma	Massa ajustada					
m _{af}	Massa ajustada do sistema nas etapa 3 e 4					
m _{ai}	Massa ajustada do sistema nas etapa 1 e 2					
man	Massa aparente					

mbar/abs	Milibar absolute						
mi	Massa indicada pela balança						
m _{i1}	Massa indicada na etapa 1 do processo de medição de volume						
m _{i2}	Massa indicada na etapa 2 do processo de medição de volume						
m _{i3}	Massa indicada na etapa 3 do processo de medição de volume						
m _{i4}	Massa indicada na etapa 4 do processo de medição de volume						
m _n	Valor nominal das massas padrão						
m _p	Valor convencional das massas padrão						
m _R	Massa real da água transferida ao sistema gravimétrico						
т _{Ra, N-1}	Massa real da água acumulada no ponto N-1						
m _{RaN}	Massa real da água acumulada no ponto N						
m _{RN}	Massa real da água no ponto N						
m _{Tanque T}	Massa do Tanque T						
mV	Milivolt						
m _{w1}	Massa da água nas etapas 1 e 2 do processo de medição de volume						
m _{w3}	Massa da água nas etapas 3 e 4 do processo de medição de volume						
Ν	Número de pontos medidos no processo de medição de volume						
°C	Grau Celsius						
OIML	Organização Internacional de Metrologia Legal						
P&D	Pesquisa e Desenvolvimento						
Pa	Pressão aparente das massas da balança de pressão						
Ра	Pascal						
P _{atm}	Pressão atmosférica						
P _{corr}	Pressão corrigida das massas da balança de pressão						
PETROBRAS	Petróleo Brasileiro S.A						
P _{Nom}	Pressão nominal das massas da balança de pressão						
PósMQI	Programa de Pós-graduação em Metrologia para Qualidade e Inovação						
P _{puc}	Pressão medida na PUC-Rio (das massas da balança de pressão)						
Pt-100	Termômetro de resistência de platina ($R_0 = 100 \Omega$)						
p _{tp}	Pressão ajustada do transdutor de pressão						
PUC-Rio	Pontifícia Universidade Católica do Rio de Janeiro						
Q _m							
R _	Resitência eletrica do Pt-100 à temperatura I ar						
R ₀	Resitência elétrica do Pt-100 à temperatura de 0 °C						
R _{ar}	Constante do ar						
RBC	Rede Brasileira de Calibração						
R _g	Relação em valores da aceleração da gravidade						
RTM	Regulamento Técnico de Medição de Petróleo e Gás Natural						
S	Segundo (unidade SI de tempo)						
t -	Temperatura do conjunto pistão-cilindro						
l amb	Incerteza da massa aparente						

T _{ar}	Temperatura do ar no tanque rígido
ts	Parâmetro <i>t-student</i>
Tw	Temperatura da água
U _{amv}	Incerteza ajustada da indicação do multímetro em milivolt
U _{ap}	Incerteza da massa aparente
U _{atm}	Incerteza da pressão atmósferica
U _{bal}	Incerteza da balança
Ugpuc	Incerteza da da aceleração da gravidade na PUC-Rio
Ugref	Incerteza da aceleração da gravidade no local de fabricação da balança
U _{mA}	Incerteza da indicação do multímetro em miliampere
U _{ma}	Incerteza da massa ajustada
U _{maf}	Incerteza da massa ajustada final
U _{mai}	Incerteza da massa ajustada inicial
U _{mi}	Incerteza da massa indicada
U _{mp}	Incerteza da massa padrão
U _{mR}	Incerteza da massa real da água transferida ao sistema gravimétrico
U _{mR,N}	Incerteza da massa real da água no ponto N
U _{mRa, N}	Incerteza da massa real da água acumulada no ponto N
U _{mRa, N-1}	Incerteza da massa real da água acumulada no ponto N-1
U _{mv}	Incerteza da indicação do multímetro em milivolt
U _{pm}	Incerteza das massas da balança de pressão (k=2)
Us	Incerteza do ajuste
U _{tamb}	Incerteza da massa aparente
U _{Tar}	Incerteza da temperatura do ar no tanque rígido
U _{tp}	Incerteza do transdutor de pressão (k=2)
u _v	Incerteza do volume total no ponto N
U _{v1}	Incerteza do V $_1$ do ar
U _{v2}	Incerteza do V_2 do ar
U _{vN}	Incerteza do volume total de água transferida ao sistema gravimétrico no ponto N
\mathbf{u}_{par}	Incerteza da massa específica do ar
\mathbf{u}_{parf}	Incerteza da massa específica final do ar
U _{pari}	Incerteza da massa específica inicial do ar
$U_{ how}$	Incerteza expandida (k=2) da massa específica da água
U _{ρwf}	Incerteza da massa específica final da água
U _{ρwi}	Incerteza da massa específica inicial da água
v	Volume de água no tubo
V	Volume de água transferida para torre e tubo
V_1	Volume do ar (etapa 1 e etapa 2 do processo de medição de volume)
V ₂	Volume do ar (etapa 3 e etapa 4 do processo de medição de volume)

V _{mp}	Volume das massas padrão
V _N	Volume de água transferido ao sistema gravimétrico no ponto N
Vo	Volume do objeto pesado em uma balança
VT	Volume de água na torre
V _{TN}	Volume de água total acumulado no ponto N
V _{TN-1}	Volume total de água acumulada no ponto N-1
α_c	Coeficiente de dilatação térmica linear do cilindro
αρ	Coeficiente de dilatação térmica linear do pistão
Δh	Variação do nível de água na torre e no tubo
Δm	Diferença de massa
Δt	Intervalo de tempo
λ	Coeficiente de deformação do conjunto pistão-clindro
$ ho_{ar}$	Massa específica do ar
ρ_{ar1}	Massa específica do ar na etapa 1 do processo de medição de volume
ρ_{ar2}	Massa específica do ar na etapa 2 do processo de medição de volume
ρ_{ar3}	Massa específica do ar na etapa 3 do processo de medição de volume
ρ_{ar4}	Massa específica do ar na etapa 4 do processo de medição de volume
ρ_{arf}	Massa específica final do ar
$ ho_{ari}$	Massa específica inicial do ar
ρ _m	Massa específica da massa
$ ho_w$	Massa específica da água
ρ_{wf}	Massa específica da água, no final das etapa 3 e 4
$ ho_{wi}$	Massa específica da água, durante as etapa 1 e 2
Ω	Ohm (resistência elétrica)

Sumário

1 Introdução	22
1.1. Definição do problema de pesquisa	23
1.2. Objetivos: geral e específicos	23
1.3. Motivação	23
1.4. Metodologia	24
1.5. Estrutura da dissertação	25
2 Fundamentos teóricos	27
2.1 Medição de vazão	28
2.1.1. Método gravimétrico para medição de vazão de líquidos	28
2.2. Instrumentos não-automáticos de pesagem	29
2.2.1. Relação da aceleração da gravidade	31
2.2.2. Fator de empuxo	31
2.2.3. Massa aparente	33
3 Medição de vazão de líquidos: regulamentação aplicável	34
3.1. Regulamentação nacional	34
3.1.1. Resolução conjunta ANP/INMETRO № 1 (2013)	35
3.1.2. Lei Nº 12.490 (2011)	37
3.1.3. Lei № 12.351 (2010)	38
3.1.4. Portaria ANP Nº 234 (2003)	38
3.1.5. Portaria INMETRO Nº 064 (2003)	39
3.1.6. Portaria INMETRO Nº 113 (1997)	39
3.1.7. Equipamentos aprovados para medição de vazão de líquidos	40
3.2. Normas e recomendações internacionais	45
3.2.1. OIML R-117-1, de 2007	45
3.2.2. ISO/TR 12765:1998	46
4 Validação metrológica do sistema gravimétrico	∆7
4 1 Caracterização do sistema gravimétrico	יד 17
n n ouraoionzação do oloionna gravimotrioo	71

4.2. Confiabilidade da medição pelo sistema gravimétrico	50
4.2.1. Medição da temperatura do ar no Tanque T	51
4.2.2. Medição da temperatura da água na torre e no tubo	51
4.2.3. Medição da pressão do ar com o tanque T despressurizado	53
4.2.4. Medição da pressão do ar com o tanque T pressurizado	53
4.2.4.1. Calibração do transdutor de pressão	54
4.2.5. Medição da massa de água que alimenta o sistema gravimétrico	59
4.2.5.1. Calibração sem tara da balança Alfa	62
4.2.5.2. Calibração com tara da balança Alfa	66
4.2.5.3. Comparação das técnicas de calibração da balança Alfa	68
4.2.6. Medição da massa de água no tubo acrílico	71
4.2.6.1. Método #1: Calibração com tara e adição discreta de massa	72
4.2.6.2. Método #2: Calibração com tara e adição incremental	
de massa	75
4.2.6.3. Método #3: Calibração sem tara e adição discreta de massa	77
4.2.6.4. Método #4: Calibração sem tara e adição incremental	
de massa	79
4.2.6.5. Comparação dos diferentes procedimentos de calibração	81
4.3. Processo de medição de volume pelo sistema gravimétrico	85
5 Resultados e discussão	87
5.1. Alternativa #1: medição de volume com o tanque T pressurizado	87
5.1.1. Situação com água na torre e no tubo acrílico	87
5.1.1.1. Massa ajustada do sistema	87
5.1.1.2. Pressão do ar no tanque T	88
5.1.1.3. Temperatura da água	88
5.1.1.4. Massa específica do ar	88
5.1.1.5. Massa específica da água	88
5.1.1.6. Fator de empuxo e relação da aceleração da gravidade	89
5.1.1.7. Massa real da água transferida	89
5.1.1.8. Massa real da água acumulada	90
5.1.1.9. Volume de água transferida e Volume de água Total	90
5.1.2. Situação com água no tubo acrílico	91

5.1.2.1. Massa ajustada da água	91
5.1.2.2. Pressão do ar	92
5.1.2.3. Temperatura da água	92
5.1.2.4. Massa específica do ar	92
5.1.2.5. Massa específica da água	92
5.1.2.6. Fator de empuxo e relação da aceleração da gravidade	92
5.1.2.7. Massa real da água transferida	92
5.1.2.8. Massa real da água acumulada	93
5.1.2.9. Volume de água transferida e Volume de água Total	93
5.2. Alternativa #2: medição de volume com o tanque T	
despressurizado	93
5.3. Alternativa #3: medição de volume misto	94
5.4. Comparação das alternativas de medição de volume	97
5.5. Algoritmo para simulação de volumes de líquido transferidos	102
6 Conclusões e recomendações	105
Referências bibliográficas	107
ANEXO A – Certificado de calibração do barômetro digital	110
ANEXO B – Certificado de calibração: balança de pressão	112
ANEXO C – Manual do usuário: multímetro HP 34401A	117
ANEXO D – Manual do usuário: multímetro AGILENT 34970A	118
ANEXO E – Certificado de calibração das massas padrão M1 e F1	119
ANEXO F – Características volumétricas do sistema gravimétrico	123

Lista de tabelas

Tabela 1 – Classificação massas padrão (OIML R-111-1)	30
Tabela 2 – Periodicidade de calibração dos sistemas de medição de petróleo	37
Tabela 3 – Modelos LEFM: 280C, 280Ci, 280Ci-R e 280Ci-LT-R	43
Tabela 4 – Modelos LEFM: 280CiRN, 280CiRN-R e 280CiRN-LT-R	43
Tabela 5 – Características metrológicas da balança de pressão	55
Tabela 6 – Combinação das massas padrão	56
Tabela 7 – Dados da calibração do transdutor de pressão	56
Tabela 8 – Cálculo da incerteza do transdutor de pressão	59
Tabela 9 – Características metrológicas das massas padrão	61
Tabela 10 – Combinação de massas para calibração da balança Alfa	62
Tabela 11 – Dados da calibração sem tara da balança Alfa	63
Tabela 12 – Calibração sem tara da balança Alfa (carga ascendente)	64
Tabela 13 – Calibração sem tara da balança Alfa (carga descendente)	64
Tabela 14 – Dados da calibração com tara da balança Alfa	66
Tabela 15 – Calibração com tara da balança Alfa (carga ascendente)	67
Tabela 16 – Calibração com tara da balança Alfa (carga descendente)	67
Tabela 17 – Resultados das técnicas de calibração da balança Alfa	68
Tabela 18 – Incerteza da massa ajustada: calibração com tara	70
Tabela 19 – Incerteza da massa ajustada: calibração sem tara	70
Tabela 20 – Calibração com tara e adição discreta de massa	73
Tabela 21 – Calibração da balança método #1: carga ascendente	74
Tabela 22 – Calibração da balança método #1: carga descendente	74
Tabela 23 – Calibração com tara e adição incremental de massa	75
Tabela 24 – Calibração da balança método #2: carga ascendente	76
Tabela 25 – Calibração da balança método #2: carga descendente	76
Tabela 26 – Calibração sem tara e adição discreta de massa	77
Tabela 27 – Calibração da balança método #3: carga ascendente	78
Tabela 28 – Calibração da balança método #3: carga descendente	78
Tabela 29 – Calibração sem tara e adição incremental de massa	79
Tabela 30 – Calibração da balança método #4: carga ascendente	80

Tabela 31 – Calibração da balança método #4: carga descendente	80
Tabela 32 – Teste da media zero: calibração com tara (inclui zero)	82
Tabela 33 – Teste da media zero: calibração com tara (não inclui zero)	82
Tabela 34 – Teste da media zero: calibração sem tara (inclui zero)	83
Tabela 35 – Teste da media zero: calibração sem tara (não inclui zero)	83
Tabela 36 – Incerteza de ajuste considerando o ponto zero (32 pontos)	84
Tabela 47 – Alternativa #1: medição de volume com o tanque T	
pressurizado	98
Tabela 48 – Alternativa #2: medição de volume com o tanque T	
despressurizado	99
Tabela 49 – Alternativa #3: medição de volume misto	100
Tabela 50 – Incerteza do volume de água (Torre e tubo) por interpolação	104

Lista de figuras

Figura 1 – Desenho da pesquisa, seus componentes e métodos	25
Figura 2 – Classificação de medidores de vazão	28
Figura 3 – Equilíbrio de forças em uma célula de carga	32
Figura 4 – Computador de vazão modelo AutoEXEC	40
Figura 5 - a: computador de vazão FC302; b: detalhe das marcas de selagem	41
Figura 6 – Medidor de vazão tipo V-cone	41
Figura 7 – Computador de vazão modelo Echart Plus	42
Figura 8 – Modelos. a: 280Ci; b: 280Ci-LT-R; c: 280C; d: 280 CiRN-R	44
Figura 9 – Esquema de instalação do medidor LEFM 280Ci	45
Figura 10 – Desenho do sistema gravimétrico	47
Figura 11 – Torres A e B e torre acessória do sistema gravimétrico	48
Figura 12 – Instrumentação e elementos de conexão instalados no Tanque T	49
Figura 13 – Termômetro Pt-100	51
Figura 14 – Computador de vazão Omni 6000	52
Figura 15 – Barômetro digital ABSI	53
Figura 16 – Balança de pressão	54
Figura 17 – Multímetro digital Hewlett Packard modelo 34401A	54
Figura 18 – Calibração transdutor de pressão WIKA	55
Figura 19 – Curva de calibração pelo polinômio de grau um	57
Figura 20 – Curva de calibração pelo polinômio de grau dois	57
Figura 21 – Curva de calibração pelo polinômio de grau três	57
Figura 22 – Curva de calibração pelo polinômio de grau quatro	58
Figura 23 – Balança Alfa. a: célula de carga; b: display; c: tara	59
Figura 24 – Multímetro digital AGILENT modelo 34970A	60
Figura 25 – Massas padrão. a: Classe F1; b: Classe M1	61
Figura 26 – Calibração da balança Alfa	62
Figura 27 – Curva de calibração sem tara (inclui zero da balança)	65
Figura 28 – Curva de calibração sem tara (não inclui zero da balança)	65
Figura 29 – Curva de calibração com tara (inclui o zero da balança)	67
Figura 30 – Curva de calibração com tara (não inclui zero da balança)	68

Figura 31 – Balança digital Ohaus modelo Explorer Pro	71
Figura 32 – Calibração da balança pelo método #1 (32 pontos)	74
Figura 33 – Calibração da balança pelo método #1 (30 pontos)	75
Figura 34 – Calibração da balança pelo método #2 (32 pontos)	76
Figura 35 – Calibração da balança pelo método #2 (30 pontos)	77
Figura 36 – Calibração da balança pelo método #3 (32 pontos)	78
Figura 37 – Calibração da balança pelo método #3 (30 pontos)	79
Figura 38 – Calibração da balança pelo método #4 (32 pontos)	80
Figura 39 – Calibração da balança pelo método #4 (30 pontos)	81
Figura 40 – Processo de medição de volume do sistema gravimétrico	85
Figura 41 – Comparação das alternativas de medição de volume	101

"Somos todos muito ignorantes, mas nem todos ignoramos as mesmas coisas" Albert Einstein

1 Introdução

Esta pesquisa de mestrado foi motivada por desafios tecnológicos impostos pelo projeto de P&D ANP/PETROBRAS¹: *Desenvolvimento de metodologia de calibração e avaliação de desempenho de medidores ultrassônicos de vazão de líquido e gás natural*, em desenvolvimento pela PUC-Rio. Embora relacionados ao mesmo tema e perseguindo objetivos complementares, o projeto de P&D ANP/PETROBRAS e a pesquisa de mestrado atendem propósitos distintos. O projeto de P&D busca desenvolver uma metodologia para calibrar medidores de vazão operacionais fixos do tipo ultrassônico utilizando medidores do tipo *clampon* como padrão de trabalho, estudo que requer comparação com um padrão também do tipo ultrassônico, porém, de melhor hierarquia metrológica que seja compatível com as exigências legais impostas pela medição fiscal e pelos contratos de transferência de custódia.

Em sintonia com o desenvolvimento do mencionado projeto de P&D, a pesquisa de mestrado busca propor e validar um sistema gravimétrico para calibração de medidores de vazão de líquidos que operam com diferentes princípios de medição. Em particular, investiga e discute diferentes alternativas de medição de volume dos distintos reservatórios que compõem o sistema gravimétrico concebido para calibração de medidores de vazão. Com o propósito de se assegurar confiabilidade metrológica, o trabalho apresenta a metodologia utilizada para garantir a rastreabilidade das características volumétricas do sistema gravimétrico desenvolvido.

Em sintonia com a filosofia do Programa de Pós-Graduação em Metrologia para Qualidade e Inovação da PUC-Rio, deseja-se que a presente pesquisa de Mestrado contribua para o avanço do conhecimento na área da metrologia de vazão e de padronização desta grandeza física de enorme relevância para o setor de petróleo e gás natural.

¹ PETROBRAS Convênio Específico Petrobras/PUC-Rio, N° 07, Termo de Cooperação N° 0050.0022728.06.4. ORLANDO, A.F., 2010, Relatório 1: Planejamento.

1.1. Definição do problema de pesquisa

As práticas correntes da medição de vazão tornam-se cada vez mais importantes para o setor de petróleo e gás, visando atender à regulamentação aplicável nos níveis nacional e internacional.

Desse modo, existe a necessidade de avaliar e validar sistemas que possam ser utilizados como padrões de transferência para a calibração de medidores de vazão. Estes sistemas devem operar em conformidade às exigências requeridas de exatidão, precisão e incerteza de medição visando assegurar a confiabilidade do desempenho dos medidores de vazão. Este é certamente um desafio para a metrologia aplicável à indústria de petróleo e gás, que requer a calibração frequente dos medidores de vazão para atender requisitos contratuais e regulatórios.

Nesse contexto, esta dissertação de mestrado visa contribuir para o avanço do conhecimento relacionado à medição de vazão e sua padronização primária, em especial à calibração de medidores de vazão de líquidos.

1.2. Objetivos: geral e específicos

Com base no exposto, o objetivo geral desta dissertação é propor e validar um sistema gravimétrico para calibração de medidores de vazão de líquidos. Em termos específicos, a dissertação busca:

- avaliar a confiabilidade metrológica dos instrumentos nãoautomáticos de pesagem utilizados em conexão com o sistema gravimétrico proposto para calibração de medidores de vazão de líquidos;
- avaliar a confiabilidade metrológica do método para medição do volume dos reservatórios que compõem o sistema gravimétrico proposto;
- determinar a faixa de operação e a respectiva confiabilidade metrológica do sistema gravimétrico desenvolvido.

1.3. Motivação

O desenvolvimento deste tema de dissertação de mestrado foi motivado pela necessidade identificada junto ao setor de petróleo e gás para assegurar que as

medições de vazão demandadas pelo setor satisfaçam às exigências contratuais e regulatórias aplicáveis impostas pelo Regulador.

Em consonância com essas exigências, a utilização de um sistema gravimétrico para a calibração de medidores de vazão de líquidos torna-se uma contribuição importante na área da medição de vazão desde que ofereça alta confiabilidade metrológica; i.e.: níveis de incerteza associados à medição de vazão compatíveis com as exigências regulatórias impostas pelos processos de transferência de custódia e de medição fiscal.

Dentre os benefícios da dissertação de mestrado, destacam-se:

- determinar a incerteza de medição associada às diferentes técnicas de calibração dos instrumentos não-automáticos de pesagem e o seu impacto na confiabilidade metrológica do sistema gravimétrico proposto;
- conhecer os diferentes fatores que afetam o desempenho metrológico do sistema gravimétrico, por meio do processo de medição de volume dos reservatórios;
- conhecer a confiabilidade metrológica e a faixa de aplicabilidade do sistema gravimétrico para a calibração de medidores de vazão de líquidos.

Perseguindo esses objetivos, o trabalho colabora para o avanço do conhecimento relacionado à medição de vazão e avalia a confiabilidade metrológica do sistema gravimétrico com vistas à sua utilização para a calibração medidores de vazão de líquidos.

1.4. Metodologia

Segundo a taxonomia proposta por Vergara (2005), <u>quanto à natureza</u>, a pesquisa é *predominantemente quantitativa*. <u>Quanto aos fins</u>, a pesquisa é *descritiva* (expõe características de determinado fenômeno, estabelece correlações entre variáveis e define sua natureza); *explicativa* (visa esclarecer quais fatores contribuem de alguma forma para a ocorrência de determinado fenômeno); *aplicada* (fundamentalmente motivada pela necessidade de resolver problemas concretos, mais imediatos ou não). <u>Quanto aos meios de investigação</u>, a pesquisa é *bibliográfica, documental* e *experimental em laboratório*.

A Figura 1 apresenta a encadeamento da pesquisa segundo suas três fases de desenvolvimento: (*i*) pesquisa exploratória e descritiva (pesquisa bibliográfica e

documental, como base teórica da dissertação); *(ii) pesquisa aplicada* (pesquisa experimental em laboratório, para avaliar o desempenho de um medidor ultrassônico); e *(iii) fase conclusiva* (conclusões do trabalho e recomendações para desdobramentos futuros do trabalho).

Figura 1 – Desenho da pesquisa, seus componentes e métodos Fonte: Elaboração própria.

1.5. Estrutura da dissertação

A dissertação estrutura-se segundo seis capítulos. Este Capítulo 1 contextualiza o trabalho, o problema objeto da dissertação, os objetivos e a metodologia utilizada.

O Capítulo 2 apresenta os fundamentos do método gravimétrico para a medição de vazão de líquidos, descrevendo os seus benefícios para a medição confiável e as suas principais características. Além disso, apresentam-se as definições e fatores que afetam o funcionamento dos instrumentos não-automáticos de pesagem (em conexão com o sistema gravimétrico), segundo recomendações da Organização Internacional de Metrologia Legal (OIML).

O Capítulo 3 identifica a regulamentação metrológica aplicável à medição de vazão de líquidos, tendo como base os critérios estabelecidos pela OIML e a Resolução Conjunta ANP/INMETRO que regulamenta a transferência de custódia.

O Capítulo 4 caracteriza a validação metrológica do sistema gravimétrico construído no Laboratório de Avaliação Metrológica e Energética (LAME) da PUC-Rio para ensaios de desempenho e calibração de medidores de vazão, baseados em diferentes princípios de medição. Apresenta, também, as características técnicas do sistema como um todo (equipamentos empregados na operação do circuito de água, instrumentação utilizada, calibração do sistema).

O Capítulo 5 apresenta e discute a pesquisa experimental que foi desenvolvida, assim como os resultados das diferentes alternativas aplicadas no processo de medição de volume dos reservatórios que compõem o sistema gravimétrico proposto para calibração de medidores de vazão de líquidos.

O Capítulo 6 apresenta as conclusões da pesquisa e uma conjunto de propostas concretas para futuros desdobramentos da pesquisa à luz da experiência aprendida.

2 Fundamentos teóricos

No mundo atual, muitas são as técnicas e os instrumentos utilizados para a medição de vazão. Na indústria de petróleo e gás utilizam-se, entre outros: *(i) medidores de pressão diferencial* (placa de orifício, tubo Venturi, bocal de vazão, tubo Pitot); *(ii) medidores de deslocamento positivo* (engrenagem, êmbolo rotativo, palheta, lóbulos) e *(iii) medidores lineares* (turbina, vórtice, eletromagnético, Coriolis, ultrassônico).

A escolha entre os possíveis tipos de medidores para uma determinada aplicação dependerá da natureza físico-química do fluido, da faixa de diâmetro da tubulação e dos níveis de pressão e temperatura do fluido cuja vazão se deseja medir. Outros aspectos a serem considerados relacionam-se à perda de carga introduzida pelo medidor na tubulação, os comprimentos de trecho reto a montante do medidor, custos associados à operação, calibração, implantação do sistema, manutenção e atendimento às normas aplicáveis. Já no que concerne aos processos de transferência de custódia e medição fiscal, outro fator impactante é a confiabilidade metrológica dos medidores de vazão, cuja calibração deve ser feita levando-se em conta condições reais de operação por meio de um sistema de transferência com nível de incerteza definido na regulamentação aplicável.

Esse é exatamente o objetivo desta pesquisa, ou seja, validar um sistema gravimétrico para a calibração de medidores de vazão de líquidos com níveis de incerteza compatíveis com os requisitos regulatórios aplicáveis à medição fiscal e transferência de custódia. A título de contextualização, este capítulo apresenta os conceitos básicos requeridos para entendimento do método gravimétrico proposto para medição de vazão de líquido. O capítulo discute, também, os fatores que influenciam no desempenho dos instrumentos não-automáticos de pesagem e as normas internacionais aplicáveis à esta tecnologia de medição.

2.1. Medição de vazão

A medição de vazão de líquidos é uma atividade essencial do setor industrial e de serviços, desempenhando papel de relevância no monitoramento e controle dos processos industriais. A vazão pode ser medida com base em diferentes princípios de medição, dentre os quais pelo método direto, que totaliza a quantidade de fluido descarregados em um determinado período de tempo (Moazzeni, 2010). A Figura 2 ilustra um esquema dos diferentes medidores de vazão utilizados na indústria, quer pelo método volumétrico quer pelo de vazão instantânea.

Figura 2 – Classificação de medidores de vazão Fonte: Instituto de Pesquisas Tecnológicas (IPT), 2012

A vazão de líquidos pode, também, ser obtida pelo uso de métodos indiretos, i.e.: método gravimétrico e volumétrico. No primeiro caso o volume de líquido escoado em um período de tempo é determinado pela massa do líquido escoada e sua massa específica. No segundo caso é determinado por meio de tanques provadores.

2.1.1. Método gravimétrico para medição de vazão de líquidos

A exemplo do que ocorre na medição de vazão de qualquer fluido, faz-se necessário identificar as possíveis causas de erro e incertezas que influenciam no

resultado da medição, em particular aqueles diretamente relacionados à instrumentação utilizada, ao seu processo de calibração e às condições de operação, de forma a assegurar a confiabilidade metrológica associada ao processo de medição como um todo.

O método gravimétrico para medição de vazão de líquidos baseia-se na determinação da massa de líquido escoado ou coletado em um reservatório, por unidade de tempo.

Para determinar a massa de líquido realizam-se duas pesagens, uma com o reservatório cheio e outra com o reservatório vazio. A massa total de líquido é então determinada pela diferença entre essas massas. Já a vazão mássica, resulta do quociente entre a massa apurada e o tempo transcorrido durante a medição da massa objeto da pesagem. Assim, a Equação (1) expressa a vazão mássica pelo método gravimétrico.

$$Q_{\rm m} = \frac{\Delta m}{\Delta t} \tag{1}$$

Nesta expressão:

 Δm : diferença de massa (massa final – massa inicial) Δt : diferença do tempo (tempo final – tempo inicial) Q_m : vazão mássica

A confiabilidade do método depende, obviamente, de todos os fatores envolvidos no processo de medição, dentre os quais o processo de calibração propriamente dito, responsável pela garantia da confiabilidade metrológica dos instrumentos que integram o sistema de medição.

Descrevem-se, a seguir, as principais características que devem ser consideradas na utilização de instrumentos não-automáticos de pesagem para viabilizar a medição de vazão pelo método gravimétrico.

2.2. Instrumentos não-automáticos de pesagem

A OIML R-76-1 (2006) define os instrumentos não-automáticos de pesagem como aqueles que requerem a intervenção de um operador durante o processo de pesagem, por exemplo, para colocar ou retirar do reservatório a massa de líquido considerada, permitindo-se, assim, obter o resultado da medição. De um modo geral, os instrumentos utilizados possuem dispositivos para observação direta do resultado da massa medida, quer pela leitura direta em um *display* ou mediante impressão do resultado em uma impressora convencional.

A calibração destes instrumentos faz uso de massas padrão, que são classificadas pela OIML R-111-1 (2004) segundo a sua classe de exatidão, levando em consideração o erro máximo da massa em função do seu valor nominal, i.e.: E1 (maior exatidão), E2, F1, F2, M1, M2 e M3 (menor exatidão). A Tabela 1 apresenta a classificação das massas padrão segundo os erros máximos permitidos.

Valor	Classe de exatidão (Erros máximos permitidos em mg)						
nominal	E1	E2	F1	F2	M1	M2	M3
50 kg	25	75	250	750	2500	7500	25000
20 kg	10	30	100	300	1000	3000	10000
10 kg	5	15	50	150	500	1500	5000
5 kg	25	75	25	75	250	750	2500
2 kg	1,0	3,0	10	30	100	300	1000
1 kg	0,5	1,5	5	15	50	150	500
500 g	0,25	0,75	2,5	7,5	25	75	250
200 g	0,10	0,30	1,0	3,0	10	30	100
100 g	0,05	0,15	0,5	1,5	5	15	50
50 g	0,030	0,10	0,30	1,0	3,0	10	30
20 g	0,025	0,080	0,25	0,8	2,5	8	25
10 g	0,020	0,060	0,20	0,6	2	6	20

Tabela 1 – Classificação massas padrão (OIML R-111-1)

Fonte: Adaptado da OIML R-111-1 (2004)

Assim, aderente ao jargão internacional utilizado para descrever o processo de calibração das balanças que operam em conexão com o sistema gravimétrico objeto do estudo, esta dissertação de mestrado fez uso dos conceitos técnicos para instrumentos não-automáticos de pesagem, tal qual definido em resoluções normativas da OIML (R-76-1: 2006 e OIML R-111-1: 2004).

Para entendimento do processo, destaca-se que a grandeza objeto da medição por esta tecnologia é a grandeza física força (F). O valor da massa associado a esta força F, depende (i) da relação da aceleração da gravidade medidas nos locais de fabricação e uso do instrumento (R_g) e (ii) do fator de empuxo (E), que relaciona a massa específica do ar com a massa específica do objeto medido. A seguir, descrevem-se em detalhe esses fatores considerados relevantes no processo de calibração dos instrumentos não-automáticos de pesagem.

2.2.1. Relação da aceleração da gravidade

Os instrumentos não-automáticos de pesagem funcionam pelo princípio gravimétrico, ou seja, o valor da massa indicada pelo instrumento depende, entre outros fatores, da aceleração da gravidade do local, que é definido em função da latitude e altitude do local onde a medição será realizada. Intrínseco à sua definição, este parâmetro possui maior impacto nos instrumentos de alta precisão (i.e.: baixa incerteza e alta confiabilidade metrológica).

A Equação (2) apresenta a expressão para o cálculo da relação entre a aceleração da gravidade medidas nos locais de fabricação e uso da balança.

$$R_{g} = \left(\frac{g}{g_{ref}}\right) \tag{2}$$

Nesta expressão:

g: denota a aceleração da gravidade do local de uso da balança; g_{ref}: o valor da aceleração da gravidade de referência (local de fabricação da balança).

Os impacto do uso do fator R_g na indicação final da massa pela balança depende da relevância do processo de medição, conforme ilustrado pelo exemplo dado a seguir. Uma massa de 1,00 g determinada em uma balança localizada na cidade de São Paulo (g = 9,786366 m/s²) e, em seguida, determinada sem ajuste pela mesma balança instalada na cidade de Presidente Prudente no interior do estado de São Paulo onde a aceleração da gravidade local foi medida (g = 9,785968 m/s²), exibiria uma diferença de -0,04 g na apuração da massa nominal de 1 kg utilizada como objeto da medição. Para o caso da medição de vazão pelo método gravimétrico, este valor poderia ter um impacto significativo no valor final da incerteza de medição, para atender a legislação aplicável à transferência de custódia e medição fiscal.

2.2.2. Fator de empuxo

Tendo em vista que a massa de um objeto é determinada por um sistema de pesagem localizado em um campo gravitacional dentro de uma atmosfera envolvente, o resultado da indicação da massa é influenciado pelo efeito do empuxo do ar com relação a esse objeto (Engel & Baade, 2012). Isso significa que a massa

indicada pela balança apresenta um valor reduzido pelo peso do ar, que é deslocado pelo objeto que está sendo pesado. O peso do ar deslocado é dado pelo deslocamento do volume do objeto multiplicado pela densidade do ar e pela aceleração da gravidade local. Para medições de alta precisão, este efeito tem que ser considerado para se evitar a introdução de um indesejável erro sistemático no processo de medição.

A Figura 3 apresenta o equilíbrio de forças experimentado por uma célula de carga instalada em uma balança.

Figura 3 – Equilíbrio de forças em uma célula de carga

Os componentes das forças que atuam na balança são decodificados a seguir e a força aplicada na célula de carga (F_b) é dada pela Equação (3).

$$\begin{split} F_{b} &= F_{o} - F_{E} \\ F_{b} &= m_{o} \cdot g - \rho_{ar} \cdot V_{o} \cdot g \\ F_{b} &= \rho_{o} \cdot V_{o} \cdot g - \rho_{ar} \cdot V_{o} \cdot g \\ F_{b} &= V_{o} \cdot g \cdot (\rho_{o} - \rho_{ar}) \\ F_{b} &= \frac{m_{o}}{\rho_{o}} \cdot g \cdot (\rho_{o} - \rho_{ar}) \\ F_{b} &= m_{o} \cdot g \cdot (\rho_{o} - \rho_{ar}) \\ F_{b} &= m_{o} \cdot g \cdot (1 - \frac{\rho_{ar}}{\rho_{o}}) \\ F_{b} &= m_{o} \cdot g \cdot E \end{split}$$
(3)

Assim, o fator de empuxo (E) pode ser calculado pela Equação (4):

$$\mathbf{E} = \left(1 - \frac{\rho_{\rm ar}}{\rho_{\rm o}}\right) \tag{4}$$

2.2.3. Massa aparente

A massa aparente é definida como o valor que indica a balança levando em consideração os fatores devidos à aceleração da gravidade e do fator de empuxo. Este valor é calculado dividindo-se a força (F) medida pela célula de carga pelo valor da aceleração da gravidade no local da fábrica (g_{ref}). A Equação (5) apresenta a expressão para o cálculo da massa aparente (m_{ap}).

$$m_{ap} = \frac{F}{g_{ref}} = m_0 \cdot \left(1 - \frac{\rho_{ar}}{\rho_0}\right) \cdot \left(\frac{g}{g_{ref}}\right)$$
(5)

Nesta expressão pode-se observar que o valor de massa aparente é expresso em função da relação entre a aceleração da gravidade local e um valor de gravidade tomado como referência, multiplicado pelo fator de empuxo.

3 Medição de vazão de líquidos: regulamentação aplicável

A medição de vazão de líquidos na indústria brasileira é um tema que possui implicações legais. No campo voluntário, normas são desenvolvidas, adotadas e aplicadas por organizações internacionais (e.g.: ISO, IEC), regionais (e.g.: COPANT, IAAC) e Nacionais (no Brasil, a ABNT). No campo compulsório restrito a questões que se justificam por um objetivo legítimo (e.g.: segurança, saúde, meio ambiente e defesa do consumidor) — regulamentos técnicos, resoluções e portarias ministeriais são introduzidas para regular o setor e promover a fiscalização metrológica.

No Brasil, a Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (ANP); o Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO); o Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (Ibama); o Conselho Nacional de Meio Ambiente (Conama) e o Conselho Nacional de Política Energética (CNPE) estabelecem regras por meio de portarias técnicas e administrativas, resoluções e instruções normativas relacionadas à medição de vazão.

No âmbito internacional, porém no domínio do campo voluntário, compete à Organização Internacional de Metrologia Legal (OIML) harmonizar as regulamentações e controles metrológicos aplicados pelos seus Estados membros.

No caso particular da medição de vazão de líquidos (exceto para água), a recomendação R-117-1 (2007) propõe critérios de sistemas de medição dinâmica.

Este capítulo da dissertação revê os documentos normativos (de caráter voluntário) e a regulação (compulsória) aplicáveis à medição de vazão de líquidos, que reflete tema de interesse desta pesquisa de mestrado.

3.1. Regulamentação nacional

Os documentos listados nos subitens a seguir estão relacionados às leis, portarias e resoluções para a medição de vazão de líquidos no Brasil.

3.1.1. Resolução conjunta ANP/INMETRO № 1 (2013)

A resolução conjunta N° 1 ANP/INMETRO de 10 de junho de 2013 estabelece que os volumes medidos de petróleo e gás natural devem ser medidos de forma a garantir resultados acurados. Além disso, aprova o Regulamento Técnico de Medição de Petróleo e Gás Natural (RTM), anexo à referida resolução. Esta resolução revoga a Portaria Conjunta ANP/INMETRO N° 001, de 19 de junho de 2000, e a Portaria Conjunta ANP/INMETRO N° 002, de 02 de dezembro de 2002.

Esta nova Resolução é mais exigente com relação à portaria conjunta de 19/06/2000. Além disso, trata novos aspectos sob o ponto de vista do rigor metrológico. Impõe, também, novas responsabilidades aos agentes regulados no Brasil.

Em termos metrológicos, destacam-se os seguintes artigos da nova Resolução:

"Art. 2º Determinar que ficarão sujeitos ao Regulamento Técnico de Medição de Petróleo e Gás Natural, aprovado por esta Resolução, o projeto, a instalação, a operação, o teste e a manutenção em condições normais de operação;

Art. 3º Cientificar que os sistemas de medição em operação, ou projetos já aprovados no âmbito da Portaria Conjunta ANP/Inmetro nº 001, de 19 de junho de 2000, serão adequados, quando necessário e solicitado pela ANP, dentro do prazo estipulado por esta Agência;

Art. 4º Exceto quando explicitado no regulamento ora aprovado, todas as calibrações e inspeções dimensionais deverão ser realizadas por laboratórios acreditados por organismo de acreditação que seja signatário do Acordo de Reconhecimento Mútuo da ILAC (*International Laboratoratory Accreditation Cooperation*) ou da IAAC (*InterAmerican Accreditation Cooperation*)".

Além disso, em termos metrológicos, destaca-se o item 6.4.7 do RTM:

"6.4.7. Os sistemas de medição de gás devem ser projetados, instalados e calibrados para operar dentro das seguintes incertezas de medição de vazão ou volume:

a) Sistemas de medição fiscal incerteza máxima de 1,5%;

 b) Sistemas de medição para transferência de custódia incerteza máxima de 1,5%;

c) Sistemas de medição para apropriação incerteza máxima de 2%;

 d) Sistemas de medição para queima ou ventilação de gás natural incerteza máxima de 5%."

Entre os novos aspectos, destacam-se:

- Inclui a medição de transferência de custódia
- Inclui a medição de Gás Natural Liquefeito (GNL)
- Declaração das incertezas de medição nos relatórios
- Não limita os tipos de medidores
- Computador de vazão obrigatório
- Comprovação de "Proficiência do Pessoal envolvido no processo de calibração"

Quanto às inspeções periódicas (item 11.2 do RTM), antes restritas à ANP, agora o INMETRO também participa, atuando de forma complementar:

"11.2. As verificações realizadas pelo Inmetro devem ser conforme a regulamentação técnica metrológica vigente".

Com relação à calibração de instrumentos, sem dúvida é o aspecto de maior impacto nesta nova resolução. O item 9.1.4 do RTM exige que os instrumentos sejam calibrados em laboratórios acreditados:

"9.1.4. Os instrumentos de medição associados devem atender aos requisitos técnicos e metrológicos estabelecidos nas regulamentações pertinentes e estarem calibrados por laboratório acreditado, devendo a exatidão das medições realizadas por estes assegurar que o sistema de medição atenda ao específicado neste Regulamento em função da aplicação do sistema de medição."

A Tabela 2 apresenta a periodicidade de calibração dos sistemas de medição de petróleo, aprovada no RTM.
		Tipos de aplica	ões
Instrumentos de Medição e Medidas Materializadas	Fiscal	Apropriação	Transferência de Custódia
Tanques de calibração, instrumentos associados e medidas de capacidade	36 meses	36 meses	36 meses
Instrumentos associados aos tanques de calibração, medidas de capacidade e provadores	12 meses	12 meses	12 meses
Provador convencional	60 meses	60 meses	60 meses
Provador compacto	36 meses	36 meses	36 meses
Provador móvel	12 meses	12 meses	12 meses
Medidor padrão de trabalho deslocamento positivo, rotativo e turbina	6 meses	12 meses	12 meses
Medidor padrão de trabalho Coriolis	12 meses	12 meses	12 meses
Medidor padrão de trabalho Ultrassônico	12 meses	12 meses	12 meses
Medidor de padrão de trabalho outras tecnologias	6 meses	12 meses	12 meses
Medidor em operação deslocamento positivo, rotativo e turbina	3 meses	6 meses	6 meses
Medidr em operação Coriolis	6 meses	12 meses	12 meses
Medidor em operação Ultrassônico	6 meses	12 meses	12 meses
Medidor em operação outras tecnologias	3 meses	6 meses	6 meses
Analisadores em linha	3 meses	6 meses	6 meses
Temperatura	3 meses	6 meses	6 meses
Pressão	3 meses	6 meses	6 meses
Trenas e termômetros associados aos tanques	12 meses	12 meses	12 meses
Sistema de medição automático de nível em tanques	6 meses	6 meses	6 meses

Tabela 2 - Periodicidade de calibração dos sistemas de medição de petróleo

Fonte: Resolução conjunta ANP/INMETRO 10 de junho de 2013, pág. 42.

3.1.2. Lei № 12.490 (2011)

Disponível no sítio da ANP, a lei Nº 12.490, 16 de setembro de 2011, decretada pelo Congresso Nacional Brasileiro e sancionada pela Presidenta da República, altera as leis Nº 9.478, de 6 de agosto de 1997 e 9.847, de 26 de outubro de 1999, que dispõem sobre a política e a fiscalização das atividades relativas ao abastecimento nacional de combustíveis.

Dentro das principais alterações à lei Nº 9.478, de 6 de agosto de 1997, podem-se destacar os principais aspectos:

• Os itens V e IX do artigo 2º passam a vigorar com a seguinte redação:

"V - estabelecer diretrizes para a importação e exportação, de maneira a atender às necessidades de consumo interno de petróleo e seus derivados, biocombustíveis, gás natural e condensado, e assegurar o adequado funcionamento do Sistema Nacional de Estoques de Combustíveis e o cumprimento do Plano Anual de Estoques Estratégicos de Combustíveis, de que trata o art. 4º da Lei Nº 8.176, de 8 de fevereiro de 1991."

"IX - definir a estratégia e a política de desenvolvimento econômico e tecnológico da indústria de petróleo, de gás natural, de outros hidrocarbonetos fluidos e de biocombustíveis, bem como da sua cadeia de suprimento."

• O item XVI do artigo 8º passa a vigorar com a seguinte redação:

"XVI - regular e autorizar as atividades relacionadas à produção, à importação, à exportação, à armazenagem, à estocagem, ao transporte, à transferência, à distribuição, à revenda e à comercialização de biocombustíveis, assim como avaliação de conformidade e certificação de sua qualidade, fiscalizando-as diretamente ou mediante convênios com outros órgãos da União, Estados, Distrito Federal ou Municípios." Além disso, o artigo 1º da lei 9.847, de 26 de outubro de 1999, passa a vigorar com a seguinte redação:

"Art. 1º A fiscalização das atividades relativas às indústrias do petróleo e dos biocombustíveis e ao abastecimento nacional de combustíveis, bem como do adequado funcionamento do Sistema Nacional de Estoques de Combustíveis e do cumprimento do Plano Anual de Estoques Estratégicos de Combustíveis, de que trata a Lei nº 9.478, de 6 de agosto de 1997, será realizada pela Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP) ou, mediante convênios por ela celebrados, por órgãos da administração pública direta e indireta da União, dos Estados, do Distrito Federal e dos Municípios."

3.1.3. Lei № 12.351 (2010)

Disponível no sítio da ANP, o texto da Lei Nº 12.351, de 22 de dezembro de 2010, discorre sobre a exploração e a produção de petróleo, de gás natural e de outros hidrocarbonetos fluidos, sob o regime de partilha de produção, em áreas do pré-sal e em áreas estratégicas. Cria o Fundo Social (FS) e dispõe sobre sua estrutura e fontes de recursos. Além disso, altera dispositivos da lei Nº 9.478, de 6 de agosto de 1997 e dá outras providências.

3.1.4. Portaria ANP Nº 234 (2003)

Disponível no sítio da ANP, esta Portaria ANP No 234, de 12 de agosto de 2003, discorre sobre as penalidades com base no Regulamento de Procedimento de Imposição de Penalidade anexo a esta portaria.

Destaca-se o artigo 1º desta portaria:

"Art. 1º Fica estabelecido, através do presente Regulamento, o procedimento de imposição de penalidades aos infratores das disposições e termos constantes dos contratos de concessão, dos editais de licitação e na legislação aplicável às atividades de exploração e produção de petróleo e gás natural."

Além disso, a Portaria ANP N° 223 de 5 de agosto de 2008 constitui grupo de trabalho com o objetivo de estudar e revisar o Regulamento Técnico aprovado pela Portaria N° 234, de 12 de agosto de 2003.

O Artigo 1º Portaria ANP Nº 223 de 5 de agosto de 2008 expõe:

"Constituir Grupo de Trabalho com o objetivo de estudar e revisar o Regulamento Técnico aprovado pela Portaria ANP nº 234/03, que definiu o procedimento de imposição de penalidades aplicável aos infratores dos termos constantes dos Contratos de Concessão, bem como ao estabelecimento de

PUC-Rio - Certificação Digital Nº 1213332/CA

procedimentos administrativos para aplicação de penalidades conforme o Decreto nº 2.953/99."

3.1.5. Portaria INMETRO Nº 064 (2003)

Apesar da publicação do RTM no ano 2000 e de serem estabelecidas a exigência e fiscalização da ANP, a atribuição legal de regulamentar as medições de produtos em todo o país é do INMETRO.

A portaria INMETRO Nº 064, de 11 de abril de 2003 tem possibilitado, a partir da sua publicação, a continuidade dos sistemas de medição já instalados, sempre que os erros máximos apresentados por ditos sistemas, estivessem conforme aos limites estabelecidos. Para a utilização de novos modelos de medidores de vazão, precisa-se da aprovação do INMETRO mediante uma Portaria. Esses modelos devem ser verificados periodicamente.

Desta portaria, destaca-se o exposto nos artigos 1º e 2º:

"Art. 1º Aprovar o Regulamento Técnico Metrológico, que com esta baixa, estabelecendo os requisitos técnicos e metrológicos aplicáveis aos sistemas de medição equipados com medidores de fluido, utilizados na medição de petróleo, seus derivados líquidos, álcool anidro e álcool hidratado carburante."

"Art.2° Admitir a continuidade, dentro do prazo estabelecido no parágrafo primeiro, do uso dos sistemas de medição já instalados, desde que os erros máximos apresentados por esses sistemas de medição, quando em serviço, situem-se dentro dos limites estabelecidos no subitem 5.3 do Regulamento Técnico Metrológico, ora aprovado."

Assim, a exatidão das medições de petróleo, seus derivados líquidos, álcool anidro e álcool hidratado carburante, assume especial importância para a indústria de petróleo e gás natural, visando diminuir os efeitos negativos que possíveis resultados com baixa confiabilidade possam provocar à sociedade.

3.1.6. Portaria INMETRO Nº 113 (1997)

Esta Portaria INMETRO Nº 113, 16 de outubro de 1997, destaca a importância que deve ser atribuída aos sistemas de medição de vazão mássica (direta e por quantidades de líquidos), notadamente no que concerne à conformidade às específicações mínimas, de forma a garantir a sua confiabilidade metrológica. Além disso, considera a relevância das recomendações da OIML sobre

o assunto, amplamente discutidas com os fabricantes nacionais, entidades de classe

e organismos governamentais.

Destaca-se da presente Portaria, os artigos 1º e 2º:

"Art. 1º Fica aprovado o Regulamento Técnico Metrológico, anexo à presente Portaria, estabelecendo as condições a que devem satisfazer os sistemas de medição mássica direta, de quantidades de líquidos."

"Art. 2º A fabricação de sistemas de medição mássica direta, de quantidades de líquidos, nas características em que são atualmente produzidos, só será admitida até 01 de janeiro de 1999."

"§1º Os sistemas de medição mássica, de quantidades de líquidos, nas características em que são atualmente produzidos, serão submetidos a ensaios de verificação inicial, a partir de 02 de fevereiro de 1998."

"§2º Os sistemas de medição mássica, de quantidades de líquidos, já instalados e em utilização, continuarão a ser utilizados, enquanto os erros máximos, que apresentarem, se situarem dentro dos limites estabelecidos no Regulamento Técnico Metrológico, ora aprovado."

3.1.7. Equipamentos aprovados para medição de vazão de líquidos

Visando garantir a confiabilidade metrológica das medições de vazão, o INMETRO aprova por força de Portaria diferentes modelos de equipamentos de medição de vazão. Esses equipamentos são submetidos a provas metrológicas iniciais e verificações periódicas.

Descrevem-se, a seguir, as Portarias vigentes do INMETRO referentes à aprovação de equipamentos para a medição de vazão:

• **Portaria Inmetro/Dimel nº 0095**, de 16 de maio de 2013: Aprova o modelo AutoEXEC (Figura 4), de computador de vazão, marca Thermo.

Figura 4 – Computador de vazão modelo AutoEXEC Fonte: (Portaria INMETRO/DIMEL Nº 0095, de 16 de maio de 2013).

 Portaria Inmetro/Dimel nº 0090, de 09 de maio de 2013: Esta Portaria aprova o computador de vazão para líquidos, modelo FC302, marca AuditFlow-V5. A Figura 5 apresenta o equipamento aprovado por esta Portaria.

Figura 5 – a: computador de vazão FC302; b: detalhe das marcas de selagem Fonte: (Portaria INMETRO/DIMEL Nº 0090, de 09 de maio de 2013).

Portaria Inmetro/Dimel nº 0002, de 07 de janeiro de 2013: Aprova o modelo D.P. Cone Meter (Figura 6), de medidor de vazão do tipo V-cone, por diferencial de pressão, para medição de gases e líquidos, marca "Pressão Diferencial Nuflo Cone Meter".

Figura 6 – Medidor de vazão tipo V-cone

Fonte: (Portaria INMETRO/DIMEL Nº 0002, de 07 de janeiro de 2013).

- **Portaria Inmetro/Dimel nº 0048**, de 09 de março de 2012: Aprova o modelo OMNI 6000, de computador de vazão, do fabricante OMNI.
- **Portaria Inmetro/Dimel nº 0089**, de 31 de maio de 2012: Aprova o modelo Echart Plus (Figura 7), de computador de vazão, do fabricante Dynamic Flow Computer.

Figura 7 – Computador de vazão modelo Echart Plus Fonte: (Portaria INMETRO/DIMEL Nº 0089, de 31 de Maio de 2012).

O modelo, a que se refere a presente Portaria possui as seguintes características metrológicas:

- a. Faixa de temperatura de operação: -40°C a 85°C;
- b. Classe de exatidão: classe 0.3 (Portaria n°64, de 11 de abril de 2003) para líquidos e classe A para gases;
- c. Classe do ambiente mecânico: M3;
- d. Classe do ambiente eletromagnético: E2;
- e. Classe do ambiente climático: H2;
- f. Versão do software: revisão 8.00.30 (gás) e 9.00.17 (líquido);
- g. Frequência de pulsos: de 1 Hz a 6 kHz para onda quadrada e 1 Hz a 1,2 kHz para onda senoidal;
- h. Amplitude de pulsos: de 3V a 10V para onda quadrada e senoidal no modo de leitura de onda quadrada e 70mV a 100mV para onda senoidal no modo de leitura de onda senoidal.
- Portaria Inmetro/Dimel nº 0049, de 01 de fevereiro de 2011: Aprova a família LEFM 280, de medidores de vazão ultrassônicos para líquidos, fabricante Cameron Measurement Systems com classe de exatidão 0,3. O diâmetro nominal, a vazão mínima, a vazão máxima e a quantidade mínima mensurável relativa às faixas de medição dos diferentes modelos aprovados são apresentados nas Tabelas 3 e 4.

Diâmetro nominal (DN)	Vazão mínima	Vazão máxima	Quantidade mínima mensurável
mm	(m³/h)	(m³/h)	(m³)
100	5,9	330	0,2
150	13,4	740	0,5
200	23,2	1935	1
250	36,5	3045	1
300	52,5	3070	2
350	62,8	3750	2
400	82,1	4560	5
450	130	6500	5
500	158	7900	7
600	230	11500	9
650	278	13900	12
700	324	16200	15
750	374	18700	17
800	426	21300	18
850	484	24200	22
900	544	27200	25

Tabela 3 - Modelos LEFM: 280C, 280Ci, 280Ci-R e 280Ci-LT-R

Fonte: (Portaria INMETRO/DIMEL Nº 0049, de 01 de fevereiro de 2011. Pág. 2-3).

Tabela 4 - Modelos LEFM: 280CiRN, 280CiRN-R e 280CiRN-LT-R

Diâmetro	Vazão	Vazão	Quantidade mínima
nominal (DN)	mínima	máxima	mensurável
mm	(m³/h)	(m³/h)	(m³)
150	5,3	534	0,2
200	8,2	823	0,5
250	12,1	1211	0,5
300	21,2	2121	1
350	21,2	2121	1
400	33,4	3336	1
450	42,2	4216	2
500	42,2	4216	2
600	74,7	7473	5
650	86,9	8690	5
700	101,2	10125	6
750	116,9	11690	6
800	133,1	13315	7
850	151,2	15125	9
900	170,0	17000	10

Fonte: (Portaria INMETRO/DIMEL Nº 0049, de 01 de fevereiro de 2011. Pág.3).

A Figura 8 ilustra alguns dos medidores ultrassônicos para medição de vazão aprovados pela Portaria INMETRO/DIMEL Nº 0049:

Figura 8 – Modelos. a: 280Ci; b: 280Ci-LT-R; c: 280C; d: 280 CiRN-R Fonte: (Portaria INMETRO/DIMEL Nº 0049, de 01 de fevereiro de 2011. Anexos 1-3).

• **Portaria Inmetro/Dimel nº 0244**, de 03 de agosto de 2011: Esta Portaria é considerada o 1° Aditivo a Portaria Inmetro/Dimel n° 49 de 2011. Destacamse os seguintes artigos:

"Art. 1º – Incluir na portaria Inmetro/Dimel no 49, de 01 de fevereiro de 2011, o subitem 7.4, com a seguinte redação:

7.4 Os medidores de vazão ultrassônicos para líquidos, da família LEFM 280, marca Cameron, não necessitam retificadores de fluxo. Os trecho retos com suas dimensões mínimas a seguir:

- a) Trecho reto à montante: comprimento de 5D;
- b) Trecho reto à jusante: comprimento de 3D;

c) Trecho reto à montante com válvula parcialmente aberta ou válvula de passagem reduzida e/ou tubulação com redução de área interna do tipo excêntrica: comprimento de 15D."

"Art. 2º – Substituir, na Portaria Inmetro/Dimel no 49, de 01 de fevereiro de 2011, os anexos 13, 14 e 15 pelos desenhos anexos a esta Portaria, respectivamente."

A Figura 9 apresenta o esquema de instalação do modelo LEFM 280Ci, aprovado por esta Portaria:

Figura 9 – Esquema de instalação do medidor LEFM 280Ci Fonte: (Portaria INMETRO/DIMEL Nº 0244, de 03 de agosto de 2011, Anexo 13).

3.2. Normas e recomendações internacionais

3.2.1. OIML R-117-1, de 2007

A Organização Internacional de Metrologia Legal (OIML), com sede em Paris (França), é uma organização intergovernamental, fundada em 12 de outubro de 1955, com o objetivo de promover a harmonização global de procedimentos para a Metrologia Legal. Hoje, ela possui 59 países membros, e 54 membros correspondentes. O Brasil faz parte do grupo de países membros, que são aqueles que participam ativamente em atividades técnicas da organização, revisando e estabelecendo novas recomendações.

A recomendação OIML R-117-1 denominada: *Dynamic measuring systems* for liquids other than water, foi adotada no Brasil e citada na Resolução Conjunta ANP/INMETRO 10 de junho de 2013, com objetivo de servir como base na aplicação de requisitos técnicos e para estabelecer limites de aceitação de sistemas e instrumentos de medição de petróleo.

Levando-se em consideração o campo de aplicação, a R-117-1 classifica os sistemas de medição em quatro classes de exatidão, definindo uma incerteza de 0,3% para os sistemas de medição de vazão de líquido em duto. Além disso, determina uma incerteza de medição máxima de 0,2% para os medidores, quando são operados em condições reais de funcionamento.

3.2.2. ISO/TR 12765:1998

A norma ISO/TR 12765:1998, denominada *Measurement of fluid flow in* closed conduits – Methods using transit-time ultrasonic flowmeters, além de fornecer os princípios para a medição de vazão de líquidos baseada no método do tempo de trânsito, fornece as orientações sobre as principais características dos medidores de vazão ultrassônicos, que utilizem esse princípio.

Em termos de incerteza de medição, a referida norma apresenta no item 7.1 um procedimento para o cálculo, levando em consideração as seguintes três fontes: (i) a incerteza associada à característica do escoamento e ao fator de correção do perfil de velocidade; (ii) as incertezas associadas aos parâmetros geométricos do duto e (iii) as incertezas associadas à medição do tempo.

4 Validação metrológica do sistema gravimétrico

Este capítulo descreve o sistema gravimétrico construído (Orlando, 2014) no Laboratório de Avaliação Metrológica e Energética (LAME) da PUC-Rio para ensaios de desempenho e calibração de medidores de vazão baseados em diferentes princípios de medição. Detalha, também, a instrumentação do sistema e os métodos metrológicos utilizados para validar e garantir a rastreabilidade das diferentes grandezas medidas.

4.1. Caracterização do sistema gravimétrico

A Figura 10 ilustra os componentes do sistema gravimétrico.

Figura 10 – Desenho do sistema gravimétrico

O sistema gravimétrico ilustrado na Figura 10 é constituído por:

- Balança Alfa, modelo 3107, com capacidade nominal de 300 kg (resolução de 0,02 kg);
- Balança Ohaus, modelo Explorer Pro, com capacidade nominal de 32 kg (resolução de 0,1 g);
- Tanque rígido T (fechado para a atmosfera e montado sobre a balança Alfa), com volume nominal de 160 L;

- Torres A e B, de seção quadrada, com dimensões nominais de 1,5 m de lado e 5 m de altura (volume de 11,25 m³);
- Tubo de acrílico (montado sobre a balança Ohaus) com dimensões medidas (comprimento: 5087,80 mm; diâmetro: 83,50 mm) instalado entre as Torres A e B, para medição do volume de água. Uma quantidade medida de água alimenta a Torre A e o tubo de acrílico, cujos níveis de água permanecem na mesma altura pelo princípio dos vasos comunicantes.

Nesta pesquisa, a água foi utilizada como fluido de trabalho para a realização dos experimentos. Transferindo-se desde o tanque rígido T uma massa de água para a torre, parte será transferida para o tubo, de modo que o nível (tanto na torre como no tubo) seja o mesmo. O tubo de acrílico é montado sobre a balança Ohaus e conectado por um tubo à torre que está sendo utilizada.

A Figura 11 ilustra as torres A e B e o tubo de acrílico que integram o sistema gravimétrico.

Figura 11 – Torres A e B e torre acessória do sistema gravimétrico

A Figura 12 mostra a instrumentação, válvulas, tubulações e conexões utilizadas em conexão com o tanque rígido T.

Figura 12 - Instrumentação e elementos de conexão instalados no Tanque T

O volume de água no tubo é determinado pela relação entre a massa indicada pela balança e a massa específica da água, como função da temperatura. Se as seções retas da torre acessória (tubo de acrílico) e da torre principal (A ou B) forem totalmente uniformes ao longo de sua altura, o volume da água pode ser calculado pela relação entre as áreas das seções transversais dessas torres. Para compensar variações da seção reta do tubo de acrílico e da torre ao longo da sua altura, foi medido o volume de ambos (Torre A e tubo de acrílico) com o propósito de validar o sistema gravimétrico quanto ao volume de líquido a ser disponibilizado como fonte de comparação quando o sistema for utilizado para calibrar medidores de vazão. O volume de água na torre é então medido pelo volume da água no tubo de acrílico, evitando-se, assim, a necessidade de utilização de uma balança de grande capacidade, cujas incertezas associadas são maiores que outras de menor capacidade. Medindo-se o volume para dois níveis diferentes, pode-se calcular, por diferença, o volume de água transferido ao sistema torre-tubo que integra o sistema gravimétrico. Os volumes transferidos podem ser determinados pelas Equações (6), (7) e (8).

$$V_{\rm T} = A_{\rm T} \cdot \Delta h \tag{6}$$

$$\mathbf{v} = \mathbf{A} \cdot \Delta \mathbf{h} \tag{7}$$

$$V = V_{\rm T} + v \tag{8}$$

Nestas expressões:

 $V_{\rm T}$: volume de água na torre (m³)

 A_T : área da seção transversal da torre (m²)

Δh : variação do nível de água na torre e no tubo

v : volume de água no tubo (m³)

- A : área da seção transversal do tubo (m²)
- V : volume de água transferida para torre e tubo (m³)

Dividindo-se as Equações (6) e (7), e substituindo a Equação (9) na Equação (8), tem-se como resultado a Equação (10).

$$V_{\rm T} = \frac{A_{\rm T}}{A} \cdot v \tag{9}$$

$$\mathbf{V} = \left(1 + \frac{\mathbf{A}_{\mathrm{T}}}{\mathbf{A}}\right) \cdot \mathbf{v} \tag{10}$$

Assim, medindo-se o volume (v) de água no tubo de acrílico, pode-se determinar, pela relação entre as áreas, o volume total de líquido transferido. Como, entretanto, esta relação varia devido à não uniformidade das dimensões do tubo e da torre, há necessidade de se medir V como função de v, ao longo da altura.

4.2. Confiabilidade da medição pelo sistema gravimétrico

A confiabilidade das medições de pressão e temperatura e medição de massa² foram asseguradas pelo uso de instrumentos calibrados por laboratórios acreditados

² Os instrumentos não-automáticos de pesagem (balança Alfa e balança Ohaus) foram calibrados no local de uso por meio de massas-padrão.

na Rede Brasileira de Calibração (RBC). Já o transdutor de pressão utilizado para medir a pressão do ar comprimido no tanque foi calibrado no LAME da PUC-Rio.

4.2.1. Medição da temperatura do ar no Tanque T

A temperatura do ar no interior do Tanque T foi medida por meio de um termômetro de resistência de platina com sensor tipo Pt-100 classe B, ilustrado na Figura 13.

Figura 13 – Termômetro Pt-100

O valor da temperatura do ar e a incerteza associada a sua medição foram calculadas pelas Equações (11) e (12) definidas na norma IEC 60751 (2008), que são validas para a faixa de 0 °C até 850 °C.

$$R = R_0 (1 + A \cdot T_{ar} + B \cdot T_{ar}^2)$$
(11)

$$U_{T_{ar}} = 0.3 + 0.005 \cdot |T_{ar}|$$
(12)

Nestas expressões:

 $\begin{array}{l} T_{ar}: \text{temperatura do ar no Tanque T em }^{\circ}\text{C};\\ U_{Tar}: \text{incerteza expandida (k=2) da temperatura do ar no Tanque T em }^{\circ}\text{C};\\ \text{R}: \text{resistência do Pt-100 à temperatura }}_{ar}, \text{em }\Omega\\ \text{R}_{0}: \text{resistência do Pt-100 à temperatura de 0 }^{\circ}\text{C}, \text{em }\Omega\\ \text{A} = 3,9083 \text{ x } 10^{-3} \,^{\circ}\text{C}^{-1}\\ \text{B} = -5,775 \text{ x } 10^{-7} \,^{\circ}\text{C}^{-2} \end{array}$

4.2.2. Medição da temperatura da água na torre e no tubo

Termômetros do tipo Pt-100 classe B foram instalados ao longo da altura das torres do sistema gravimétrico com o objetivo de medir a temperatura da água do conjunto torre-tubo. O computador de vazão Omni 6000 mostrado na Figura 14 ilustra medições típicas realizadas.

Figura 14 - Computador de vazão Omni 6000

Conhecida a temperatura da água, calcula-se, pelas equações de Tanaka et al. (2001) recomendadas pelo BIPM/CIPM, a massa específica da água e a incerteza associada à sua medição, conforme indicado a seguir:

$$\rho_{\rm w} = a_5 \cdot \left[1 - \frac{(T_{\rm w} + a_1)^2 \cdot (T_{\rm w} + a_2)}{a_3 \cdot (T + a_4)} \right]$$
(13)

$$U_{\rho_{w}} = (b_{0} + b_{1} \cdot T_{w} + b_{2} \cdot T_{w}^{2} + b_{3} \cdot T_{w}^{3} + b_{4} \cdot T_{w}^{4}) \cdot 0,001$$
(14)

Nestas equações:

 $\begin{array}{l} \rho_w\colon massa\ especifica\ da\ água\ à\ temperatura\ T_w\ expressa\ em\ kg\cdot m^{-3},\\ compreendida\ na\ faixa\ de\ 0\ ^oC\ a\ 40\ ^oC;\\ T_w\colon temperatura\ da\ água\ em\ ^oC;\\ a_1\ =\ -3,983035\ \pm\ 0,00067\ ^oC\\ a_2\ =\ 301,797\ ^oC\\ a_3\ =\ 522528,9\ ^oC^2\\ a_4\ =\ 69,34881\ ^oC\\ a_5\ =\ 999,974950\ \pm\ 0,00084\ kg\cdot m^{-3}\\ U_{\rho w}\colon incerteza\ expandida\ (k=2)\ da\ massa\ específica\ da\ água\ na\ torre\ e\ tubo,\\ kg\cdot m^{-3}\\ b_0\ =\ 0,8394\ kg\cdot m^{-3}\\ b_1\ =\ -0,00128\ ^oC^{-1}\cdot kg\cdot m^{-3}\\ b_2\ =\ 0,000110\ ^oC^{-2}\cdot kg\cdot m^{-3}\\ b_3\ =\ -0,00000609\ ^oC^{-3}\cdot kg\cdot m^{-3}\\ b_4\ =\ 0,000000116\ ^oC^{-4}\cdot kg\cdot m^{-3} \end{array}$

4.2.3. Medição da pressão do ar com o tanque T despressurizado

A Figura 15 mostra o barômetro digital marca ABSI, com certificado de calibração N° 40892/06 (Anexo A) emitido pelo Laboratório ABSI de pressão da RBC, utilizado para medir a pressão do ar com o Tanque T despressurizado. O instrumento possui uma faixa de medição entre 100 mbar (abs) e 1100 mbar (abs), com incerteza de medição expandida de 0,03% (k=2).

Figura 15 – Barômetro digital ABSI

4.2.4. Medição da pressão do ar com o tanque T pressurizado

O transdutor de pressão marca WIKA modelo P/N 3754470, número de série S/N 3600593 e faixa de medição 4-20 mA / 0-10 bar (abs), foi utilizado para medir a pressão do ar quando o Tanque T é pressurizado. Para garantir a confiabilidade deste processo de medição, o instrumento foi calibrado no laboratório de pressão do LAME da PUC-Rio, aplicando o procedimento orientativo da Coordenação Geral de Acreditação³. A Figura 16 mostra a balança de pressão (peso morto) utilizada como padrão na calibração do transdutor de pressão. O Anexo B apresenta o certificado de calibração N^o LAPRE 0125/2000 que corresponde a balança de pressão utilizada como padrão.

³ Coordenação Geral de Acreditação. Orientação para a realização de calibração de medidores analógicos de pressão. Documento de caráter orientativo. DOQ-CGRE-017. Revisão 02. Fevereiro 2010.

Figura 16 – Balança de pressão

A corrente (mA) gerada pelo transdutor de pressão foi medida por um multímetro marca HEWLETT PACKARD, modelo 34401A. A Figura 17 ilustra o multímetro e o Anexo C as expressões para o cálculo da incerteza na faixa de corrente obtida.

Figura 17 - Multímetro digital Hewlett Packard modelo 34401A

4.2.4.1. Calibração do transdutor de pressão

O transdutor de pressão WIKA foi calibrado no laboratório de pressão do LAME da PUC-Rio. A pressão atmosférica foi medida com o barômetro digital ABSI.

A Tabela 5 apresenta as características metrológicas da balança de pressão utilizada como padrão na calibração.

Código das	Pressão Nominal	Pressão aparente	essão aparente Pressão corrigida		Incerteza das massas (k=2)
massas	P _{Nom}	Pa	Pcorr	P _{puc}	U _{pm}
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
Pistão 007	0.3	0.30738	0.30120	0.30059	0.0000451
007 N 001	0.1	0.09946	0.09746	0.09726	0.0000146
007 N 002	0.1	0.10017	0.09816	0.09796	0.0000147
007 N 003	0.1	0.10019	0.09817	0.09797	0.0000147
007 N 004	0.1	0.10025	0.09823	0.09803	0.0000147
007 N 005	0.3	0.30092	0.29489	0.29429	0.0000441

Tabela 5 - Características metrológicas da balança de pressão

Nesta tabela:

$$\begin{split} P_{a} &= P_{Nom} \cdot (1 - \rho_{ar}/\rho_{m}) \\ P_{corr} &= \frac{P_{Nom} \cdot (1 - \rho_{ar}/\rho_{m}) \cdot g_{ref}}{A_{0,20}} \cdot 1x10^{-6} \text{ MPa} \\ P_{puc} &= P_{corr} \cdot \frac{g_{puc}}{g_{ref}} \cdot \frac{1}{1 + (\alpha_{c} + \alpha_{P})(t - 20) + \lambda \cdot P_{Nom}} \\ u_{pm} &= 0.015\% \cdot P_{puc} \text{ ; } (k = 2) \end{split}$$

Nas expressões acima:

 $\begin{array}{l} \rho_{ar}: massa específica do ar = 1,2 \ kg/m^3 \\ \rho_m: massa específica das massas = 7800 \ kg/m^3 (aço) e 2700 \ kg/m^3 (alumínio) \\ A_{0,20}: área do conjunto pistão-cilindro = 10,0070 \ x \ 10^{-6} \ m^2 \\ g_{puc}: aceleração da gravidade da PUC-Rio = 9,7880029 \ m/s^2 \\ g_{ref}: aceleração da gravidade normal = 9,80665 \ m/s^2 \\ \lambda: coeficiente de deformação do conjunto pistão-cilindro=-0,0000044 \ MPa^{-1} \\ \alpha_c: coeficiente de dilatação térmico linear do cilindro = 0,0000120 \ ^oC^{-1} \\ \alpha_p: coeficiente de dilatação térmico linear do pistão = 0,0000166 \ ^oC^{-1} \\ t: temperatura do conjunto pistão-cilindro \ ^oC^{-1} \end{array}$

A seguir, a Figura 18 apresenta a montagem da calibração do transdutor de pressão. Além disso, a Tabela 6 apresenta a combinação das massas padrão no processo de calibração e a Tabela 7 os dados coletados.

Figura 18 - Calibração transdutor de pressão WIKA

Tabela 6 – Combinação das massas padrão

Número	Código das massas	Incerteza			
de	padrões	u _{pm}			
pontos		(MPa)			
1	-	0.0000152			
2	007	0.0001541			
3	007+001	0.0001543			
4	007+001+002	0.0001544			
5	007+001+002+003	0.0001546			
6	007+001+002+003+004	0.0001547			
7	007+005+001+002	0.0001560			
8	007+005+001+002+003	0.0001561			
9	007+005+001+002+003+004	0.0001563			

Tabela 7 – Dados da calibração do transdutor de pressão

	CICLO 1								
	С	ARGA ASCENDEN	TE	CA	CARGA DESCENDENTE				
Número de	Indicação do padrão	Indicação do multímetro	Pressão atmosférica	Indicação do padrão	Indicação do multímetro	Pressão atmosférica			
pontos	Ind _{pa}	Ind _{mA}	Patm	Ind _{pa}	Ind _{mA}	P _{atm}			
	(MPa)	(mA)	(mbar, abs)	(MPa)	(mA)	(mbar, abs)			
1	0.10165	5.602	1016.5	0.10159	5.597	1015.9			
2	0.40222	10.314	1016.3	0.40217	10.322	1015.8			
3	0.49947	11.875	1016.2	0.49947	11.874	1016.1			
4	0.59743	13.447	1016.1	0.59742	13.447	1016.0			
5	0.69538	15.008	1015.9	0.69537	15.044	1015.8			
6	0.79341	16.579	1015.9	0.79341	16.610	1015.9			
7	0.89172	18.165	1016.1	0.89169	18.185	1015.8			
8	0.98968	19.746	1016.0	0.98968	19.747	1016.0			
9	1.08771	21.311	1016.0	1.08771	21.311	1016.0			

	CICLO 2									
	C	ARGA ASCENDEN	TE	CA	CARGA DESCENDENTE					
Número de	Indicação do padrão	Indicação do Pressão multímetro atmosférica		Indicação do padrão	Indicação do multímetro	Pressão atmosférica				
pontos	Ind _{pa}	Ind _{mA}	Patm	Ind _{pa}	Ind _{mA}	Patm				
	(MPa)	(mA)	(mbar, abs)	(MPa)	(mA)	(mbar, abs)				
1	0.10158	5.602	1015.8	0.10155	5.589	1015.5				
2	0.40217	10.319	1015.8	0.40214	10.341	1015.5				
3	0.49944	11.881	1015.9	0.49941	11.895	1015.6				
4	0.59738	13.452	1015.6	0.59738	13.442	1015.6				
5	0.69538	15.015	1015.9	0.69537	15.045	1015.8				
6	0.79340	16.588	1015.8	0.79340	16.614	1015.8				
7	0.89169	18.177	1015.8	0.89168	18.169	1015.7				
8	0.98964	19.744	1015.6	0.98963	19.743	1015.5				
9	1.08768	21.304	1015.7	1.08767	21.304	1015.6				

	CICLO 3								
	C	ARGA ASCENDEN	TE	CA	CARGA DESCENDENTE				
Número de	Indicação do padrão	Indicação do multímetro	Pressão atmosférica	Indicação do padrão	Indicação do multímetro	Pressão atmosférica			
pontos	Ind _{pa}	Ind _{mA}	Patm	Ind _{pa}	Ind _{mA}	Patm			
	(MPa)	(mA)	(mbar, abs)	(MPa)	(mA)	(mbar, abs)			
1	0.10154	5.591	1015.4	0.10151	5.549	1015.1			
2	0.40212	10.334	1015.3	0.40210	10.339	1015.1			
3	0.49940	11.884	1015.5	0.49937	11.898	1015.2			
4	0.59736	13.447	1015.4	0.59734	13.456	1015.2			
5	0.69534	15.014	1015.5	0.69532	15.062	1015.3			
6	0.79335	16.615	1015.3	0.79334	16.615	1015.2			
7	0.89165	18.185	1015.4	0.89163	18.178	1015.2			
8	0.98961	19.749	1015.3	0.98961	19.742	1015.3			
9	1.08764	21.315	1015.3	1.08765	21.315	1015.4			

Aplicando-se o método dos mínimos quadrados para o ajuste dos dados da calibração, as Figuras (19), (20), (21) e (22) mostram a incerteza de ajuste (u_s) e a curva de calibração para polinômios de grau um, dois, três e quatro, respectivamente.

Figura 19 – Curva de calibração pelo polinômio de grau um

Figura 20 - Curva de calibração pelo polinômio de grau dois

Figura 21 – Curva de calibração pelo polinômio de grau três

Figura 22 - Curva de calibração pelo polinômio de grau quatro

Considerando as quatro curvas de calibração, observa-se que o melhor ajuste corresponde ao polinômio de grau dois, pois a incerteza do ajuste é menor em comparação àquele obtido pelas demais curvas. Desse modo, a pressão ajustada do transdutor (p_{tp}) pode ser calculada a partir da Equação (15).

$$p_{tp} = -0,00004 \cdot ind_{mA}^2 + 0,0637 \cdot ind_{mA} - 0,2528$$
(15)

A incerteza associada às medições realizadas pelo transdutor de pressão considerou as seguintes fontes:

- Incerteza do multímetro em miliampere (u_{mA})
- Incerteza do ajuste (u_s)
- Incerteza do padrão (u_{pm})

Assim, propagando-se as incertezas tal qual proposto no ISO GUM (2008), a incerteza do transdutor de pressão (u_{tp}) pode ser calculada pela Equação (16):

$$u_{tp}^{2} = \left(\frac{\partial p_{tp}}{ind_{mA}} \cdot u_{mA}\right)^{2} + u_{s}^{2} + u_{pm}^{2}$$
(16)

A Tabela 8 mostra os resultados do cálculo da incerteza do transdutor de pressão.

Número de	Pressão ajustada (padrão)	ressão Indicação do Incerteza do Incerteza ustada multímetro ajuste multíme adrão)		Incerteza do multímetro	Incerteza do padrão	Incerteza do transdutor de pressão (k=2)
pontos	Ind _{pa}	Ind _{mA}	Us	u _{mA}	u _{pm}	u _{tp}
-	(MPa)	(mA)	(MPa)	(mA)	(MPa)	(MPa)
1	0.10443	5.588	0.0014	0.0003	0.0000152	0.001
2	0.40937	10.328	0.0014	0.0005	0.0001541	0.001
3	0.50989	11.885	0.0014	0.0007	0.0001543	0.002
4	0.61110	13.449	0.0014	0.0007	0.0001544	0.002
5	0.71373	15.031	0.0014	0.0008	0.0001546	0.002
6	0.81587	16.604	0.0014	0.0008	0.0001547	0.002
7	0.91826	18.177	0.0014	0.0009	0.0001560	0.002
8	1.02056	19.745	0.0014	0.0009	0.0001561	0.002
9	1.12281	21.310	0.0014	0.0010	0.0001563	0.002

Tabela 8 - Cálculo da incerteza do transdutor de pressão

Como conclusão da calibração do transdutor de pressão, obteve-se uma incerteza ($U_{tp} = u_{tp}$. k) de 0,4% com um nível de confiabilidade de 95,45% (k=2), sendo este um valor menor do que as incertezas para transdutores de pressão da Classe 0,5 (0,5%, k=2).

4.2.5. Medição da massa de água que alimenta o sistema gravimétrico

A balança digital Alfa modelo 3107 (capacidade de 300 kg e resolução 0,2 kg) foi utilizada para determinar a massa de água que foi transferida do Tanque rígido T para o conjunto torre-tubo do sistema gravimétrico. A Figura 23 ilustra os elementos da balança, i.e.: a célula de carga, o *display* e a operação de tara.

Figura 23 - Balança Alfa. a: célula de carga; b: display; c: tara

Com o objetivo de diminuir a incerteza associada à medição de massa, foi utilizado o multímetro digital marca AGILENT modelo 34970A (número de série N/S US37033133), ilustrado na Figura 24. Este instrumento foi conectado ao visor da balança digital alfa. No curso do processo de medição de volume pelo sistema

gravimétrico foram registrados os valores da massa (kg) indicada pela balança e o correspondente valor da tensão (mV) indicado pelo multímetro. Estes dados foram utilizados para determinar a equação de melhor ajuste do sistema, aplicando o método dos mínimos quadrados.

Figura 24 – Multímetro digital AGILENT modelo 34970A

A seguir, destacam-se as expressões para o cálculo da incerteza de medição da tensão utilizando o multímetro digital AGILENT (Anexo D).

Faixa: [0 mV–100 mV]

tara.

 $U_{mv} = (0,005\% \text{ do valor indicado}) + (0,004\% \text{ do valor da faixa}); (k=2)$ (17) **Faixa: [100 mV-1000 mV]** $U_{mv} = (0,004\% \text{ do valor indicado}) + (0,0007\% \text{ do valor da faixa}); (k=2)$ (18) $U_{mv} \text{ corresponde à incerteza do valor indicado do multímetro em milivolt (mV)}.$

Para garantir a confiabilidade metrológica da medição de massa no processo de medição de volume pelo sistema gravimétrico, foi necessário realizar a calibração da balança Alfa. Esta calibração foi realizada para duas condições de trabalho: (i) aplicando a operação tara da balança e (ii) sem aplicar a operação tara da balança. Comparando metrologicamente os dois métodos de calibração, concluiu-se que a calibração sem tara oferece incerteza associada à medição da massa inferior àquela obtida quando a balança foi submetida ao procedimento de

A Figura 25 ilustra dois conjuntos de massa-padrão utilizados para a calibração da balança Alfa: (a): classe de exatidão F1 (12 massas de valor nominal cobrindo a faixa de 10 mg a 500 g) e (b): classe de exatidão M1 (13 massas, todas com 20 kg de valor nominal).

Figura 25 - Massas padrão. a: Classe F1; b: Classe M1

A Tabela 9 indica as características metrológicas das massas padrão. O Anexo E apresenta os certificados de calibração Nº MA 020_09_13 e Nº MA 195_08_13, correspondente às massas M1 e F1, respectivamente.

Tabela 9 - Características metrológicas das massas padrão

N°	Massa padrão (g)	Valor nominal / (Classe de exatidão; Código interno)	Erro (g)	Incerteza padrão (g)
1	100.00009	100 g (F1)	0.00009	0.00015
2	200.00029	200 g (F1)	0.00029	0.0003
3	200.00010	200 g (F1)	0.0001	0.0003
4	500.0002	500 g (F1)	0.0002	0.0008
5	19999.7	20 kg (M1; 01)	-0.3	0.3
6	19999.5	20 kg (M1; 02)	-0.5	0.3
7	19999.4	20 kg (M1; 03)	-0.6	0.3
8	19999.7	20 kg (M1; 04)	-0.3	0.3
9	19999.8	20 kg (M1; 05)	-0.2	0.3
10	19999.5	20 kg (M1; 06)	-0.5	0.3
11	19999.5	20 kg (M1; 07)	-0.5	0.3
12	19999.6	20 kg (M1; 08)	-0.4	0.3
13	19999.7	20 kg (M1; 09)	-0.3	0.3
14	19999.5	20 kg (M1; 10)	-0.5	0.3
15	19999.5	20 kg (M1; 11)	-0.5	0.3
16	19999.5	20 kg (M1; 12)	-0.5	0.3
17	19999.6	20 kg (M1; 13)	-0.4	0.3

A Tabela 10 apresenta as combinações de massas padrão F1 e M1 realizadas para o processo de calibração.

	Valor nominal	
No	do padrão	Combinação das massas padrões
	(kg)	
1	1	500 g (massa F1) ; 200 g (massa F1) ; 200 g (massa F1) ; 100 g (massa F1)
2	20	M1 (01)
3	40	M1 (01) ; M1 (02)
4	60	M1 (01) ; M1 (02) ; M1 (03)
5	80	M1 (01) ; M1 (02) ; M1 (03) ; M1 (04)
6	100	M1 (01) ; M1 (02) ; M1 (03) ; M1 (04) ; M1 (05)
7	120	M1 (01) ; M1 (02) ; M1 (03) ; M1 (04) ; M1 (05) ; M1 (06)
8	140	M1 (01) ; M1 (02) ; M1 (03) ; M1 (04) ; M1 (05) ; M1 (06) ; M1 (07)
9	160	M1 (01) ; M1 (02) ; M1 (03) ; M1 (04) ; M1 (05) ; M1 (06) ; M1 (07) ; M1 (08)
10	180	M1 (01) ; M1 (02) ; M1 (03) ; M1 (04) ; M1 (05) ; M1 (06) ; M1 (07) ; M1 (08) ; M1 (09)
11	200	M1 (01) ; M1 (02) ; M1 (03) ; M1 (04) ; M1 (05) ; M1 (06) ; M1 (07) ; M1 (08) ; M1 (09) ; M1 (10)
12	220	M1 (01) ; M1 (02) ; M1 (03) ; M1 (04) ; M1 (05) ; M1 (06) ; M1 (07) ; M1 (08) ; M1 (09) ; M1 (10) ; M1 (11)
13	240	M1 (01) ; M1 (02) ; M1 (03) ; M1 (04) ; M1 (05) ; M1 (06) ; M1 (07) ; M1 (08) ; M1 (09) ; M1 (10) ; M1 (11) ; M1 (12)
14	260	M1 (01) ; M1 (02) ; M1 (03) ; M1 (04) ; M1 (05) ; M1 (06) ; M1 (07) ; M1 (08) ; M1 (09) ; M1 (10) ; M1 (11) ; M1 (12) ; M1 (13)

Tabela 10 – Combinação de massas para calibração da balança Alfa

4.2.5.1. Calibração sem tara da balança Alfa

No curso do processo de calibração (Figura 26), esta foi realizada com base em quinze (15) pontos experimentais, aplicando um ciclo com carga ascendente e outro com carga descendente. Em cada ponto foi medido o valor da tensão indicada pelo multímetro AGILENT e a massa indicada pela balança. Além disso, foi medida a temperatura ambiente e a pressão atmosférica para cada uma das condições de calibração, o que permitiu determinar o fator de empuxo.

Figura 26 – Calibração da balança Alfa

A Tabela 11 mostra os dados da calibração da balança Alfa sem tara.

	Carga Ascendente							Carga D	escendente		
Pontos	Valor nominal do padrão	Indicação multimetro	Indicação da balança	Temperatura Ambiente	Pressão atmosférica	Pontos	Valor nominal do padrão	Indicação multimetro	Indicação da balança	Temperatura Ambiente	Pressão atmosférica
	(kg)	(mV)	(kg)	(°C)	(mbar/abs)		(kg)	(mV)	(kg)	(°C)	(mbar/abs)
1	0	39.3172	-0.80	24.0	1014.0	1	0	39.3155	-0.80	24.2	1013.9
2	1	39.6166	0.20	24.0	1014.3	2	1	39.6158	0.20	24.2	1013.9
3	20	47.0974	19.12	24.0	1014.2	3	20	47.0892	19.10	24.2	1013.8
4	40	54.9642	39.02	24.0	1014.1	4	40	54.9579	39.00	24.2	1013.8
5	60	62.8270	58.92	24.0	1014.1	5	60	62.8278	58.90	24.1	1013.6
6	80	70.6943	78.82	24.0	1014.1	6	80	70.6930	78.80	24.0	1013.8
7	100	78.5540	98.72	24.0	1014.1	7	100	78.5585	98.70	23.9	1013.6
8	120	86.4241	118.62	24.0	1014.1	8	120	86.4271	118.60	23.9	1013.7
9	140	94.2803	138.52	24.1	1014.2	9	140	94.2927	138.50	23.9	1013.6
10	160	102.1472	158.42	24.2	1014.0	10	160	102.163	158.40	23.9	1013.7
11	180	110.0193	178.32	24.2	1013.9	11	180	110.027	178.30	23.9	1013.7
12	200	117.8901	198.22	24.2	1014.0	12	200	117.886	198.20	23.9	1013.7
13	220	125.767	218.12	24.0	1013.9	13	220	125.755	218.10	23.9	1013.9
14	240	133.634	238.00	24.0	1013.8	14	240	133.62	238.00	23.9	1013.8
15	260	141.502	257.92	24.0	1013.8	15	260	141.495	257.92	23.9	1013.7

Tabela 11 – Dados da calibração sem tara da balança Alfa

A massa específica do ar foi calculada utilizando-se a Equação (19).

$$\rho_{\rm ar} = \frac{P_{\rm atm}}{R_{\rm ar} \cdot T_{\rm amb}} \tag{19}$$

Nesta expressão:

 ρ_{ar} : massa específica do ar (kg/m³) P_{atm} : pressão atmosférica medida (Pa) R_{ar} : constante do ar = 287,0028 (J/kg·K) T_{amb} : temperatura ambiente medida (K)

Aplicando-se a Equação (20) foi calculada a relação de gravidade (Rg).

$$R_{g} = \left(\frac{g_{puc}}{g_{ref}}\right)$$
(20)

Nos cálculos realizados considerou-se o valor de 7860 kg/m³ para a massa específica das massas de ferro utilizadas (Kalpakjian & Schmid, 2002), permitindo calcular o fator de empuxo (E) pela Equação (21).

$$\mathbf{E} = \left(1 - \frac{\rho_{\rm ar}}{\rho_{\rm massa}}\right) \tag{21}$$

Utilizando-se os valores convencionais das massas padrão e combinando as Equações (20) e (21) foi calculada a massa aparente pela Equação (22).

$$m_{ap} = m_{p} \cdot \left(1 - \frac{\rho_{ar}}{\rho_{massa}}\right) \cdot \left(\frac{g_{puc}}{g_{ref}}\right)$$
(22)

Nas Tabelas 12 e 13, destacam-se o valor da massa aparente calculada e o da tensão medida pelo multímetro, para as cargas ascendente e descendente, respectivamente. Estes valores foram utilizados para obter a equação que melhor ajusta os dados experimentais, aplicando-se o método dos mínimos quadrados.

					CARGA ASCEN	IDENTE				
	Padrão			Multímetro		Balança d	igital Alfa	Temperatura	Pressão	Massa específica
Pontos	Massa nominal	Massa convencional do padrão	Incerteza (k=2)	Tensão	Incerteza (k=2)	Massa Indicada	Massa aparente	Ambiente	Atmosférica	do Ar
	mn	m _p	u _{mp}	Ind _{mv}	u _{mv}	mi	m _{ep}	Tamb	Patm	ρ _{er}
	(kg)	(kg)	(kg)	(mV)	(mV)	(kg)	(kg)	(°C)	(mbar/abs)	(kg/m ³)
1	0	0.00000	0.00000	39.3172	0.0060	-0.80	0.00	24.0	1014.0	1.1890
2	1	1.0000068	0.000009	39.6166	0.0060	0.20	1.00	24.0	1014.3	1.1893
3	20	19.9997	0.0003	47.0974	0.0064	19.12	20.00	24.0	1014.2	1.1892
4	40	39.9992	0.0004	54.9642	0.0067	39.02	40.00	24.0	1014.1	1.1891
5	60	59.9986	0.0005	62.8270	0.0071	58.92	60.00	24.0	1014.1	1.1891
6	80	79.9983	0.0006	70.6943	0.0075	78.82	80.00	24.0	1014.1	1.1891
7	100	99.9981	0.0007	78.5540	0.0079	98.72	100.00	24.0	1014.1	1.1891
8	120	119.9976	0.0007	86.4241	0.0083	118.62	120.00	24.0	1014.1	1.1891
9	140	139.9971	0.0008	94.2803	0.0087	138.52	140.00	24.1	1014.2	1.1888
10	160	159.9967	0.0008	102.1472	0.0111	158.42	160.00	24.2	1014.0	1.1882
11	180	179.9964	0.0009	110.0193	0.0114	178.32	180.00	24.2	1013.9	1.1881
12	200	199.9959	0.0009	117.8901	0.0117	198.22	200.00	24.2	1014.0	1.1882
13	220	219.9954	0.0010	125.767	0.0120	218.12	220.00	24.0	1013.9	1.1889
14	240	239.9949	0.0010	133.634	0.0123	238.00	240.00	24.0	1013.8	1.1887
15	260	259.9945	0.0011	141.502	0.0127	257.92	260.00	24.0	1013.8	1.1887

Tabela 12 - Calibração sem tara da balança Alfa (carga ascendente)

Tabela 13 – Calibração sem tara da balança Alfa (carga descendente)

	CARGA DESCENDENTE											
	Padrão			Multímetro		Balança digital Alfa		Temperatura	Pressão	Massa específica		
Pontos	Massa nominal	Massa convencional do padrão	Incerteza (k=2)	Tensão	Incerteza (k=2)	Massa Indicada	Massa aparente	Ambiente	Atmosférica	do Ar		
	mn	m _p	u _{mp}	Ind _{mv}	u _{mv}	mi	m _{ep}	Tamb	Patm	Par		
	(kg)	(kg)	(kg)	(mV)	(mV)	(kg)	(kg)	(°C)	(mbar/abs)	(kg/m ³)		
1	0	0.00000	0.00000	39.3155	0.0060	-0.80	0.00	24.2	1013.9	1.1881		
2	1	1.0000068	0.0000009	39.6158	0.0060	0.20	1.00	24.2	1013.9	1.1881		
3	20	19.9997	0.0003	47.0892	0.0064	19.10	20.00	24.2	1013.8	1.1880		
4	40	39.9992	0.0004	54.9579	0.0067	39.00	40.00	24.2	1013.8	1.1880		
5	60	59.9986	0.0005	62.8278	0.0071	58.90	60.00	24.1	1013.6	1.1881		
6	80	79.9983	0.0006	70.6930	0.0075	78.80	80.00	24.0	1013.8	1.1887		
7	100	99.9981	0.0007	78.5585	0.0079	98.70	100.00	23.9	1013.6	1.1889		
8	120	119.9976	0.0007	86.4271	0.0083	118.60	120.00	23.9	1013.7	1.1890		
9	140	139.9971	0.0008	94.2927	0.0087	138.50	140.00	23.9	1013.6	1.1889		
10	160	159.9967	0.0008	102.1630	0.0111	158.40	160.00	23.9	1013.7	1.1890		
11	180	179.9964	0.0009	110.0270	0.0114	178.30	180.00	23.9	1013.7	1.1890		
12	200	199.9959	0.0009	117.8860	0.0117	198.20	200.00	23.9	1013.7	1.1890		
13	220	219.9954	0.0010	125.755	0.0120	218.10	220.00	23.9	1013.9	1.1893		
14	240	239.9949	0.0010	133.620	0.0123	238.00	240.00	23.9	1013.8	1.1891		
15	260	259.9945	0.0011	141.495	0.0127	257.92	260.00	23.9	1013.7	1.1890		

Para obter a equação de melhor ajuste, foram analisados dois casos (i) ajuste dos dados levando-se em conta o ponto zero da balança (30 pontos medidos) e (ii) ajuste dos dados sem levar em conta o ponto zero da balança (28 pontos medidos)..

Para os dois casos, o valor da incerteza do ajuste (u_s) foi calculado utilizando a Equação (23).

$$u_s^2 = \frac{\sum_{i=1}^n (m_{ap} - m_a)^2}{n - 1}$$
(23)

Nesta expressão:

 $u_s =$ incerteza de ajuste (kg) $m_{ap} =$ massa aparente (kg) $m_a =$ massa ajustada (kg) n = número de pontos medidos Para o primeiro caso, a Figura 27 apresenta a curva de melhor ajuste, assim como a equação correspondente:

Figura 27 – Curva de calibração sem tara (inclui zero da balança)

Pode-se observar na Figura 27 que os dados seguem uma relação linear. Para este caso, a incerteza do ajuste (u_s), o valor *t-student* (t_s) para 95,45% de confiabilidade e a incerteza expandida do ajuste (U_s) foram calculados, i.e.:

 $u_s = 0,798 \text{ kg}$ $t_s = 2,090$ $U_s = 1,67 \text{ kg}$

No segundo caso, a Figura 28 apresenta a curva de melhor ajuste, assim como a equação correspondente:

Figura 28 - Curva de calibração sem tara (não inclui zero da balança)

Pode-se observar na Figura 28 que os dados seguem uma relação linear, como no primeiro caso. Para esta situação na qual o zero da balança não é levado em consideração, a incerteza do ajuste (u_s), o valor *t-student* (t_s) para 95,45% de confiabilidade e a incerteza expandida do ajuste (U_s) foram calculados; i.e.:

4.2.5.2. Calibração com tara da balança Alfa

Neste processo de calibração aplicou-se a operação tara da balança. Assim, a calibração iniciou-se com um valor indicado pela balança de 0,00 kg.

A Tabela 14 presenta os dados da calibração, para as cargas ascendente e descendente:

		Carga Asc	endente		Carga Descendente						
Pontos	Valor nominal do padrão	Indicação multimetro	Indicação da balança	Temperatura Ambiente	Pressão atmosférica	Pontos	Valor nominal do padrão	Indicação multimetro	Indicação da balança	Temperatura Ambiente	Pressão atmosférica
	(kg)	(mV)	(kg)	(°C)	(mbar/abs)		(kg)	(mV)	(kg)	(°C)	(mbar/abs)
1	0	39.5343	0.00	24.2	1013.7	1	0	39.5403	0.00	24.0	1013.4
2	1	39.9275	1.00	24.2	1013.8	2	1	39.938	0.98	24.0	1013.3
3	20	47.4053	19.90	24.2	1013.7	3	20	47.4195	19.90	24.1	1013.4
4	40	55.2774	39.80	24.2	1013.6	4	40	55.284	39.80	24.1	1013.4
5	60	63.1482	59.70	24.2	1013.6	5	60	63.1491	59.70	24.2	1013.4
6	80	71.0234	79.60	24.0	1013.5	6	80	71.0125	79.60	24.2	1013.5
7	100	78.8925	99.52	24.0	1013.6	7	100	78.8700	99.50	24.2	1013.5
8	120	86.7581	119.42	24.0	1013.6	8	120	86.7326	119.38	24.2	1013.5
9	140	94.6233	139.32	23.9	1013.4	9	140	94.5899	139.28	24.2	1013.5
10	160	102.4843	159.22	23.9	1013.3	10	160	102.468	159.20	24.2	1013.4
11	180	110.3348	179.10	24.0	1013.6	11	180	110.329	179.10	24.2	1013.4
12	200	118.1951	199.00	24.0	1013.4	12	200	118.191	199.00	24.1	1013.6
13	220	126.073	218.92	24.0	1013.5	13	220	126.057	218.90	24.1	1013.4
14	240	133.935	238.82	24.0	1013.5	14	240	133.926	238.80	24.1	1013.7
15	260	141.785	258.72	24.0	1013.5	15	260	141.785	258.70	24.1	1013.6

Tabela 14 – Dados da calibração com tara da balança Alfa

O tratamento dos dados levou em conta os cálculos da massa específica do ar (Equação 19), a relação de gravidade (Equação 20), o fator de empuxo (Equação 21) e a massa aparente (Equação 22).

Nas Tabelas 15 e 16 foram destacados os valores da massa aparente calculada e da tensão medida pelo multímetro, para ambas as situações de cargas ascendente e descendente. Estes valores foram utilizados para obter a equação que melhor ajusta os dados experimentais, aplicando-se o método dos mínimos quadrados.

				C/	ARGA ASCEND	ENTE				
	Padrão			Multí	metro	Balança d	ligital Alfa	Temperatura	Pressão	Massa
Pontos	Massa nominal	Massa convencional do padrão	Incerteza (k=2)	Tensão	Incerteza (k=2)	Massa Indicada	Massa aparente	Ambiente	Atmosférica	específica do Ar
	m _n	m _p	u _{mp}	Ind _{mv}	u _{mv}	mi	m _{ap}	T _{amb}	P _{atm}	Par
	(kg)	(kg)	(kg)	(mV)	(mV)	(kg)	(kg)	(°C)	(mbar/abs)	(kg/m³)
1	0	0.00000	0.00000	39.5343	0.0060	0.00	0.00	24.2	1013.7	1.1878
2	1	1.0000068	0.0000009	39.9275	0.0060	1.00	1.00	24.2	1013.8	1.1880
3	20	19.9997	0.0003	47.4053	0.0064	19.90	20.00	24.2	1013.7	1.1878
4	40	39.9992	0.0004	55.2774	0.0068	39.80	40.00	24.2	1013.6	1.1877
5	60	59.9986	0.0005	63.1482	0.0072	59.70	60.00	24.2	1013.6	1.1877
6	80	79.9983	0.0006	71.0234	0.0076	79.60	80.00	24.0	1013.5	1.1884
7	100	99.9981	0.0007	78.8925	0.0079	99.52	100.00	24.0	1013.6	1.1885
8	120	119.9976	0.0007	86.7581	0.0083	119.42	120.00	24.0	1013.6	1.1885
9	140	139.9971	0.0008	94.6233	0.0087	139.32	140.00	23.9	1013.4	1.1887
10	160	159.9967	0.0008	102.4843	0.0111	159.22	160.00	23.9	1013.3	1.1886
11	180	179.9964	0.0009	110.3348	0.0114	179.10	180.00	24.0	1013.6	1.1885
12	200	199.9959	0.0009	118.1951	0.0117	199.00	200.00	24.0	1013.4	1.1883
13	220	219.9954	0.0010	126.073	0.0120	218.92	220.00	24.0	1013.5	1.1884
14	240	239.9949	0.0010	133.935	0.0124	238.82	240.00	24.0	1013.5	1.1884
15	260	259.9945	0.0011	141.785	0.0127	258.72	260.00	24.0	1013.5	1.1884

Tabela 15 - Calibração com tara da balança Alfa (carga ascendente)

Tabela 16 – Calibração com tara da balança Alfa (carga descendente)

CARGA DESCENDENTE											
	Padrão			Multímetro		Balança digital Alfa		Temperatura	Pressão	Massa	
Pontos	Massa nominal	Massa convencional do padrão	Incerteza (k=2)	Tensão	Incerteza (k=2)	Massa Indicada	Massa aparente	Ambiente	Atmosférica	específica do Ar	
	m _n	m _p	u _{mp}	Ind _{mv}	u _{mv}	mi	m _{ap}	T _{amb}	P _{atm}	ρ _{ar}	
	(kg)	(kg)	(kg)	(mV)	(mV)	(kg)	(kg)	(°C)	(mbar/abs)	(kg/m³)	
1	0	0.00000	0.00000	39.5403	0.0060	0.00	0.00	24.0	1013.4	1.1883	
2	1	1.0000068	0.0000009	39.9380	0.0060	0.98	1.00	24.0	1013.3	1.1882	
3	20	19.9997	0.0003	47.4195	0.0064	19.90	20.00	24.1	1013.4	1.1879	
4	40	39.9992	0.0004	55.2840	0.0068	39.80	40.00	24.1	1013.4	1.1879	
5	60	59.9986	0.0005	63.1491	0.0072	59.70	60.00	24.2	1013.4	1.1875	
6	80	79.9983	0.0006	71.0125	0.0076	79.60	80.00	24.2	1013.5	1.1876	
7	100	99.9981	0.0007	78.8700	0.0079	99.50	100.00	24.2	1013.5	1.1876	
8	120	119.9976	0.0007	86.7326	0.0083	119.38	120.00	24.2	1013.5	1.1876	
9	140	139.9971	0.0008	94.5899	0.0087	139.28	140.00	24.2	1013.5	1.1876	
10	160	159.9967	0.0008	102.4680	0.0111	159.20	160.00	24.2	1013.4	1.1875	
11	180	179.9964	0.0009	110.3290	0.0114	179.10	180.00	24.2	1013.4	1.1875	
12	200	199.9959	0.0009	118.1910	0.0117	199.00	200.00	24.1	1013.6	1.1881	
13	220	219.9954	0.0010	126.057	0.0120	218.90	220.00	24.1	1013.4	1.1879	
14	240	239.9949	0.0010	133.926	0.0124	238.80	240.00	24.1	1013.7	1.1882	
15	260	259.9945	0.0011	141.785	0.0127	258.70	260.00	24.1	1013.6	1.1881	

A Figura 29 ilustra a curva de calibração e a equação de ajuste dos dados experimentais, levando-se em conta o ponto zero da balança (30 pontos medidos).

Figura 29 – Curva de calibração com tara (inclui o zero da balança)

Pode-se observar na Figura 29 que os dados seguem uma relação linear. Para este caso, a incerteza do ajuste (u_s), o valor *t-student* (t) para 95,45% de confiabilidade e a incerteza expandida do ajuste (U_s) foram calculados; i.e.:

 $u_s = 0,026 \text{ kg}$ t = 2,090 $U_s = 0,05 \text{ kg}$

A Figura 30 ilustra a curva de calibração e a equação de ajuste dos dados experimentais, sem levar em conta o ponto zero da balança (28 pontos medidos).

Figura 30 – Curva de calibração com tara (não inclui zero da balança)

Para esta situação em que o zero não é levado a consideração, a incerteza do ajuste (u_s), o valor *t-student* (t) para 95,45% de confiabilidade e a incerteza expandida do ajuste (U_s) foram calculados; i.e.:

 $u_s = 0,024 \text{ kg}$ t = 2,097 $U_s = 0,05 \text{ kg}$

4.2.5.3. Comparação das técnicas de calibração da balança Alfa

A Tabela 17 apresenta os resultados dos dois procedimentos utilizadas na calibração da balança Alfa.

Técnica de N° de dados Equação da massa ajustada us U₅ Valor t-student calibração experimentais (kg) (kg) (kg) Calibração com 28 m_a = (2,542974)·(Ind_{mv}) - 100,578032 0.024 2.097 0.05 tara 30 ma = (2,542871) · (Indmv) - 100,566620 0.026 2.090 0.05 Calibração sem 28 m_a = (2,542329)·(Ind_{mv}) - 99,7214850 0.014 2.097 0.03 tara ma = (2,542871) · (Indmv) - 100,566620 30 0.798 2.090 1.67

Tabela 17 - Resultados das técnicas de calibração da balança Alfa

Pelos dados desta tabela pode-se observar que a menor incerteza de ajuste (u_s) corresponde ao procedimento de calibração da **balança Alfa sem tara e sem considerar o ponto zero** (28 dados experimentais).

Assim, a Equação (24) corresponde à expressão que melhor ajusta os dados experimentais (massa ajustada):

$$m_a = \alpha \cdot \operatorname{Ind}_{mv} - \beta \tag{24}$$

Nesta expressão:

 $\alpha = 2,542329 \text{ (kg/mV)}$ Ind_{mv} = valor indicado pelo multímetro (mV) $\beta = 99,7214850 \text{ (kg)}$

Para o cálculo da incerteza associada à massa ajustada, foram consideradas as seguintes fontes:

- Incerteza ajustada da indicação do multímetro em milivolt (u_{amv})
- Incerteza do ajuste (u_s)
- Incerteza da massa padrão (ump)

A incerteza da massa ajustada (uma) está dada pela Equação (25):

$$u_{ma}^2 = u_{amv}^2 + u_s^2 + u_{mp}^2$$
(25)

Nesta expressão:

 $u_{amv} = \alpha \cdot u_{mv}$; (kg) $u_s = 0,014$ kg u_{mp} : as tabelas 18 e 19 aprensentan os valores de incerteza para cada ponto; (kg)

As Tabelas 18 e 19 apresentam a incerteza da massa ajustada para os procedimentos de calibração com tara e sem tara, respectivamente.

			CÁLC	ULO DA INCERTEZA DA	MASSA AJUSTA	DA	
		Indicação	Massa	Incerteza ajustada	Incerteza do	Incerteza da	Incerteza da
	Dentes	multímetro	ajustada	do multímetro	ajuste	massa padrão	massa ajustada
	Pontos	Ind _{mv}	ma	u _{amv}	us	u _{mp}	u _{ma}
		(mV)	(kg)	(mV)	(kg)	(kg)	(kg)
	1	39.9275	0.96	0.0152	0.024	0.000009	0.03
	2	47.4053	19.97	0.0162	0.024	0.0003	0.03
	3	55.2774	39.99	0.0172	0.024	0.0004	0.03
ш	4	63.1482	60.01	0.0182	0.024	0.0005	0.03
E	5	71.0234	80.03	0.0192	0.024	0.0006	0.03
ASCENDE	6	78.8925	100.04	0.0202	0.024	0.0007	0.03
	7	86.7581	120.05	0.0212	0.024	0.0007	0.03
	8	94.6233	140.05	0.0222	0.024	0.0008	0.03
GA	9	102.4843	160.04	0.0282	0.024	0.0008	0.04
G F	10	110.3348	180.00	0.0290	0.024	0.0009	0.04
-	11	118.1951	199.99	0.0298	0.024	0.0009	0.04
	12	126.073	220.02	0.0306	0.024	0.0010	0.04
	13	133.935	240.02	0.0314	0.024	0.0010	0.04
	14	141.785	259.98	0.0322	0.024	0.0011	0.04
	15	39.9380	0.98	0.0152	0.024	0.0000009	0.03
	16	47.4195	20.01	0.0162	0.024	0.0003	0.03
	17	55.2840	40.01	0.0172	0.024	0.0004	0.03
щ	18	63.1491	60.01	0.0182	0.024	0.0005	0.03
E	19	71.0125	80.00	0.0192	0.024	0.0006	0.03
g	20	78.8700	99.99	0.0202	0.024	0.0007	0.03
B	21	86.7326	119.98	0.0212	0.024	0.0007	0.03
ä	22	94.5899	139.96	0.0222	0.024	0.0008	0.03
GA	23	102.4680	160.00	0.0282	0.024	0.0008	0.04
AR	24	110.3290	179.99	0.0290	0.024	0.0009	0.04
0	25	118.1910	199.98	0.0298	0.024	0.0009	0.04
	26	126.0570	219.98	0.0306	0.024	0.0010	0.04
	27	133.926	239.99	0.0314	0.024	0.0010	0.04
	28	141.785	259.98	0.0322	0.024	0.0011	0.04

Tabela 18 - Incerteza da massa ajustada: calibração com tara

Tabela 19 - Incerteza da massa ajustada: calibração sem tara

	CÁLCULO DA INCERTEZA DA MASSA AJUSTADA											
		Indicação Ma multímetro ajust		Incerteza ajustada do multímetro	Incerteza do ajuste	Incerteza da massa padrão	Incerteza da massa ajustada					
	Pontos	Ind _{mv}	ma	U _{amv}	us	u _{mp}	u _{ma}					
		(mV)	(kg)	(mV)	(kg)	(kg)	(kg)					
	1	39.6166	1.00	0.0152	0.014	0.0000009	0.02					
	2	47.0974	20.02	0.0162	0.014	0.0003	0.02					
	3	54.9642	40.02	0.0172	0.014	0.0004	0.02					
ш	4	62.8270	60.01	0.0182	0.014	0.0005	0.02					
Ę	5	70.6943	80.01	0.0192	0.014	0.0006	0.02					
ğ	6	78.5540	99.99	0.0202	0.014	0.0007	0.02					
Ð	7	86.4241	120.00	0.0212	0.014	0.0007	0.03					
AS	8	94.2803	139.97	0.0222	0.014	0.0008	0.03					
B	9	102.1472	159.97	0.0282	0.014	0.0008	0.03					
GAR	10	110.0193	179.98	0.0290	0.014	0.0009	0.03					
-	11	117.8901	199.99	0.0298	0.014	0.0009	0.03					
	12	125.767	220.02	0.0306	0.014	0.0010	0.03					
	13	133.634	240.02	0.0314	0.014	0.0010	0.03					
	14	141.502	260.02	0.0322	0.014	0.0011	0.04					
	15	39.6158	0.99	0.0152	0.014	0.000009	0.02					
	16	47.0892	19.99	0.0162	0.014	0.0003	0.02					
	17	54.9579	40.00	0.0172	0.014	0.0004	0.02					
щ	18	62.8278	60.01	0.0182	0.014	0.0005	0.02					
E	19	70.6930	80.00	0.0192	0.014	0.0006	0.02					
g	20	78.5585	100.00	0.0202	0.014	0.0007	0.02					
ğ	21	86.4271	120.00	0.0212	0.014	0.0007	0.03					
Ä	22	94.2927	140.00	0.0222	0.014	0.0008	0.03					
g	23	102.1630	160.01	0.0282	0.014	0.0008	0.03					
AR	24	110.0270	180.00	0.0290	0.014	0.0009	0.03					
0	25	117.8860	199.98	0.0298	0.014	0.0009	0.03					
	26	125.7550	219.99	0.0306	0.014	0.0010	0.03					
	27	133.620	239.98	0.0314	0.014	0.0010	0.03					
	28	141.495	260.01	0.0322	0.014	0.0011	0.04					

O procedimento de **calibração com tara** da balança (Tabela 18) apresentou incertezas da massa ajustada (u_{ma}) de 0,03 kg na faixa de calibração de 0 kg até 140 kg, depois dessa faixa a incerteza aumenta para 0,04 kg e se mantém constante até o final da faixa (260 kg). O anterior acontece tanto para cargas ascendentes como para cargas descendentes.

Já o procedimento de **calibração sem tara da balança** (Tabela 19) apresentou valores de incertezas de 0,02 kg na faixa de calibração de 0 kg até 100 kg. Na faixa de calibração de 120 kg até 240 kg o valor da incerteza corresponde a 0,03 kg. No ponto de 260 kg, a incerteza equivale a 0,04 kg.

Em termos da incerteza de medição, comparando-se os dois resultados, confirma-se que a balança Alfa deve ser usada **sem tara e sem considerar o ponto zero**, pois conforme os resultados da comparação das técnicas de calibração, esta técnica transfere uma menor incerteza de ajuste e, consequentemente, uma menor incerteza associada ao processo de medição de massa.

4.2.6. Medição da massa de água no tubo acrílico

A Figura 31 apresenta a balança digital marca Ohaus modelo Explorer Pro, com capacidade máxima de 32 kg e resolução de 0,1 g. Este instrumento foi utilizado para medir a massa de água no tubo de acrílico do sistema gravimétrico.

Figura 31 – Balança digital Ohaus modelo Explorer Pro

Para se determinar o melhor procedimento para o uso deste instrumento, foram analisados e comparados metrologicamente quatro métodos de calibração da balança:

- Método #1: Com tara e adição discreta de massa (com retorno ao zero)
- Método #2: Com tara e adição incremental de massa (sem retorno ao zero)
- Método #3: Sem tara e adição discreta de massa (com retorno ao zero)
- Método #4: Sem tara e adição incremental de massa (sem retorno ao zero)

Para obter a equação de melhor ajuste, em todos os métodos, foram considerados dois casos: (i) ajuste dos dados levando-se em consideração o ponto zero da balança (32 pontos medidos) e (ii) ajuste dos dados sem levar em consideração o ponto zero da balança (30 pontos medidos). O anterior foi realizado, com o objetivo de determinar, em termos da incerteza associada à medição, a influência do zero da balança no processo de calibração.

A seguir descrevem-se e discutem-se cada método aplicado.

4.2.6.1. Método #1: Calibração com tara e adição discreta de massa

Neste método de calibração com tara e adição discreta de massa (com retorno ao zero) foi determinado o zero de referência da balança. Para determinar este valor foi transferido uma determinada massa do fluido de trabalho para a Torre A (parte desta água foi transferida ao tubo de acrílico) até que a balança indique uma massa de 7100 g \pm 100 g (massa do fluido e massa do tubo acrílico). Este valor de massa indicado pela balança corresponde ao valor mínimo para a interligação do sistema torre-tubo.

Seguido a este procedimento foi aplicada a operação tara da balança e o processo de calibração foi iniciado.

Para analisar a influência do zero de referência da balança, aplicou-se o seguinte procedimento assegurando-se que foram mantidas as condições de temperatura ambiente e pressão atmosférica:

- (i) anotar o valor indicado pela balança quando nenhuma massa padrão foi introduzida na célula de carga (balança sem carga);
- (ii) colocar uma massa padrão de 5g na balança e anotar o valor indicado;
- (iii) retirar a massa padrão e anotar o valor indicado pela balança sem carga;
- (iv) adicionar uma massa padrão de 2kg na balança e anotar o valor indicado;
- (v) repetir os passos (iii) e (iv) alternadamente incrementando a carga em 2kg até atingir a capacidade máxima da balança (32 kg).
- (vi) realizar o procedimento com cargas ascendente e logo com cargas descendente.
- (vii) analisar os dados da calibração considerando os valores de massa finais e iniciais, ou seja, aplicando-se a diferença entre ambos.

O uso deste método envolveu 31 dados experimentais tanto para cargas ascendentes quanto descendentes. Os dados da calibração são apresentados na Tabela 20.

		Carga Ascend	ente			C	arga Descend	ente	
	Valor nominal	Indicação	Temperatura	Pressão		Valor nominal	Indicação	Temperatura	Pressão
Pontos	do padrão	balança	ambiente	atmosférica	Pontos	do padrão	balança	ambiente	atmosférica
	(g)	(g)	(°C)	(mbar/abs)		(g)	(g)	(°C)	(mbar/abs)
1	0.00	-7513.1	24	1012.3	1	0.00	-7513.1	25	1012.3
2	5.00	-7508.1	24	1012.4	2	5.00	-7508.1	25	1012.3
3	0.00	-7513.1	24	1012.3	3	0.00	-7513.1	25	1012.3
4	1911.84	-5601.2	24	1012.3	4	1911.84	-5601.2	25	1012.3
5	0.00	-7513.1	24	1012.3	5	0.00	-7513.1	25	1012.3
6	3823.65	-3689.5	24	1012.3	6	3823.65	-3689.5	25	1012.4
7	0.00	-7513.1	24	1012.4	7	0.00	-7513.1	25	1012.3
8	6372.75	-1140.4	25	1012.3	8	6372.75	-1140.4	25	1012.3
9	0.00	-7513.1	25	1012.3	9	0.00	-7513.1	25	1012.3
10	7647.31	134.1	25	1012.3	10	7647.31	134.1	25	1012.3
11	0.00	-7513.1	25	1012.3	11	0.00	-7513.1	25	1012.3
12	10833.65	3320.5	25	1012.3	12	10833.65	3320.4	25	1012.3
13	0.00	-7513.1	25	1012.3	13	0.00	-7513.1	25	1012.3
14	12108.20	4595.0	25	1012.3	14	12108.20	4595.0	25	1012.3
15	0.00	-7513.1	25	1012.3	15	0.00	-7513.1	25	1012.3
16	14064.11	6550.9	25	1012.4	16	14064.11	6551.1	25	1012.3
17	0.00	-7513.1	25	1012.3	17	0.00	-7513.1	25	1012.4
18	19999.70	12486.9	25	1012.3	18	19999.70	12486.9	25	1012.4
19	0.00	-7513.1	25	1012.4	19	0.00	-7513.1	25	1012.4
20	21911.54	14398.6	25	1012.5	20	21911.54	14398.7	25	1012.5
21	0.00	-7513.1	25	1012.5	21	0.00	-7513.1	25	1012.4
22	23823.35	16310.4	25	1012.4	22	23823.35	16310.4	25	1012.4
23	0.00	-7513.1	25	1012.4	23	0.00	-7513.1	25	1012.3
24	26372.45	18859.4	25	1012.4	24	26372.45	18859.4	25	1012.5
25	0.00	-7513.1	25	1012.4	25	0.00	-7513.1	25	1012.4
26	27647.01	20134.0	25	1012.5	26	27647.01	20133.9	25	1012.4
27	0.00	-7513.1	25	1012.3	27	0.00	-7513.1	25	1012.4
28	30833.35	23320.3	25	1012.3	28	30833.35	23320.3	25	1012.4
29	0.00	-7513.1	25	1012.3	29	0.00	-7513.1	25	1012.4
30	31970.62	24457.6	25	1012.3	30	31970.62	24457.7	25	1012.4
31	0.00	-7513.1	25	1012.3	31	0.00	-7513.1	25	1012.3

Tabela 20 - Calibração com tara e adição discreta de massa

Para o tratamento dos dados calculou-se a massa específica do ar (Equação 19), a relação da aceleração da gravidade (Equação 20), o fator de empuxo (Equação 21) e a massa aparente (Equação 22).

Nas Tabelas 21 e 22, destacam-se o valor da massa aparente calculada e o valor de massa indicada pela balança, para as cargas ascendente e descendente. Aplicando-se o método dos mínimos quadrados, estes valores foram utilizados para obter a equação que melhor ajusta os dados experimentais.

	CARGA ASCENDENTE											
	Padrão			Balança	a	Temperatu	ra ambiente	Pressão at	mosférica	Massa espe	ecífica do Ar	
Pontos	Massa convencional do padrão	Incerteza (k=2)	Massa indicada	Massa aparente	Incerteza da massa aparente (k=2)	Indicada	Incerteza (k=2)	Indicada	Incerteza (k=2)	Calculada	Incerteza (k=2)	
	m _p	u _{mp}	mi	m _{ap}	u _{ap}	Tamb	u _{tamb}	Patm	u _{atm}	Par	u _{par}	
	(g)	(g)	(g)	(g)	(g)	(°C)	(°C)	(mbar/abs)	(mbar/abs)	(kg/m³)	(kg/m³)	
1	0.0	0.00000	0.0	0.00	0.00000	24.0	0.58	1012.3	0.15	1.187	0.0023	
2	5.0	0.00005	5.0	5.00	0.00005	24.0	0.58	1012.4	0.15	1.187	0.0023	
3	1911.8	0.00255	1911.9	1911.95	0.00267	24.0	0.58	1012.3	0.15	1.187	0.0023	
4	3823.7	0.00645	3823.6	3823.88	0.00666	24.0	0.58	1012.3	0.15	1.187	0.0023	
5	6372.7	0.00934	6372.7	6373.12	0.00973	24.5	0.58	1012.4	0.15	1.185	0.0023	
6	7647.3	0.00958	7647.2	7647.76	0.01012	25.0	0.58	1012.3	0.15	1.183	0.0023	
7	10833.7	0.01136	10833.6	10834.29	0.01226	25.0	0.58	1012.3	0.15	1.183	0.0023	
8	12108.2	0.01156	12108.1	12108.91	0.01265	25.0	0.58	1012.3	0.15	1.183	0.0023	
9	14064.1	0.01172	14064.0	14064.94	0.01316	25.0	0.58	1012.4	0.15	1.183	0.0023	
10	19999.7	0.30000	20000.0	20000.88	0.30014	25.0	0.58	1012.3	0.15	1.183	0.0023	
11	21911.5	0.30001	21911.7	21912.83	0.30017	25.0	0.58	1012.5	0.15	1.183	0.0023	
12	23823.4	0.30007	23823.5	23824.75	0.30026	25.0	0.58	1012.5	0.15	1.183	0.0023	
13	26372.4	0.30015	26372.5	26374.00	0.30037	25.0	0.58	1012.4	0.15	1.183	0.0023	
14	27647.0	0.30015	27647.1	27648.64	0.30040	25.0	0.58	1012.5	0.15	1.183	0.0023	
15	30833.4	0.30021	30833.4	30835.16	0.30052	25.0	0.58	1012.3	0.15	1.183	0.0023	
16	31970.6	0.30022	31970.7	31972.51	0.30054	25.0	0.58	1012.3	0.15	1.183	0.0023	
-												

Tabela 21 - Calibração da balança método #1: carga ascendente

Tabela 22 - Calibração da balança método #1: carga descendente

	CARGA DESCENDENTE												
	Padrão			Balanç	a	Temperatu	ra ambiente	Pressão at	mosférica	Massa espe	cífica do Ar		
Pontos	Massa convencional do padrão	Incerteza (k=2)	Massa indicada	Massa aparente	Incerteza da massa aparente	Indicada	Incerteza (k=2)	Indicada	Incerteza (k=2)	Calculada	Incerteza (k=2)		
	m _p	u _{mp}	mi	m _{ap}	u _{ap}	Tamb	u _{tamb}	Patm	u _{atm}	ρ _{ar}	u _{par}		
	(g)	(g)	(g)	(g)	(g)	(°C)	(°C)	(mbar/abs)	(mbar/abs)	(kg/m³)	(kg/m³)		
1	0.0	0.00000	0.0	0.00	0.00000	25.0	0.58	1012.3	0.15	1.183	0.0023		
2	5.0	0.00005	5.0	5.00	0.00005	25.0	0.58	1012.3	0.15	1.183	0.0023		
3	1911.8	0.00255	1911.9	1911.95	0.00267	25.0	0.58	1012.3	0.15	1.183	0.0023		
4	3823.7	0.00645	3823.6	3823.88	0.00666	25.0	0.58	1012.4	0.15	1.183	0.0023		
5	6372.7	0.00934	6372.7	6373.12	0.00973	25.0	0.58	1012.3	0.15	1.183	0.0023		
6	7647.3	0.00958	7647.2	7647.76	0.01012	25.0	0.58	1012.3	0.15	1.183	0.0023		
7	10833.7	0.01136	10833.5	10834.29	0.01226	25.0	0.58	1012.3	0.15	1.183	0.0023		
8	12108.2	0.01156	12108.1	12108.91	0.01265	25.0	0.58	1012.3	0.15	1.183	0.0023		
9	14064.1	0.01172	14064.2	14064.94	0.01316	25.0	0.58	1012.3	0.15	1.183	0.0023		
10	19999.7	0.30000	20000.0	20000.88	0.30014	25.0	0.58	1012.4	0.15	1.183	0.0023		
11	21911.5	0.30001	21911.8	21912.83	0.30017	25.0	0.58	1012.5	0.15	1.183	0.0023		
12	23823.4	0.30007	23823.5	23824.75	0.30026	25.0	0.58	1012.4	0.15	1.183	0.0023		
13	26372.4	0.30015	26372.5	26374.00	0.30037	25.0	0.58	1012.4	0.15	1.183	0.0023		
14	27647.0	0.30015	27647.0	27648.64	0.30040	25.0	0.58	1012.4	0.15	1.183	0.0023		
15	30833.4	0.30021	30833.4	30835.16	0.30052	25.0	0.58	1012.4	0.15	1.183	0.0023		
16	31970.6	0.30022	31970.8	31972.51	0.30054	25.0	0.58	1012.4	0.15	1.183	0.0023		

As Figuras 32 e 33 apresentam, respectivamente, as curvas de calibração para ambas as situações: considerando-se ou não o ponto zero.

Figura 32 – Calibração da balança pelo método #1 (32 pontos)

Figura 33 - Calibração da balança pelo método #1 (30 pontos)

4.2.6.2. Método #2: Calibração com tara e adição incremental de massa

Neste método de calibração com tara da balança e adição incremental de massa (sem retorno ao zero) foi determinado o zero de referência da balança e aplicou-se a operação tara da balança. A calibração foi realizada aplicando um ciclo contínuo de carga ascendente e outro de carga descendente ao longo da faixa de indicação da balança.

A Tabela 23 apresenta os dados da calibração para este método.

		Carga Ascen	dente		Carga Descendente					
	Valor nominal	Indicação	Temperatura	Pressão		Valor nominal	Indicação	Temperatura	Pressão	
Pontos	do padrão	balança	ambiente	atmosférica	Pontos	do padrão	balança	ambiente	atmosférica	
	(g)	(g)	(°C)	(mbar/abs)		(g)	(g)	(°C)	(mbar/abs)	
1	0.00	-7513.1	25	1012.3	1	0.00	-7513.1	25	1012.4	
2	5.00	-7508.1	25	1012.3	2	5.00	-7508.1	25	1012.4	
3	1911.84	-5601.2	25	1012.3	3	1911.84	-5601.2	25	1012.4	
4	3823.65	-3689.5	25	1012.3	4	3823.65	-3689.5	25	1012.4	
5	6372.75	-1140.3	25	1012.3	5	6372.75	-1140.4	25	1012.3	
6	7647.31	134.1	25	1012.3	6	7647.31	134.1	25	1012.4	
7	10833.65	3320.5	25	1012.3	7	10833.65	3320.3	25	1012.4	
8	12108.20	4595.0	25	1012.3	8	12108.20	4595.0	25	1012.4	
9	14064.11	6550.9	25	1012.3	9	14064.11	6551.2	25	1012.3	
10	19999.70	12486.9	25	1012.3	10	19999.70	12486.8	25	1012.4	
11	21911.54	14398.6	25	1012.4	11	21911.54	14398.8	25	1012.5	
12	23823.35	16310.4	25	1012.4	12	23823.35	16310.4	25	1012.4	
13	26372.45	18859.3	25	1012.4	13	26372.45	18859.3	25	1012.5	
14	27647.01	20134.0	25	1012.4	14	27647.01	20133.9	25	1012.5	
15	30833.35	23320.2	25	1012.4	15	30833.35	23320.3	25	1012.5	
16	31970.62	24457.5	25	1012.5	16	31970.62	24457.7	25	1012.5	

Tabela 23 – Calibração com tara e adição incremental de massa

As Tabelas 24 e 25 destacam os valores calculados da massa aparente calculada e os valores da massa indicada pela balança. Estes valores foram utilizados para ajustar os dados experimentais pelo método dos mínimos quadrados.

	CARGA ASCENDENTE										
	Padrão			Balan	ça	Temperatu	ra ambiente	Pressão at	mosférica	Massa espe	ecífica do Ar
Pontos	Massa convencional do padrão	Incerteza (k=2)	Massa indicada	Massa aparente	Incerteza da massa aparente (k=2)	Indicada	Incerteza (k=2)	Indicada	Incerteza (k=2)	Calculada	Incerteza (k=2)
	m _p	u _{mp}	m _i	m _{ap}	u _{ap}	Tamb	u _{tamb}	Patm	u _{atm}	Par	u _{par}
	(g)	(g)	(g)	(g)	(g)	(°C)	(°C)	(mbar/abs)	(mbar/abs)	(kg/m³)	(kg/m³)
1	0.0	0.00000	-7513.1	0.00	0.00000	25.0	0.58	1012.3	0.15	1.183	0.0023
2	5.0	0.00005	-7508.1	5.00	0.00005	25.0	0.58	1012.3	0.15	1.183	0.0023
3	1911.8	0.00255	-5601.2	1911.95	0.00267	25.0	0.58	1012.3	0.15	1.183	0.0023
4	3823.7	0.00645	-3689.5	3823.88	0.00666	25.0	0.58	1012.3	0.15	1.183	0.0023
5	6372.7	0.00934	-1140.3	6373.12	0.00973	25.0	0.58	1012.3	0.15	1.183	0.0023
6	7647.3	0.00958	134.1	7647.77	0.01012	25.0	0.58	1012.3	0.15	1.183	0.0023
7	10833.7	0.01136	3320.5	10834.29	0.01226	25.0	0.58	1012.3	0.15	1.183	0.0023
8	12108.2	0.01156	4595.0	12108.91	0.01265	25.0	0.58	1012.3	0.15	1.183	0.0023
9	14064.1	0.01172	6550.9	14064.94	0.01316	25.0	0.58	1012.3	0.15	1.183	0.0023
10	19999.7	0.30000	12486.9	20000.88	0.30014	25.0	0.58	1012.3	0.15	1.183	0.0023
11	21911.5	0.30001	14398.6	21912.83	0.30017	25.0	0.58	1012.4	0.15	1.183	0.0023
12	23823.4	0.30007	16310.4	23824.76	0.30026	25.0	0.58	1012.4	0.15	1.183	0.0023
13	26372.4	0.30015	18859.3	26374.00	0.30037	25.0	0.58	1012.4	0.15	1.183	0.0023
14	27647.0	0.30015	20134.0	27648.65	0.30040	25.0	0.58	1012.4	0.15	1.183	0.0023
15	30833.4	0.30021	23320.2	30835.17	0.30052	25.0	0.58	1012.4	0.15	1.183	0.0023
16	31970.6	0.30022	24457.5	31972.51	0.30054	25.0	0.58	1012.5	0.15	1.183	0.0023

Tabela 24 – Calibração da balança método #2: carga ascendente

Tabela 25 - Calibração da balança método #2: carga descendente

			1		CARGA DESCEND	ENIE				1	
	Padrão Massa convencional Incerteza			Balan	ça	Temperatu	ira ambiente	Pressão at	mostérica	Massa espe	ecifica do Ar
Pontos	Massa convencional do padrão	Incerteza (k=2)	Massa indicada	Massa aparente	Incerteza da massa aparente (k=2)	Indicada	Incerteza (k=2)	Indicada	Incerteza (k=2)	Calculada	Incerteza (k=2)
	m _p	u _{mp}	mi	m _{ap}	u _{ap}	Tamb	u _{tamb}	Patm	u _{atm}	ρ _{ar}	u _{par}
	(g)	(g)	(g)	(g)	(g)	(°C)	(°C)	(mbar/abs)	(mbar/abs)	(kg/m³)	(kg/m³)
1	0.0	0.00000	-7513.1	0.00	0.00000	25.0	0.58	1012.4	0.15	1.183	0.0023
2	5.0	0.00005	-7508.1	5.00	0.00005	25.0	0.58	1012.4	0.15	1.183	0.0023
3	1911.8	0.00255	-5601.2	1911.95	0.00267	25.0	0.58	1012.4	0.15	1.183	0.0023
4	3823.7	0.00645	-3689.5	3823.88	0.00666	25.0	0.58	1012.4	0.15	1.183	0.0023
5	6372.7	0.00934	-1140.4	6373.12	0.00973	25.0	0.58	1012.3	0.15	1.183	0.0023
6	7647.3	0.00958	134.1	7647.77	0.01012	25.0	0.58	1012.4	0.15	1.183	0.0023
7	10833.7	0.01136	3320.3	10834.29	0.01226	25.0	0.58	1012.4	0.15	1.183	0.0023
8	12108.2	0.01156	4595.0	12108.91	0.01265	25.0	0.58	1012.4	0.15	1.183	0.0023
9	14064.1	0.01172	6551.2	14064.94	0.01316	25.0	0.58	1012.3	0.15	1.183	0.0023
10	19999.7	0.30000	12486.8	20000.88	0.30014	25.0	0.58	1012.4	0.15	1.183	0.0023
11	21911.5	0.30001	14398.8	21912.83	0.30017	25.0	0.58	1012.5	0.15	1.183	0.0023
12	23823.4	0.30007	16310.4	23824.76	0.30026	25.0	0.58	1012.4	0.15	1.183	0.0023
13	26372.4	0.30015	18859.3	26374.00	0.30037	25.0	0.58	1012.5	0.15	1.183	0.0023
14	27647.0	0.30015	20133.9	27648.65	0.30040	25.0	0.58	1012.5	0.15	1.183	0.0023
15	30833.4	0.30021	23320.3	30835.17	0.30052	25.0	0.58	1012.5	0.15	1.183	0.0023
16	31970.6	0.30022	24457.7	31972.51	0.30054	25.0	0.58	1012.5	0.15	1.183	0.0023

As Figuras 34 e 35 apresentam, respectivamente, as curvas de calibração para o caso onde é considerado o ponto zero e para quando não é considerado este valor.

Figura 34 - Calibração da balança pelo método #2 (32 pontos)

Figura 35 - Calibração da balança pelo método #2 (30 pontos)

4.2.6.3. Método #3: Calibração sem tara e adição discreta de massa

Este método de calibração sem tara da balança e adição discreta de massa (com retorno ao zero) foi realizado sem aplicar a operação tara da balança, situação em que a balança indicou um valor de 0,8 g para a massa medida na situação sem carga (i.e.: sem massa padrão na célula de carga). Para analisar a influência do zero de referência da balança aplicou-se o procedimento descrito no item 4.3.6.1.

Para este caso, a Tabela 26 apresenta os dados da calibração:

Valor nominal do padrãoIndicação balançaTemperatura ambientePressão atmosféricaValor nominal do padrãoIndicação balançaTemperatura ambiente(g)(g)(°C)(mbar/abs)(g)(g)(°C)10.000.8241014.910.000.82425.005.8241014.925.005.824	Pressão iente atmosférica C) (mbar/abs) 5 1014.9 5 1014.9 5 1014.9 5 1014.9 5 1014.9 5 1014.9 5 1014.9 5 1014.9
Pontos do padrão balança ambiente atmosférica Pontos do padrão balança ambiente atmosférica Pontos do padrão balança ambiente atmosférica atmosf	iente atmosférica C) (mbar/abs) 5 1014.9 5 1014.9 5 1014.9 5 1014.9 5 1014.9 5 1014.9 5 1014.9 5 1014.9 5 1014.9 5 1014.9
(g) (g) (°C) (mbar/abs) (g) (g) (° 1 0.00 0.8 24 1014.9 1 0.00 0.8 22 2 5.00 5.8 24 1014.9 2 5.00 5.8 24 2 5.00 5.8 24 1014.9 2 5.00 5.8 24	(mbar/abs) 5 1014.9 5 1014.9 5 1014.9 5 1014.9 5 1014.9 5 1014.9 5 1014.9 5 1014.9 5 1014.9
1 0.00 0.8 24 1014.9 1 0.00 0.8 2 2 5.00 5.8 24 1014.9 2 5.00 5.8 2 2 5.00 5.8 24 1014.9 2 5.00 5.8 2	1014.9 1014.9 1014.9 1014.9 1014.9 1014.9 1014.9 1014.9 1014.9 1014.9
2 5.00 5.8 24 1014.9 2 5.00 5.8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1014.9 1014.9 1014.9 1014.9 1014.9 1014.9 1014.9 1014.9 1014.9
2 0.00 0.0 24 1014.0 2 0.00 0.0	1014.9 5 1014.9 5 1014.9 5 1014.9
3 0.00 0.8 24 1014.9 3 0.00 0.8 2	5 1014.9 5 1014.9
4 1911.84 1912.6 24 1014.8 4 1911.84 1912.6 2	5 1014.9
5 0.00 0.8 24 1014.7 5 0.00 0.8 2	
6 3823.65 3824.4 24 1014.6 6 3823.65 3824.4 2	5 1014.9
7 0.00 0.8 25 1014.7 7 0.00 0.8 2	5 1014.8
8 6372.75 6373.5 25 1014.8 8 6372.75 6373.5 2	5 1014.8
9 0.00 0.8 25 1014.8 9 0.00 0.8 2	5 1014.7
10 7647.31 7648.0 25 1014.7 10 7647.31 7648.0 2	5 1014.6
<u>11</u> 0.00 0.8 <u>25</u> 1014.7 <u>11</u> 0.00 0.8 <u>2</u>	5 1014.6
12 10833.65 10834.3 25 1014.6 12 10833.65 10834.4 2	5 1014.6
13 0.00 0.8 25 1014.7 13 0.00 0.8 2	5 1014.6
14 12108.20 12108.9 24 1014.6 14 12108.20 12108.9 2	5 1014.7
15 0.00 0.8 25 1014.7 15 0.00 0.8 2	.5 1014.7
16 14064.11 14064.8 25 1014.7 16 14064.11 14064.6 2	1014.6
17 0.00 0.8 25 1014.7 17 0.00 0.8 2	1014.6
18 19999.70 20000.7 24 1014.7 18 19999.70 20000.7 2	1014.6
19 0.00 0.8 25 1014.7 19 0.00 0.8 2	1014.7
20 21911.54 21912.5 25 1014.7 20 21911.54 21912.4 2	1014.7
21 0.00 0.8 25 1014.6 21 0.00 0.8 2	1014.7
22 23823.35 23824.4 25 1014.6 22 23823.35 23824.4 2	1014.6
23 0.00 0.8 25 1014.8 23 0.00 0.8 2	.5 1014.7
24 26372.45 26373.5 25 1014.6 24 26372.45 26373.5 2	.5 1014.8
25 0.00 0.8 25 1014.6 25 0.00 0.8 2	1014.8
26 27647.01 27648.0 25 1014.7 26 27647.01 27648.1 2	1014.7
27 0.00 0.8 25 1014.7 27 0.00 0.8 2	1014.7
28 30833.35 30834.4 25 1014.7 28 30833.35 30834.4 2	1014.7
29 0.00 0.8 25 1014.7 29 0.00 0.8 2	1014.7
30 31970.62 31971.7 25 1014.7 30 31970.62 31971.6 2	1014.7
<u>31 0.00 0.8 25 1014.7 31 0.00 0.8 2</u>	1014.7

Tabela 26 - Calibração sem tara e adição discreta de massa

As Tabelas 27 e 28 destacam os valores calculados da massa aparente e os valores da massa indicada pela balança. Estes valores foram utilizados para ajustar os dados experimentais pelo método dos mínimos quadrados.

	CARGA ASCENDENTE										
	Padrão			Balang	a	Temperate	ura ambiente	Pressão a	tmosférica	Massa espe	ecífica do Ar
Pontos	Massa convencional do padrão	Incerteza (k=2)	Massa indicada	Massa aparente	Incerteza da massa aparente (k=2)	Indicada	Incerteza (k=2)	Indicada	Incerteza (k=2)	Calculada	Incerteza (k=2)
	m _p	u _{mp}	mi	m _{ap}	u _{ap}	Tamb	u _{tamb}	Patm	u _{atm}	Par	u _{par}
	(g)	(g)	(g)	(g)	(g)	(°C)	(°C)	(mbar/abs)	(mbar/abs)	(kg/m³)	(kg/m³)
1	0.0	0.00000	0.0	0.00	0.00000	24.0	0.58	1014.9	0.15	1.190	0.0023
2	5.0	0.00005	5.0	5.00	0.00005	24.0	0.58	1014.9	0.15	1.190	0.0023
3	1911.8	0.00255	1911.8	1911.95	0.00267	24.0	0.58	1014.9	0.15	1.190	0.0023
4	3823.7	0.00645	3823.6	3823.88	0.00666	24.0	0.58	1014.7	0.15	1.190	0.0023
5	6372.7	0.00934	6372.7	6373.12	0.00973	25.0	0.58	1014.8	0.15	1.186	0.0023
6	7647.3	0.00958	7647.2	7647.76	0.01012	25.0	0.58	1014.8	0.15	1.186	0.0023
7	10833.7	0.01136	10833.5	10834.28	0.01226	25.0	0.58	1014.7	0.15	1.186	0.0023
8	12108.2	0.01156	12108.1	12108.91	0.01266	24.5	0.58	1014.7	0.15	1.188	0.0023
9	14064.1	0.01172	14064.0	14064.94	0.01316	25.0	0.58	1014.7	0.15	1.186	0.0023
10	19999.7	0.30000	19999.9	20000.87	0.30014	24.5	0.58	1014.7	0.15	1.188	0.0023
11	21911.5	0.30001	21911.7	21912.82	0.30017	25.0	0.58	1014.7	0.15	1.186	0.0023
12	23823.4	0.30007	23823.6	23824.74	0.30026	25.0	0.58	1014.6	0.15	1.186	0.0023
13	26372.4	0.30015	26372.7	26373.99	0.30037	25.0	0.58	1014.7	0.15	1.186	0.0023
14	27647.0	0.30015	27647.2	27648.63	0.30040	25.0	0.58	1014.7	0.15	1.186	0.0023
15	30833.4	0.30021	30833.6	30835.15	0.30052	25.0	0.58	1014.7	0.15	1.186	0.0023
16	31970.6	0.30022	31970.9	31972.49	0.30054	25.0	0.58	1014.7	0.15	1.186	0.0023

Tabela 27 – Calibração da balança método #3: carga ascendente

Tabela 28 - Calibração da balança método #3: carga descendente

	CARGA DESCENDENTE											
	Padrão			Balanç	a	Temperati	ura ambiente	Pressão at	tmosférica	Massa espe	ecífica do Ar	
Pontos	Massa convencional do padrão	Incerteza (k=2)	Massa indicada	Massa aparente	Incerteza da massa aparente (k=2)	Indicada	Incerteza (k=2)	Indicada	Incerteza (k=2)	Calculada	Incerteza (k=2)	
	m _p	u _{mp}	mi	m _{ap}	u _{ap}	Tamb	u _{tamb}	Patm	u _{atm}	ρ _{ar}	u _{par}	
	(g)	(g)	(g)	(g)	(g)	(°C)	(°C)	(mbar/abs)	(mbar/abs)	(kg/m ³)	(kg/m³)	
2	5.0	0.00005	5.0	5.00	0.00005	25.0	0.58	1014.9	0.15	1.186	0.0023	
3	1911.8	0.00255	1911.8	1911.95	0.00267	25.0	0.58	1014.9	0.15	1.186	0.0023	
4	3823.7	0.00645	3823.6	3823.88	0.00666	25.0	0.58	1014.9	0.15	1.186	0.0023	
5	6372.7	0.00934	6372.7	6373.12	0.00973	25.0	0.58	1014.8	0.15	1.186	0.0023	
6	7647.3	0.00958	7647.2	7647.76	0.01012	25.0	0.58	1014.7	0.15	1.186	0.0023	
7	10833.7	0.01136	10833.6	10834.28	0.01226	25.0	0.58	1014.6	0.15	1.186	0.0023	
8	12108.2	0.01156	12108.1	12108.91	0.01265	25.0	0.58	1014.7	0.15	1.186	0.0023	
9	14064.1	0.01172	14063.8	14064.94	0.01316	25.0	0.58	1014.7	0.15	1.186	0.0023	
10	19999.7	0.30000	19999.9	20000.87	0.30014	25.0	0.58	1014.6	0.15	1.186	0.0023	
11	21911.5	0.30001	21911.6	21912.82	0.30017	25.0	0.58	1014.7	0.15	1.186	0.0023	
12	23823.4	0.30007	23823.6	23824.74	0.30026	25.0	0.58	1014.7	0.15	1.186	0.0023	
13	26372.4	0.30015	26372.7	26373.99	0.30037	25.0	0.58	1014.8	0.15	1.186	0.0023	
14	27647.0	0.30015	27647.3	27648.63	0.30040	25.0	0.58	1014.8	0.15	1.186	0.0023	
15	30833.4	0.30021	30833.6	30835.15	0.30052	25.0	0.58	1014.7	0.15	1.186	0.0023	
16	31970.6	0.30022	31970.8	31972.49	0.30054	25.0	0.58	1014.7	0.15	1.186	0.0023	

As Figuras 36 e 37 apresentam, respectivamente, as curvas de calibração para o caso onde é considerado o ponto zero e para quando não é considerado este valor.

Figura 36 - Calibração da balança pelo método #3 (32 pontos)

Figura 37 – Calibração da balança pelo método #3 (30 pontos)

4.2.6.4. Método #4: Calibração sem tara e adição incremental de massa

Este método de calibração sem tara da balança e adição incremental de massa (sem retorno ao zero) foi realizado sem aplicar a operação tara da balança e realizando um ciclo continuo de carga ascendente e descendente.

A Tabela 29 apresenta os dados da calibração para este caso.

		Carga Ascent	dente				Carga Descen	dente	
	Valor nominal	Indicação	Temperatura	Pressão		Valor nominal	Indicação	Temperatura	Pressão
Pontos	do padrao	balança	ambiente	atmosferica	Pontos	do padrao	balança	ampiente	atmosferica
	(g)	(g)	(°C)	(mbar/abs)		(g)	(g)	(°C)	(mbar/abs)
1	0.00	0.8	25	1014.6	1	0.00	0.8	25	1014.9
2	5.00	5.8	25	1014.6	2	5.00	5.8	25	1014.9
3	1911.84	1912.6	25	1014.7	3	1911.84	1912.6	25	1014.9
4	3823.65	3824.4	25	1014.7	4	3823.65	3824.4	25	1014.8
5	6372.75	6373.5	25	1014.7	5	6372.75	6373.5	25	1014.8
6	7647.31	7648.0	25	1014.7	6	7647.31	7648.0	25	1014.8
7	10833.65	10834.4	25	1014.7	7	10833.65	10834.5	25	1014.7
8	12108.20	12108.9	25	1014.7	8	12108.20	12108.9	25	1014.7
9	14064.11	14064.8	25	1014.7	9	14064.11	14064.8	25	1014.6
10	19999.70	20000.7	25	1014.6	10	19999.70	20000.7	25	1014.6
11	21911.54	21912.5	25	1014.7	11	21911.54	21912.5	25	1014.6
12	23823.35	23824.4	25	1014.7	12	23823.35	23824.4	25	1014.5
13	26372.45	26373.4	25	1014.5	13	26372.45	26373.5	25	1014.6
14	27647.01	27648.0	25	1014.6	14	27647.01	27648.1	25	1014.6
15	30833.35	30834.3	25	1014.8	15	30833.35	30834.4	25	1014.7
16	31970.62	31971.6	25	1014.6	 16	31970.62	31971.6	25	1014.6

Tabela 29 - Calibração sem tara e adição incremental de massa

As Tabelas 30 e 31 destacam os valores calculados da massa aparente calculada e os valores da massa indicada pela balança. Estes valores foram utilizados para ajustar os dados experimentais pelo método dos mínimos quadrados.

	CARGA ASCENDENTE												
	Padrão			Balança	a	Temperatu	ura ambiente	Pressão at	tmosférica	Massa espe	cífica do Ar		
Pontos	Massa convencional do padrão	Incerteza (k=2)	Massa indicada	Massa aparente	Incerteza da massa aparente (k=2)	Indicada	Incerteza (k=2)	Indicada	Incerteza (k=2)	Calculada	Incerteza (k=2)		
	m _p	u _{mp}	mi	m _{ap}	u _{ap}	Tamb	u _{tamb}	Patm	u _{atm}	ρ _{ar}	u _{par}		
	(g)	(g)	(g)	(g)	(g)	(°C)	(°C)	(mbar/abs)	(mbar/abs)	(kg/m³)	(kg/m³)		
1	0.0	0.00000	0.8	0.00	0.00000	25.0	0.58	1014.6	0.15	1.186	0.0023		
2	5.0	0.00005	5.8	5.00	0.00005	25.0	0.58	1014.6	0.15	1.186	0.0023		
3	1911.8	0.00255	1912.6	1911.95	0.00267	25.0	0.58	1014.7	0.15	1.186	0.0023		
4	3823.7	0.00645	3824.4	3823.88	0.00666	25.0	0.58	1014.7	0.15	1.186	0.0023		
5	6372.7	0.00934	6373.5	6373.12	0.00973	25.0	0.58	1014.7	0.15	1.186	0.0023		
6	7647.3	0.00958	7648.0	7647.76	0.01012	25.0	0.58	1014.7	0.15	1.186	0.0023		
7	10833.7	0.01136	10834.4	10834.29	0.01226	25.0	0.58	1014.7	0.15	1.186	0.0023		
8	12108.2	0.01156	12108.9	12108.91	0.01265	25.0	0.58	1014.7	0.15	1.186	0.0023		
9	14064.1	0.01172	14064.8	14064.94	0.01316	25.0	0.58	1014.7	0.15	1.186	0.0023		
10	19999.7	0.30000	20000.7	20000.87	0.30014	25.0	0.58	1014.6	0.15	1.186	0.0023		
11	21911.5	0.30001	21912.5	21912.83	0.30017	25.0	0.58	1014.7	0.15	1.186	0.0023		
12	23823.4	0.30007	23824.4	23824.75	0.30026	25.0	0.58	1014.7	0.15	1.186	0.0023		
13	26372.4	0.30015	26373.4	26373.99	0.30037	25.0	0.58	1014.5	0.15	1.186	0.0023		
14	27647.0	0.30015	27648.0	27648.64	0.30040	25.0	0.58	1014.6	0.15	1.186	0.0023		
15	30833.4	0.30021	30834.3	30835.16	0.30052	25.0	0.58	1014.8	0.15	1.186	0.0023		
16	31970.6	0.30022	31971.6	31972.50	0.30054	25.0	0.58	1014.6	0.15	1.186	0.0023		

Tabela 30 - Calibração da balança método #4: carga ascendente

Tabela 31 - Calibração da balança método #4: carga descendente

	CARGA DESCENDENTE											
	Padrão			Balanç	a	Temperati	ura ambiente	Pressão at	tmosférica	Massa espe	ecífica do Ar	
Pontos	Massa convencional do padrão	Incerteza (k=2)	Massa indicada	Massa aparente	Incerteza da massa aparente (k=2)	Indicada	Incerteza (k=2)	Indicada	Incerteza (k=2)	Calculada	Incerteza (k=2)	
	m _p	u _{mp}	mi	m _{ap}	u _{ap}	Tamb	u _{tamb}	Patm	u _{atm}	ρ _{ar}	u _{par}	
	(g)	(g)	(g)	(g)	(g)	(°C)	(°C)	(mbar/abs)	(mbar/abs)	(kg/m³)	(kg/m³)	
1	0.0	0.00000	0.8	0.00	0.00000	25.0	0.58	1014.9	0.15	1.186	0.0023	
2	5.0	0.00005	5.8	5.00	0.00005	25.0	0.58	1014.9	0.15	1.186	0.0023	
3	1911.8	0.00255	1912.6	1911.95	0.00267	25.0	0.58	1014.9	0.15	1.186	0.0023	
4	3823.7	0.00645	3824.4	3823.88	0.00666	25.0	0.58	1014.8	0.15	1.186	0.0023	
5	6372.7	0.00934	6373.5	6373.12	0.00973	25.0	0.58	1014.8	0.15	1.186	0.0023	
6	7647.3	0.00958	7648.0	7647.76	0.01012	25.0	0.58	1014.8	0.15	1.186	0.0023	
7	10833.7	0.01136	10834.5	10834.29	0.01226	25.0	0.58	1014.7	0.15	1.186	0.0023	
8	12108.2	0.01156	12108.9	12108.91	0.01265	25.0	0.58	1014.7	0.15	1.186	0.0023	
9	14064.1	0.01172	14064.8	14064.94	0.01316	25.0	0.58	1014.6	0.15	1.186	0.0023	
10	19999.7	0.30000	20000.7	20000.87	0.30014	25.0	0.58	1014.6	0.15	1.186	0.0023	
11	21911.5	0.30001	21912.5	21912.83	0.30017	25.0	0.58	1014.6	0.15	1.186	0.0023	
12	23823.4	0.30007	23824.4	23824.75	0.30026	25.0	0.58	1014.5	0.15	1.186	0.0023	
13	26372.4	0.30015	26373.5	26373.99	0.30037	25.0	0.58	1014.6	0.15	1.186	0.0023	
14	27647.0	0.30015	27648.1	27648.64	0.30040	25.0	0.58	1014.6	0.15	1.186	0.0023	
15	30833.4	0.30021	30834.4	30835.16	0.30052	25.0	0.58	1014.7	0.15	1.186	0.0023	
16	31970.6	0.30022	31971.6	31972.50	0.30054	25.0	0.58	1014.6	0.15	1,186	0.0023	

As Figuras 38 e 39 apresentam, respectivamente, as curvas de calibração para o caso onde é considerado o ponto zero e para quando não é considerado este valor.

Figura 38 – Calibração da balança pelo método #4 (32 pontos)

4.2.6.5. Comparação dos diferentes procedimentos de calibração

O teste da média zero (Botero et al., 2009) foi aplicado para determinar se os procedimentos de calibração da balança (com tara e sem tara) podem ser considerados estatisticamente iguais para um nível de confiança de 95,45%.

A seguir foram analisados os seguintes dois grupos de procedimentos de calibração:

- (i) calibração com tara da balança:
 - adição discreta de massa (com retorno ao zero)
 - adição incremental de massa (sem retorno ao zero)
- (ii) calibração sem tara da balança:
 - adição discreta de massa (com retorno ao zero)
 - adição incremental de massa (sem retorno ao zero)

Para o primeiro grupo (calibração com tara da balança) as Tabelas 32 e 33 apresentam os resultados da aplicação do teste da média zero para as duas situações de teste: considerando-se (32 pontos) ou não (30 pontos) o zero da balança no processo de calibração.

		TESTE DA MEDIA ZERO												
				COM RETORNO PA	ARA O ZERO					SEM RETORNO	PARA O ZERO			- Estatística do
	Pontos	Massa indica	Massa	Incerteza da massa	Incerteza	Incerteza	Incerteza da	Massa indica	Massa	Incerteza da massa	Incerteza de	Incerteza da	Incerteza da	teste
		pela balança	ajustada	indicada (k=2)	de ajuste	da balança	massa ajustada	pela balança	ajustada	indicada (k=2)	ajuste	balança	massa ajustada	
		×1	Y 1	u _{mp}	us	u _{bel}	u _{me}	x ₂	¥2	u _{mp}	us	Ubel	u _{ma}	Z
	1	0.0	0.05	0.00000	0.104	0.058	0.12	-7513.1	0.03	0.00000	0.124	0.058	0.14	0.07
	2	5.0	5.05	0.00005	0.104	0.058	0.12	-7508.1	5.03	0.00005	0.124	0.058	0.14	0.07
	3	1911.9	1912.05	0.00255	0.104	0.058	0.12	-5601.2	1912.04	0.00255	0.124	0.058	0.14	0.06
	4	3823.6	3823.85	0.00645	0.104	0.058	0.12	-3689.5	3823.84	0.00645	0.124	0.058	0.14	0.05
щ	5	6372.7	6373.09	0.00934	0.104	0.058	0.12	-1140.3	6373.18	0.00934	0.124	0.058	0.14	0.52
E	6	7647.2	7647.66	0.00958	0.104	0.058	0.12	134.1	7647.65	0.00958	0.124	0.058	0.14	0.03
ā	7	10833.6	10834.23	0.01136	0.104	0.058	0.12	3320.5	10834.23	0.01136	0.124	0.058	0.14	0.01
U	8	12108.1	12108.80	0.01156	0.104	0.058	0.12	4595	12108.80	0.01156	0.124	0.058	0.14	0.00
AS	9	14064.0	14064.80	0.01172	0.104	0.058	0.12	6550.9	14064.81	0.01172	0.124	0.058	0.14	0.01
ģ	10	20000.0	20001.13	0.30002	0.104	0.058	0.32	12486.9	20001.13	0.30002	0.124	0.058	0.33	0.02
3	11	21911.7	21912.93	0.30003	0.104	0.058	0.32	14398.6	21912.94	0.30003	0.124	0.058	0.33	0.02
	12	23823.5	23824.83	0.30009	0.104	0.058	0.32	16310.4	23824.84	0.30009	0.124	0.058	0.33	0.02
	13	26372.5	26373.97	0.30016	0.104	0.058	0.32	18859.3	26373.88	0.30016	0.124	0.058	0.33	0.19
	14	27647.1	27648.64	0.30017	0.104	0.058	0.32	20134	27648.65	0.30017	0.124	0.058	0.33	0.03
	15	30833.4	30835.11	0.30023	0.104	0.058	0.32	23320.2	30835.03	0.30023	0.124	0.058	0.33	0.18
	16	31970.7	31972.47	0.30023	0.104	0.058	0.32	24457.5	31972.39	0.30023	0.124	0.058	0.33	0.17
	17	0.0	0.05	0.00000	0.104	0.058	0.12	-7513.1	0.03	0.00000	0.124	0.058	0.14	0.07
	18	5.0	5.05	0.00005	0.104	0.058	0.12	-7508.1	5.03	0.00005	0.124	0.058	0.14	0.07
	19	1911.9	1912.05	0.00255	0.104	0.058	0.12	-5601.2	1912.04	0.00255	0.124	0.058	0.14	0.06
	20	3823.6	3823.85	0.00645	0.104	0.058	0.12	-3689.5	3823.84	0.00645	0.124	0.058	0.14	0.05
щ	21	6372.7	6373.09	0.00934	0.104	0.058	0.12	-1140.4	6373.08	0.00934	0.124	0.058	0.14	0.03
EN.	22	7647.2	7647.66	0.00958	0.104	0.058	0.12	134.1	7647.65	0.00958	0.124	0.058	0.14	0.03
ā	23	10833.5	10834.13	0.01136	0.104	0.058	0.12	3320.3	10834.03	0.01136	0.124	0.058	0.14	0.56
8	24	12108.1	12108.80	0.01156	0.104	0.058	0.12	4595	12108.80	0.01156	0.124	0.058	0.14	0.00
ä	25	14064.2	14065.00	0.01172	0.104	0.058	0.12	6551.2	14065.11	0.01172	0.124	0.058	0.14	0.56
45	26	20000.0	20001.13	0.30002	0.104	0.058	0.32	12486.8	20001.03	0.30002	0.124	0.058	0.33	0.20
AR	27	21911.8	21913.03	0.30003	0.104	0.058	0.32	14398.8	21913.14	0.30003	0.124	0.058	0.33	0.24
0	28	23823.5	23824.83	0.30009	0.104	0.058	0.32	16310.4	23824.84	0.30009	0.124	0.058	0.33	0.02
	29	26372.5	26373.97	0.30016	0.104	0.058	0.32	18859.3	26373.88	0.30016	0.124	0.058	0.33	0.19
	30	27647.0	27648.54	0.30017	0.104	0.058	0.32	20133.9	27648.55	0.30017	0.124	0.058	0.33	0.03
	31	30833.4	30835.11	0.30023	0.104	0.058	0.32	23320.3	30835.13	0.30023	0.124	0.058	0.33	0.04
	32	31970.8	31972.57	0.30023	0.104	0.058	0.32	24457.7	31972.59	0.30023	0.124	0.058	0.33	0.04

Tabela 32 – Teste da media zero: calibração com tara (inclui zero)

Tabela 33 – Teste da media zero: calibração com tara (não inclui zero)

		TESTE DA MEDIA ZERO												
				COM RETORNO PA	ARA O ZERO					SEM RETORNO	PARA O ZERO			Frankfatter de
	Pontos	Massa indica	Massa	Incerteza da massa	Incerteza	Incerteza	Incerteza da	Massa indica	Massa	Incerteza da massa	Incerteza de	Incerteza da	Incerteza da	teste
		pela balança	ajustada	indicada (k=2)	de ajuste	da balança	massa ajustada	pela balança	ajustada	indicada (k=2)	ajuste	balança	massa ajustada	
		×1	¥1	u _{mp}	us	u _{bel}	u _{ma}	x2	¥2	u _{mp}	us	u _{bel}	u _{ma}	z
	1	5.0	5.06	0.00005	0.107	0.058	0.12	-7508.1	5.04	0.00005	0.128	0.058	0.14	0.10
	2	1911.9	1912.06	0.00255	0.107	0.058	0.12	-5601.2	1912.04	0.00255	0.128	0.058	0.14	0.07
	3	3823.6	3823.86	0.00645	0.107	0.058	0.12	-3689.5	3823.85	0.00645	0.128	0.058	0.14	0.05
	4	6372.7	6373.09	0.00934	0.107	0.058	0.12	-1140.3	6373.19	0.00934	0.128	0.058	0.14	0.51
Ë	5	7647.2	7647.66	0.00958	0.107	0.058	0.12	134.1	7647.66	0.00958	0.128	0.058	0.14	0.01
E S	6	10833.6	10834.23	0.01136	0.107	0.058	0.12	3320.5	10834.23	0.01136	0.128	0.058	0.14	0.02
E	7	12108.1	12108.80	0.01156	0.107	0.058	0.12	4595	12108.80	0.01156	0.128	0.058	0.14	0.03
ŝ	8	14064.0	14064.80	0.01172	0.107	0.058	0.12	6550.9	14064.81	0.01172	0.128	0.058	0.14	0.06
Ā	9	20000.0	20001.12	0.30002	0.107	0.058	0.32	12486.9	20001.14	0.30002	0.128	0.058	0.33	0.05
Se	10	21911.7	21912.92	0.30003	0.107	0.058	0.32	14398.6	21912.94	0.30003	0.128	0.058	0.33	0.06
5	11	23823.5	23824.82	0.30009	0.107	0.058	0.32	16310.4	23824.85	0.30009	0.128	0.058	0.33	0.06
	12	26372.5	26373.95	0.30016	0.107	0.058	0.32	18859.3	26373.89	0.30016	0.128	0.058	0.33	0.14
	13	27647.1	27648.62	0.30017	0.107	0.058	0.32	20134	27648.66	0.30017	0.128	0.058	0.33	0.08
	14	30833.4	30835.09	0.30023	0.107	0.058	0.32	23320.2	30835.03	0.30023	0.128	0.058	0.33	0.12
	15	31970.7	31972.45	0.30023	0.107	0.058	0.32	24457.5	31972.40	0.30023	0.128	0.058	0.33	0.12
	16	5.0	5.06	0.00005	0.107	0.058	0.12	-7508.1	5.04	0.00005	0.128	0.058	0.14	0.10
	17	1911.9	1912.06	0.00255	0.107	0.058	0.12	-5601.2	1912.04	0.00255	0.128	0.058	0.14	0.07
	18	3823.6	3823.86	0.00645	0.107	0.058	0.12	-3689.5	3823.85	0.00645	0.128	0.058	0.14	0.05
	19	6372.7	6373.09	0.00934	0.107	0.058	0.12	-1140.4	6373.09	0.00934	0.128	0.058	0.14	0.03
Ë	20	7647.2	7647.66	0.00958	0.107	0.058	0.12	134.1	7647.66	0.00958	0.128	0.058	0.14	0.01
E C	21	10833.5	10834.13	0.01136	0.107	0.058	0.12	3320.3	10834.03	0.01136	0.128	0.058	0.14	0.52
E.	22	12108.1	12108.80	0.01156	0.107	0.058	0.12	4595	12108.80	0.01156	0.128	0.058	0.14	0.03
ŭ	23	14064.2	14065.00	0.01172	0.107	0.058	0.12	6551.2	14065.11	0.01172	0.128	0.058	0.14	0.59
AD	24	20000.0	20001.12	0.30002	0.107	0.058	0.32	12486.8	20001.04	0.30002	0.128	0.058	0.33	0.17
2	25	21911.8	21913.02	0.30003	0.107	0.058	0.32	14398.8	21913.14	0.30003	0.128	0.058	0.33	0.27
8	26	23823.5	23824.82	0.30009	0.107	0.058	0.32	16310.4	23824.85	0.30009	0.128	0.058	0.33	0.06
	27	26372.5	26373.95	0.30016	0.107	0.058	0.32	18859.3	26373.89	0.30016	0.128	0.058	0.33	0.14
	28	27647.0	27648.52	0.30017	0.107	0.058	0.32	20133.9	27648.56	0.30017	0.128	0.058	0.33	0.08
	29	30833.4	30835.09	0.30023	0.107	0.058	0.32	23320.3	30835.13	0.30023	0.128	0.058	0.33	0.09
	30	31970.8	31972.55	0.30023	0.107	0.058	0.32	24457.7	31972.60	0.30023	0.128	0.058	0.33	0.10

Para o segundo grupo (calibração sem tara da balança), as Tabelas 34 e 35, resumem os resultados da aplicação do teste da média zero.

	TESTE DA MEDIA ZERO													
				COM RETORNO F	ARA O ZERO)				SEM RETORNO	PARA O ZERO			- Estatística do
	Pontos	Massa indica pela balança	Massa ajustada	Incerteza da massa indicada (k=2)	Incerteza de ajuste	Incerteza da balança	Incerteza da massa ajustada	Massa indica pela balança	Massa ajustada	Incerteza da massa indicada (k=2)	Incerteza de ajuste	Incerteza da balança	Incerteza da massa ajustada	teste
		×1	¥1	u _{mp}	u _s	Ubel	Ume	x ₂	¥2	u _{mp}	u,	Ubel	u _{me}	Z
	1	0.0	0.11	0.00000	0.238	0.058	0.24	0.8	0.09	0.00000	0.083	0.058	0.10	0.09
	2	5.0	5.11	0.00005	0.238	0.058	0.24	5.8	5.09	0.00005	0.083	0.058	0.10	0.09
	3	1911.8	1912.00	0.00255	0.238	0.058	0.24	1912.6	1911.98	0.00255	0.083	0.058	0.10	0.08
	4	3823.6	3823.89	0.00645	0.238	0.058	0.24	3824.4	3823.88	0.00645	0.083	0.058	0.10	0.07
	5	6372.7	6373.11	0.00934	0.238	0.058	0.25	6373.5	6373.10	0.00934	0.083	0.058	0.10	0.05
Ē	6	7647.2	7647.67	0.00958	0.238	0.058	0.25	7648	7647.66	0.00958	0.083	0.058	0.10	0.04
ä	7	10833.5	10834.12	0.01136	0.238	0.058	0.25	10834.4	10834.22	0.01136	0.083	0.058	0.10	0.36
5	8	12108.1	12108.78	0.01156	0.238	0.058	0.25	12108.9	12108.78	0.01156	0.083	0.058	0.10	0.00
A AS	9	14064.0	14064.77	0.01172	0.238	0.058	0.25	14064.8	14064.78	0.01172	0.083	0.058	0.10	0.01
g	10	19999.9	20000.95	0.30001	0.238	0.058	0.39	20000.7	20000.97	0.30001	0.083	0.058	0.32	0.03
- AR	11	21911.7	21912.84	0.30002	0.238	0.058	0.39	21912.5	21912.86	0.30003	0.083	0.058	0.32	0.04
0	12	23823.6	23824.83	0.30008	0.238	0.058	0.39	23824.4	23824.86	0.30008	0.083	0.058	0.32	0.05
	13	26372.7	26374.05	0.30016	0.238	0.058	0.39	26373.4	26373.98	0.30016	0.083	0.058	0.32	0.14
	14	27647.2	27648.61	0.30017	0.238	0.058	0.39	27648	27648.64	0.30017	0.083	0.058	0.32	0.06
	15	30833.6	30835.16	0.30023	0.238	0.058	0.39	30834.3	30835.10	0.30023	0.083	0.058	0.32	0.13
	16	31970.9	31972.52	0.30023	0.238	0.058	0.39	31971.6	31972.45	0.30023	0.083	0.058	0.32	0.12
	17	0.0	0.11	0.00000	0.238	0.058	0.24	0.8	0.09	0.00000	0.083	0.058	0.10	0.09
	18	5.0	5.11	0.00005	0.238	0.058	0.24	5.8	5.09	0.00005	0.083	0.058	0.10	0.09
	19	1911.8	1912.00	0.00255	0.238	0.058	0.24	1912.6	1911.98	0.00255	0.083	0.058	0.10	0.08
	20	3823.6	3823.89	0.00645	0.238	0.058	0.24	3824.4	3823.88	0.00645	0.083	0.058	0.10	0.07
μ	21	6372.7	6373.11	0.00934	0.238	0.058	0.25	6373.5	6373.10	0.00934	0.083	0.058	0.10	0.05
z	22	7647.2	7647.67	0.00958	0.238	0.058	0.25	7648	7647.66	0.00958	0.083	0.058	0.10	0.04
Q	23	10833.6	10834.22	0.01136	0.238	0.058	0.25	10834.5	10834.32	0.01136	0.083	0.058	0.10	0.36
U	24	12108.1	12108.78	0.01156	0.238	0.058	0.25	12108.9	12108.78	0.01156	0.083	0.058	0.10	0.00
ä	25	14063.8	14064.57	0.01172	0.238	0.058	0.25	14064.8	14064.78	0.01172	0.083	0.058	0.10	0.76
g	26	19999.9	20000.95	0.30001	0.238	0.058	0.39	20000.7	20000.97	0.30001	0.083	0.058	0.32	0.03
AR	27	21911.6	21912.74	0.30002	0.238	0.058	0.39	21912.5	21912.86	0.30003	0.083	0.058	0.32	0.24
0	28	23823.6	23824.83	0.30008	0.238	0.058	0.39	23824.4	23824.86	0.30008	0.083	0.058	0.32	0.05
	29	26372.7	26374.05	0.30016	0.238	0.058	0.39	26373.5	26374.08	0.30016	0.083	0.058	0.32	0.06
	30	27647.3	27648.71	0.30017	0.238	0.058	0.39	27648.1	27648.74	0.30017	0.083	0.058	0.32	0.06
	31	30833.6	30835.16	0.30023	0.238	0.058	0.39	30834.4	30835.20	0.30023	0.083	0.058	0.32	0.07
	32	31970.8	31972.42	0.30023	0.238	0.058	0.39	31971.6	31972.45	0.30023	0.083	0.058	0.32	0.08

Tabela 34 – Teste da media zero: calibração sem tara (inclui zero)

Tabela 35 – Teste da media zero: calibração sem tara (não inclui zero)

							TESTE	TE DA MEDIA ZERO						
				COM RETORNO P.	ARA O ZERC)				SEM RETORNO	PARA O ZERO			- Estatística do
	Pontos	Massa indica pela balança	Massa ajustada	Incerteza da massa indicada (k=2)	Incerteza de ajuste	incerteza da balança	Incerteza da massa ajustada	Massa indica pela balança	Massa ajustada	Incerteza da massa indicada (k=2)	Incerteza de ajuste	incerteza da balança	Incerteza da massa ajustada	teste
		×1	¥1	Ump	u,	Ubel	u _{me}	x ₂	¥2	u _{mp}	u,	Ubel	u _{me}	Z
	1	5.0	5.14	0.00005	0.105	0.058	0.12	5.8	5.11	0.00005	0.082	0.058	0.10	0.20
	2	1911.8	1912.03	0.00255	0.105	0.058	0.12	1912.6	1912.00	0.00255	0.082	0.058	0.10	0.17
	3	3823.6	3823.91	0.00645	0.105	0.058	0.12	3824.4	3823.89	0.00645	0.082	0.058	0.10	0.15
	4	6372.7	6373.13	0.00934	0.105	0.058	0.12	6373.5	6373.11	0.00934	0.082	0.058	0.10	0.11
₽	5	7647.2	7647.69	0.00958	0.105	0.058	0.12	7648	7647.67	0.00958	0.082	0.058	0.10	0.10
EN	6	10833.5	10834.14	0.01136	0.105	0.058	0.12	10834.4	10834.23	0.01136	0.082	0.058	0.10	0.58
EN	7	12108.1	12108.79	0.01156	0.105	0.058	0.12	12108.9	12108.79	0.01156	0.082	0.058	0.10	0.04
SCI	8	14064.0	14064.78	0.01172	0.105	0.058	0.12	14064.8	14064.78	0.01172	0.082	0.058	0.10	0.02
A.	9	19999.9	20000.96	0.30001	0.105	0.058	0.32	20000.7	20000.97	0.30001	0.082	0.058	0.32	0.02
Sa l	10	21911.7	21912.85	0.30002	0.105	0.058	0.32	21912.5	21912.86	0.30003	0.082	0.058	0.32	0.03
3	11	23823.6	23824.83	0.30008	0.105	0.058	0.32	23824.4	23824.85	0.30008	0.082	0.058	0.32	0.04
	12	26372.7	26374.05	0.30016	0.105	0.058	0.32	26373.4	26373.97	0.30016	0.082	0.058	0.32	0.17
	13	27647.2	27648.61	0.30017	0.105	0.058	0.32	27648	27648.63	0.30017	0.082	0.058	0.32	0.05
	14	30833.6	30835.16	0.30023	0.105	0.058	0.32	30834.3	30835.09	0.30023	0.082	0.058	0.32	0.15
	15	31970.9	31972.51	0.30023	0.105	0.058	0.32	31971.6	31972.44	0.30023	0.082	0.058	0.32	0.15
	16	5.0	5.14	0.00005	0.105	0.058	0.12	5.8	5.11	0.00005	0.082	0.058	0.10	0.20
	17	1911.8	1912.03	0.00255	0.105	0.058	0.12	1912.6	1912.00	0.00255	0.082	0.058	0.10	0.17
	18	3823.6	3823.91	0.00645	0.105	0.058	0.12	3824.4	3823.89	0.00645	0.082	0.058	0.10	0.15
	19	6372.7	6373.13	0.00934	0.105	0.058	0.12	6373.5	6373.11	0.00934	0.082	0.058	0.10	0.11
Ë	20	7647.2	7647.69	0.00958	0.105	0.058	0.12	7648	7647.67	0.00958	0.082	0.058	0.10	0.10
E C	21	10833.6	10834.24	0.01136	0.105	0.058	0.12	10834.5	10834.33	0.01136	0.082	0.058	0.10	0.58
EN	22	12108.1	12108.79	0.01156	0.105	0.058	0.12	12108.9	12108.79	0.01156	0.082	0.058	0.10	0.04
ä	23	14063.8	14064.58	0.01172	0.105	0.058	0.12	14064.8	14064.78	0.01172	0.082	0.058	0.10	1.26
P D	24	19999.9	20000.96	0.30001	0.105	0.058	0.32	20000.7	20000.97	0.30001	0.082	0.058	0.32	0.02
2	25	21911.6	21912.75	0.30002	0.105	0.058	0.32	21912.5	21912.86	0.30002	0.082	0.058	0.32	0.25
8	26	23823.6	23824.83	0.30008	0.105	0.058	0.32	23824.4	23824.85	0.30008	0.082	0.058	0.32	0.04
	27	26372.7	26374.05	0.30016	0.105	0.058	0.32	26373.5	26374.07	0.30016	0.082	0.058	0.32	0.05
	28	27647.3	27648.71	0.30017	0.105	0.058	0.32	27648.1	27648.73	0.30017	0.082	0.058	0.32	0.05
	29	30833.6	30835.16	0.30023	0.105	0.058	0.32	30834.4	30835.19	0.30023	0.082	0.058	0.32	0.07
	30	31970.8	31972.41	0.30023	0.105	0.058	0.32	31971.6	31972.44	0.30023	0.082	0.058	0.32	0.07

Nas tabelas (32), (33), (34) e (35):

 $u_{bal} = (1,000054) \cdot (0,1/\sqrt{3})$; (g).

 $Z = |y_1 - y_2|/U_{ma}$ \therefore $y_1 e y_2$ são calculados a partir das respectivas equações de ajuste *Critério de avaliação:*

• Se Z ≤ 1, então os grupos são considerados estatisticamente iguais para um nível de confiança de 95,45%.

• Se Z > 1, então os grupos não podem ser considerados estatisticamente iguais para um nível de confiança de 95,45%.

A análise desses quatro procedimentos de calibração aplicados à balança Ohaus confirmam que:

- indistintamente da aplicação da operação tara, os procedimentos de calibração da balança Ohaus com ou sem retorno para o zero, podem ser considerados estatisticamente iguais para um nível de confiança de 95,45%.
- o zero da balança tem uma alta repetibilidade (como pode ser constatado nos dados dos diferentes procedimentos de calibração) e o impacto de considerar este valor no processo de calibração não afeta significativamente a incerteza associada a medição da massa. Assim, foram considerados 32 pontos para determinar a equação de ajuste dos dados experimentais.
- a Tabela 36 apresenta o valor da incerteza de ajuste (considerando o zero da balança), para cada procedimento de calibração aplicado.

Tabela 36 – Incerteza de ajuste considerando o ponto zero (32 pontos)

Técnica	u _s (g)	
Balanca com tara	Com retorno para o zero	0.104
balariça com tara	Sem retorno para o zero	0.124
Palanca com tara	Com retorno para o zero	0.106
balaliya Selli tara	Sem retorno para o zero	0.083

- a calibração da balança com retorno para o zero, foi aplicada para avaliar a repetibilidade do zero da balança. Pode-se observar pelos dados da calibração que este valor possui alta repetibilidade; a Tabela 36 mostra que a incerteza do ajuste (u_s) está em torno da resolução da balança (0,1 g).
- a Tabela 36 apresenta que na calibração da balança sem retorno para o zero, obteve-se uma incerteza de ajuste (u_s) menor para o caso onde a balança não é tarada. Embora o teste da media zero mostrou que estes resultados podem ser considerados estatisticamente iguais ao nível de confiança de 95,45%, com o objetivo de ser conservador no processo de medição de massa, escolheu-se a equação resultante da técnica balança com tara e sem retorno para o zero, como a expressão que melhor ajusta os dados experimentais (Equação 26).

$$m_a (g) = (1,000055 \cdot m_i + 7513,545977) \tag{26}$$

Nesta equação, m_a é a massa (medida em g) ajustada e m_i a massa indicada pela balança.

4.3. Processo de medição de volume pelo sistema gravimétrico

Descritos os distintos processos de calibração dos instrumentos utilizados e a confiabilidade metrológica dos processos de medição associados ao sistema gravimétrico, descreve-se, a seguir, o procedimento de medição de volume das torres que compõem o sistema gravimétrico. Este processo foi realizado em quatro etapas, ilustradas na Figura 40.

Figura 40 – Processo de medição de volume do sistema gravimétrico

Descrevem-se, a seguir essas quatro etapas do processo de medição de volume pelo sistema gravimétrico:

- Etapa 1, uma massa de água (no presente caso de 150 kg) foi introduzida no Tanque T. Nesta etapa são medidas: (i) a temperatura interna (temperatura de equilíbrio entre o ar e a água); (ii) a pressão do ar (pressão atmosférica) e (iii) a massa do sistema (massa total da água, ar e Tanque T). A partir desses dados calcula-se o volume do ar (V₁) contido no Tanque T.
- Etapa 2, o interior do Tanque T foi pressurizado com ar comprimido na pressão nominal de 4 Mpa, quando foram medidos os novos valores de temperatura e pressão do ar e a massa do sistema ar-água-tanque. No curso desta etapa 2 considerou-se que o volume do ar manteve-se inalterado relativamente àquele calculado na etapa 1.
- Etapa 3, com o sistema pressurizado, a massa de água do Tanque T foi transferida para a Torre A até que a massa indicada pela balança Alfa registrasse um valor de 90 kg (valor determinado experimentalmente para assegurar esvaziamento do Tanque T). Nessa condição os valores de temperatura e pressão do ar (desta vez pressurizado) e a massa do sistema foram novamente medidos permitindo assim calcular o novo volume (V₂) do ar.
- Etapa 4, complementa o processo de medição de volume, despressurizando-se o Tanque T pela abertura da válvula de

despressurização de ar comprimido. Os valores de temperatura e pressão do ar, assim como a massa do sistema foram novamente medidos, fazendo-se a hipótese de que o volume do ar permaneceu inalterado.

A pressurização do sistema permitiu, assim, avaliar e analisar o efeito do ar comprimido no processo de medição de volume pelo sistema gravimétrico e aumentar a vazão no processo de transferência da massa de água do Tanque T para a Torre A.

Conforme detalhado no capítulo 5, o desempenho do sistema gravimétrico foi avaliado segundo três alternativas de análises do processo de medição de volume: (i) com o Tanque T pressurizado; (ii) com o Tanque T despressurizado e (iii) misto (Tanque T pressurizado e despressurizado).

5 Resultados e discussão

Visando a calibração de medidores de vazão de líquidos e utilizando-se o sistema gravimétrico estudado nesta pesquisa, este capítulo descreve analiticamente três alternativas de análises do procedimento de medição de volume dos reservatórios integrados ao sistema gravimétrico:

- (i) Alternativa #1: medição de volume com o tanque T pressurizado;
- (ii) Alternativa #2: medição de volume com o tanque T despressurizado;
- (iii) Alternativa #3: medição de volume misto (tanque T pressurizado e despressurizado).

A fundamentação teórica que justifica cada uma dessas alternativas é apresentada a seguir.

5.1. Alternativa #1: medição de volume com o tanque T pressurizado

Para esta situação em que o Tanque manteve-se pressurizado, foram realizados 58 experimentos ao longo da altura da Torre A (etapas 2 e 3, descritas na seção 4.3).

A seguir descrevem-se as características volumétricas do sistema gravimétrico, considerando-se (i) o volume de água na torre e no tubo acrílico e (ii) o volume de água no tubo acrílico.

5.1.1. Situação com água na torre e no tubo acrílico

5.1.1.1. Massa ajustada do sistema

A Equação (24) apresenta a expressão para o cálculo da massa ajustada inicial e final do sistema (tanque-ar- água) nas etapas 2 e 3; i.e.: massas m_{ai} e m_{af} , respectivamente. Esses valores foram calculados utilizando-se os valores da tensão (mV) medida pelo multímetro digital AGILENT. A incerteza associada à medição da massa ajustada foi calculada pela Equação (25).

5.1.1.2. Pressão do ar no tanque T

A Equação (15) apresenta a expressão para o cálculo da pressão do ar no tanque T. Estes valores foram determinados utilizando-se os valores medidos de corrente (mA) pelo multímetro digital AGILENT.

5.1.1.3. Temperatura da água

A Equação (11) apresenta a expressão para o cálculo da temperatura da água. A incerteza de medição da temperatura da água é calculada a partir da Equação (12).

5.1.1.4. Massa específica do ar

A Equação (19) apresenta a expressão para o cálculo da massa específica do ar. A incerteza de medição da massa específica do ar é calculada por meio da Equação (27).

$$u_{\rho_{ar}} = \rho_{ar} \cdot \sqrt{\left(\frac{u_{atm}}{p_{atm}}\right)^2 + \left(\frac{u_{T_{ar}}}{T_{ar}}\right)^2}$$
(27)

5.1.1.5. Massa específica da água

A Equação (13) apresenta a expressão para o cálculo da massa específica da água, utilizando-se o valor da temperatura da água. Aplicando-se a Equação (14) foi realizado o cálculo da incerteza da massa específica da água.

5.1.1.6. Fator de empuxo e relação da aceleração da gravidade

As Equações (20) e (21) apresentam, respectivamente, as expressões para o cálculo da relação da aceleração da gravidade e o cálculo do fator de empuxo.

5.1.1.7. Massa real da água transferida

A Equação (28) apresenta a expressão para o cálculo da massa real da água transferida em um ponto.

$$m_{\rm R} = \frac{m_{\rm ap}}{E \cdot R_{\rm g}} \tag{28}$$

Nesta expressão:

$$\begin{split} m_{ap} &= m_{a_i} - m_{a_f} \\ E &= \left(1 - \frac{\rho_{ar_i} + \rho_{ar_f}}{\rho_{w_i} + \rho_{w_f}} \right) \\ R_g &= \left(\frac{g_{puc}}{g_{ref}} \right) \end{split}$$

Aplicando o princípio da propagação da incerteza, a Equação (29) apresenta a expressão para o cálculo da incerteza de medição da massa real de água em cada ponto do processo de medição de volume pelo sistema gravimétrico.

$$u_{m_{R}}^{2} = \left(\frac{\partial m_{R}}{\partial m_{ai}} \cdot u_{m_{ai}}\right)^{2} + \left(\frac{\partial m_{R}}{\partial m_{af}} \cdot u_{m_{af}}\right)^{2} + \left(\frac{\partial m_{R}}{\partial \rho_{ar_{f}}} \cdot u_{\rho_{ar_{f}}}\right)^{2} + \left(\frac{\partial m_{R}}{\partial \rho_{ar_{i}}} \cdot u_{\rho_{ar_{i}}}\right)^{2} + \left(\frac{\partial m_{R}}{\partial \rho_{w_{i}}} \cdot u_{\rho_{w_{i}}}\right)^{2} + \left(\frac{\partial m_{R}}{\partial g_{puc}} \cdot u_{g_{puc}}\right)^{2} + \left(\frac{\partial m_{R}}{\partial g_{puc}} \cdot u_{g_{puc}}\right)^{2} + \left(\frac{\partial m_{R}}{\partial g_{ref}} \cdot u_{g_{ref}}\right)^{2}$$

$$(29)$$

Os coeficientes de sensibilidade são calculados pelas seguintes expressões:

$$\frac{\partial m_{R}}{\partial m_{ai}} = \frac{m_{R}}{m_{ai} - m_{af}}$$
(30)

$$\frac{\partial m_R}{\partial m_{af}} = \frac{-m_R}{m_{ai} - m_{af}}$$
(31)

$$\frac{\partial m_{R}}{\partial \rho_{ar_{f}}} = \frac{\partial m_{R}}{\partial \rho_{ar_{i}}} = \frac{m_{R}}{\left(1 - \frac{\rho_{ar_{i}} + \rho_{ar_{f}}}{\rho_{w_{i}} + \rho_{w_{f}}}\right)} \cdot \frac{1}{\rho_{w_{i}} + \rho_{w_{f}}}$$
(32)

$$\frac{\partial m_{\rm R}}{\partial \rho_{\rm w_f}} = \frac{\partial m_{\rm R}}{\partial \rho_{\rm w_i}} = \frac{-m_{\rm R}}{\left(1 - \frac{\rho_{\rm ar_i} + \rho_{\rm ar_f}}{\rho_{\rm w_i} + \rho_{\rm w_f}}\right)} \cdot \left[\frac{\rho_{\rm ar_i} + \rho_{\rm ar_f}}{\left(\rho_{\rm w_i} + \rho_{\rm w_f}\right)^2}\right]$$
(33)

$$\frac{\partial m_R}{\partial g_{Puc}} = \frac{-m_R}{g_{Puc}} \tag{34}$$

$$\frac{\partial m_{\rm R}}{\partial g_{\rm Puc}} = \frac{m_{\rm R}}{g_{\rm ref}} \tag{35}$$

5.1.1.8. Massa real da água acumulada

A Equação (36) apresenta a expressão para o cálculo da massa real da água (m_{Ra}) acumulada. Com a Equação (37) calcula-se a incerteza associada à massa real da água acumulada.

$$m_{Ra_N} = m_{Ra_{N-1}} + m_{R_N} \tag{36}$$

$$u_{m_{Ra_{N}}} = \sqrt{\left(u_{m_{Ra_{N-1}}}\right)^{2} + \left(u_{m_{R_{N}}}\right)^{2}}$$
(37)

Nestas expressões:

N: número de pontos medidos no processo de medição de volume m_{Ra_N} : massa real da água acumulada no ponto N $m_{Ra_{N-1}}$: massa real da água acumulada no ponto N – 1 m_{R_N} : massa real da água no ponto N u_{mRa_N} : incerteza da massa real da água acumulada no ponto N $u_{mRa_{N-1}}$: incerteza da massa real da água acumulada no ponto N – 1 u_{mRa_N} : incerteza da massa real da água no ponto N

5.1.1.9. Volume de água transferida e Volume de água Total

As Equações (38) e (39) apresentam, respectivamente, as expressões para o cálculo do volume de água transferido (V_N) ao sistema torre-tubo em um ponto e o volume de água total acumulado (V_{TN}) em N pontos:

$$V_{\rm N} = \frac{m_{\rm R}}{\left(\frac{\rho_{\rm w_i} + \rho_{\rm w_f}}{2}\right)} \tag{38}$$

$$V_{T_N} = V_{T_{N-1}} + V_N$$
 (39)

Nestas expressões:

 V_N : volume de água transferido no ponto N V_{T_N} : volume de água total acumulado no ponto N $V_{T_{N-1}}$: volume total de água acumulada no ponto N - 1

Aplicando o método da propagação da incerteza, a Equação (40) apresenta a expressão para o cálculo da incerteza de medição do volume de água total transferido no ponto N.

$$u_{V_{N}}^{2} = \left(\frac{\partial V_{N}}{\partial m_{R}} \cdot u_{m_{R}}\right)^{2} + \left(\frac{\partial V_{N}}{\partial \rho_{w_{f}}} \cdot u_{\rho_{w_{f}}}\right)^{2} + \left(\frac{\partial V_{N}}{\partial \rho_{w_{i}}} \cdot u_{\rho_{w_{i}}}\right)^{2}$$
(40)

Calculando-se os coeficientes de sensibilidade da Equação (40), pode-se calcular a incerteza de medição do volume total transferido em cada ponto do processo de medição de volume pelo sistema gravimétrico por meio da Equação (41).

$$\mathbf{u}_{V_{N}}^{2} = \left(\frac{V_{N}}{m_{R}} \cdot \mathbf{u}_{m_{R}}\right)^{2} + \left(\frac{V_{N}}{(\rho_{w_{f}} + \rho_{w_{i}})} \cdot \mathbf{u}_{\rho_{w_{f}}}\right)^{2} + \left(\frac{V_{N}}{(\rho_{w_{f}} + \rho_{w_{i}})} \cdot \mathbf{u}_{\rho_{w_{i}}}\right)^{2}$$
(41)

O Anexo F apresenta os valores das características volumétricas do processo de medição de volume pelo sistema gravimétrico (Tabela F.1, Anexo F) e as incertezas estimadas de cada parâmetro calculado (Tabela F.2, Anexo F).

5.1.2. Situação com água no tubo acrílico

5.1.2.1. Massa ajustada da água

A Equação (26) apresenta a expressão para calcular a massa ajustada da água.

5.1.2.2. Pressão do ar

A pressão do ar no tubo acrílico foi medida com o barômetro digital marca ABSI, devido a que encontra-se aberto à atmosfera. A incerteza de medição da pressão do ar é 0,03% do valor medido (k=2).

5.1.2.3. Temperatura da água

A temperatura da água foi medida com termômetros Pt-100 que encontramse instalados ao longo da altura da torre. A incerteza da temperatura da água é calculada substituindo o valor medido na Equação (12).

5.1.2.4. Massa específica do ar

A Equação (19) permite calcular a massa específica do ar e a Equação (27) a incerteza associada à medição da massa específica do ar.

5.1.2.5. Massa específica da água

As Equações (13) e (14) apresentam, respectivamente, a expressões para o cálculo da massa específica da água e a sua incerteza associada.

5.1.2.6. Fator de empuxo e relação da aceleração da gravidade

As Equações (20) e (21) apresentam, respectivamente, as expressões para o cálculo da relação de gravidade e do fator de empuxo.

5.1.2.7. Massa real da água transferida

A Equação (28) apresenta a expressão para o cálculo da massa real de água transferida e a Equação (29) permite calcular o a incerteza de medição da massa real de água transferida.

5.1.2.8. Massa real da água acumulada

A Equação (36) apresenta a expressão para o cálculo da massa real da água acumulada.

5.1.2.9. Volume de água transferida e Volume de água Total

As Equações (38) e (39) apresentam as expressões para o cálculo do volume de água transferido ao tubo acrílico em uma parcela e o volume de água total acumulado em N pontos.

A Equação (40) apresenta a expressão para o cálculo da incerteza de medição do volume de água total no tubo.

O Anexo F apresenta os dados da medição de volume do tubo acrílico que integra o sistema gravimétrico (Tabela F.3, Anexo F). Além disso, a incerteza estimada de cada parâmetro calculado e do volume total transferido ao tubo acrílico em cada ponto (Tabela F.4, Anexo F).

5.2. Alternativa #2: medição de volume com o tanque T despressurizado

Nesta alternativa de análise, foram realizados 58 experimentos para medição de volume ao longo da altura da Torre A (etapas 1 e 4 descritas na seção 4.3). As características volumétricas deste método são as mesmas descritas no processo na seção 5.1.

Dentre outros resultados relacionados às características volumétricas do processo de medição de volume da Torre e do tubo de acrílico, o Anexo F destaca o volume de água total acumulado na Torre A e no tubo acrílico (Tabela F.5, Anexo F), as incertezas associadas à medição das características volumétricas calculadas (Tabela F.6, Anexo F), o volume de água total acumulado no tubo acrílico (Tabela F.7, Anexo F) e suas incertezas associadas (Tabela F.8, Anexo F).

5.3. Alternativa #3: medição de volume misto

Nesta alternativa de análise do processo de medição de volume pelo sistema gravimétrico foram reanalisados os 58 resultados dos experimentos anteriormente descritos associados às alternativas 1 e 2. Ou seja, as etapas 1, 2, 3 e 4 anteriormente descritas na seção 4.2 foram analisadas em bloco.

A Figura 41 apresenta as quatro etapas do processo de medição de volume pelo sistema gravimétrico, com base nas equações aplicáveis abaixo apresentadas, assim permitindo calcular o volume total de água transferido à torre A e ao tubo acrílico. Ou seja:

• Etapa 1

$$m_{ar_1} = \rho_{ar_1} \cdot V_1 \tag{42}$$

$$\frac{F_1}{g_{ref}} = \left(m_{w_1} + m_{ar_1} + m_{Tanque T}\right) \cdot \frac{g_{puc}}{g_{ref}}$$
(43)

Nesta expressão:

$$\frac{F_1}{g_{ref}} = m_{i1}$$
: massa indicada pela balança na etapa 1

Etapa 2

$$m_{ar_2} = \rho_{ar_2} \cdot V_1 \tag{44}$$

$$\frac{F_2}{g_{ref}} = \left(m_{w_1} + m_{ar_2} + m_{Tanque T}\right) \cdot \frac{g_{puc}}{g_{ref}}$$
(45)

Nesta expressão:

$$\frac{F_2}{g_{ref}} = m_{i2}$$
: massa indicada pela balança na etapa 2

Subtraindo a Equação (43) da Equação (45) obtém-se a Equação (46) para o cálculo do volume do ar na etapa 1 (V₁). Este valor corresponde ao mesmo volume do ar na etapa 2.

Assim:

$$\frac{F_2}{g_{ref}} - \frac{F_1}{g_{ref}} = \frac{g_{puc}}{g_{ref}} \cdot (m_{ar_2} - m_{ar_1}) = \frac{g_{puc}}{g_{ref}} \cdot V_1 \cdot (\rho_{ar_2} - \rho_{ar_1})$$

$$V_1 = \frac{\frac{F_2}{g_{ref}} - \frac{F_1}{g_{ref}}}{\frac{g_{puc}}{g_{ref}} \cdot (\rho_{ar_2} - \rho_{ar_1})}$$
(46)

• Etapa 3

 $m_{ar_3} = \rho_{ar_3} \cdot V_2 \tag{47}$

$$\frac{F_3}{g_{ref}} = \left(m_{w_3} + m_{ar_3} + m_{Tanque T}\right) \cdot \frac{g_{puc}}{g_{ref}}$$
(48)

Nesta expressão:

 $\frac{F_3}{g_{ref}} = m_{i3}$: massa indicada pela balança na etapa 3

Etapa 4

$$\mathbf{m}_{\mathbf{ar}_4} = \rho_{\mathbf{ar}_4} \cdot \mathbf{V}_2 \tag{49}$$

$$\frac{F_4}{g_{ref}} = \left(m_{w_3} + m_{ar_4} + m_{Tanque T}\right) \cdot \frac{g_{puc}}{g_{ref}}$$
(50)

Nesta expressão:

$$\frac{F_4}{g_{ref}} = m_{i4}$$
: massa indicada pela balança na etapa 4

Subtraindo a Equação (50) da Equação (48) obtém-se a Equação (51) para o cálculo do volume do ar na etapa 3 (V_2). Este valor corresponde ao mesmo volume do ar na etapa 4.

Assim:

$$\frac{F_{3}}{g_{ref}} - \frac{F_{4}}{g_{ref}} = \frac{g_{puc}}{g_{ref}} \cdot \left(m_{ar_{3}} - m_{ar_{4}}\right) = \frac{g_{puc}}{g_{ref}} \cdot V_{2} \cdot \left(\rho_{ar_{3}} - \rho_{ar_{4}}\right)$$

$$V_{2} = \frac{\frac{F_{3}}{g_{ref}} - \frac{F_{4}}{g_{ref}}}{\frac{g_{puc}}{g_{ref}} \cdot \left(\rho_{ar_{3}} - \rho_{ar_{4}}\right)}$$
(51)

Desse modo, o volume de água transferido ao sistema em cada ponto do processo de medição de volume pelos sistema gravimétrico (V_N) pode ser calculado pela Equação (52):

$$V_{\rm N} = V_2 - V_1 = \frac{\frac{F_3}{g_{\rm ref}} - \frac{F_4}{g_{\rm ref}}}{\frac{g_{\rm puc}}{g_{\rm ref}} \cdot (\rho_{\rm ar_3} - \rho_{\rm ar_4})} - \frac{\frac{F_2}{g_{\rm ref}} - \frac{F_1}{g_{\rm ref}}}{\frac{g_{\rm puc}}{g_{\rm ref}} \cdot (\rho_{\rm ar_2} - \rho_{\rm ar_1})}$$
(52)

Aplicando-se o princípio básico da propagação da incerteza segundo preconizado pelo ISO GUM (2008), a incerteza de medição associado ao cálculo dos volumes V_1 e V_2 de ar foi calculada, respetivamente, a partir das Equações (53) e (54):

$$u_{V_{1}}^{2} = \left(\frac{\partial V_{1}}{\partial m_{i2}} \cdot u_{m_{i2}}\right)^{2} + \left(\frac{\partial V_{1}}{\partial m_{i1}} \cdot u_{m_{i1}}\right)^{2} + \left(\frac{\partial V_{1}}{\partial g_{puc}} \cdot u_{g_{puc}}\right)^{2} + \left(\frac{\partial V_{1}}{\partial \rho_{ar_{2}}} \cdot u_{\rho_{ar_{2}}}\right)^{2} + \left(\frac{\partial V_{1}}{\partial \rho_{ar_{1}}} \cdot u_{\rho_{ar_{1}}}\right)^{2}$$

$$+ \left(\frac{\partial V_{1}}{\partial \rho_{ar_{1}}} \cdot u_{\rho_{ar_{1}}}\right)^{2}$$
(53)

$$u_{V_{2}}^{2} = \left(\frac{\partial V_{2}}{\partial m_{i3}} \cdot u_{m_{i3}}\right)^{2} + \left(\frac{\partial V_{2}}{\partial m_{i4}} \cdot u_{m_{i4}}\right)^{2} + \left(\frac{\partial V_{2}}{\partial g_{puc}} \cdot u_{g_{puc}}\right)^{2} + \left(\frac{\partial V_{2}}{\partial \rho_{ar_{3}}} \cdot u_{\rho_{ar_{3}}}\right)^{2} + \left(\frac{\partial V_{2}}{\partial \rho_{ar_{4}}} \cdot u_{\rho_{ar_{4}}}\right)^{2}$$

$$(54)$$

Nestas equações, os coeficientes de sensibilidade estão dados pelas seguintes expressões:

$$\frac{\partial V_1}{\partial m_{i2}} = \frac{1}{\frac{g_{puc}}{g_{ref}} \cdot (\rho_{ar_2} - \rho_{ar_1})}$$
(55)

$$\frac{\partial V_1}{\partial m_{i1}} = -\frac{1}{\frac{g_{puc}}{g_{ref}} \cdot (\rho_{ar_2} - \rho_{ar_1})}$$
(56)

$$\frac{\partial V_1}{\partial g_{\text{puc}}} = -\frac{g_{\text{ref}} \cdot (m_{i2} - m_{i1})}{g_{\text{puc}}^2 \cdot (\rho_{\text{ar}_2} - \rho_{\text{ar}_1})}$$
(57)

$$\frac{\partial V_1}{\partial \rho_{ar_2}} = \frac{m_{i1} - m_{i2}}{\frac{g_{puc}}{g_{ref}} \cdot (\rho_{ar_2} - \rho_{ar_1})^2}$$
(58)

$$\frac{\partial V_1}{\partial \rho_{ar_1}} = \frac{m_{i2} - m_{i1}}{\frac{g_{puc}}{g_{ref}} \cdot (\rho_{ar_2} - \rho_{ar_1})^2}$$
(59)

$$\frac{\partial V_2}{\partial m_{i3}} = \frac{1}{\frac{g_{puc}}{g_{ref}} \cdot (\rho_{ar_3} - \rho_{ar_4})}$$
(60)

$$\frac{\partial V_2}{\partial m_{i4}} = -\frac{1}{\frac{g_{puc}}{g_{ref}} \cdot (\rho_{ar_3} - \rho_{ar_4})}$$
(61)

$$\frac{\partial V_2}{\partial g_{puc}} = -\frac{g_{ref} \cdot (m_{i3} - m_{i4})}{g_{puc}^2 \cdot (\rho_{ar_3} - \rho_{ar_4})}$$
(62)

$$\frac{\partial V_2}{\partial \rho_{ar_3}} = \frac{m_{i4} - m_{i3}}{\frac{g_{puc}}{g_{ref}} \cdot (\rho_{ar_3} - \rho_{ar_4})^2}$$
(63)

$$\frac{\partial V_2}{\partial \rho_{ar_4}} = \frac{m_{i2} - m_{i1}}{\frac{g_{puc}}{g_{ref}} \cdot (\rho_{ar_3} - \rho_{ar_4})^2}$$
(64)

Assim, a incerteza do volume total de água transferido é dado pela Equação (65):

$$u_{V_N}^2 = u_{V_1}^2 + u_{V_2}^2 \tag{65}$$

Dentre outros resultados relacionados às características volumétricas do processo de medição de volume da Torre e do tubo de acrílico, o Anexo F destaca o volume de água total acumulado na Torre A e no tubo acrílico (Tabela F.9, Anexo F) e as incertezas associadas à medição das características volumétricas calculadas (Tabela F.10, Anexo F).

5.4. Comparação das alternativas de medição de volume

O estudo das alternativas consideradas de medição de volume das torres e tubo que integram o sistema gravimétrico explicitam vantagens e desvantagens. Com o propósito de atingir uns dos objetivos específicos da pesquisa, esta seção compara as diferentes alternativas aplicadas.

As Tabelas 47, 48 e 49 apresentam, respectivamente, os resultados obtidos para cada uma das três alternativas de análise consideradas.

	VOLUME DE ÁGUA NA TORRE + TUBO ACRÍLICO								VOLUME DE ÁGUA NO TUBO ACRILICO					MASSA ESPECÍFICA DA AGUA		
Ponto	Massa	a Transferida	Ma	assa Total	v	olume Total		Mas	sa de Água	V	olume de Águ	ы	Malaa	least and the av		
	Valor	Incerteza (k=2)	Valor	Incerteza (k=2)	Valor	Incerteza	(k=2)	Valor	Incerteza (k=2)	Valor	Incerte	za (k=2)	valor	incerteza (K=2)		
	(kg)	(kg)	(kg)	(kg)	(m³)	(m³)	%	(g)	(g)	(L)	(L)	%	(kg/m³)	(kg/m³)		
1	147.57	0.05	147.57	0.05	0.1482	0.000053	0.04%	370.38	0.20	0.372	0.0002	0.05%	995.97	0.15		
2	147.92	0.05	295.49	0.07	0.2967	0.000078	0.03%	760.79	0.20	0.764	0.0002	0.03%	996.06	0.15		
3	145.96	0.05	441.46	0.09	0.4432	0.000099	0.02%	1146.89	0.20	1.151	0.0002	0.02%	996.13	0.14		
4	145.86	0.05	587.32	0.10	0.5896	0.000136	0.02%	1010 30	0.20	1.538	0.0002	0.02%	995.18	0.14		
6	145.73	0.05	880.02	0.12	0.8835	0.000155	0.02%	2303.09	0.20	2.312	0.0003	0.01%	996.04	0.15		
7	149.34	0.05	1029.36	0.13	1.0334	0.000172	0.02%	2693.29	0.20	2.704	0.0003	0.01%	996.04	0.15		
8	151.02	0.05	1180.38	0.14	1.1850	0.000189	0.02%	3087.60	0.20	3.100	0.0003	0.01%	996.10	0.15		
9	145.88	0.05	1326.25	0.15	1.3315	0.000206	0.02%	3467.29	0.20	3.481	0.0003	0.01%	996.05	0.15		
10	147.51	0.05	1473.76	0.16	1.4796	0.000223	0.02%	3859.10	0.20	3.874	0.0004	0.01%	996.01	0.15		
11	148.34	0.05	1622.10	0.17	1.6285	0.000239	0.01%	4255.51	0.20	4.272	0.0004	0.01%	996.02	0.15		
12	147.44	0.05	1016.40	0.18	1.7705	0.000255	0.01%	4037.30	0.20	4.000 5.043	0.0004	0.01%	990.05	0.15		
14	145.66	0.05	2062.15	0.19	2.0703	0.000284	0.01%	5404.90	0.20	5.426	0.0005	0.01%	996.15	0.14		
15	147.10	0.05	2209.26	0.20	2.2180	0.000305	0.01%	5793.10	0.20	5.816	0.0005	0.01%	995.99	0.15		
16	147.86	0.05	2357.12	0.20	2.3664	0.000320	0.01%	6180.70	0.20	6.205	0.0006	0.01%	996.03	0.15		
17	147.19	0.05	2504.30	0.21	2.5142	0.000334	0.01%	6567.60	0.20	6.593	0.0006	0.01%	996.08	0.15		
18	148.90	0.05	2653.21	0.21	2.6637	0.000348	0.01%	6957.80	0.20	6.985	0.0006	0.01%	996.12	0.14		
19	146.49	0.05	2799.70	0.22	2.8107	0.000367	0.01%	7342.30	0.20	7.371	0.0006	0.01%	996.05	0.15		
20	147.23	0.05	2946.94	0.23	2.9586	0.000384	0.01%	7728.30	0.20	7.759	0.0007	0.01%	996.01	0.15		
21	149.03	0.05	3095.96	0.23	3.1082	0.000398	0.01%	8117.90	0.20	8.150	0.0007	0.01%	996.05	0.15		
22	151.24	0.05	3247.21	0.24	3.4088	0.000420	0.01%	8808.01	0.20	8.04/	0.0007	0.01%	995.92	0.15		
23	151 72	0.05	3547.09	0.24	3 5611	0.000446	0.01%	9295.32	0.20	9.332	0.0008	0.01%	996.06	0.15		
25	152.95	0.05	3700.04	0.25	3.7147	0.000456	0.01%	9695.23	0.20	9.734	0.0008	0.01%	996.17	0.14		
26	147.96	0.05	3848.00	0.26	3.8632	0.000467	0.01%	10067.41	0.20	10.107	0.0009	0.01%	996.25	0.14		
27	146.83	0.05	3994.83	0.26	4.0106	0.000506	0.01%	10438.80	0.20	10.480	0.0009	0.01%	995.83	0.15		
28	154.43	0.05	4149.26	0.27	4.1657	0.000527	0.01%	10828.70	0.20	10.872	0.0009	0.01%	995.76	0.15		
29	151.21	0.05	4300.47	0.27	4.3175	0.000525	0.01%	11213.39	0.20	11.258	0.0009	0.01%	996.06	0.15		
30	148.14	0.05	4448.62	0.28	4.4662	0.000538	0.01%	11589.68	0.20	11.636	0.0010	0.01%	996.11	0.15		
31	149.77	0.05	4598.39	0.28	4.6166	0.000545	0.01%	119/0.48	0.20	12.018	0.0010	0.01%	995.24	0.14		
32	148.00	0.05	4747.07	0.29	4.7056	0.000302	0.01%	12725.66	0.20	12.357	0.0010	0.01%	996.22	0.14		
34	148.57	0.05	5044.48	0.29	5.0644	0.000589	0.01%	13102.75	0.47	13.154	0.0011	0.01%	996.26	0.14		
35	149.11	0.05	5193.59	0.30	5.2140	0.000608	0.01%	13482.04	0.47	13.535	0.0012	0.01%	996.22	0.14		
36	149.29	0.05	5342.88	0.30	5.3639	0.000626	0.01%	13863.93	0.47	13.918	0.0012	0.01%	996.18	0.14		
37	156.66	0.05	5499.54	0.31	5.5212	0.000641	0.01%	14265.05	0.47	14.321	0.0013	0.01%	996.18	0.14		
38	156.14	0.05	5655.68	0.31	5.6779	0.000658	0.01%	14669.56	0.47	14.727	0.0013	0.01%	996.17	0.14		
39	156.39	0.05	5812.06	0.32	5.8349	0.000674	0.01%	15090.90	0.47	15.150	0.0013	0.01%	996.17	0.14		
40	155.92	0.05	5967.98	0.32	5.9914	0.000585	0.01%	15498.02	0.47	15.559	0.0013	0.01%	996.23	0.14		
41	157.86	0.05	6284.20	0.32	6 3088	0.000702	0.01%	15508.04	0.47	16 373	0.0014	0.01%	996.18	0.14		
43	158.26	0.05	6442.47	0.33	6.4677	0.000736	0.01%	16709.67	0.47	16.775	0.0014	0.01%	996.21	0.14		
44	157.73	0.05	6600.20	0.34	6.6260	0.000759	0.01%	17108.98	0.47	17.176	0.0015	0.01%	996.14	0.14		
45	158.80	0.05	6758.99	0.34	6.7854	0.000777	0.01%	17510.80	0.47	17.579	0.0015	0.01%	996.11	0.15		
46	160.28	0.05	6919.27	0.34	6.9463	0.000781	0.01%	17915.82	0.47	17.986	0.0015	0.01%	996.24	0.14		
47	159.97	0.05	7079.24	0.35	7.1069	0.000799	0.01%	18320.84	0.47	18.392	0.0016	0.01%	996.22	0.14		
48	160.39	0.05	7239.63	0.35	7.2679	0.000822	0.01%	18726.35	0.47	18.800	0.0016	0.01%	996.16	0.14		
49	161.20	0.05	7400.84	0.35	7.4297	0.000837	0.01%	19132.47	0.47	19.207	0.0016	0.01%	996.17	0.14		
50	157.48	0.05	/ 558.52 7718 66	0.36	7 7/99	0.000848	0.01%	19528.18	0.47	20,006	0.0017	0.01%	996.22 006.22	0.14		
52	158 52	0.05	7877 17	0.36	7 9079	0.000804	0.01%	20242 12	0.47	20.000	0.0017	0.01%	996 18	0.14		
53	159.19	0.05	8036.36	0.37	8.0677	0.000894	0.01%	20743.93	0.47	20.825	0.0018	0.01%	996.24	0.14		
54	158.53	0.05	8194.90	0.37	8.2268	0.000899	0.01%	21148.25	0.47	21.231	0.0018	0.01%	996.33	0.14		
55	161.58	0.05	8356.48	0.37	8.3890	0.000920	0.01%	21560.97	0.47	21.645	0.0018	0.01%	996.29	0.14		
56	161.01	0.05	8517.49	0.38	8.5506	0.000937	0.01%	21971.50	0.47	22.057	0.0019	0.01%	996.29	0.14		
57	158.32	0.05	8675.81	0.38	8.7095	0.000949	0.01%	22374.91	0.47	22.462	0.0019	0.01%	996.31	0.14		
58	159.45	0.05	8835.26	0.38	8.8695	0.000968	0.01%	22779.73	0.47	22.868	0.0019	0.01%	996 29	0.14		

Tabela 37 –	Alternativa #1	: medição de	volume o	com o ta	anque T	pressurizado

		vo	LUME DE Á	GUA NA TORRE +	TUBO ACRÍLIO	:0		vo	DLUME DE ÁGUA N		MASSA ESPECÍFICA DA AGUA			
	Massa	Transferida	Ma	assa Total	,	Volume Total		Mas	isa de Água	v	'olume de Ág	a		
Ponto	Valor	Incerteza (k=2)	Valor	Incerteza (k=2)	Valor	Incerteza	(k=2)	Valor	Incerteza (k=2)	Valor	Incerte	za (k=2)	Valor	Incerteza (k=2)
	(kg)	(kg)	(kg)	(kg)	(m³)	(m³)	%	(g)	(g)	(L)	(L)	%	(kg/m³)	(kg/m³)
1	147.61	0.05	147.61	0.05	0.1480	0.000052	0.03%	370.38	0.20	0.371	0.0002	0.05%	997.44	0.11
2	147.86	0.05	295.47	0.07	0.2962	0.000075	0.03%	760.79	0.20	0.763	0.0002	0.03%	997.60	0.11
3	145.97	0.05	441.44	0.09	0.4425	0.000093	0.02%	1146.89	0.20	1.150	0.0002	0.02%	997.55	0.11
4	145.93	0.05	587.37	0.10	0.5888	0.000110	0.02%	1531.79	0.20	1.536	0.0002	0.02%	997.54	0.11
5	147.00	0.05	754.57	0.11	0.7502	0.000120	0.02%	2303.08	0.20	2 300	0.0005	0.01%	997.55	0.11
7	149.39	0.05	1029.54	0.12	1.0321	0.000140	0.02%	2693.29	0.20	2.700	0.0003	0.01%	997.57	0.11
8	151.08	0.05	1180.62	0.14	1.1835	0.000169	0.01%	3087.59	0.20	3.095	0.0003	0.01%	997.58	0.11
9	145.94	0.05	1326.55	0.15	1.3298	0.000182	0.01%	3467.29	0.20	3.476	0.0003	0.01%	997.59	0.11
10	147.54	0.05	1474.09	0.16	1.4777	0.000195	0.01%	3859.09	0.20	3.869	0.0004	0.01%	997.59	0.11
11	148.39	0.05	1622.48	0.17	1.6265	0.000210	0.01%	4255.50	0.20	4.266	0.0004	0.01%	997.48	0.11
12	147.47	0.05	1769.95	0.17	1.7743	0.000219	0.01%	4637.50	0.20	4.649	0.0004	0.01%	997.66	0.11
13	146.99	0.05	1916.93	0.18	1.9216	0.000233	0.01%	5023.19	0.20	5.035	0.0005	0.01%	997.63	0.11
14	145.01	0.05	2002.04	0.19	2.00/0	0.000250	0.01%	5703.00	0.20	5.807	0.0005	0.01%	997.44	0.11
16	147.10	0.05	2357 54	0.20	2.2151	0.000201	0.01%	6180.69	0.20	6 196	0.0005	0.01%	997 51	0.11
17	147.15	0.05	2504.70	0.21	2.5108	0.000283	0.01%	6567.59	0.20	6.584	0.0006	0.01%	997.58	0.11
18	148.84	0.05	2653.53	0.21	2.6600	0.000296	0.01%	6957.79	0.20	6.975	0.0006	0.01%	997.57	0.11
19	146.51	0.05	2800.04	0.22	2.8069	0.000307	0.01%	7342.29	0.20	7.360	0.0006	0.01%	997.60	0.11
20	147.29	0.05	2947.33	0.22	2.9545	0.000319	0.01%	7728.29	0.20	7.747	0.0007	0.01%	997.61	0.11
21	149.02	0.05	3096.35	0.23	3.1039	0.000337	0.01%	8117.89	0.20	8.138	0.0007	0.01%	997.45	0.11
22	151.23	0.05	3247.58	0.23	3.2555	0.000344	0.01%	8512.89	0.20	8.534	0.0007	0.01%	997.57	0.11
23	148.15	0.05	3395.73	0.24	3.4041	0.000358	0.01%	8898.89	0.20	8.921	0.0008	0.01%	997.54	0.11
24	151.72	0.05	3547.45	0.25	3.5562	0.000392	0.01%	9295.30	0.20	9.518	0.0008	0.01%	997.12	0.12
25	148.00	0.05	3848.36	0.25	3.8579	0.000382	0.01%	10067.39	0.20	10 092	0.0008	0.01%	997.55	0.11
27	146.89	0.05	3995.25	0.26	4.0051	0.000411	0.01%	10438.78	0.20	10.465	0.0009	0.01%	997.46	0.11
28	154.00	0.05	4149.25	0.26	4.1595	0.000413	0.01%	10828.68	0.20	10.855	0.0009	0.01%	997.63	0.11
29	151.23	0.05	4300.48	0.27	4.3111	0.000423	0.01%	11213.37	0.20	11.241	0.0009	0.01%	997.66	0.11
30	148.15	0.05	4448.63	0.27	4.4596	0.000451	0.01%	11589.66	0.20	11.618	0.0010	0.01%	997.41	0.11
31	149.81	0.05	4598.44	0.28	4.6098	0.000450	0.01%	11970.46	0.20	12.000	0.0010	0.01%	997.60	0.11
32	148.72	0.05	4747.17	0.28	4.7589	0.000470	0.01%	12347.74	0.20	12.378	0.0010	0.01%	997.49	0.11
33	148.83	0.05	4896.00	0.29	4.9081	0.000474	0.01%	12/25.63	0.35	12./5/	0.0011	0.01%	997.60	0.11
35	140.05	0.05	5103 70	0.29	5 2066	0.000465	0.01%	13102.72	0.47	13,135	0.0012	0.01%	997.01	0.11
36	149.27	0.05	5343.06	0.30	5.3562	0.000508	0.01%	13863.91	0.47	13.898	0.0012	0.01%	997.62	0.11
37	156.58	0.05	5499.64	0.30	5.5132	0.000520	0.01%	14265.02	0.47	14.300	0.0012	0.01%	997.61	0.11
38	156.13	0.05	5655.78	0.31	5.6697	0.000533	0.01%	14669.54	0.47	14.706	0.0013	0.01%	997.60	0.11
39	156.37	0.05	5812.15	0.31	5.8264	0.000540	0.01%	15090.87	0.47	15.128	0.0013	0.01%	997.66	0.11
40	155.95	0.05	5968.09	0.32	5.9827	0.000562	0.01%	15497.99	0.47	15.536	0.0013	0.01%	997.55	0.11
41	158.40	0.05	6126.49	0.32	6.1415	0.000590	0.01%	15908.02	0.47	15.947	0.0014	0.01%	997.40	0.11
42	157.88	0.05	6284.37	0.32	6.2998	0.000509	0.01%	16700.64	0.47	16.349	0.0014	0.01%	997.60	0.11
43	158.25	0.05	6600.36	0.33	6.6166	0.000558	0.01%	17108.96	0.47	17 151	0.0014	0.01%	997.57	0.11
45	158.79	0.05	6759.15	0.34	6.7758	0.000634	0.01%	17510.77	0.47	17.554	0.0015	0.01%	997.45	0.11
46	160.30	0.05	6919.46	0.34	6.9365	0.000638	0.01%	17915.79	0.47	17.960	0.0015	0.01%	997.54	0.11
47	160.02	0.05	7079.47	0.34	7.0969	0.000648	0.01%	18320.80	0.47	18.366	0.0016	0.01%	997.56	0.11
48	160.39	0.05	7239.86	0.35	7.2577	0.000679	0.01%	18726.32	0.47	18.772	0.0016	0.01%	997.40	0.11
49	161.17	0.05	7401.04	0.35	7.4192	0.000670	0.01%	19132.44	0.47	19.179	0.0016	0.01%	997.58	0.11
50	157.51	0.05	7558.55	0.35	7.5771	0.000682	0.01%	19528.15	0.47	19.576	0.0016	0.01%	997.59	0.11
51	160.36	0.05	7718.91	0.36	7.7379	0.000694	0.01%	19928.26	0.47	19.977	0.0017	0.01%	997.59	0.11
52	158.51	0.05	/8/7.42	0.36	/.8968	0.000711	0.01%	20242.08	0.47	20.292	0.0017	0.01%	997.55	0.11
55 54	158 53	0.05	8105 10	0.35	8.0505 8.2152	0.000725	0.01%	20743.90	0.47	20.795	0.0018	0.01%	997.55	0.11
55	161 57	0.05	8356 67	0.37	8,3772	0.000753	0.01%	21140.21	0.47	21.200	0.0018	0.01%	997.58	0.11
56	161.00	0.05	8517.67	0.37	8.5386	0.000758	0.01%	21971.46	0.47	22.025	0.0019	0.01%	997.57	0.11
57	158.30	0.05	8675.97	0.38	8.6973	0.000779	0.01%	22374.88	0.47	22.430	0.0019	0.01%	997.52	0.11
58	159.46	0.05	8835.44	0.38	8.8572	0.000790	0.01%	22779.69	0.47	22.836	0.0019	0.01%	997.53	0.11

Tabela 38 – Alternativa #2: medição de volume com o tanque T despressurizad	ot
---	----

	VOLUME DE Á	GUA NA TORRE + TL	JBO ACRÍLICO	VOLUME DE ÁGUA NO TUBO ACRILICO						
Dente	Volu	me Total		Mas	isa de Água	Vo	olume de Águ	Ja		
Ponto	Valor	Incerteza	(k=2)	Valor	Incerteza (k=2)	Valor	Incertez	za (k=2)		
	(m³)	(m³)	%	(g)	(g)	(L)	(L)	%		
1	0.1565	0.031518	20.14%	370.38	0.20	0.371	0.0002	0.05%		
2	0.2962	0.056168	18.96%	760.79	0.20	0.763	0.0002	0.03%		
3	0.4457	0.069782	15.66%	1146.89	0.20	1.150	0.0002	0.02%		
4	0.6096	0.072734	11.93%	1531.79	0.20	1.536	0.0002	0.02%		
5	0.7667	0.077635	10.13%	1919.39	0.20	1.924	0.0003	0.01%		
7	1.0867	0.082509	0.09%	2505.08	0.20	2.509	0.0003	0.01%		
8	1 2548	0.088955	7.09%	3087 59	0.20	3.095	0.0003	0.01%		
9	1.4153	0.093752	6.62%	3467.29	0.20	3.476	0.0003	0.01%		
10	1.5720	0.096818	6.16%	3859.09	0.20	3.869	0.0004	0.01%		
11	1.7341	0.099839	5.76%	4255.50	0.20	4.266	0.0004	0.01%		
12	1.8918	0.103976	5.50%	4637.50	0.20	4.649	0.0004	0.01%		
13	2.0479	0.107578	5.25%	5023.19	0.20	5.035	0.0005	0.01%		
14	2.1868	0.116905	5.35%	5404.89	0.20	5.418	0.0005	0.01%		
15	2.3363	0.123042	5.27%	5793.09	0.20	5.807	0.0005	0.01%		
16	2.4974	0.126395	5.06%	6180.69	0.20	6.196	0.0005	0.01%		
17	2.6417	0.132591	5.02%	6567.59	0.20	6.584	0.0006	0.01%		
18	2.7798	0.141118	5.08%	6957.79	0.20	6.975	0.0006	0.01%		
19	2.9333	0.145380	4.96%	7342.29	0.20	7.360	0.0006	0.01%		
20	3.0957	0.147203	4.76%	7728.29	0.20	7.747	0.0007	0.01%		
21	3.2468	0.151908	4.68%	8117.89	0.20	8.138	0.0007	0.01%		
22	3.3969	0.158005	4.65%	8512.89	0.20	8.534	0.0007	0.01%		
23	3.5442	0.163680	4.62%	8898.89	0.20	8.921	0.0008	0.01%		
24	3.6997	0.167662	4.53%	9295.30	0.20	9.318	0.0008	0.01%		
25	3.8471	0.174304	4.53%	9695.21	0.20	9.719	0.0008	0.01%		
26	4.0090	0.1/6/45	4.41%	10057.39	0.20	10.092	0.0009	0.01%		
27	4.1/20	0.1/9923	4.31%	10438.78	0.20	10.465	0.0009	0.01%		
20	4.5506	0.101572	4.19%	110020.00	0.20	10.655	0.0009	0.01%		
30	4.4900	0.188493	4.05%	11213.37	0.20	11.241	0.0009	0.01%		
31	4.8087	0.191056	3.97%	11970.46	0.20	12 000	0.0010	0.01%		
32	4,9704	0.193012	3.88%	12347.74	0.20	12.378	0.0010	0.01%		
33	5.1214	0.197139	3.85%	12725.63	0.36	12.757	0.0011	0.01%		
34	5.2859	0.198944	3.76%	13102.72	0.47	13.135	0.0012	0.01%		
35	5.4484	0.201835	3.70%	13482.01	0.47	13.515	0.0012	0.01%		
36	5.5985	0.204520	3.65%	13863.91	0.47	13.898	0.0012	0.01%		
37	5.7423	0.207887	3.62%	14265.02	0.47	14.300	0.0012	0.01%		
38	5.9014	0.209942	3.56%	14669.54	0.47	14.706	0.0013	0.01%		
39	6.0578	0.212289	3.50%	15090.87	0.47	15.128	0.0013	0.01%		
40	6.2212	0.214453	3.45%	15497.99	0.47	15.536	0.0013	0.01%		
41	6.3914	0.216628	3.39%	15908.02	0.47	15.947	0.0014	0.01%		
42	6.5579	0.219445	3.35%	16308.63	0.47	16.349	0.0014	0.01%		
43	6.7124	0.222324	3.31%	16709.64	0.47	16.751	0.0014	0.01%		
44	6.8807	0.224812	3.27%	17108.96	0.47	17.151	0.0015	0.01%		
45	7.0403	0.227889	3.24%	17510.77	0.47	17.554	0.0015	0.01%		
46	7.2095	0.229809	3.19%	17915.79	0.47	17.960	0.0015	0.01%		
4/	7.3834	0.231298	3.13%	18320.80	0.47	18.366	0.0016	0.01%		
48	7.54/1	0.232857	3.09%	18/26.32	0.47	18.//2	0.0016	0.01%		
49	7.7052	0.234667	3.05%	19132.44	0.47	19.1/9	0.0016	0.01%		
50	8.0/19	0.230049	2.01%	19928.19	0.47	10 077	0.0010	0.01%		
52	8 2006	0.230030	2.37%	20242.08	0.47	20.202	0.0017	0.01%		
52	8 3545	0.245758	2.94%	20743 90	0.47	20.292	0.0017	0.01%		
54	8,5165	0.248582	2.92%	21148 21	0.47	21,200	0.0018	0.01%		
55	8.6793	0.249720	2.88%	21560.94	0.47	21.614	0.0018	0.01%		
56	8.8401	0.251354	2.84%	21971.46	0.47	22.025	0.0019	0.01%		
57	8.9988	0.253358	2.82%	22374.88	0.47	22.430	0.0019	0.01%		
58	9.1648	0.255659	2.79%	22779.69	0.47	22,836	0.0019	0.01%		

|--|

A Figura 41 ilustra os resultados das três alternativas de análises do processo de medição de volume dos reservatórios que integram o sistema gravimétrico.

Figura 41 – Comparação das alternativas de medição de volume

Analisando os resultados relativos a cada uma das três alternativas de análises do processo de medição de volume pelo sistema gravimétrico, pode-se afirmar que:

- A Figura 1 ilustra que as menores incertezas estão associadas ao processo de medição do volume com o Tanque T despressurizado (curva em azul).
- Os resultados da pesquisa mostram que o volume do tubo acrílico varia de 0,371 L a 22,836 L, com incerteza de medição que aumenta com o incremento da massa de água colocada no tubo. i.e.: entre 0,0002 L a 0,0019 L. Assim, a incerteza de medição do volume no tubo acrílico é máxima no primeiro ponto experimental com um valor de 0,05%. O segundo ponto experimental, com volume acumulado de 0,763 L, tem uma incerteza associada de 0,03%. Para o terceiro e quarto ponto experimental, a incerteza calculada foi de 0,02%. A partir do quinto ponto (volume acumulado de 1,927 L) até o último ponto experimental, a incerteza manteve-se uniforme com valor calculado de 0,01%.
- Alternativa #1: medição de volume com tanque T pressurizado. Nesta alternativa de análise, o volume total acumulado (torre A + tubo acrílico) ao longo dos 58 pontos equivale a 8,8695 m³ e a sua incerteza de medição 0,000968 m³. Neste procedimento, a incerteza calculada foi de 0,04% para o primeiro ponto experimental. A partir do segundo ponto (volume acumulado de 0,2967 L) até o ponto número dez (volume acumulado de 1,4796 L), a incerteza calculada reduziu para 0,02%. A partir de um volume acumulado de 1,6285 L até o último ponto experimental, a incerteza de medição mantém-se constante em 0,01%.

- #2: medição Т Alternativa de volume com tangue despressurizado. Nesta alternativa de análise, o volume total acumulado (torre A + tubo acrílico) ao longo dos 58 pontos equivale a 8,8572 m³, com incerteza de medição 0,000790 m³. Assim, a incerteza associada a este procedimento é máxima para o primeiro ponto experimental, estimada em 0,03%. Entre volumes acumulados de 0,4425 L a 1,0321 L, a incerteza é de 0,02%. A partir dos volumes entre 1,1835 L até o volume máximo acumulado, a incerteza de medição manteve-se uniforme em 0,01%.
- Alternativa #3: medição de volume misto. Para esta alternativa de análise, o volume total acumulado foi de 9,1648 m³ (i.e.: 1,033 vezes maior que aquele obtido na medição de volume com o Tanque T pressurizado e 1,035 vezes maior que o obtido para o caso da medição de volume com o Tanque T despressurizado). A incerteza de medição associada a este método atribui ao sistema gravimétrico um valor elevado, variando de 20,1% (no primeiro ponto experimental) a 2,8% (para o último ponto; i.e: volume total de água acumulado no sistema torre-tubo de acrílico).

Comparando metrologicamente as três alternativas de análise do processo de medição de volume pelo sistema gravimétrico foi possível observar que à alternativa #2 (medição de volume com Tanque T despressurizado) está associada um patamar de incerteza 1,23 vezes inferior àquela associada à alternativa #1 (medição de volume com Tanque T pressurizado) e 300 vezes menor que a associada à alternativa #3 (medição de volume misto).

Em síntese, a validação do sistema gravimétrico estudado para a calibração de medidores de vazão de líquido mostrou-se nitidamente mais eficaz quando a medição de volume foi realizada segundo a alternativa #2; i.e.: com o tanque T despressurizado, assim assegurando uma incerteza de 0,01% para um volume total de água transferido (ao sistema torre-tubo) na faixa de 1,18 a 8,86 m³.

5.5. Algoritmo para simulação de volumes de líquido transferidos

Em situações específicas em que valores de volumes intermediários de líquido são transferidos para atender um determinado objetivo (e.g.: fazer uso do sistema gravimétrico para calibrar por comparação um determinado medidor de vazão), o seguinte algoritmo de cálculo pode ser utilizado para estimar as incertezas associadas a esses valores intermediários de volume de líquido.

Assim, para um volume de água (v) medido no tubo, situado entre valores vizinhos de calibração (v_i , V_i) e (v_{i+1} , V_{i+1}), o volume de água (V) transferido à torre pode ser calculado utilizando a Equação (66):

$$V = V_i + \frac{v - v_i}{v_{i+1} - v_i} \cdot (V_{i+1} - V_i)$$
(66)

A incerteza de medição pode ser calculada através da expressão:

$$\mathbf{u}_{\mathrm{V}} = \sqrt{\left(\frac{\partial \mathrm{V}}{\partial \mathrm{V}_{\mathrm{i}}} \cdot \mathbf{u}_{\mathrm{V}_{\mathrm{i}}}\right)^{2} + \left(\frac{\partial \mathrm{V}}{\partial \mathrm{V}_{\mathrm{i+1}}} \cdot \mathbf{u}_{\mathrm{V}_{\mathrm{i+1}}}\right)^{2} + \left(\frac{\partial \mathrm{V}}{\partial \mathrm{v}} \cdot \mathbf{u}_{\mathrm{v}}\right)^{2} + \left(\frac{\partial \mathrm{V}}{\partial \mathrm{v}_{\mathrm{i}}} \cdot \mathbf{u}_{\mathrm{v}_{\mathrm{i}}}\right)^{2} + \left(\frac{\partial \mathrm{V}}{\partial \mathrm{v}_{\mathrm{i+1}}} \cdot \mathbf{u}_{\mathrm{v}_{\mathrm{i+1}}}\right)^{2}}$$
(67)

Nesta expressão os coeficientes de sensibilidades estão definidos pelas seguintes Equações:

$$\frac{\partial V}{\partial V_i} = 1 - \frac{v - v_i}{v_{i+1} - v_i} \tag{68}$$

$$\frac{\partial V}{\partial V_{i+1}} = \frac{v - v_i}{v_{i+1} - v_i} \tag{69}$$

$$\frac{\partial V}{\partial v} = \frac{V_{i+1} - V_i}{v_{i+1} - v_i}$$
(70)

$$\frac{\partial \mathbf{V}}{\partial \mathbf{v}_{i}} = \left(\frac{\mathbf{V}_{i+1} - \mathbf{V}_{i}}{\mathbf{v}_{i+1} - \mathbf{v}_{i}}\right) \cdot \left(\frac{\mathbf{v} - \mathbf{v}_{i}}{\mathbf{v}_{i+1} - \mathbf{v}_{i}} - 1\right)$$
(71)

$$\frac{\partial \mathbf{V}}{\partial \mathbf{v}_{i+1}} = -\left(\frac{\mathbf{V}_{i+1} - \mathbf{V}_i}{\mathbf{v}_{i+1} - \mathbf{v}_i}\right) \cdot \left(\frac{\mathbf{v} - \mathbf{v}_i}{\mathbf{v}_{i+1} - \mathbf{v}_i}\right)$$
(72)

A Tabela 50 apresenta uma simulação do volume transferido ao sistema gravimétrico e a sua incerteza de medição. O objetivo é determinar o volume e a incerteza da água transferida à torre e ao tubo acrílico, quando encontra-se uma certa quantidade de massa e o correspondente volume no tubo acrílico.

Volume de	Volume de água total	Incerteza do volume de				
água no tubo	(Torre + tubo)	água total (T	orre + tubo)			
(L)	(m³)	(m³)	%			
1.00	0.3859	0.00021	0.05			
2.00	0.7649	0.00025	0.03			
3.00	1.1468	0.00029	0.03			
4.00	1.5265	0.00032	0.02			
5.00	1.9076	0.00042	0.02			
6.00	2.2880	0.00042	0.02			
7.00	2.6689	0.00055	0.02			
8.00	3.0504	0.00054	0.02			
9.00	3.4335	0.00063	0.02			
10.00	3.8200	0.00070	0.02			
11.00	4.2155	0.00071	0.02			
12.00	4.6092	0.00091	0.02			
13.00	5.0030	0.00085	0.02			
14.00	5.3950	0.00093	0.02			
15.00	5.7780	0.00093	0.02			
16.00	6.1612	0.00113	0.02			
17.00	6.5559	0.00107	0.02			
18.00	6.9512	0.00127	0.02			
19.00	7.3469	0.00118	0.02			
20.00	7.7473	0.00176	0.02			
21.00	8.1349	0.00130	0.02			
22.00	8.5269	0.00155	0.02			

Tabela 40 - Incerteza do volume de água (Torre e tubo) por interpolação

Pode-se observar na tabela anterior que a incerteza de medição equivale a 0,05% e 0,03% quando é transferido ao tubo acrílico volumes de 1L e 2L respetivamente. A partir de um volume 3L transferido ao tubo acrílico, a incerteza de medição mantém-se uniforme em 0,02%. Assim, o valor de incerteza (0,02%) considera-se a incerteza de medição do sistema gravimétrico estudado na presente pesquisa, quando é transferido um volume total entre 1,53 m³ e 8,53 m³.

6 Conclusões e recomendações

Em consonância aos objetivos originalmente formulados, esta pesquisa de mestrado avaliou a confiabilidade metrológica do sistema gravimétrico construído no Laboratório de Avaliação Metrológica e Energética (LAME) da PUC-Rio, para calibração de medidores de vazão de líquidos.

Com base nos resultados consolidados pela pesquisa foi possível concluir que os objetivos originalmente formulados foram plenamente atingidos.

No que concerne o **primeiro objetivo específico** – avaliar a confiabilidade metrológica dos instrumentos não-automáticos de pesagem utilizados em conexão com o sistema gravimétrico – os instrumentos não-automáticos de pesagem utilizados no processo de medição de volume dos reservatórios que compõem o sistema gravimétrico mostraram confiabilidade adequada para integrar o sistema. A incerteza associada às medições de massa de água pela balança Alfa modelo 3107 foi estimada em 0,04 kg enquanto a incerteza associada balança OHAUS modelo Explorer Pro foi estimada em 0,14 g.

Com relação ao **segundo objetivo específico** – *avaliar a confiabilidade metrológica do método para medição do volume dos reservatórios* – a pesquisa mostrou que as menores incertezas associadas à medição do volume de líquido acumulado são aquelas obtidas pelo uso do sistema despressurizado, i.e.: $U_{vN} =$ 0,000169 m³ (0,014%) e $U_{vN} = 0,000790$ m³ (0,009%) para uma faixa de volume transferido entre 1,18 m³ e 8,86 m³. Para o caso do sistema pressurizado, a incerteza associada é 23% maior, i.e. $U_{vN} = 0,000968$ m³ (0,011%).

Já no que concerne o **terceiro objetivo específico** – *determinar a faixa de aplicabilidade do sistema gravimétrico para a calibração de medidores de vazão de líquidos* – concluiu-se que o sistema gravimétrico é capaz de assegurar uma incerteza de $U_{vN} = 0,00032 \text{ m}^3 (0,021\%)$ para uma medição de volume de líquido transferido de 1,53 m³ e $U_{vN} = 0,00155 \text{ m}^3 (0,018\%)$ para um volume transferido de 8,53 m³. Ou seja, em termos percentuais, a incerteza permanece constante em

0,02% para a faixa de volumes de 1,53-8,53 m³. Para volumes transferidos na faixa 0,75-1,52 m³, a incerteza cresce para 0,05%, i.e: $U_{vN} = 0,00029 \text{ m}^3$.

A conjunção desses objetivos específicos permite concluir que o objetivo central da dissertação – propor e validar um sistema gravimétrico para calibração de medidores de vazão de líquidos – foi plenamente alcançado.

Como resultado da contribuição da presente dissertação de mestrado, concluise que o sistema gravimétrico proposto e validado é metrologicamente confiável para a calibração de medidores de vazão de líquidos. O fato que a massa de água no tubo seja bem menor do que na torre, faz que o sistema de medição de massa seja bem mais simples e de menor capacidade dos convencionais do mercado.

Como possíveis desdobramento futuros desta pesquisa recomenda-se:

- substituir a massa-padrão de classe M1 utilizada na calibração da balança OHAUS por uma massa-padrão de classe F1, assim reduzindo a incerteza associada à calibração do instrumento não-automático de pesagem;
- fragmentar os volumes de líquidos testados permitindo um maior número de dados experimentais no processo de medição de volume pelo sistema gravimétrico.

Referências bibliográficas

AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. **Portaria ANP Nº 223**, de 5 de agosto de 2008.

AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. **Portaria ANP Nº 234**, de 12 de agosto de 2003.

AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. **Resolução Conjunta ANP/INMETRO Nº 001**, de10 de junho de 2013.

AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. **Portaria Conjunta ANP/INMETRO Nº 002**, de 02 de dezembro de 2002.

AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. **Portaria Conjunta ANP/INMETRO Nº 001**, de 19 de junho de 2000.

ALFA INSTRUMENTOS. **TRANSMISSOR UNIVERSAL DE PESAGEM MOD. 3107. Manual de Instalação e Operação**. 1997.

ISO GUM. Avaliação de dados de medição: Guia para a expressão de incerteza de medição – GUM 2008. Duque de Caxias, RJ: INMETRO/CICMA/SEPIN, 2012.

BOTERO A, M.; SANTA CH, J.; MENDOZA V, J. **Procedimento de comparación entre laboratorios de calibración basado en el criterio del error normalizado**. <u>Scientia et Technica Año XV</u>. Universidad Tecnológica de Pereira. 42: 4 p. 2009.

BRASIL. Lei Nº 12.490, de 16 de setembro de 2011.

BRASIL. Lei Nº 12.351, de 22 de dezembro de 2010.

BRASIL. Lei Nº 9.847 de 26 de outubro de 1999.

BRASIL. Lei Nº 9.478, de 6 agosto de 1997.

Coordenação Geral de Acreditação. **Orientação para a realização de calibração de medidores analógicos de pressão. Documento de caráter orientativo. DOQ-CGRE-017.** Revisão 02. Fevereiro 2010.

ENGEL, R.; BAADE, H. J. Water density determination in high-accuracy flowmeter calibration - Measurement uncertainties and practical aspects. **Flow Measurement and Instrumentation**, v. 25, p. 40-53, Jun 2012. ISSN 0955-5986.

INMETRO. **Divisão de Metrologia em Dinâmica de Fluidos**. Disponível em: http://www.inmetro.gov.br/metcientifica/fluidos/labVazao.asp. Acesso: 2 de fevereiro de 2014.

INSTITUTO DE PESQUISAS TECNOLÓGICAS (IPT). A medição de vazão de efluentes – Normalização e Metrologia. Painel setorial sobre medição de efluentes – INMETRO, 2012.

INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. Portaria Inmetro/Dimel nº 0002, de 07 de janeiro de 2013.

INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. **Portaria Inmetro/Dimel nº 0095**, de 16 de maio de 2013.

INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. **Portaria Inmetro/Dimel nº 0090**, de 09 de maio de 2013.

INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. **Portaria Inmetro/Dimel nº 0048**, de 09 de março de 2012.

INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. **Portaria Inmetro/Dimel nº 0089**, de 31 de maio de 2012.

INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. Portaria Inmetro/Dimel nº 0049, de 01 de fevereiro de 2011.

INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. Portaria Inmetro/Dimel nº 0244, de 03 de agosto de 2011.

INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. Portaria INMETRO Nº 064, de 11 de abril de 2003.
INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. **Portaria INMETRO Nº 113**, de 16 de outubro de 1997.

INTERNATIONAL ELECTROTECHNICAL COMISSION. **IEC 60751: Industrial platinum resistance thermometers and platinum temperature sensors.** 2008.

INTERNATIONAL ORGANIZATION FOR STARDANDIZATION. **ISO/TR 12765: Measurement of fluid flow in closed conduits – Methods using transittime ultrasonic flowmeters.** 1998.

INTERNATIONAL ORGANIZATION OF LEGAL METROLOGY (OIML). **OIML R-117-1. Measuring systems for liquids other than water: metrological and technical requirements**, 2007.

INTERNATIONAL ORGANIZATION OF LEGAL METROLOGY (OIML). **OIML R-76-1. Non-automatic weighing instruments,** 2006.

INTERNATIONAL ORGANIZATION OF LEGAL METROLOGY (OIML). OIML R-111-1. Weights of classes E₁, E₂, F₁, F₂, M₁, M₁₋₂, M₂, M₂₋₃ and M₃. Part 1: Metrological and technical requirements, 2004.

KALPAKJIAN, S; SCHMID, S. R. **Manufactura, Ingeniería e Tecnologia.** Editorial: Pearson Education. México, 2002.

MOAZZENI, T. Flow rate measurement in a high temperature, radioactive and corrosive environment. 2010. (Ph.D. in Electrical Engineering). Departament of Electrical and Computer Engineering, University of Nevada, Las Vegas.

ORLANDO, A.F. Convênio Específico Petrobras/PUC-Rio, N° 07, Termo de Cooperação N° 0050.0022728.06.4. 2014. Relatório 4: Pre-Operação.

ORLANDO, A.F. Convênio Específico Petrobras/PUC-Rio, N° 07, Termo de Cooperação N° 0050.0022728.06.4. 2010. Relatório 1: Planejamento.

TANAKA, M. et al. Recommended table for the density of water between 0 degrees C and 40 degrees C based on recent experimental reports. **Metrologia**, v. 38, n. 4, p. 301-309, 2001. ISSN 0026-1394.

VERGARA, S. C. Métodos de pesquisa em administração. São Paulo: 2005.

10

ANEXO A – Certificado de calibração do barômetro digital

Indústria e Comércio Ltda. Laboratório de Pressão

FL. 01 / 02

CERTIFICADO DE CALIBRAÇÃO ABSI Nº 40892 / 06 LABORATÓRIO ABSI DE PRESSÃO REDE BRASILEIRA DE CALIBRAÇÃO (RBC)

Laboratório de Calibração Acreditado pela CGCRE / INMETRO sob o Nº 056

CLIENTE: FACULDADES CATÓLICAS. ENDEREÇO: Rua Marques de São Vicente 225 - Rio de Janeiro - RJ. SOLICITANTE: o mesmo ENDEREÇO: o mesmo INSTRUMENTO: Barômetro Digital FABRICANTE: ABSI MODELO: não consta NÚMERO DE SÉRIE: 42697 NÚMERO DE IDENTIFICAÇÃO: não consta FAIXA DE INDICAÇÃO: 100 - 1100 mbar (abs) FAIXA CALIBRADA: 100 - 1100 mbar (abs) VALOR DE UMA DIVISÃO: 0,1 mbar (abs) PEDIDO DE SERVIÇO: 40792 / 06 PROCEDIMENTO DE CALIBRAÇÃO: 21-P-02 // 22-P-01(rev.5/0 ABRIL/06) DATA DA CALIBRAÇÃO: 29 / 05 / 06 DATA DA EMISSÃO DO CERTIFICADO: 30 / 05 / 06

PROCEDIMENTO:

O instrumento foi calibrado em relação a um padrão de referência do laboratório ABS/ de pressão, cuja incerteza é de ± 0,02%, rastreado junto ao INMETRO de acordo com o certificado Nº.LAPRE 0542/01.

A calibração foi realizada com o instrumento na sua posição de utilização a uma temperatura de 20 °C ± 2 °C, umidade relativa de 65% ±10% e gravidade local de 9,7864384 m/s². O instrumento permaneceu sobre vácuo e pressão máxima aproximadamente 5 minutos para estabilidade do sistema da calibração.

Este certificado atende aos requisitos de credenciamento do INMETRO, o qual avaliou a competência do laboratório e comprovou sua rastreabilidade a padrões nacionais de medida.

Esta calibração não isenta o instrumento do controle metrológico estabelicido na Regulamentação Metrológica.

Os resultados apresentados no presente documento tem significação restrita e se aplicam somente ao instrumento calibrado. A utilização dos mesmos para fins promocionais depende de prévia autorização da ABSi. A reprodução do documento para outros fins só poderá ser eita integralmente, sem nenhuma alteração.

Rua General Lecor, 979 - CEP 04213-021 - Fone: (0XX11) 2273-1341 - Fone/Fax: (0XX11) 6914-2233 - Ipiranga - São Paulo - SP

Indústria e Comércio Ltda. Laboratório de Pressão

Continuação do certificado de galibração ABSi nº 40892 / 06 Laboratório de Calibração Acreditado pela CGCRE / INMETRO sob o Nº 056

DRESS A DE DEFENSION

FL.02/02

PRESS I O MIDIOLO LA

UNIDADES			PRESSAO	INDICADA Par	
SI	INSTR.	PRIMEIR	OCICLO	SEGUND	O CICLO
kPa	mbar	Carrego	Descarrego	Carrego	Descarrego
10,0	100	99,1	99,1	99,1	99,1
30,0	300	299,2	299,3	299,3	299,3
50,0	500	499,4	499,5	499,4	499,6
70,0	700	699,7	699,8	699,6	699,8
80,0	800	799,9	800,1	799,9	800,1
93,4	934	934,0	934,0	933,9	934.0
100,0	1000	999,1	999,4	999,2	999,4
103,0	1030	1028,6	1028,8	1028,6	1028,8
106,0	1060	1058,1	1058,3	1058,2	1058,3
110,0	1100	1097,7	1097,7	1097,8	1097,8

CARACTERÍSTICAS METROLÓGICAS APRESENTADAS PELO INSTRUMENTO EM RELAÇÃO A AMPLITUDE DA FAIXA DE INDICAÇÃO. (%)

INCERTEZA MEDIÇÃO:

0,03

OBSERVAÇÃO:

1)1 kPa = 1,000000 x 10¹ mbar (kPa = quilopascal, unidade de pressão SI)

2) A validade de calibração do instrumento deve ser estabelecida pelo usuário em plano de calibração descrito no sistema da qualidade de acordo com a norma NBR ISO 10.012 parte 1.

3) A incerteza expandida relatada é baseada em uma incerteza padronizada combinada multiplicada por um fator de abrangência k=2, para um nível de confiança de aproximadamente 95%.

4) Pressão atmosférica em 29 / 05 / 06 = 934,0 mbar.

ALESSANDRO DE SOUZA GERENTE TÉCNICO DO LABORATÓRIO

Js resultados apresentados no presente documento tem significação restrita e se aplicam somente ao instrumento calibrado. A utilização los mesmos para fins promocionais depende de prévia autorização da ABSi. A reprodução do documento para outros fins só poderá ser eita integralmente, sem nenhuma alteração.

ANEXO B – Certificado de calibração: balança de pressão

ON/DGE 021/94

Rio de Janeiro, 17 de agosto de 1994

Ao: Superintendente do ITUC Eng² Jorge Dias Lage

Ref.: Determinação da aceleração da gravidade local e seu gradiente.

Prezado Senhor,

Encontra-se em anexo o processamento das medidas de determinação da aceleração da gravidade local e seu gradiente, realizadas na sala "B" do Laboratório de Ensaios Mecânicos do ITUC. Os valores encontrados foram:

- (i) Estação gravimétrica nº1 (Piso). Gravímetro sobre o piso próximo a parede Sul da sala "B". O local da medida encontra-se assinalado por uma chapa metálica circular cravada no piso e onde se lê "Observatório Nacional - Estação Gravimétrica": 9,788 005 5 ± 0,000 000 3 m s⁻²;
- (ii) Estação gravimétrica nº2 (Bancad). Gravímetro sobre o topo da segunda bancada metálica defronte a parede Sul: 9,788 002 9 ± 0,000 000 3 m s⁻²; e
- (iii) Gradiente local de g: -0,000 002 9 \pm 0,000 000 5 s⁻².

Para sua informação, a unidade adotada na listagem de computador é o mGal cujo equivalente SI é 1 mGal = 10^{-5} m s⁻². O equipamento utilizado foi um gravímetro LaCoste & Romberg modelo G602 aferido imediatamente antes e após a realização dos enlaces gravimétricos ON - ITUC. As medidas são relativas á estação 40123 "A", vinculada à Rede Internacional de Padronização Gravimétrica - IGSN 71. Realizou-se o processamento dos dados em microcomputador AT486 e os algorítmos matemáticos foram executados em precisão dupla.

Para quaisquer esclarecimentos que se fizerem necessários, por favor entre em contato através dos telefones 585-3215 ramal 229 ou 580-7081 (Secretaria) ou 580-0332 (FAX).

Atenciosamente,

Mauro A. de Scusa Mauro Andrade de Sousa Dep. de Geofísica/Observatório Nacional

Rua General José Cristino, 77 — Rua General Bruce, 586 — São Cristóvão — Rio de Janeiro Tel.: (021) 580-7313 — Telex: (021) 21288 — Caixa Postal 23002 — CEP 20921 — FAC-SIMILE (021) 580-0332

NACIONAL

112

, Laboratón	io Nacional de Metrologia (LNM)	INMETRO
CERTIFICA	DO DE CALIBRA	ÇÃO
Calibration Certificate issued by LNM	/Brazil	
	LAPRE 0125/20 Número do Cer	00 tificado
Solicitante do Serviço	Curdicus Aurour	
Nome: INSTITUTO TECNOLÓGICO	DA PUC - ITC/PUC	
Endereço: Rua Marquês de São Vicente Aténu	, 225 – Gávea – Rio de Janeiro – RJ – CEP: 22.45	3-900
- Identificação do Instrumento de N Wasserment InstrumerCalibrated Danidard Identification	Iedição /Padrão Calibrado	100.50
Instrumento de Medição/Padrão: Balança	de Pressão	
Fabricante: XIAN		
Modelo/Tipo: YS-600/Óleo		
Número de Série: 951022 Satis Mantar	Código de Identificação: 007	
Informações Administrativas —		
Processo INMETRO: 001012/1999	Data da Calibração: 10/04/2000 Calbralise Date	
11919	14.171.2	
Laboratorio Responsavel pela Calibração: Laboratory Responsible for the Calibration	Laboratorio de Pressão - LAPRE	
28/06/2000	•	Second and
Data da Emissão	José Renard Real Sigueira	141
do Certificado huer on	Chefe da Divisão de Metrologia Mecânica Read of Division of Mechanical Metrology	NAL TELE
presente certificado de calibração atende aos re- dição/padrão acima caracterizado, não sendo extre alizada basecu-se em mediciões disetamente castrea	quisitos de ABNT-ISO/IEC-Gula 25:1993 e é válido apenas p nsivo a quaisquer outros instrumentos de medição, ainda que das aos padrões nacionais do Brasil, Este certificado de calibra	ara o instrumento i similares. A calibraçi ção somente pode s

LNM - Av. Nossa Senhora das Graças, 50 - Xerém - Duque de Caxias - RJ - Brasil - CEP: 25250-020 LAPRE - Tel.: (021) 679-1311 - Ramais 9046, 9042 e 9034 - Fax: (021) 679-1505 - e-mail: lapre@inmetro.gov.br

(Pág 1/4)

Calibration Certificate

LAPRE 0125/2000 Número do Certificado Certificate Number

Características do Instrumento de Medição/Padrão Resumment InstrumentStandard Cherchelistica

> Faixa de indicação: 0,3 a 60 MPa Acessórios: Coleção de massas XIAN

Informações Pertinentes à Calibração Information Concerning Calibration

> Padrão Utilizado: Balança de Pressão DESGRANGES ET HUOT Modelo: 5303 - S (PISTÃO 1334) Incerteza de Medição: 30 ppm Certificado de Calibração: 0068 PTB 99 Temperatura da Calibração: 20 °C ± 1 °C Fluído Utilizado: Óleo Massa específica: 873 kg/cm² Tensão superficial: 0,028 N/m

Procedimento/Método de Calibração Calbraton Metod

A área efetiva (A_{6.28}) do conjunto pistão-cilindro da balança de pressão, foi determinada a partir da comparação com um padrão do laboratório, rastreado ao PTB (Physikalisch Technische Bundesanstalt).

Resultados e Declaração de Incertezas Resulta ant Uncertainfas

De acordo com o método de calibração descrito, os valores característicos determinados para o conjunto pistão-cilindro são apresentados na tabela I.

Tabela I

Identificação do Conjunto Pistão-cilindro	Faixa de Indicação (MPa)	Area Efetiva (A _{0,30}) x 10 ⁴ m ²	Desvio Padrão x 10 ⁻⁶ m ²	Coeficiente de Deformação (λ) x 10 ⁺ /MPa
Pistão 007	0,3 a 60	10,0070	0,0010	-4,4

28/06/2000

Data da Emissão do Certificado humtos

Walmir Sérgio da Silva Técnico do Laboratório de Pressão 0

Paulo Couto

Chefe do Laboratório de Pressão Ilrad of Pressare Laboratory

Este certificado de calibração somente pode ser reproduzido em sua forma integral; reprodações parciais devem ser previamente autorizadas pelo INMETRO.

This certificate can be reproduced only in full version; partial reproductions requires previous consent of INMETRO.

CERTIFICADO DE CALIBRAÇÃO

Calibration Certificate issued by Inmetro

LAPRE 0125/2000 Número do Certificado Certificate Number

A tabela II apresenta os valores das massas corrigidas de cada peso e respectivas indicações de pressão, as quais foram determinadas através da seguinte equação:

$$p = \frac{\mathrm{m}(1 - \rho_* / \rho_m) \times \mathrm{g}_m}{\mathrm{A}_{\mathrm{a}\infty}} \times 1 \times 10^{-6} \quad MPa$$

Onde:

gn - aceleração da gravidade normal: 9,80665 m/s

 ρ_a = massa específica do ar: 1,2 kg/m²

 $\rho_{\rm m}$ = massa específica dos pesos: 7800 kg/m³ (aço) e 2700 kg/m³ (alumínio) $\Lambda_{\rm a,w}$ = área do conjunto pistão – cilindro: 10,0070 x 10⁴ m².

Identificação dos Pesos	Valor Nominal (MPa)	m(1 - p _s /p _m) (kg)	Pressão (MPa)
Pistão 007	0,3	0,30738	0,3012
951022 1	5	5,08709	4,9852
951022 2	5	5,08878	4,9869
951022 3	5	5,10502	5,0028
951022 4	5	5,09090	4,9890
951022 5	5	5,10538	5,0032
951022 6	5	5,10055	4,9984
951022 7	5	5,10230	5,0002
951022 8	5	5,09971	4,9976
951022 9	5	5,10672	5,0045
951022 10	5	5,09361	4,9916
951022 11	5	5,10776	5,0055
951022 12	1	1,02021	0,9998
951022 13	1	1,02006	0,9996
951022 14	1	1,01977	0,9994
951022 BASE	1	0,92652	0,9089

Tabela II

28/06/2000

Data da Emissão do Certificado inner or Walmir Sérgio da Silva Técnico do Laboratório de Pressão Calibrator Executor

Paulo R. G. Couto Chefe do Laboratório de Pressão

Itend of Pressure Laboratory

Este certificado de calibração somente pode ser reproduzido em sua forma integrai: reproduções parciais devem ser previamente autorizadas pelo Inmetro.

This certificate can be reproduced only in full version; partial reproductions require previous consent of Inmetro.

(Pág 3/4)

CERTIFICADO DE CALIBRAÇÃO

Calibration Certificate

LAPRE 0125/2000 Número do Certificado Cetificato Number

	Cor	ntinuação	
Identificação dos Pesos	Valor Nominal (MPa)	m(1 - ρ _ν /ρ _m) (kg)	Pressão (MPa)
007 N 001*	0,1	0,09946	0,09746
007 N 002*	0,1	0,10017	0,09816
007 N 003*	0,1	0,10019	0,09817
007 N 004*	0,1	0,10025	0,09823
007 N 005*	0,3	0,30092	0,29489
007 N 006	0,5	0,50195	0,49191

A incerteza expandida (U) declarada de medição da balança de pressão, para valores iguais ou superiores a 10% do limite superior da sua faixa de indicação é: ± 0,015%, para um nivel de confiança de 95,45% e k = 2, de acordo com ISO GUM 1995 ((International Organization for Standardization, Guide to the Expression of Uncertainty in Measurement, Geneva, 1993, revised and reprinted in 1995).

Para medição de pressão fora das condições de referência, os valores apresentados na tabela II deverão ser multiplicados pelo fator:

$$\frac{g}{g_*} x \frac{1}{1 + (\alpha_c + \alpha_p)(t - 20) + \lambda p_*}$$

Onde:

g = aceleração da gravidade local (m/s)

gn = aceleração da gravidade normal: 9,80665 (m/s²)

t = temperatura (°C) do conjunto pistão-cilindro

 $\alpha_c, \alpha_p =$ coeficientes de dilatação térmico linear do cilindro e pistão. (°C⁻¹)

 λ = coeficiente de deformação do conjunto pistão-cilindro (MPa⁻¹)

Pa = Pressão nominal (MPa)

Observações:

a) 1 Pa = 1 x 10⁻⁶ MPa [pascal (Pa) Unidade de Pressão do SI];

b) * Massas em aluminio.

28/06/2000

Data da Emissão do Certificado insued on Walmir Sérgio da Silva Técnico do Laboratório de Pressão

Paul outo

Chefe do Laboratório de Pressão Head of Pressare Laboratory

Este certificado de calibração somente pode ser reproduzido em sua forma integral; reproduções parciais devem ser prevlamente autorizadas pelo INMETRO.

This certificate can be reproduced only in full version; partial reproductions requires previous consent of INMETRO.

(Pág 4/4)

ANEXO C – Manual do usuário: multímetro HP 34401A

Chapter 8 Specifications **DC** Characteristics

DC Characteristics

Function	Range [3]	Test Current or Burden Voltage	24 Hour [2] 23°C ± 1°C	90 Day 23°C ± 5°C	1 Year 23°C ± 5°C	Temperature Coefficient /'C 0'C - 18'C 28'C - 55'C
DC Voltage	100.0000 mV 1.000000 V 10.00000 V 100.0000 V 100.0000 V		0.0030 + 0.0030 0.0020 + 0.0006 0.0015 + 0.0004 0.0020 + 0.0006 0.0020 + 0.0006	0.0040 + 0.0035 0.0030 + 0.0007 0.0020 + 0.0005 0.0035 + 0.0006 0.0035 + 0.0010	0.0050 + 0.0035 0.0040 + 0.0007 0.0035 + 0.0005 0.0045 + 0.0005 0.0045 + 0.0010	0.0005 + 0.0005 0.0005 + 0.0001 0.0005 + 0.0001 0.0005 + 0.0001 0.0005 + 0.0001
Resistance [4]	100.0000 Ω 1.000000 KD 10.00000 KD 10.00000 KD 1.000000 MD 1.000000 MD 10.00000 MD	1 mA 1 mA 100 μA 10 μA 5 μA 500 nA 500 nA // 10 Mu	0.0030 + 0.0030 0.0020 + 0.0005 0.0020 + 0.0005 0.0020 + 0.0005 0.0020 + 0.0005 0.002 + 0.001 0.015 + 0.001 0.300 + 0.010	0.008 + 0.004 0.008 + 0.001 0.008 + 0.001 0.008 + 0.001 0.008 + 0.001 0.008 + 0.001 0.020 + 0.001 0.800 + 0.010	0.010 + 0.004 0.010 + 0.001 0.010 + 0.001 0.010 + 0.001 0.010 + 0.001 0.040 + 0.001 0.800 + 0.010	0.0005 + 0.0005 0.0006 + 0.0001 0.0006 + 0.0001 0.0005 + 0.0001 0.0010 + 0.0002 0.0010 + 0.0002 0.0030 + 0.0004 0.1500 + 0.0002
DC Current	10.00000 mA 100.0000 mA 1.000000 A 3.000000 A	< 0.1 V < 0.6 V < 1 V < 2 V	0.005 + 0.010 0.01 + 0.004 0.05 + 0.006 0.10 + 0.020	0.030 + 0.020 0.030 + 0.005 0.080 + 0.010 0.120 + 0.020	0.050 + 0.020 0.050 + 0.005 0.100 + 0.010 0.120 + 0.020	0.002 + 0.0020 0.002 + 0.0005 0.005 + 0.0010 0.005 + 0.0020
Continuity	1000.0 Ω	1 mA	0.002 + 0.010	0.008 + 0.020	0.010 + 0.020	0.001 + 0.002
Diode Test	1.0000 V	1 mA	0.002 + 0.010	0.008 + 0.020	0.010 + 0.020	0.001 + 0.002
DC:DC Ratio	100 mV to 1000 V		{ Input Accuracy : Input Accuracy = 1 Reference Accuracy) + (Reference Acco accuracy specificatio cy = accuracy specific	uracy) n for the HI-LO inpu ation for the HI-LO re	t signal. ference input signal

Transfer Accuracy (typical)

(24 hour% of range error) 2

Conditions:

- Within 10 minutes and $\pm\,0.5^{*}C$

- Within ±10% of initial value.

- Following a 2-hour warm-up.

- Fixed range between 10% and 100% of full scale.
- Using 61/2 digit slow resolution (100 PLC).
- Measurements are made using accepted metrology practices.

ANEXO D – Manual do usuário: multímetro AGILENT 34970A

Especificaciones de precisión del 34970A/34972A ± (% de lectura + % de rango)⁽¹⁾ Incluye error de medida, error del conmutación y error de conversión del transductor

	Rango I ^{II}	Frecuencia, etc.	24 horas = 23 °C ±1 °C	90 dias 23 °C ±5 °C	0n año 23 °C ±5 °C	Coeficiente de temperatura 8 °C-18 °C. 28 °C-55 °C
Teesión DC						
	100.0000 (e/V		0.0038 + 0.0035	0.0040 + 0.0040	0.0058 + 0.0048	0.0005 + 0.0005
	1.900006 V		0.0020 + 0.0006	0.0030 + 0.0007	0.0040 + 0.0007	0.0005 + 0.0001
	18.00000 V		0.0015 + 0.0004	0.0020 + 0.0005	0.0035 + 0.0005	8.0005 + 8.0081
	100.0000 V		0.0020 + 0.0006	0.0025 + 0.0006	0.0045 + 0.0006	0.0005 + 0.0001
	200.000 V		0,0020 + 0.0029	8.0035 + 0.0030	0.0045 + 0.0030	0.0005 + 0.0003
UMS reales de te	ettile AC P	A 11. K 11.				A 144 . A 144
	Todos los rangos	3 H2 5 H2	1.00 + 0.03	1.00 + 0.04	1,00 + 0,04	6,100 + 0,004
	a party de resultado nos	5 Hz T0 Hz	0.35 + 0.03	0,35 + 0,04	8.35 + 9.04	8.025 + 0.004
		10 H2-28 KH2	9,04 + 9,03	0.25 + 0.04	0.08 + 0.04	0.005 + 0.004
		20 kH2 58 kH2	0.10 + 0.05	0,11 + 0,05	8,12 + 0.05	0.011 + 0.005
		50 kHz 100 kHz	0.55 + 0.08	0.60 + 0.08	0.00 + 0.08	0.060 + 0.008
	10000000000000000000000000000000000000	100 kHz-300 kHz ^{rij}	4.00 + 0.50	4,00 + 9.50	4.00 + 0.50	0.29 + 0.02
	308.0900 V	3 H2-5 H2	1.00 + 0.05	1.00 + 0.08	1.00 + 0.08	0,100 + 0,008
		5 Hz-18 Hz	0.35 + 0.05	0.25 + 0.08	0.55 + 0.08	8.035 + 0.008
		10 Hz-29 kHz	0.04 + 0.05	0.05 + 0.08	0.06 + 0.08	8,005 + 2,008
		20 kHz-50 kHz	0,10 + 0,10	0.11 + 0.12	0,12 + 0,12	0.011 + 0.012
		50 kHz-100 kHz	0.55 + 0.20	0.60 = 0.20	0.60 + 0.28	8,066 + 8,829
		100 kHz-300 kHz ^{Hi}	4.00 + 1.25	4.00 + 1.25	4.00 + 1.25	8.28 + 0.05
Ansistencia H						
	100,0000 0	Fuerte de comiente de 1 mA	0.0030 + 0.0035	R.008 + 0.004	0,010 = 0,004	0.0006 + 0.0005
	1,000000 kΩ	1 mA	0.0020 + 0.0006	0.008 + 0.001	0.010 = 0.001	0,0006 + 0,0001
	18,00000 kD	100 µA	0.0020 + 0.0005	100.0 + 800.0	0,010 + 0,001	8.0006 + 8.0081
	100.0000 kD	10 µA	0.0020 + 0.0005	0.008 + 0.001	0.010 = 0.001	8.0006 + 8.0001
	1.800000 MO	5.8 µA	0.002 + 0.001	0.008 + 0.001	0.010 + 0.001	0.0018 + 0.0002
	10,00005 MO	500 nA	0.015 + 0.001	0.020 + 0.001	0.040 = 0.001	0.0030 + 0.0004
	100,0000 MO	500 nA 10 MD	0.300 + 0.010	0.800 + 0.010	0.000 = 0.010	0,1500 + 0,0002
Frecaencia y peri	eda II	0.0000000000000000000000000000000000000				
	100 mV	3 H2 5 H2	0.10	0.10	0.10	0.995
	a 300 V	5 Hz-10 Hz	0.05	0.05	0.05	0.005
		10 Hz-40 Hz	0.03	6.03	8.03	8,001
		40 Hz 300 kHz	0,006	0,21	0,01	0.901
Cerrients DC (sel	e 34901A)	1-22000-1110-0				Party Constant
	16.00000 mA	< 0,1 V de carga	0.005 + 0.010	0.030 + 0.020	0.050 + 0.020	0.002 + 0.0020
	100.0000 mA	< 8.6 V	0.010 + 0.004	0.030 + 0.005	8.050 + 0.005	0.002 + 0.0005
	1,000000 A	< 2 ¥	0.050 + 0.005	0.000 + 0.010	8,100 + 0,010	9,865 + 9,9010
RMS reales de co	ertieste AC (salo 34901A)	A 141 A 141				
	10.0000 mA	3 H2 5 H2	1,00 + 0,04	1,00 + 0.04	1,00 + 0.04	0.100 + 0.006
	y = 1.000000 A	5 Hz 10 Hz	8,30 + 8,94	0.30 + 0.04	0.30 + 0.04	8,635 + 8,005
	Second second	10 H2-5 KH2	0.10 + 0.04	0.10 + 0.04	0.10 + 0.04	0.015 + 0.008
	100.0000 mA ¹⁴	3 H2-5 H2	1.00 + 0.5	1,00 = 0.5	1.00 + 0.5	8.100 + 8.06
		5 Hz-10 Hz	0.30 + 0.5	0.30 + 0.5	0.30 + 0.5	8,035 + 8,06
		10 Hz-5 kHz	0.18 + 0.5	8.30 + 8.5	6,18 + 6.5	0.015 + 0.06
Tamparahan	(West)	Description in the set of the		Baseleite b on other	to summer summittee to 1	Coeficiente de
Temperatura	100	Precision a un ano "	1.2.10	Precision a un año o	1 A 10	mubersons/~C
en angelan	2	De 100 C 81 820 C	1.0.00	00 400 °C # 1 100 °C	1.0 %	
	2	De 159 °C 8 1 909 °C	1.8 %	De 200 °C a 150 °C	1,3 %	
	1	CH -100 °C a 1 200 °C	1.0 %	Ce -210 °C 8 -150 °C	1.2 %	A 305 107
	5	De -100 °C a 1 200 °C	1.8 .C	OH 200 "C & 100 "C	1.5 %	8.03 °C
	N	DH-100 "C # 1 300 "C	1,0 *C	De -200 °C a -100 °C	1.5 %	
		De 300 °C a 1 760 °C	1.2 °C	De -50 °C a 300 °C	1.8 *C	
	5	De 400 °C a 1 760 °C	1,2 °C	De -50 °C a 400 °C	1,8 °C	
	1	De -100 °C a 400 °C	1,0 °C	De -206 °C a -100 °C	1.5 *0	
ato	R, de 49 Ω e 2.1 kΩ	De -200 °C a 600 °C	0.06 °C			8.003 °C
Termister	2,2 k, 5 k, 10 k	De -80 °C a 150 °C	0.08 °C			8.862 °C

Especificaciones para une hora de calentamiento y EV dígitos, titro de AC lento [1]

Intro de AC mento Con relación e a los estándares de calibración 20 N por ancima del rango an todos los rangos xalvo 300 VDC y rangos AC. y 1 ADC y rangos de consente AC Para una entrade de onda simunidal > 5 % del rango. Para entradas del 1 % a 5 % del rango y de < 50 kHz, estadamo un 8.1 % de error adicional de rango Normalmento. 30 % de error de loctura a 1 MHz, linstado a 1 x 10⁴ V Hz 121

141

157

[4] Especificaciones para función de resistancia a 4 hiles o resistancia a 2 hiles usando escalado para eliminar el offiset. Sin escalado, attatase un enter adicional de 4 () en la función de resistancia a 2 hiles.
[7] Entrada > 108 m/r. Para entradas de 10 m/r a 108 m/r. multiplepasa el % de entre de lactura x 18.
[8] Especificado solo para entradas >10 mA.
[9] Especificado solo para entradas >10 mA.
[9] Especificados solo para entradas >10 mA.

ANEXO E – Certificado de calibração das massas padrão M1 e F1

Solicitante:

Faculdades Católicas Rua Marquês de São Vicente, 225 - Rio de Janeiro / RJ

Contratante:

Quanto Brasil Indústria e Comércio de Pesos Padrão Ltda Rua Catapará, 61 - São Paulo / SP

Objeto Calibrado: Peso Padrão 13 Peças				
Descrição dos Objetos Calibrados	13 x 20 kg	identificação do Conjunto	Não Consta	
Nome do Fabricante	WL	Número de Série	Não Consta	
Classe Declarada	M1	Número do Processo	0365.1144-09/2013	
Data do Recebimento	03/09/2013	Data da Emissão	11/09/2013	
Contraction D BAL STAR		Data da Calibração	10/09/2013	
Jac m. CO.	Erick & do Souza	Técnico Executante	Daniel Johnatan	

A calibração fei realizada conforme procedimento interno, por comparação diarta com pasos de referência utilizando-se o mótodo de dupla substituição "ABBA", com posos de referência de classe superior ao objeto medido, segundo a classificação da CDEL, conforme Instrução Técnica 022 do Mazual da Qualidade da Padrão Balanças.

Rastreabilidade

Pesos Padrões Utilizados

Balanças Utilizadas

Pesos Padrão classe F1, Caixa 74, certificado nº MA 122_01_13, emitido por Padrão Balanças, valido até 29/01/2015 Balança: BAL-003, calibrado em 26/07/2013, certificado nº BA 123_07_13, valido até 26/01/2014

	Condições	Ambientais		
Condições Ambienta	is Durante a Calibração:	Instrumentos Utilizados		
Temperatura	20.4 °C = 0.5 °C	Termohigrómetro, TAG nº PA-TH 003, Certificade de Cabbração nº LV 53237-12 Emitido por		
Umidade Relativa da Ar:	51,5 % + 5 %	Viaomes, valido até 20/12/2018		
Pressão Atmosférica:	900 hPa = 5 hPe	Bardenetre, TAG nº PA-DAR 003, Certificado de Calibração nº LV 00907/12 Emitido por Viaco valido ate 12/01/2014		

FOR 021 NEV 08

CERTIFIÇADO DE CALIBRAÇÃO Nº MA 020_09_13

TEM	HAREA MONTHAL	#uscucio	THENTTERCACTO	SEM AJU:	STE	COM AJU	STE		
	model monarche	manunynu	TOCHTETCACAD	Massa Convencional	Errs	Massis Convencional	Brea	MATERIAL	ENGAL INCERTELA
1	20 kg	20 kg M	01	29.999.79	-0,3 g	4	5 (e) (c)	Ferro Fundido	0.3 0
2	20 kg	20 kp M	02	19.999,59	-0,5 g		1 (A) (I)	Ferro Pundido	0.3.9
3	20 kg	20 kg M	0.0	19.999,4.0	-0.69	S4 1	1.12	Ferro Pundido	0,3 9
4	20 kg	20 kg M	04	19.999,79	-0.3 g			Ferro Fundido	0.3 9
5	20 kg	20 kg M	05	19.999,8 g	-0,2 g			Ferro Pundido	0.3 0
6	20 kg	20 kg M	06	19.999,5 g	-0.5 g		- 64 I.S	Ferro Pundido	0,3 9
7	20 kg	20 kg M	07	19.999,5 g	-0,5 g		G. 1	Ferro Fundido	0.3 9
8	20 kg	20 kg M	08	39.999,6 g	-0.4 g	1. 1. 1.		Ferro Pundido	0.3 0
۰.	20 kg	20 kg M	09	19.999,7 g	-0,3 g		1.	Ferro Pundido	0.3 9
10	20 kp	20 kg M	10	19.999,5.0	-0.5 g			Ferro Fundido	0,3 0
11	20 kg	20 kg M	11	19.999,50	-0,5 g		19 I.	Perro Pundido	0.3 9
12	20 kg	20 kg M	12	29.999,5 g	-0.5 g			Ferro Pundido	0,3 9
13	20 kg	20 kg M	13	19.999,6 g	-0,4 g			Perro Pundido	0,3 9
·	1.000000		1					Construction of the second second	
- 1				-			r - 13		
- 1				1					1
- 1				1 I		1 1	(S		
							1 10		
) (3		
- 1							2 19		
- 1								2	14 A A A A A A A A A A A A A A A A A A A
			C				1 23		
- 1							1 3		
- 1									
- 1				E 3			1.		
- 1							1		

Observacões:

* O Serviço de Auste não taz parte do escopo de acreditação

A montes exercise or expension are person to extend to the second or extended on a nonnegative exercise person or expension of exercise exercise of exercise ex

Este pertificato amone eos requisitos de acretados
Este pertificado amone eos requisitos de acretados e a padoles nacionais e
este pertificados amone eos requisitos de acretados
este pertificados amone eos requisitos de acretados e a padoles nacionais
este pertificados amone eos requisitos de acretados e a padoles nacionais e

4

FOR SQ1 REV. OR

Laboratório de calibração, acreditado pela CGCRE de acordo com a ABNT NBR ISO/ IEC 17025, sob o número CAL 291

Página: 2/2

Solicitante:

Faculdades Católicas Rua Marquês de São Vicente, 225 - Rio de Janeiro / RJ

Contratante:

Quanto Brasil Indústria e Comércio de Pesos Padrão Ltda Rua Catapará, 61 - São Paulo / SP

Ob	jeto Calibrado: Conjun	to de Pesos Padrão 20	Peças	
Descrição dos Objetos Calibrados	10 mg a 500 g	Identificação do Conjunto	Não Consta	
Nome do Fabricante	Quanto Brasil	Número de Série	24313	
Classe Declarada	F1	Número do Processo	03651144-08/2013	
Data do Recebimento	21/08/2013	Data da Emissão	27/08/2013	
OBALTE.	Gerente Terdeco	Data da Calibração	27/08/2013	
(2 OK)	Erect de Soute	Técnico Executante	Doniel Johnston	
classe superior ao objeto e	Rastre	abilidade	A Annual of Lotton analyse	
Pesos Padro	ws Utilizados	8	alanças Utilizadas	
Conjunto de Pesos Padrão classe E2, Caix emitido por Padrão Balanças, valido até 23	a 60, certificado nº MA 113_01_13, 8/01/2015	Balança: BAL 008, calibrado em valido até 26/01/2014	26/07/2013, certificado nº BA 128_07_13.	
Conjunto de Pesos Padrão classe E2, Caix emitido por Padrão Balanças, valido até 2-	a 61, certificado nº MA 114,01_13. 4/01/2015	Balança: BAL 001, calibrado em 26/07/2013, certificado nº BA 129_07_13, valido ase 26/01/2014		
		Balança: BAL 002, calibrado em valido até 26/01/2014	26/07/2013, certificado nº BA 122_07_13,	
	Condiçõe	s Ambientais		
Condicides Ambientai	s Durante a Calibração:	instru	mentos Utilizados	
Temperatura	20 °C ± 0,5 °C	C Termshighteners, TAG at PA-TH 003, Certificado de Calibração at LV 53237-12 Emilia		
Umidade Relativa do Ar: Pressão Atmosférica:	53,5 % ± 5 % 927 hPa = 5 hPa	Visiones, valide aré 20/12/2014 Bautimetre, TAG nº PA-BAR 003, Certificado de Califeração nº 5/V 00907/12 Einitide por Vi radio val 12/01/2014		

FOR SET REV. OR

Solicitante:

Faculdades Católicas Rua Marquês de São Vicente, 225 - Rio de Janeiro / RJ

Contratante:

Quanto Brasil Indústria e Comércio de Pesos Padrão Ltda Rua Catapará, 61 - São Paulo / SP

Ob	jeto Calibrado: Conjun	to de Pesos Padrão 20	Peças	
Descrição dos Objetos Calibrados	10 mg a 500 g	Identificação do Conjunto	Não Consta	
Nome do Fabricante	Quanto Brasil	Número de Série	24313	
Classe Declarada	F1	Número do Processo	03651144-08/2013	
Data do Recebimento	21/08/2013	Data da Emissão	27/08/2013	
OBALTE.	Gerente Terfeco	Data da Calibração	27/08/2013	
(2 OK)	Erect de Soute	Técnico Executante	Doniel Johnston	
	Rastre	abilidade		
Pesos Padro	ws Utilization	8	alanças Utilizadas	
Conjunto de Pesos Padrão classe E2, Caix emitido por Padrão Balanças, valido até 23	a 60, certificado nº MA 113_01_13, 8/01/2015	Balança: BAL 008, calibrado em valido até 26/01/2014	26/07/2013, certificado nº BA 128_07_13,	
Conjunto de Pesos Padrão classe E2, Caix emitido por Padrão Balanças, valido até 24	a 61, certificado nº MA 114_01_13. 4/01/2015	Balança: BAL 001, calibrado em 26/07/2013; certificado nº BA 129_07_13, valido ase 26/01/2014		
		Balança: BAL 002, calibrado em valido até 26/01/2014	26/07/2013, certificado nº BA 122_07_13,	
	Condiçõe	s Ambientais		
Condições Ambientai	s Durante a Calibração:	instru	mentos Utilizados	
Temperatura	20 °C ± 0,5 °C	C Termshightestos, TAO nº PA-TH 003, Certificado de Calibração nº 1.V 53237-12 Emir		
Umidade Relativa do Ar: Pressão Atmosférica:	53,5 % ± 5 % 927 hPa = 5 hPa	Viscences, valido aré 20/12/2014 Barlimetro, TAD nº PA-DAR 003, Certifi valido até 12/01/2014	nado de Caldonodo nº 5.V 00907/12 Emitido por Visome	

FOR SET REV. OR

ANEXO F – Características volumétricas do sistema gravimétrico

Tabela F.1 –	Volume	total c	de água	na torre	A e no	tubo	acrílico
--------------	--------	---------	---------	----------	--------	------	----------

	VOLUME DE ÁGUA NA TORRE A + TUBO ACRÍLICO Balança ALFA 3107															
	Massa inicial	Massa final	Pressão do	Pressão do	Temperatura	Temperatura	o Inicial	o Final	o Inicial	o Final	Fator de	a da	Massa real da	Massa real da	Volume	de Água
Ponto	sistema	sistema	ar inicial	ar final	da água inicial	da água final	Parinicial	Parrina	P _W micial	P _W rindi	етрихо	SPUC-Rio/ Sref	água transferida	água acumulada	Transferido	TOTAL
	(kg)	(kg)	(Mpa)	(Mpa)	(°C)	(°C)	(kg/m³)	(kg/m³)	(kg/m³)	(kg/m³)		-	(kg)	(kg)	(m³)	(m³)
1	241.38	94.66	508.04	510.98	29.15	28.73	5.8556	5.8977	995.91	996.03	0.994100	1.00017007	147.57	147.57	0.1481652	0.1481652
2	241.09	94.03	530.30	511.49	28.73	28.53	6.1207	5.9074	996.03	996.09	0.993962	1.00017007	147.92	295.49	0.1485086	0.2966739
3	241.41	96.28	514.94	507.78	28.53	28.26	5.9473	5.8700	996.09	996.17	0.994068	1.00017007	145.96	441.46	0.1465316	0.4432055
4	241.11	90.09	519.55	508.29	28.20	20.10	6.00054	5,8699	990.17	996.19 990.19	0.994047	1.00017007	145.00	267.52 734.28	0.1404221	0.38902/0
6	241.48	96.58	509.48	504.08	28.56	28.84	5.8837	5.8160	996.08	996.00	0.994127	1.00017007	145.73	880.02	0.1463101	0.8834715
7	240.97	92.48	510.04	505.09	28.84	28.57	5.8848	5.8329	996.00	996.08	0.994118	1.00017007	149.34	1029.36	0.1499362	1.0334077
8	242.10	91.95	513.49	501.82	28.57	28.43	5.9300	5.7979	996.08	996.12	0.994113	1.00017007	151.02	1180.38	0.1516067	1.1850145
9	241.09	96.05	508.91	505.09	28.43	28.93	5.8798	5.8258	996.12	995.98	0.994124	1.00017007	145.88	1326.25	0.1464560	1.3314704
10	241.98	95.32	510.29	504.71	28.93	28.71	5.8859	5.8257	995.98	996.04	0.994121	1.00017007	147.51	1473.76	0.1480978	1.4795682
11	240.93	93.44	513.49	500.26	28./1	28.89	5.92/1	5.//10	996.04	995.99	0.994128	1.0001/00/	148.34	1522.10	0.1489352	1.6285034
12	240.60	94.24	506.66	490.54	28.69	26.45 27.82	5,8531	5.0047	995.99	990.12	0.994234	1.00017007	147.44	109.54	0.1460251	1.7703200
14	239.97	95.13	508.54	492.54	27.82	28.82	5.8873	5.6832	996.30	996.01	0.994192	1.00017007	145.66	2062.15	0.1462254	2.0702636
15	240.78	94.51	507.35	495.11	28.82	28.93	5.8541	5.7108	996.01	995.98	0.994194	1.00017007	147.10	2209.26	0.1476963	2.2179599
16	240.68	93.66	511.30	499.44	28.93	28.54	5.8975	5.7682	995.98	996.09	0.994144	1.00017007	147.86	2357.12	0.1484474	2.3664073
17	240.95	94.60	515.38	502.58	28.54	28.63	5.9522	5.8027	996.09	996.07	0.994099	1.00017007	147.19	2504.30	0.1477647	2.5141720
18	241.11	93.04	507.72	496.11	28.63	28.22	5.8621	5.7358	996.07	996.18	0.994178	1.00017007	148.90	2653.21	0.1494838	2.6636558
19	240.91	95.25	508.85	500.19	28.22	29.13	5.8831	5.7657	996.18	995.92	0.994153	1.00017007	146.49	2799.70	0.1470754	2.8107311
20	240.48	94.09	513.37	502.45	29.13	28.49	5.9175	5.8039	995.92	996.10	0.994116	1.00017007	147.23	2946.94	0.1478233	2.9585544
21	240.67	92.49	507.53	494.92	28.49	28.85	5.8626	5.7100	996.10	996.00	0.994191	1.00017007	149.03	3095.96	0.1496159	3.1081704
22	241.89	91.51	509.29	503.39	28.85	29.41	5.8/58	5./9/1	995.00	995.84	0.994140	1.00017007	151.24	3247.21	0.1518040	3.2600350
25	241.10	91.70	506 59	499.25	29.41	20.02	5.8453	5 7672	996.01	996.01	0.994137	1.00017007	140.17	3535.36	0.1407730	3 5611292
25	242.53	90.46	510.61	502.89	28.48	28.07	5.8984	5.8171	996.11	996.23	0.994120	1.00017007	152.95	3700.04	0.1535339	3.7146631
26	240.83	93.72	513.12	498.00	28.07	27.87	5.9354	5.7643	996.23	996.28	0.994128	1.00017007	147.96	3848.00	0.1485145	3.8631776
27	240.69	94.69	506.34	498.50	27.87	30.89	5.8609	5.7127	996.28	995.39	0.994189	1.00017007	146.83	3994.83	0.1474487	4.0106263
28	244.32	91.14	935.91	496.62	30.89	28.35	10.7254	5.7391	995.39	996.14	0.991733	1.00017007	154.43	4149.26	0.1550905	4.1657168
29	242.69	92.33	506.03	498.88	28.35	28.90	5.8478	5.7547	996.14	995.99	0.994176	1.00017007	151.21	4300.47	0.1518058	4.3175226
30	240.66	93.35	509.10	491.78	28.90	28.06	5.8727	5.6888	995.99	996.23	0.994197	1.00017007	148.14	4448.62	0.1487238	4.4662464
31	241.92	93.00	503.02	502.01	28.06	27.99	5.8187	5.8084	996.23	996.25	0.994164	1.00017007	149.77	4598.39	0.1503388	4.6165853
32	241.25	93.42	506.84	496.99	27.99	28.26	5.8643	5.7452	996.25	996.17	0.9941/3	1.00017007	148.68	4/4/.0/	0.1492434	4./058280
34	242.23	93.19	500.88	490.43	20.20	27.94	5 7964	5 7282	996.26	996.26	0.994216	1.00017007	148.64	409J.91 5044 48	0.1494030	5.0643578
35	241.39	93.12	505.40	498.19	27.93	28.28	5.8488	5.7586	996.26	996.17	0.994174	1.00017007	149.11	5193.59	0.1496786	5.2140364
36	241.68	93.23	511.36	491.16	28.28	28.18	5.9109	5.6792	996.17	996.19	0.994183	1.00017007	149.29	5342.88	0.1498649	5.3639013
37	244.58	88.79	499.38	487.64	28.18	28.25	5.7743	5.6373	996.19	996.17	0.994272	1.00017007	156.66	5499.54	0.1572597	5.5211610
38	243.56	88.30	504.52	494.29	28.25	28.27	5.8325	5.7139	996.17	996.17	0.994205	1.00017007	156.14	5655.68	0.1567360	5.6778970
39	243.81	88.31	507.91	495.80	28.27	28.23	5.8713	5.7321	996.17	996.18	0.994176	1.00017007	156.39	5812.06	0.1569890	5.8348860
40	243.43	88.39	499.13	494.42	28.23	27.91	5.7705	5.7221	996.18	996.27	0.994232	1.00017007	155.92	5967.98	0.1565102	5.9913963
41	244.62	87.15	507.78	496.99	27.91	28.23	5.8767	5.7457	996.27	996.18	0.994167	1.00017007	158.36	6126.34	0.1589589	6.1503551
42	242.55	85.02	506.07	490.28	28.25	28.24	5.8600	5.0080	990.18	996.18	0.994243	1.00017007	157.80	6284.20	0.1588650	6.4676875
44	243.38	87.53	505.09	493 54	28.24	28.04	5.8431	5 6966	996 23	996.04	0.994208	1.00017007	157.73	6600.20	0.1583426	6.6260302
45	243.10	85.20	505.59	497.75	28.72	28.19	5.8356	5.7552	996.04	996.19	0.994182	1.00017007	158.80	6758.99	0.1594155	6.7854457
46	244.34	84.96	500.63	490.72	28.19	27.84	5.7886	5.6805	996.19	996.29	0.994244	1.00017007	160.28	6919.27	0.1608841	6.9463298
47	243.81	84.75	507.60	499.75	27.84	28.35	5.8759	5.7753	996.29	996.14	0.994152	1.00017007	159.97	7079.24	0.1605741	7.1069039
48	244.03	84.55	507.35	494.55	28.35	28.25	5.8631	5.7171	996.14	996.17	0.994188	1.00017007	160.39	7239.63	0.1610116	7.2679155
49	244.97	84.66	500.19	490.65	28.25	28.24	5.7823	5.6723	996.17	996.18	0.994251	1.00017007	161.20	7400.84	0.1618226	7.4297381
50	244.43	87.83	503.77	496.37	28.24	27.95	5.8239	5.7439	996.18	996.26	0.994194	1.00017007	157.48	7558.32	0.1580803	7.5878183
51	244.20	84./b	505./1	495.74	27.95	28.22	5.8521	5./315	996.26 00£ 10	990.18 006.17	0.994186	1.00017007	150.34	//18.66 7877 17	0.1501222	7.0070000
52	243.15	85.85	459.10	450.15	28.22	20.20	5,8237	5.0005 5.7348	996 17	996 31	0.554200	1 00017007	150.52	8036 36	0.1591252	8.0676820
54	244.73	87.09	508.22	492.54	27.78	27.65	5.8845	5,7052	996.31	996.34	0.994184	1.00017007	158.53	8194.90	0.1591169	8.2267989
55	245.64	84.97	503.14	492.41	27.65	28.04	5.8281	5.6964	996.34	996.23	0.994216	1.00017007	161.58	8356.48	0.1621869	8.3889858
56	245.43	85.33	505.78	496.74	28.04	27.68	5.8510	5.7534	996.23	996.34	0.994176	1.00017007	161.01	8517.49	0.1616115	8.5505973
57	244.60	87.17	508.16	495.86	27.68	27.86	5.8857	5.7399	996.34	996.29	0.994166	1.00017007	158.32	8675.81	0.1589066	8.7095039
58	245.10	86.54	501.76	491.66	27.86	27.86	5.8081	5.6912	996.29	996.29	0.994229	1.00017007	159.45	8835.26	0.1600450	8.8695489

	INCERTEZA DE MEDIÇÃO (k=2)												
Ponto	Massa inicial ajustada do sistema	Massa final ajustada do sistema	Pressão do ar inicial	Pressão do ar final	Temperatura da água inicial	Temperatura da água final	ρ _{er} Inicial	ρ _{er} Final	ρ _w Inicial	ρ _w Final	Gravidade Puc-Rio	Massa real da água transferida	Volume Total
	(kg)	(kg)	(MPa)	(MPa)	(°C)	(°C)	(kg/m³)	(kg/m³)	(kg/m³)	(kg/m³)	m/s²	(kg)	m³
1	0.04	0.03	1.0161	1.0220	0.22	0.22	0.045	0.046	0.15	0.15	0.00003	0.05	0.000053
2	0.04	0.03	1.0606	1.0230	0.22	0.22	0.047	0.046	0.15	0.15	0.00003	0.05	0.000147
3	0.04	0.03	1.0299	1.0156	0.22	0.22	0.046	0.046	0.15	0.14	0.00003	0.05	0.000270
4	0.04	0.03	1.0387	1.0129	0.22	0.22	0.047	0.046	0.14	0.14	0.00003	0.05	0.000413
5	0.04	0.03	1.0395	1.0166	0.22	0.22	0.047	0.046	0.14	0.15	0.00003	0.05	0.000572
6	0.04	0.03	1.0190	1.0082	0.22	0.22	0.046	0.045	0.15	0.15	0.00003	0.05	0.000756
7	0.04	0.03	1.0201	1.0102	0.22	0.22	0.045	0.045	0.15	0.15	0.00003	0.05	0.000931
8	0.04	0.03	1.0270	1.0036	0.22	0.22	0.046	0.045	0.15	0.14	0.00003	0.05	0.001128
10	0.04	0.03	1.01/8	1.0102	0.22	0.22	0.046	0.045	0.14	0.15	0.00003	0.05	0.001591
10	0.04	0.05	1.0200	1.0094	0.22	0.22	0.045	0.045	0.15	0.15	0.00003	0.05	0.001010
12	0.04	0.03	1.0270	0.9807	0.22	0.22	0.040	0.044	0.15	0.15	0.00003	0.05	0.001046
12	0.04	0.03	1.0034	1 0009	0.22	0.22	0.045	0.044	0.15	0.15	0.00003	0.05	0.002117
14	0.04	0.03	1.0133	0.9851	0.22	0.22	0.045	0.040	0.15	0.14	0.00003	0.05	0.002554
15	0.04	0.03	1 0147	0.9902	0.22	0.22	0.045	0.044	0.14	0.15	0.00003	0.05	0.002050
16	0.04	0.03	1.0147	0.9989	0.22	0.22	0.045	0.045	0.15	0.15	0.00003	0.05	0.002300
17	0.04	0.03	1.0308	1.0052	0.22	0.22	0.046	0.045	0.15	0.15	0.00003	0.05	0.003569
18	0.04	0.03	1.0154	0.9922	0.22	0.22	0.045	0.045	0.15	0.14	0.00003	0.05	0.003845
19	0.04	0.03	1.0177	1.0004	0.22	0.22	0.046	0.044	0.14	0.15	0.00003	0.05	0.004236
20	0.04	0.03	1.0267	1.0049	0.22	0.22	0.045	0.045	0.15	0.15	0.00003	0.05	0.004552
21	0.04	0.03	1.0151	0.9898	0.22	0.22	0.046	0.044	0.15	0.15	0.00003	0.05	0.004841
22	0.04	0.03	1.0186	1.0068	0.22	0.22	0.045	0.044	0.15	0.15	0.00003	0.05	0.005121
23	0.04	0.03	1.0233	1.0029	0.22	0.22	0.045	0.045	0.15	0.15	0.00003	0.05	0.005587
24	0.04	0.03	1.0132	0.9985	0.22	0.22	0.045	0.045	0.15	0.15	0.00003	0.05	0.005822
25	0.04	0.03	1.0212	1.0058	0.22	0.22	0.046	0.046	0.15	0.14	0.00003	0.05	0.006148
26	0.04	0.03	1.0262	0.9960	0.22	0.22	0.047	0.045	0.14	0.14	0.00003	0.05	0.006739
27	0.04	0.03	1.0127	0.9970	0.22	0.23	0.046	0.042	0.14	0.16	0.00003	0.05	0.007185
28	0.04	0.03	1.8718	0.9932	0.23	0.22	0.079	0.045	0.16	0.14	0.00003	0.05	0.007229
29	0.04	0.03	1.0121	0.9978	0.22	0.22	0.046	0.044	0.14	0.15	0.00003	0.05	0.007785
30	0.04	0.03	1.0182	0.9836	0.22	0.22	0.045	0.045	0.15	0.14	0.00003	0.05	0.008359
31	0.04	0.03	1.0060	1.0040	0.22	0.22	0.046	0.046	0.14	0.14	0.00003	0.05	0.008687
32	0.04	0.03	1.0137	0.9940	0.22	0.22	0.046	0.045	0.14	0.14	0.00003	0.05	0.009178
20	0.04	0.03	1.0100	0.9929	0.22	0.22	0.046	0.045	0.14	0.14	0.00003	0.05	0.009002
35	0.04	0.03	1.0010	0.9964	0.22	0.22	0.046	0.045	0.14	0.14	0.00003	0.05	0.010000
36	0.04	0.03	1.0727	0.9823	0.22	0.22	0.046	0.044	0.14	0.14	0.00003	0.05	0.010910
37	0.04	0.03	0.9988	0.9753	0.22	0.22	0.045	0.044	0.14	0.14	0.00003	0.05	0.010850
38	0.04	0.03	1.0090	0.9886	0.22	0.22	0.046	0.045	0.14	0.14	0.00003	0.05	0.011345
39	0.04	0.03	1.0158	0.9916	0.22	0.22	0.046	0.045	0.14	0.14	0.00003	0.05	0.011792
40	0.04	0.03	0.9983	0.9888	0.22	0.22	0.045	0.045	0.14	0.14	0.00003	0.05	0.012299
41	0.04	0.03	1.0156	0.9940	0.22	0.22	0.046	0.045	0.14	0.14	0.00003	0.05	0.012586
42	0.04	0.03	1.0036	0.9806	0.22	0.22	0.045	0.044	0.14	0.14	0.00003	0.05	0.013107
43	0.04	0.03	1.0139	0.9996	0.22	0.22	0.046	0.045	0.14	0.14	0.00003	0.05	0.013562
44	0.04	0.03	1.0102	0.9871	0.22	0.22	0.046	0.044	0.14	0.15	0.00003	0.05	0.014102
45	0.04	0.03	1.0112	0.9955	0.22	0.22	0.045	0.045	0.15	0.14	0.00003	0.05	0.014506
46	0.04	0.03	1.0013	0.9814	0.22	0.22	0.045	0.045	0.14	0.14	0.00003	0.05	0.014875
47	0.04	0.03	1.0152	0.9995	0.22	0.22	0.046	0.045	0.14	0.14	0.00003	0.05	0.015413
48	0.04	0.03	1.0147	0.9891	0.22	0.22	0.046	0.045	0.14	0.14	0.00003	0.05	0.015887
49	0.04	0.03	1.0004	0.9813	0.22	0.22	0.045	0.044	0.14	0.14	0.00003	0.05	0.016326
50	0.04	0.03	1.0075	0.9927	0.22	0.22	0.045	0.045	0.14	0.14	0.00003	0.05	0.017239
51	0.04	0.03	1.0114	0.9915	0.22	0.22	0.046	0.045	0.14	0.14	0.00003	0.05	0.017464
52	0.04	0.03	0.9983	0.9803	0.22	0.22	0.045	0.044	0.14	0.14	0.00003	0.05	0.018203
53	0.04	0.03	1.0075	0.9906	0.22	0.22	0.045	0.045	0.14	0.14	0.00003	0.05	0.010304
24	0.04	0.03	1.0164	0.9651	0.22	0.22	0.046	0.045	0.14	0.14	0.00003	0.05	0.019294
22	0.04	0.05	1,0000	0.3040	0.22	0.22	0.040	0.045	0.14	0.14	0.00003	0.05	0.019462
50	0.04	0.03	1.0163	0.9933	0.22	0.22	0.040	0.040	0.14	0.14	0.00003	0.05	0.020108
58	0.04	0.03	1.0035	0.9833	0.22	0.22	0.046	0.045	0.14	0.14	0.00003	0.05	0.021434

Tabela F.2 – Incerteza do volume total de água na torre A e no tubo acrílico

						VC)LUME DE Á Balança C	GUA NO TU Haus Expl	IBO ACRÍLICO Orer pro)						
Ponto	Massa ajustada da agua inicial	Massa ajustada da agua final	Pressão do ar inicial	Pressão do ar final	Temperatura da água inicial	Temperatura da água final	ρ _{er} Inicial	ρ _{er} Final	ρ _w Inicial	ρ _w Final	Fator de empuxo	BPUC-Rio/Bret	Massa real de água transferida	Massa real de água acumulada	Volume d Transferido	le Água TOTAL
	(g)	(g)	(MPa)	(MPa)	(°C)	(°C)	(kg/m³)	(kg/m³)	(kg/m³)	(kg/m³)			(g)	(g)	(L)	(L)
1	7513.55	7883.57	101.17	101.16	23.42	23.42	1.1886	1.1885	995.91	996.03	0.998807	1.000211	370.38	370.38	0.37188	0.37188
2	7883.57	8273.59	101.16	101.17	23.42	23.62	1.1885	1.1878	996.03	996.09	0.998807	1.000211	390.40	760.79	0.39195	0.76383
3	8273.59	8659.31	101.17	101.18	23.62	23.72	1.1878	1.1875	996.09	996.17	0.998808	1.000211	386.10	1146.89	0.38760	1.15143
4	8659.31	9043.83	101.18	101.18	23.72	23.83	1.1875	1.1871	996.17	996.19	0.998808	1.000211	384.90	1531.79	0.38637	1.53780
5	9043.83	9431.05	101.18	101.18	23.83	23.88	1.1871	1.1869	996.19	996.08	0.998808	1.000211	387.60	1919.39	0.38910	1.92691
6	9431.05	9814.37	101.18	101.18	23.88	23.94	1.1869	1.1866	996.08	996.00	0.998809	1.000211	383.70	2303.09	0.38522	2.31213
7	9814.37	10204.19	101.18	101.19	23.94	23.97	1.1866	1.1866	996.00	996.08	0.998809	1.000211	390.20	2693.29	0.39175	2.70388
8	10204.19	10598.12	101.19	101.18	23.97	24.01	1.1866	1.1864	996.08	996.12	0.998809	1.000211	394.31	3087.60	0.39585	3.09973
9 10	10598.12	11368.86	101.18	101.10	24.01	24.04	1.1004	1.1000	990.12	995.96 995.96	0.998809	1.000211	301.91	3850 10	0.30339	3,46093
10	11368.86	11764.88	101.10	101.10	24.04	24.00	1 1859	1.1055	996.04	005 00	0.990009	1.000211	396.41	4255 51	0.39338	4 27230
12	11764.88	12146 50	101.10	101.15	24.00	24.00	1 1857	1 1857	995.99	996 12	0.998810	1.000211	382.00	4637 50	0.38351	4.65581
13	12146.50	12531.82	101.15	101.12	24.10	24.08	1.1857	1.1854	996.12	996.30	0.998810	1.000211	385.70	5023.20	0.38717	5.04298
14	12531.82	12913.14	101.12	101.09	24.08	24.10	1.1854	1.1850	996.30	996.01	0.998810	1.000211	381.69	5404.90	0.38317	5.42615
15	12913.14	13300.96	101.09	101.09	24.10	24.10	1.1850	1.1850	996.01	995.98	0.998810	1.000211	388.20	5793.10	0.38976	5.81591
16	13300.96	13688.19	101.09	101.07	24.10	24.10	1.1850	1.1847	995.98	996.09	0.998810	1.000211	387.60	6180.70	0.38914	6.20506
17	13688.19	14074.71	101.07	101.04	24.10	24.15	1.1847	1.1842	996.09	996.07	0.998811	1.000211	386.90	6567.60	0.38842	6.59348
18	14074.71	14464.53	101.04	101.02	24.15	24.13	1.1842	1.1840	996.07	996.18	0.998811	1.000211	390.20	6957.80	0.39172	6.98520
19	14464.53	14848.65	101.02	100.99	24.13	24.13	1.1840	1.1837	996.18	995.92	0.998811	1.000211	384.50	7342.30	0.38602	7.37122
20	14848.65	15234.27	100.99	100.95	24.13	24.13	1.1837	1.1832	995.92	996.10	0.998812	1.000211	386.00	7728.30	0.38754	7.75877
21	15234.27	15623.49	100.95	100.93	24.13	24.13	1.1832	1.1830	996.10	996.00	0.998812	1.000211	389.60	8117.90	0.39115	8.14991
22	15623.49	16018.11	100.93	100.92	24.13	24.19	1.1830	1.1826	996.00	995.84	0.998812	1.000211	395.01	8512.91	0.39663	8.54654
23	16018.11	16403.73	100.92	100.90	24.19	24.13	1.1820	1.1826	995.84	996.01	0.998813	1.000211	385.00	8898.91	0.38/58	8.93412
24	16700.75	10/99.70	100.90	100.87	24.15	24.19	1.1820	1.1820	990.01	990.11	0.000012	1.000211	390.41 200.01	9295.52	0.59798	9.33210
25	10735.70	17133.20	100.87	100.04	24.13	24.10	1.1020	1 1812	996.23	996.23	0.998813	1.000211	372.18	10067 41	0.37358	10.10713
20	17571.10	17942.12	100.04	100.05	24.10	24.20	1.1812	1.1818	996.28	995.39	0.998814	1.000211	371.38	10438.80	0.37294	10.48007
28	17959.52	18349.04	100.84	100.83	23.77	23.84	1.1833	1.1829	995.39	996.14	0.998812	1.000211	389.90	10828.70	0.39156	10.87163
29	18349.04	18733.36	100.83	100.83	23.84	23.82	1.1829	1.1830	996.14	995.99	0.998812	1.000211	384.70	11213.39	0.38622	11.25784
30	18733.36	19109.28	100.83	100.84	23.82	23.71	1.1830	1.1836	995.99	996.23	0.998812	1.000211	376.29	11589.68	0.37776	11.63560
31	19109.28	19489.70	100.84	100.83	23.71	23.60	1.1836	1.1839	996.23	996.25	0.998812	1.000211	380.79	11970.48	0.38223	12.01784
32	19489.70	19866.63	100.83	100.85	23.60	23.81	1.1839	1.1833	996.25	996.17	0.998812	1.000211	377.29	12347.77	0.37873	12.39656
33	19866.63	20244.15	100.85	100.90	23.81	23.76	1.1833	1.1841	996.17	996.26	0.998812	1.000211	377.89	12725.66	0.37933	12.77589
34	20244.15	20620.87	100.90	100.90	23.76	23.74	1.1841	1.1842	996.26	996.26	0.998811	1.000211	377.09	13102.75	0.37850	13.15439
35	20620.87	20999.79	100.90	100.90	23.74	23.74	1.1842	1.1842	996.26	996.17	0.998811	1.000211	379.29	13482.04	0.38073	13.53512
36	20999.79	21381.31	100.90	100.89	23.74	23.78	1.1842	1.1839	996.17	996.19	0.998811	1.000211	381.89	13863.93	0.38336	13.91848
3/	21381.31	21/82.03	100.89	100.88	23.78	23.76	1.1839	1.1838	996.19	996.17	0.998812	1.000211	401.11	14265.05	0.40265	14.32113
30 20	21/82.05	22180.15	100.88	100.88	23.70	23.70	1.1636	1.1000	990.17	990.17	0.996812	1.000211	404.52	14009.50	0.40007	14./2/20
40	22100.13	22007.08	100.00	100.50	23.70	23.05	1.1000	1 1843	996.18	996 27	0.550011	1.000211	421.34	15050.50	0.42255	15 55882
41	23013.80	23423.42	100.88	100.88	23.65	23.76	1.1843	1.1838	996.27	996.18	0.998811	1.000211	410.02	15908.04	0.41158	15.97040
42	23423.42	23823.64	100.88	100.87	23.76	23,76	1.1838	1.1837	996.18	996.18	0.998812	1.000211	400.61	16308.66	0.40215	16.37255
43	23823.64	24224.27	100.87	100.87	23.76	23.70	1.1837	1.1840	996.18	996.23	0.998812	1.000211	401.01	16709.67	0.40254	16.77509
44	24224.27	24623.19	100.87	100.86	23.70	23.60	1.1840	1.1842	996.23	996.04	0.998811	1.000211	399.31	17108.98	0.40086	17.17595
45	24623.19	25024.61	100.86	100.84	23.60	23.76	1.1842	1.1834	996.04	996.19	0.998812	1.000211	401.82	17510.80	0.40338	17.57934
46	25024.61	25429.23	100.84	100.82	23.76	23.65	1.1834	1.1836	996.19	996.29	0.998812	1.000211	405.02	17915.82	0.40655	17.98588
47	25429.23	25833.85	100.82	100.78	23.65	23.83	1.1836	1.1824	996.29	996.14	0.998813	1.000211	405.02	18320.84	0.40656	18.39244
48	25833.85	26238.98	100.78	100.75	23.83	23.70	1.1824	1.1826	996.14	996.17	0.998813	1.000211	405.52	18726.35	0.40708	18.79952
49	26238.98	26644.70	100.75	100.73	23.70	23.60	1.1826	1.1827	996.17	996.18	0.998813	1.000211	406.12	19132.47	0.40768	19.20720
50	26644.70	27040.02	100.73	100.72	23.60	23.85	1.1827	1.1816	996.18	996.26	0.998813	1.000211	395.71	19528.18	0.39721	19.60441
51	27040.02	27439.74	100.72	100.71	23.85	23.87	1.1816	1.1814	996.26	996.18	0.998814	1.000211	400.11	19928.29	0.40163	20.00604
52	27439.74	27753.26	100.71	100.70	23.87	23.90	1.1814	1.1812	996.18	996.17	0.998814	1.000211	313.82	20242.12	0.31503	20.32107
55	2//55.20	28254.59	100.70	100.69	23.90	23.97	1.1812	1.1808	990.1/ 006.91	990.31 990.31	0.000015	1.000211	201.82	20745.95	0.503/1	20.824/8
54	20204.09	20030.31	100.09	100.08	20.97	23.92	1 1200	1 1907	00E 3V	990.04 QQE 22	0.008610	1,000211	404.32	21140.20	0.40381	21.20008
56	20030.31	29480.95	100.00	100.07	23.52	23.34	1 1807	1 1810	996.23	996 34	0.998815	1,000211	410 52	21000.57	0.41205	22.05690
57	29480.95	29883.98	100.66	100.67	23.83	23.90	1,1810	1,1808	996.34	996.29	0.998815	1.000211	403.42	22374.91	0.40491	22,46181
58	29883.98	30288.40	100.67	100.67	23.90	23.92	1.1808	1.1807	996.29	996.29	0.998815	1.000211	404.82	22779.73	0.40633	22.86813

					IN	icerteza de me	DIÇÃO (k=2)						
Ponto	Massa ajustada da agua inicial	Massa ajustada da agua final	Pressão do ar inicial	Pressão do ar final	Temperatura da água inicial	Temperatura da água final	ρ _{ar} Inicial	ρ _{ar} Final	ρ_w Inicial	ρ _w Final	Gravidade Puc-Rio	Massa real de água transferida	Volume de água total
	(g)	(g)	(MPa)	(MPa)	(°C)	(°C)	(kg/m³)	(kg/m³)	(kg/m³)	(kg/m³)	(m/s²)	(g)	(L)
1	0.14	0.14	0.0152	0.0152	0.21	0.21	0.011	0.011	0.11	0.11	0.00003	0.20	0.0002
2	0.14	0.14	0.0152	0.0152	0.21	0.21	0.011	0.011	0.11	0.11	0.00003	0.20	0.0002
3	0.14	0.14	0.0152	0.0152	0.21	0.21	0.011	0.010	0.11	0.11	0.00003	0.20	0.0002
4	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.20	0.0002
6	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.20	0.0003
7	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0003
8	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0003
9	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0003
10	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0004
11	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0004
12	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0004
15	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0005
15	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0005
16	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0006
17	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0006
18	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0006
19	0.14	0.14	0.0152	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0006
20	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0007
21	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0007
22	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0007
24	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0008
25	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0008
26	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0009
27	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.0009
28	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.20	0.0009
29	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.20	0.0009
31	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.20	0.0010
32	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.20	0.0010
33	0.14	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.36	0.0011
34	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.0012
35	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.0012
36	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.0012
3/	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.0013
20 20	0.55	0.35	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.0015
40	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.0013
41	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.0014
42	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.0014
43	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.0014
44	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.0015
45	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.0015
40	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.0015
48	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.0010
49	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.0016
50	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.0017
51	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.0017
52	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.12	0.00003	0.47	0.0017
53	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.47	0.0018
54	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.47	0.0018
55	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.47	0.0018
20 57	0.55	0.55	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.11	0.00003	0.47	0.0019
58	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.47	0.0019

Tabela F.4 – Incerteza do volume total de água no tubo acrílico

						VOUME DE ÁGUA Bai	NA TORRE Iança ALFA	E A + TUBO 3107	ACRÍLICO							
	Massa inicial	Massa final	D	Decesion	T	Terreterde					Fata da		Manageral da	Management	Volume d	le água
Ponto	ajustada do sistema	ajustada do sistema	Pressao atmosférica inicial	Pressao atmosférica final	da água inicial	agua final	ρ _{ar} Inicial	ρ _{ar} Final	ρ_w Inicial	ρ _w Final	empuxo	gpuc-Rio/Gref	água transferida	água acumulada	Transferido	TOTAL
	(kg)	(kg)	(MPa)	(MPa)	(°C)	(°C)	(kg/m³)	(kg/m³)	(kg/m³)	(kg/m³)		-	(kg)	(kg)	(m³)	(m³)
1	241.29	93.83	101.17	101.16	24.32	22.54	1.1850	1.1920	997.23	997.66	0.998808	1.00017	147.61	147.61	0.14799	0.14799
2	240.93	93.22	101.16	101.17	24.11	21.36	1.1857	1.1969	997.28	997.93	0.998806	1.00017	147.86	295.47	0.14821	0.29620
3	241.27	95.45	101.17	101.18	23.91	22.10	1.1867	1.1940	997.33	997.76	0.998807	1.00017	145.97	441.44	0.14633	0.44253
4	241.07	95.29	101.18	101.18	24.36	21.64	1.1850	1.1959	997.22	997.86	0.998807	1.00017	145.93	587.37	0.14629	0.58882
5	240.22	93.37	101.18	101.18	23.76	22.18	1.1873	1.1937	997.37	997.74	0.998807	1.00017	147.00	734.37	0.14736	0.73618
6	241.40	95.77	101.18	101.18	23.79	21.95	1.1872	1.1947	997.36	997.79	0.998806	1.00017	145.78	880.15	0.14614	0.88231
/ 0	240.90	91.00	101.18	101.19	25.72	22.07	1.1875	1.1943	997.38	997.77	0.998806	1.00017	149.39	1029.54	0.149/5	1.05207
0	242.00	91.15	101.19	101.10	23.75	22.00	1.1070	1.1944	997.30 007.35	997.70 007.84	0.990000	1.00017	145.00	1326 55	0.13143	1 32080
10	241.01	94.53	101.16	101.10	23.80	21.75	1.1870	1.1950	997.36	997.83	0.998806	1.00017	147.54	1474.09	0.14790	1.47770
11	240.87	92.63	101.16	101.15	24.55	21.99	1.1840	1.1941	997.17	997.78	0.998808	1.00017	148.39	1622.48	0.14876	1.62646
12	240.78	93.46	101.15	101.15	23.61	21.37	1.1876	1.1966	997.41	997.92	0.998805	1.00017	147.47	1769.95	0.14781	1.77427
13	240.89	94.06	101.15	101.12	23.77	21.50	1.1870	1.1958	997.37	997.89	0.998806	1.00017	146.99	1916.93	0.14733	1.92161
14	239.82	94.36	101.12	101.09	23.87	23.04	1.1862	1.1892	997.34	997.54	0.998809	1.00017	145.61	2062.54	0.14598	2.06759
15	240.66	93.71	101.09	101.09	24.29	22.07	1.1842	1.1931	997.24	997.77	0.998808	1.00017	147.10	2209.64	0.14747	2.21505
16	240.60	92.84	101.09	101.07	24.37	21.89	1.1839	1.1936	997.22	997.81	0.998808	1.00017	147.90	2357.54	0.14827	2.36333
17	240.81	93.81	101.07	101.04	23.93	21.81	1.1854	1.1936	997.33	997.83	0.998808	1.00017	147.15	2504.70	0.14751	2.51084
18	240.95	92.26	101.04	101.02	23.80	22.00	1.1856	1.1925	997.36	997.78	0.998808	1.00017	148.84	2653.53	0.14920	2.66004
19	240.80	94.44	101.02	100.99	23.90	21.63	1.1849	1.1937	997.33	997.87	0.998808	1.00017	146.51	2800.04	0.14686	2.80690
20	240.43	93.29	100.99	100.95	23.74	21.75	1.1852	1.1927	997.37	997.84	0.998808	1.00017	147.29	2947.33	0.14/64	2.95455
21	240.55	91.69	100.95	100.93	24.45	22.35	1.1819	1.1901	997.20	997.70	0.998811	1.00017	149.02	3096.35	0.14940	3.10394
22	241.75	90.08	100.95	100.92	25.61	21.90	1.1042	1.1915	997.30 007.21	997.79	0.998809	1.00017	101.20	3247.36 2205 72	0.10109	2 40405
25	241.02	95.05	100.92	100.90	24.01	22.05	1.1000	1.1910	997.31	997.70 007.72	0.990010	1.00017	140.15	3595.75	0.14032	3,40403
25	242.44	89.62	100.50	100.07	24.05	22.20	1 1826	1 1908	997.30	997.80	0.998810	1.00017	152.91	3700 36	0.15328	3,70950
26	240.75	92.90	100.84	100.83	23.86	21.81	1.1830	1.1911	997.34	997.83	0.998810	1.00017	148.00	3848.36	0.14836	3.85786
27	240.59	93.84	100.83	100.84	24.02	22.70	1.1822	1.1876	997.30	997.62	0.998812	1.00017	146.89	3995.25	0.14727	4.00512
28	244.15	90.31	100.84	100.83	24.18	21.02	1.1817	1.1943	997.27	998.00	0.998809	1.00017	154.00	4149.25	0.15436	4.15949
29	242.61	91.53	100.83	100.83	23.48	21.59	1.1844	1.1920	997.44	997.88	0.998809	1.00017	151.23	4300.48	0.15159	4.31108
30	240.53	92.53	100.83	100.84	23.72	23.42	1.1834	1.1847	997.38	997.45	0.998813	1.00017	148.15	4448.63	0.14853	4.45961
31	241.83	92.17	100.84	100.83	23.77	21.76	1.1833	1.1913	997.36	997.84	0.998810	1.00017	149.81	4598.44	0.15017	4.60978
32	241.18	92.61	100.83	100.85	23.85	22.61	1.1829	1.1881	997.35	997.64	0.998812	1.00017	148.72	4747.17	0.14910	4.75888
33	242.10	93.42	100.85	100.90	23.58	22.00	1.1842	1.1912	997.41	997.78	0.998809	1.00017	148.83	4896.00	0.14919	4.90807
34	240.85	92.37	100.90	100.90	23.83	21.64	1.1838	1.1926	997.35	997.86	0.998809	1.00017	148.63	5044.63	0.14899	5.05705
35	241.28	92.27	100.90	100.90	23.66	21.61	1.1845	1.1927	997.39	997.87	0.998809	1.00017	149.16	5193.79	0.14951	5.20657
36	241.57	92.46	100.90	100.89	23.74	21.65	1.1842	1.1924	997.37	997.86	0.998809	1.00017	149.27	5343.06	0.14963	5.35619
3/ 20	244.47	88.04	100.89	100.88	25.75	21.70	1.1841	1.1921	997.38	997.85	0.998809	1.00017	156.58	5499.64	0.15696	5.51315
20	243.48	87.50 97.51	100.88	100.88	24.11	21.30	1.1824	1.1935	997.28	997.95	0.998809	1.00017	156.27	2022./8	0.15051	5,00900
40	243.72	87.56	100.00	100.50	23.76	21.20	1.1037	1 1905	997.30	997.50	0.330000	1.00017	155.95	5968.09	0.15633	5 98273
41	244.53	86.29	100.88	100.88	23.05	22.11	1 1810	1 1877	997 19	997.60	0.998813	1 00017	158.40	6126.49	0.15881	6.14153
42	242.42	84.70	100.88	100.87	23.94	21.62	1.1831	1.1923	997.32	997.87	0.998809	1.00017	157.88	6284.37	0.15826	6.29980
43	243.27	85.20	100.87	100.87	24.30	21.48	1.1816	1.1929	997.23	997.90	0.998810	1.00017	158.23	6442.60	0.15862	6.45842
44	244.28	86.68	100.87	100.86	24.08	21.85	1.1825	1.1913	997.29	997.82	0.998810	1.00017	157.76	6600.36	0.15815	6.61656
45	242.98	84.35	100.86	100.84	24.04	22.75	1.1825	1.1874	997.30	997.61	0.998812	1.00017	158.79	6759.15	0.15919	6.77576
46	244.26	84.11	100.84	100.82	24.03	22.03	1.1823	1.1901	997.30	997.78	0.998811	1.00017	160.30	6919.46	0.16070	6.93646
47	243.74	83.89	100.82	100.78	23.99	21.86	1.1822	1.1903	997.31	997.81	0.998811	1.00017	160.02	7079.47	0.16041	7.09686
48	243.96	83.73	100.78	100.75	23.95	23.33	1.1819	1.1840	997.32	997.47	0.998814	1.00017	160.39	7239.86	0.16081	7.25767
49	244.89	83.88	100.75	100.73	23.89	21.80	1.1818	1.1899	997.34	997.83	0.998811	1.00017	161.17	7401.04	0.16157	7.41924
50	244.34	86.99	100.73	100.72	23.96	21.63	1.1813	1.1905	997.32	997.87	0.998811	1.00017	157.51	7558.55	0.15789	7.57713
51	244.11	83.91	100.72	100.71	24.01	21.56	1.1810	1.1907	997.31	997.88	0.998811	1.00017	160.36	7718.91	0.16075	7.73788
52	243.03	84.68	100.71	100.70	23.98	21.96	1.1810	1.1889	997.31	997.79	0.998812	1.00017	158.51	7877.42	0.15889	7.89678
55	244.01	85.02	100.70	100.69	24.02	21.98	1.180/	1.188/	997.30	997.79	0.000010	1.00017	159.15	8036.57	0.15955	8.05632 9.31532
24 55	244.01	00.24 g/ 10	100.09	100.08	24.00	21./5	1.180/	1.1090	997.31 007.10	997.84 007.75	0.998812	1.00017	151.55	012210 012210	0.15091	0.21323
56	243.39	04.10 84.50	100.00	100.07	24.00	22.10	1 1902	1.10/0	997.10 007.20	997.75 997.95	0.330014	1,00017	161.00	8517.67	0.16130	8 53961
57	244 50	86.36	100.66	100.67	24.00	22.72	1 1803	1.1874	997 31	997 72	0.998813	1.00017	158.30	8675 97	0,15870	8,69731
58	245.00	85.69	100.67	100.67	24.14	22.02	1 1799	1 1884	997 27	997 78	0.998813	1 00017	159.46	8835.44	0 15986	8 85717

					INCER	TEZA DE MEDIÇ.	ÃO (k=2)						
Ponto	Massa inicial ajustada do sistema	Massa final ajustada do sistema	Pressão atmosférica inicial	Pressão atmosférica final	Temperatura da água inicial	Temperatura da água final	ρ _{er} Inicial	ρ _{er} Final	ρ _w Inicial	ρ _w Final	Gravidade Puc-Rio	Massa real de água transferida	Volume de água total
	(kg)	(kg)	(MPa)	(MPa)	(°C)	(°C)	(kg/m³)	(kg/m³)	(kg/m³)	(kg/m³)	(m/s²)	(kg)	(m³)
1	0.04	0.03	0.0152	0.0152	0.21	0.21	0.010	0.011	0.12	0.11	0.00003	0.05	0.000052
2	0.04	0.03	0.0152	0.0152	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.000144
3	0.04	0.03	0.0152	0.0152	0.21	0.21	0.010	0.011	0.12	0.10	0.00003	0.05	0.000265
4	0.04	0.03	0.0152	0.0152	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.000407
5	0.04	0.03	0.0152	0.0152	0.21	0.21	0.010	0.011	0.11	0.10	0.00003	0.05	0.000564
6	0.04	0.03	0.0152	0.0152	0.21	0.20	0.010	0.011	0.11	0.10	0.00003	0.05	0.000/45
/ 8	0.04	0.03	0.0152	0.0152	0.21	0.21	0.010	0.011	0.11	0.10	0.00003	0.05	0.000919
q	0.04	0.03	0.0152	0.0152	0.21	0.20	0.010	0.011	0.11	0.10	0.00003	0.05	0.001113
10	0.04	0.03	0.0152	0.0152	0.21	0.20	0.010	0.011	0.11	0.10	0.00003	0.05	0.001590
11	0.04	0.03	0.0152	0.0152	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.001825
12	0.04	0.03	0.0152	0.0152	0.21	0.20	0.011	0.011	0.11	0.10	0.00003	0.05	0.002091
13	0.04	0.03	0.0152	0.0152	0.21	0.20	0.010	0.011	0.11	0.10	0.00003	0.05	0.002365
14	0.04	0.03	0.0152	0.0152	0.21	0.21	0.010	0.011	0.11	0.11	0.00003	0.05	0.002665
15	0.04	0.03	0.0152	0.0152	0.21	0.21	0.010	0.011	0.12	0.10	0.00003	0.05	0.002925
16	0.04	0.03	0.0152	0.0152	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.003205
17	0.04	0.03	0.0152	0.0152	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.003528
18	0.04	0.03	0.0152	0.0152	0.21	0.21	0.010	0.011	0.11	0.10	0.00003	0.05	0.003802
19	0.04	0.03	0.0152	0.0151	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.004187
20	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.11	0.10	0.00003	0.05	0.004497
21	0.04	0.03	0.0151	0.0151	0.21	0.21	0.010	0.011	0.12	0.11	0.00003	0.05	0.004786
22	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.11	0.10	0.00003	0.05	0.005062
25	0.04	0.03	0.0151	0.0151	0.21	0.21	0.000	0.011	0.12	0.10	0.00003	0.05	0.005524
24	0.04	0.05	0.0151	0.0151	0.22	0.21	0.009	0.011	0.14	0.10	0.00003	0.05	0.005757
25	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.006661
20	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.007101
28	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.012	0.12	0.10	0.00003	0.05	0.007163
29	0.04	0.03	0.0151	0.0151	0.21	0.20	0.011	0.011	0.11	0.10	0.00003	0.05	0.007693
30	0.04	0.03	0.0151	0.0151	0.21	0.21	0.010	0.011	0.11	0.11	0.00003	0.05	0.008263
31	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.11	0.10	0.00003	0.05	0.008585
32	0.04	0.03	0.0151	0.0151	0.21	0.21	0.010	0.011	0.11	0.11	0.00003	0.05	0.009071
33	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.11	0.10	0.00003	0.05	0.009492
34	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.11	0.10	0.00003	0.05	0.009941
35	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.11	0.10	0.00003	0.05	0.010347
36	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.11	0.10	0.00003	0.05	0.010787
37	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.11	0.10	0.00003	0.05	0.010731
20	0.04	0.02	0.0151	0.0151	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.011210
70	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.11	0.10	0.00005	0.05	0.012157
40	0.04	0.03	0.0151	0.0151	0.21	0.21	0.010	0.011	0.11	0.10	0.00003	0.05	0.012137
42	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.012956
43	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.013410
44	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.013939
45	0.04	0.03	0.0151	0.0151	0.21	0.21	0.010	0.011	0.12	0.11	0.00003	0.05	0.014342
46	0.04	0.03	0.0151	0.0151	0.21	0.21	0.010	0.011	0.12	0.10	0.00003	0.05	0.014704
47	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.015233
48	0.04	0.03	0.0151	0.0151	0.21	0.21	0.010	0.011	0.12	0.11	0.00003	0.05	0.015707
49	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.016143
50	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.017041
51	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.017263
52	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.017998
53	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.018462
54	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.010064
55	0.04	0.00	0.0151	0.0151	0.21	0.21	0.010	0.011	0.12	0.10	0.00003	0.05	0.019204
57	0.04	0.03	0.0151	0.0151	0.21	0.20	0.010	0.011	0.12	0.10	0.00003	0.05	0.020779
58	0.04	0.03	0.0151	0.0151	0.21	0.21	0.010	0.011	0.12	0.10	0.00003	0.05	0.021191

Tabela F.6 – Incerteza do volume total acumulado na torre A e tubo

Tabela	F.7	-Vol	lume	de	água	total	no	tubo	acrílico
--------	-----	------	------	----	------	-------	----	------	----------

						Volume de Balança	E ÁGUA NO 1 A ohaus exi	TUBO ACRÍL Plorer pro	uco D							
	Massa ajustada	Massa ajustada	Pressão	Pressão	Temperatura	Temperatura	a Inisiat	a final	a Jalalat	e final	Fator de		Massa real de	Massa real de	Volume	de Água
Ponto	da água inicial	da água final	atmosférica inicial	atmosférica final	da água inicial	da água final	p _{er} inicial	p _{ar} Final	p _w inicial	p _w Final	етрихо	SPUC-Rio/Sref	água transferida	água acumulada	Transferido	TOTAL
	(g)	(g)	(MPa)	(MPa)	(°C)	(°C)	(kg/m³)	(kg/m³)	(kg/m³)	(kg/m³)			(g)	(g)	(L)	(L)
1	7513.55	7883.57	101.17	101.16	23.42	23.42	1.1886	1.1885	997.23	997.66	0.998808	1.00021	370.38	370.38	0.37133	0.37133
2	7883.57	8273.59	101.16	101.17	23.42	23.62	1.1885	1.1878	997.28	997.93	0.998809	1.00021	390.40	760.79	0.39134	0.76267
3	8273.59	8659.31	101.17	101.18	23.62	23.72	1.1878	1.1875	997.33	997.76	0.998809	1.00021	386.10	1146.89	0.38705	1.14972
4	8659.31	9043.83	101.18	101.18	23.72	23.83	1.1875	1.1871	997.22	997.86	0.998810	1.00021	384.90	1531.79	0.38585	1.53557
5	9043.83	9431.05	101.18	101.18	23.83	23.88	1.18/1	1.1869	997.37	997.74	0.998810	1.00021	387.60	1919.39	0.38855	1.92412
5	9431.05	9814.37	101.18	101.18	23.88	23.94	1.1869	1.1800	997.30	997.79	0.998810	1.00021	383.70	2303.08	0.38463	2,308/5
,	9014.37 10204.10	10204.19	101.10	101.19	23.94	20.97	1.1000	1.1000	997.38 007.39	997.77	0.996610	1.00021	20/ 21	2093.29	0.30232	2,09990
٥ ٩	10204.13	10358.12	101.15	101.16	23.37	24.01	1 1864	1 1860	007 35	997.70 997.84	0.990011	1.00021	379.69	3467.35	0.35320	3,05517
10	10977 44	11368.86	101.10	101.10	24.01	24.04	1 1860	1 1859	997.36	997.83	0.998811	1.00021	391.80	3859.09	0.39275	3,86853
11	11368 86	11764.88	101.16	101.15	24.06	24.08	1 1859	1.1857	997.17	997.78	0 998811	1 00021	396.41	4255 50	0.39741	4,26594
12	11764.88	12146.50	101.15	101.15	24.08	24.10	1.1857	1.1857	997.41	997.92	0.998812	1.00021	381.99	4637.50	0.38289	4.64883
13	12146.50	12531.82	101.15	101.12	24.10	24.08	1.1857	1.1854	997.37	997.89	0.998812	1.00021	385.70	5023.19	0.38661	5.03544
14	12531.82	12913.14	101.12	101.09	24.08	24.10	1.1854	1.1850	997.34	997.54	0.998812	1.00021	381.69	5404.89	0.38267	5.41811
15	12913.14	13300.96	101.09	101.09	24.10	24.10	1.1850	1.1850	997.24	997.77	0.998812	1.00021	388.20	5793.09	0.38917	5.80729
16	13300.96	13688.19	101.09	101.07	24.10	24.10	1.1850	1.1847	997.22	997.81	0.998812	1.00021	387.60	6180.69	0.38857	6.19585
17	13688.19	14074.71	101.07	101.04	24.10	24.15	1.1847	1.1842	997.33	997.83	0.998813	1.00021	386.90	6567.59	0.38784	6.58369
18	14074.71	14464.53	101.04	101.02	24.15	24.13	1.1842	1.1840	997.36	997.78	0.998813	1.00021	390.20	6957.79	0.39115	6.97485
19	14464.53	14848.65	101.02	100.99	24.13	24.13	1.1840	1.1837	997.33	997.87	0.998813	1.00021	384.50	7342.29	0.38542	7.36027
20	14848.65	15234.27	100.99	100.95	24.13	24.13	1.1837	1.1832	997.37	997.84	0.998814	1.00021	386.00	7728.29	0.38692	7.74719
21	15234.27	15623.49	100.95	100.93	24.13	24.13	1.1832	1.1830	997.20	997.70	0.998814	1.00021	389.60	8117.89	0.39060	8.13779
22	15623.49	16018.11	100.93	100.92	24.13	24.19	1.1830	1.1826	997.36	997.79	0.998814	1.00021	395.01	8512.89	0.39597	8.53376
23	16018.11	16403.73	100.92	100.90	24.19	24.13	1.1826	1.1826	997.31	997.78	0.998814	1.00021	386.00	8898.89	0.38695	8.92071
24	16403.73	16799.76	100.90	100.87	24.13	24.19	1.1826	1.1820	996.51	997.72	0.998814	1.00021	396.41	9295.30	0.39756	9.31826
25	16799.76	17199.28	100.87	100.84	24.19	24.10	1.1820	1.1820	997.30	997.80	0.998815	1.00021	399.91	9695.21	0.40089	9.71916
26	17199.28	17571.10	100.84	100.83	24.10	24.28	1.1820	1.1812	997.34	997.83	0.998816	1.00021	372.18	10067.39	0.37308	10.09224
2/	1/5/1.10	1/942.12	100.85	100.84	24.28	24.15	1.1812	1.1818	997.30	997.02	0.998815	1.00021	200.00	10938.78	0.37233	10.40457
20	1/959.52	10049.04	100.04	100.65	23.77	23.04	1.1000	1.1029	997.27 007.44	007.99	0.990014	1.00021	38/ 70	10020.00	0.39560	11 2/000
30	18733.36	19109 28	100.83	100.85	23.84	23.82	1 1830	1 1836	997 38	997.00	0.550014	1.00021	376.29	11213.37	0.38300	11.24035
31	19109.28	19489 70	100.85	100.83	23.02	23.60	1 1836	1 1839	997.36	997.84	0.998813	1.00021	380.79	11970.46	0.38171	11.99997
32	19489.70	19866.63	100.83	100.85	23.60	23.81	1.1839	1.1833	997.35	997.64	0.998813	1.00021	377.29	12347.74	0.37824	12.37820
33	19866.63	20244.15	100.85	100.90	23.81	23.76	1.1833	1.1841	997.41	997.78	0.998813	1.00021	377.89	12725.63	0.37880	12.75700
34	20244.15	20620.87	100.90	100.90	23.76	23.74	1.1841	1.1842	997.35	997.86	0.998813	1.00021	377.09	13102.72	0.37799	13.13500
35	20620.87	20999.79	100.90	100.90	23.74	23.74	1.1842	1.1842	997.39	997.87	0.998813	1.00021	379.29	13482.01	0.38019	13.51519
36	20999.79	21381.31	100.90	100.89	23.74	23.78	1.1842	1.1839	997.37	997.86	0.998813	1.00021	381.89	13863.91	0.38281	13.89799
37	21381.31	21782.03	100.89	100.88	23.78	23.76	1.1839	1.1838	997.38	997.85	0.998813	1.00021	401.11	14265.02	0.40207	14.30007
38	21782.03	22186.15	100.88	100.88	23.76	23.76	1.1838	1.1838	997.28	997.93	0.998813	1.00021	404.52	14669.54	0.40549	14.70556
39	22186.15	22607.08	100.88	100.90	23.76	23.63	1.1838	1.1846	997.36	997.96	0.998813	1.00021	421.33	15090.87	0.42232	15.12788
40	22607.08	23013.80	100.90	100.88	23.63	23.65	1.1846	1.1843	997.35	997.76	0.998813	1.00021	407.12	15497.99	0.40812	15.53600
41	23013.80	23423.42	100.88	100.88	23.65	23.76	1.1843	1.1838	997.19	997.60	0.998813	1.00021	410.02	15908.02	0.41109	15.94709
42	23423.42	23823.64	100.88	100.87	23.76	23.76	1.1838	1.1837	997.32	997.87	0.998813	1.00021	400.61	16308.63	0.40158	16.34867
43	23823.64	24224.27	100.87	100.87	23.76	23.70	1.1837	1.1840	997.23	997.90	0.998813	1.00021	401.01	16/09.64	0.40199	15./5066
44	24224.27	24623.19	100.87	100.85	23.70	23.60	1.1840	1.1842	997.29	997.82	0.998813	1.00021	399.31	17108.96	0.40029	17.15095
40	24023.19	25024.01	100.00	100.04	23.00	23.70	1.1042	1.1004	997.30 007.20	997.01	0.000010	1.00021	401.01	17015 70	0.40204	17.05091
40	25/20 23	25425.25	100.04	100.02	23.70	23.03	1.1034	1.1000	007 31	007.91	0.550014	1.00021	405.02	1/913.79	0.40002	18 36591
48	25833.85	25055.05	100.02	100.70	23.05	23.05	1 1874	1 1826	997 32	997.01	0.998814	1 00021	405.52	18726 32	0.40658	18 77239
49	26238 98	26644 70	100.75	100.73	23.70	23.60	1.1826	1.1827	997.34	997.83	0,998814	1.00021	406.12	19132 44	0.40710	19.17949
50	26644.70	27040.02	100.73	100.72	23.60	23.85	1.1827	1.1816	997.32	997.87	0.998815	1.00021	395.71	19528.15	0.39666	19.57615
51	27040.02	27439.74	100.72	100.71	23.85	23.87	1.1816	1.1814	997.31	997.88	0.998816	1.00021	400.11	19928.26	0.40108	19.97723
52	27439.74	27753.26	100.71	100.70	23.87	23.90	1.1814	1.1812	997.31	997.79	0.998816	1.00021	313.82	20242.08	0.31459	20.29182
53	27753.26	28254.59	100.70	100.69	23.90	23.97	1.1812	1.1808	997.30	997.79	0.998816	1.00021	501.82	20743.90	0.50305	20.79487
54	28254.59	28658.51	100.69	100.68	23.97	23.92	1.1808	1.1809	997.31	997.84	0.998816	1.00021	404.32	21148.21	0.40530	21.20017
55	28658.51	29070.83	100.68	100.67	23.92	23.94	1.1809	1.1807	997.16	997.75	0.998816	1.00021	412.72	21560.94	0.41378	21.61395
56	29070.83	29480.95	100.67	100.66	23.94	23.83	1.1807	1.1810	997.30	997.85	0.998816	1.00021	410.52	21971.46	0.41152	22.02547
57	29480.95	29883.98	100.66	100.67	23.83	23.90	1.1810	1.1808	997.31	997.72	0.998816	1.00021	403.41	22374.88	0.40442	22.42989
58	29883.98	30288.40	100.67	100.67	23.90	23.92	1.1808	1.1807	997.27	997.78	0.998816	1.00021	404.82	22779.69	0.40582	22.83571

					INCERT	eza de medição) (k=2)						
Ponto	Massa ajustada da água inicial	Massa ajustada da água final	Pressão atmosférica inicial	Pressão atmosférica final	Temperatura da água inicial	Temperatura da água final	ρ _{ar} Inicial	ρ _{ar} Final	$\rho_{\rm w}$ Inicial	ρ _w Final	Gravidade Puc-Rio	Massa real de água transferida	Volume Total
	(g)	(g)	(MPa)	(MPa)	(°C)	(°C)	(kg/m³)	(kg/m³)	(kg/m³)	(kg/m³)	(m/s²)	(g)	(L)
1	0.14	0.14	0.0152	0.0152	0.21	0.21	0.011	0.011	0.11	0.11	0.00003	0.20	0.000201
2	0.14	0.14	0.0152	0.0152	0.21	0.21	0.011	0.011	0.11	0.11	0.00003	0.20	0.000208
3	0.14	0.14	0.0152	0.0152	0.21	0.21	0.011	0.010	0.11	0.11	0.00003	0.20	0.000219
4	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.20	0.000234
5	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.20	0.000253
6	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.11	0.12	0.00003	0.20	0.000274
/	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000297
0	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00002	0.20	0.000322
10	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000346
10	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000373
12	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000432
13	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000460
14	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000489
15	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000519
16	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000548
17	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000579
18	0.14	0.14	0.0152	0.0152	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000610
19	0.14	0.14	0.0152	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000640
20	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000670
21	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000701
22	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000734
23	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000765
24	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000797
25	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000828
26	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000860
2/	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.20	0.000891
20	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.20	0.000905
30	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.20	0.000933
31	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.20	0.000986
32	0.14	0.14	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.20	0.001019
33	0.14	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.36	0.001095
34	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.001161
35	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.001189
36	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.001219
37	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.001249
38	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.001279
39	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.001307
40	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.001334
41	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.001370
42	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.001404
43	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.001433
44	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.001457
45	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.001490
40	0.35	0.55	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.001523
4/	0.55	0.00	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.001557
40	0.00	0.00	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00005	0.47	0.001591
47 50	0.33	0.00	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.001610
51	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.11	0.00003	0.47	0.001692
52	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.12	0.00003	0.47	0.001719
53	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0,47	0.001763
54	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.47	0.001796
55	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.47	0.001828
56	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.11	0.00003	0.47	0.001856
57	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.11	0.12	0.00003	0.47	0.001886
58	0.33	0.33	0.0151	0.0151	0.21	0.21	0.010	0.010	0.12	0.12	0.00003	0.47	0.001922

Tabela F.8 – Incerteza do volume total acumulado no tubo acrílico

VOUME DE ÁGUA NA TORRE A + TUBO ACRÍLICO Balança ALFA 3107														
	Massa ajustada etana 1	Massa ajustada etana 2	g _{PUC-Rio} /g _{ref}	ρ _{ar} Etapa 2	ρ _{er} Etapa 1	V1	Massa ajustada etana 3	Massa ajustada etana 4	g _{PUC-Rio} /g _{ref}	ρ _{er} Etapa 3	ρ _{ar} Etapa 4	V2	Volume	de Água
Ponto	(ka)	(ka)		(14 (1003)	(14 1 1 2 3)	(m3)	(ka)	(4=)		//eg/m3)	(14 1 1 1 2 3)		Transferido	TOTAL (m3)
1	(Kg)	(Kg)	- 1 00017	(Kg/m²)	(Kg/m²)	(m²)	(Kg)	(Kg)	- 1.00017	(Kg/m²)	(Kg/m²)	(m²)	(M²)	(m²)
2	241.29	241.56	1.00017	5.85501	1.18505	0.02014	94.00	93.65	1.00017	5.69770	1.19205	0.17004	0.130301	0.150501
3	241.27	241.41	1.00017	5.94728	1.18666	0.02883	96.28	95.45	1.00017	5.87001	1.19403	0.17830	0.149470	0.4457105
4	241.07	241.11	1.00017	6.00344	1.18498	0.00897	96.09	95.29	1.00017	5.85628	1.19591	0.17290	0.163933	0.6096430
5	240.22	240.30	1.00017	6.01006	1.18735	0.01634	94.18	93.37	1.00017	5.86993	1.19371	0.17340	0.157063	0.7667056
6	241.40	241.48	1.00017	5.88370	1.18725	0.01624	96.58	95.77	1.00017	5.81601	1.19466	0.17491	0.158673	0.9253788
7	240.90	240.97	1.00017	5.88478	1.18753	0.01569	92.48	91.66	1.00017	5.83288	1.19428	0.17700	0.161307	1.0866858
8	242.06	242.10	1.00017	5.92996	1.18762	0.00858	91.95	91.13	1.00017	5.79788	1.19445	0.17670	0.168120	1.2548056
9	241.01	241.09	1.00017	5.8/9/9	1.18/00	0.01842	96.05	95.22	1.00017	5.82580	1.19529	0.1/896	0.160539	1.4153450
10	241.92	241.90	1.00017	5 92712	1.10050	0.01298	93.32	94.55	1.00017	5.02574	1.19502	0.10902	0.150054	1.3/19/85
12	240.78	240.86	1.00017	5.82236	1.18762	0.01755	94.24	93.46	1.00017	5.66467	1.19663	0.17522	0.157673	1.8917546
13	240.89	240.97	1.00017	5.85315	1.18699	0.01634	94.85	94.06	1.00017	5.79358	1.19575	0.17249	0.156146	2.0479005
14	239.82	239.97	1.00017	5.88728	1.18623	0.03244	95.13	94.36	1.00017	5.68324	1.18919	0.17138	0.138939	2.1868392
15	240.66	240.78	1.00017	5.85411	1.18417	0.02613	94.51	93.71	1.00017	5.71078	1.19308	0.17555	0.149421	2.3362602
16	240.60	240.68	1.00017	5.89749	1.18386	0.01780	93.66	92.84	1.00017	5.76816	1.19358	0.17892	0.161126	2.4973858
17	240.81	240.95	1.00017	5.95220	1.18540	0.02773	94.60	93.81	1.00017	5.80271	1.19356	0.17207	0.144336	2.6417218
18	240.95	241.11	1.00017	5.86211	1.18555	0.03424	93.04	92.26	1.00017	5.73583	1.19254	0.17232	0.138078	2.7797995
19	240.80	240.91	1.00017	5.88309	1.18494	0.02326	95.25	94.44	1.00017	5.76566	1.19371	0.17680	0.153536	2.9333355
20	240.43	240.48	1.00017	5.91753	1.18523	0.01182	94.09	93.29	1.00017	5.80389	1.19274	0.17420	0.162378	3.0957136
21	240.55	240.67	1.00017	5.86259	1.18191	0.02552	92.49	91.69	1.00017	5.71002	1.19007	0.17659	0.151061	3.2467749
22	241.75	241.89	1.00017	5.8/5/9	1.18425	0.03054	91.51	90.08	1.00017	5./9/10	1.19154	0.18048	0.150137	3.3909117
25	241.02	241.10	1.00017	5.84527	1.16550	0.02505	91.04	90.87	1.00017	5 76717	1.19101	0.17702	0.147330	3.5442475
25	242.37	242.50	1.00017	5.89835	1.18261	0.03396	90.46	89.62	1.00017	5.81712	1.19079	0.18132	0.147357	3.8470620
26	240.75	240.83	1.00017	5.93541	1.18299	0.01819	93.72	92.90	1.00017	5.76426	1.19107	0.18009	0.161902	4.0089643
27	240.59	240.69	1.00017	5.86085	1.18223	0.02228	94.69	93.84	1.00017	5.71271	1.18761	0.18593	0.163658	4.1726227
28	244.15	244.32	1.00017	10.72535	1.18172	0.01758	91.14	90.31	1.00017	5.73908	1.19426	0.18177	0.164192	4.3368151
29	242.61	242.69	1.00017	5.84785	1.18436	0.01744	92.33	91.53	1.00017	5.75475	1.19197	0.17660	0.159157	4.4959719
30	240.53	240.66	1.00017	5.87272	1.18342	0.02873	93.35	92.53	1.00017	5.68879	1.18475	0.18229	0.153559	4.6495305
31	241.83	241.92	1.00017	5.81872	1.18333	0.01974	93.00	92.17	1.00017	5.80840	1.19129	0.17892	0.159184	4.8087143
32	241.18	241.26	1.00017	5.86430	1.18289	0.01629	93.42	92.61	1.00017	5.74520	1.18809	0.17793	0.161645	4.9703591
33	242.10	242.23	1.00017	5.88736	1.18422	0.02756	94.23	93.42	1.00017	5.74482	1.19115	0.17863	0.151063	5.1214220
34 25	240.85	240.92	1.00017	5./9038	1.18580	0.01543	93.19	92.37	1.00017	5.72822	1.19260	0.1990	0.1634908	5.2858898
35	241.20	241.55	1.00017	5.04070	1.10447	0.02254	93.12	92.27	1.00017	5.67924	1.192/1	0.10405	0.102404	5 5985200
37	244.37	244.58	1.00017	5.77430	1.18409	0.02492	88.79	88.04	1.00017	5.63735	1.19210	0.16869	0.143769	5.7422885
38	243.48	243.56	1.00017	5.83249	1.18244	0.01804	88.30	87.50	1.00017	5.71386	1.19349	0.17713	0.159092	5.9013802
39	243.72	243.81	1.00017	5.87126	1.18375	0.02006	88.31	87.51	1.00017	5.73206	1.19436	0.17645	0.156391	6.0577709
40	243.35	243.43	1.00017	5.77051	1.18380	0.01884	88.39	87.56	1.00017	5.72207	1.19047	0.18230	0.163459	6.2212296
41	244.53	244.62	1.00017	5.87675	1.18104	0.01949	87.15	86.29	1.00017	5.74569	1.18771	0.18961	0.170124	6.3913533
42	242.42	242.53	1.00017	5.80155	1.18311	0.02312	85.55	84.70	1.00017	5.66797	1.19233	0.18969	0.166576	6.5579294
43	243.27	243.38	1.00017	5.86093	1.18158	0.02390	86.02	85.20	1.00017	5.78215	1.19289	0.17835	0.154448	6.7123771
44	244.28	244.38	1.00017	5.84312	1.18246	0.02182	87.53	86.68	1.00017	5.69657	1.19128	0.19014	0.168320	6.8806976
45	242.98	243.10	1.00017	5.83563	1.18249	0.02513	85.20	84.35	1.00017	5.75519	1.18743	0.18475	0.159625	7.0403224
46	244.26	244.34	1.00017	5./8856	1.18231	0.01821	84.96	84.11	1.00017	5.68053	1.19008	0.18/37	0.159158	7.2094800
4/	245.74	243.81	1.00017	5.8/595	1.18224	0.01516	84./5 8/ FF	83.89 92.79	1.00017	5.7/534	1.19029	0.13905	0.162604	7.58555020
40 //0	245.90	244.00	1.00017	5.00007	1.10192	0.013/5	84.66	03.73 83.88	1 00017	5 67227	1.10405	0.17580	0.103094	7 7051744
50	244 34	244.43	1.00017	5.82389	1.18129	0.01916	87.83	86 99	1.00017	5,74395	1.19049	0.18589	0.166729	7.8719035
51	244.11	244.20	1.00017	5.85214	1.18099	0.01959	84.76	83.91	1.00017	5.73153	1.19068	0.18865	0.169057	8.0409606
52	243.03	243.15	1.00017	5.77071	1.18099	0.02825	85.52	84.68	1.00017	5.66632	1.18893	0.18791	0.159669	8.2006300
53	244.01	244.15	1.00017	5.82374	1.18070	0.02902	85.85	85.02	1.00017	5.73485	1.18874	0.18284	0.153822	8.3544521

Tabela F.9 –	Volume total	transferido e	acumulado	(medição d	e volume	misto)
				\ <u>5</u>		

54

55

56

57

58

244.61

245.59

245.35

244.50

245.00

244.73

245.64

245.43

244.60

245.10

1.00017

1.00017

1.00017

1.00017

1.00017

5.88450

5.82806

5.85101

5.88569

5.80814

1.18068

1.17824

1.18031

1.18029

1.17987

0.02540

0.01257

0.01742

0.02053

0.02252

87.09

84.97

85.33

87.17

86.54

86.24

84.18

84.52

86.36

85.69

1.00017

1.00017

1.00017

1.00017

1.00017

5.70522

5.69639

5.75343

5.73986

5.69119

1.18963

1.18780

1.18945

1.18736

1.18835

0.18745

0.17534

0.17822

0.17923

0.18855

0.162053

0.162765

0.160808

0.158703

0.166029

8.5165049

8.6792703

8.8400784

8.9987814

9.1648102

Tabela F.10 –	Incerteza	de	medição	do	volume	acumulado	(medição	de	volume
misto)									

	INCERTEZA DE MEDIÇÃO (K=2)												
	Massa ajustada etana 1	Massa ajustada	Gravidade Puc-Rio	ρ _{ar} Etapa 2	ρ _{ar} Etapa 1	V1	Massa ajustada etana 3	Massa ajustada etana 4	ρ _{ar} Etapa 3	ρ _{ar} Etapa 4	V2	Volume	de Água
Ponto	kg	kg	m/s ²	 kg/m³	 kg/m³	m³		kg	kg/m³	kg/m³	 m³	Iransferido m ³	101AL m ³
1	0.04	0.04	0.00003	0.046	0.010	0.0291	0.03	0.03	0.047	0.011	0.0120	0.0315	0.0315
2	0.04	0.04	0.00003	0.049	0.010	0.0449	0.03	0.03	0.047	0.011	0.0120	0.0465	0.0562
3	0.04	0.04	0.00003	0.048	0.010	0.0396	0.03	0.03	0.047	0.011	0.0121	0.0414	0.0698
4	0.04	0.04	0.00003	0.048	0.010	0.0165	0.03	0.03	0.047	0.011	0.0121	0.0205	0.0727
5	0.04	0.04	0.00003	0.049	0.010	0.0243	0.03	0.03	0.047	0.011	0.0121	0.0271	0.0776
6	0.04	0.04	0.00003	0.047	0.010	0.0245	0.03	0.03	0.046	0.011	0.0121	0.0273	0.0823
7	0.04	0.04	0.00003	0.047	0.010	0.0240	0.03	0.03	0.047	0.011	0.0121	0.0268	0.0866
8	0.04	0.04	0.00003	0.047	0.010	0.0164	0.03	0.03	0.047	0.011	0.0122	0.0204	0.0890
9	0.04	0.04	0.00003	0.047	0.010	0.0270	0.03	0.03	0.046	0.011	0.0120	0.0296	0.0938
10	0.04	0.04	0.00003	0.047	0.010	0.0209	0.03	0.03	0.046	0.011	0.0121	0.0242	0.0968
11	0.04	0.04	0.00003	0.047	0.010	0.0212	0.03	0.03	0.046	0.011	0.0121	0.0244	0.0998
12	0.04	0.04	0.00003	0.040	0.011	0.0203	0.03	0.03	0.045	0.011	0.0123	0.0250	0.1040
14	0.04	0.04	0.00003	0.047	0.010	0.0247	0.03	0.03	0.047	0.011	0.0123	0.0270	0.1169
15	0.04	0.04	0.00003	0.047	0.010	0.0364	0.03	0.03	0.045	0.011	0.0122	0.0384	0.1230
16	0.04	0.04	0.00003	0.047	0.010	0.0262	0.03	0.03	0.046	0.011	0.0122	0.0289	0.1264
17	0.04	0.04	0.00003	0.048	0.010	0.0382	0.03	0.03	0.046	0.011	0.0121	0.0401	0.1326
18	0.04	0.04	0.00003	0.047	0.010	0.0467	0.03	0.03	0.046	0.011	0.0123	0.0483	0.1411
19	0.04	0.04	0.00003	0.047	0.010	0.0328	0.03	0.03	0.046	0.011	0.0121	0.0349	0.1454
20	0.04	0.04	0.00003	0.047	0.010	0.0196	0.03	0.03	0.047	0.011	0.0121	0.0231	0.1472
21	0.04	0.04	0.00003	0.047	0.010	0.0355	0.03	0.03	0.045	0.011	0.0122	0.0375	0.1519
22	0.04	0.04	0.00003	0.047	0.010	0.0418	0.03	0.03	0.046	0.011	0.0120	0.0435	0.1580
23	0.04	0.04	0.00003	0.046	0.010	0.0410	0.03	0.03	0.046	0.011	0.0121	0.0427	0.1637
24	0.04	0.04	0.00003	0.047	0.009	0.0342	0.03	0.03	0.046	0.011	0.0122	0.0363	0.1677
25	0.04	0.04	0.00003	0.047	0.010	0.0461	0.03	0.03	0.047	0.011	0.0122	0.0477	0.1743
26	0.04	0.04	0.00003	0.048	0.010	0.0266	0.03	0.03	0.047	0.011	0.0123	0.0293	0.1767
2/	0.04	0.04	0.00003	0.048	0.010	0.0315	0.03	0.03	0.044	0.011	0.0118	0.0337	0.1799
28	0.04	0.04	0.00003	0.082	0.010	0.0211	0.03	0.03	0.046	0.012	0.0123	0.0244	0.1810
29	0.04	0.04	0.00003	0.047	0.011	0.0200	0.03	0.03	0.046	0.011	0.0121	0.0287	0.1000
30	0.04	0.04	0.00003	0.047	0.010	0.0358	0.03	0.03	0.040	0.011	0.0124	0.0417	0.1005
32	0.04	0.04	0.00003	0.048	0.010	0.0245	0.03	0.03	0.046	0.011	0.0122	0.0274	0.1930
33	0.04	0.04	0.00003	0.047	0.010	0.0382	0.03	0.03	0.047	0.011	0.0123	0.0401	0.1971
34	0.04	0.04	0.00003	0.047	0.010	0.0237	0.03	0.03	0.047	0.011	0.0123	0.0267	0.1989
35	0.04	0.04	0.00003	0.047	0.010	0.0318	0.03	0.03	0.046	0.011	0.0123	0.0340	0.2018
36	0.04	0.04	0.00003	0.048	0.010	0.0306	0.03	0.03	0.046	0.011	0.0123	0.0330	0.2045
37	0.04	0.04	0.00003	0.047	0.010	0.0351	0.03	0.03	0.045	0.011	0.0124	0.0373	0.2079
38	0.04	0.04	0.00003	0.047	0.010	0.0266	0.03	0.03	0.046	0.011	0.0123	0.0293	0.2099
39	0.04	0.04	0.00003	0.047	0.010	0.0290	0.03	0.03	0.046	0.011	0.0123	0.0315	0.2123
40	0.04	0.04	0.00003	0.047	0.010	0.0278	0.03	0.03	0.046	0.011	0.0124	0.0304	0.2145
41	0.04	0.04	0.00003	0.048	0.010	0.0281	0.03	0.03	0.046	0.011	0.0123	0.0306	0.2166
42	0.04	0.04	0.00003	0.047	0.010	0.0328	0.03	0.03	0.046	0.011	0.0124	0.0350	0.2194
43	0.04	0.04	0.00003	0.047	0.010	0.0335	0.03	0.03	0.047	0.011	0.0123	0.0357	0.2223
44	0.04	0.04	0.00003	0.047	0.010	0.0310	0.03	0.03	0.045	0.011	0.0122	0.0334	0.2248
45	0.04	0.04	0.00003	0.047	0.010	0.0352	0.03	0.03	0.046	0.011	0.0125	0.0373	0.2279
40	0.04	0.04	0.00003	0.047	0.010	0.0269	0.03	0.03	0.046	0.011	0.0124	0.0296	0.2298
47	0.04	0.04	0.00003	0.046	0.010	0.0232	0.03	0.03	0.046	0.011	0.0122	0.0262	0.2313
40 40	0.04	0.04	0.00003	0.047	0.010	0.0259	0.03	0.03	0.040	0.011	0.0123	0.0205	0.2347
50	0.04	0.04	0.00003	0.047	0.010	0.0203	0.03	0.03	0.040	0.011	0.0123	0.0306	0.2366
51	0.04	0.04	0.00003	0.048	0.010	0.0283	0.03	0.03	0.046	0.011	0.0123	0.0309	0,2387
52	0.04	0.04	0.00003	0.047	0.010	0.0392	0.03	0.03	0.046	0.011	0.0124	0.0411	0.2422
53	0.04	0.04	0.00003	0.047	0.010	0.0400	0.03	0.03	0.047	0.011	0.0124	0.0419	0.2458
54	0.04	0.04	0.00003	0.048	0.010	0.0352	0.03	0.03	0.047	0.011	0.0124	0.0374	0.2486
55	0.04	0.04	0.00003	0.048	0.010	0.0204	0.03	0.03	0.046	0.011	0.0123	0.0238	0.2497
56	0.04	0.04	0.00003	0.047	0.010	0.0258	0.03	0.03	0.047	0.011	0.0124	0.0286	0.2514
57	0.04	0.04	0.00003	0.048	0.010	0.0293	0.03	0.03	0.047	0.011	0.0123	0.0318	0.2534
58	0.04	0.04	0.00003	0.047	0.010	0.0319	0.03	0.03	0.046	0.011	0.0124	0.0342	0.2557