5 Modelagem da máquina síncrona e seus controles associados

5.1 Introdução

Os geradores em conjunto com seus controles associados se constituem nos equipamentos mais importantes e mais complexos presentes no sistema de potência. Geram toda a energia elétrica que é então manipulada e transportada até os centros consumidores pelas linhas de transmissão. Sua modelagem é de grande importância para o bom desempenho do simulador [23].

Este capítulo descreve o princípio de funcionamento dos geradores síncronos e apresenta as equações utilizadas para a sua modelagem e a de seus controles de tensão e de velocidade. Estas equações compõem o bloco gerador, que é inserido nos simuladores multitaxa. O modelo é implementado, utilizando o programa MATLAB [45]. São apresentados resultados de simulações ilustrativas.

5.2 Princípio de funcionamento dos geradores síncronos

As máquinas elétricas se comportam de acordo com a lei do eletromagnetismo que diz que uma diferença de potencial é induzida nos terminais de um condutor sujeito a um campo magnético variante no tempo ou no espaço. Um campo magnético invariante no tempo é gerado pela corrente de campo do gerador síncrono percorrendo seu enrolamento do rotor. Como o rotor do gerador possui o seu eixo ligado à turbina e ambos giram juntos, o campo magnético é movimentado pela turbina, portanto se torna variante no espaço. Este campo magnético girante induz uma diferença de potencial nos enrolamentos trifásicos do estator. Quando conectado à carga através da rede elétrica, esta diferença de potencial resulta em potência fornecida à carga, isto é, corrente elétrica fluindo do gerador para a carga. A potência aparente (S) é representada por um número

complexo que possui como parte real a potência ativa (P) e como parte imaginária a potência reativa (Q). A relação entre a potência ativa e a potência aparente (P/S) é chamada de fator de potência da carga. Como a carga varia a cada instante, os geradores precisam estar constantemente ajustando seus valores de corrente de excitação e o despacho de potência ativa (P) de maneira a produzir a potência aparente (S) solicitada pelo sistema. O sistema de controle de tensão atua variando a corrente de excitação do gerador, que modifica essencialmente o valor da potência reativa (Q) fornecida à rede. O sistema de controle de velocidade atua variando, quando necessário, o despacho de potência ativa (P).

5.3 Modelagem da máquina síncrona

Para modelar a máquina síncrona é necessário representá-la como um sistema eletromecânico [24,25,26,27]. O sistema mecânico produz o torque mecânico fornecido pelas turbinas ao eixo girante, conforme mostrado na Figura (5.1). O sistema elétrico tem seu desempenho expresso em função de correntes e tensões geradas e fornecidas aos enrolamentos da máquina síncrona, conforme mostrado na Figura (5.2). As equações diferenciais que representam o modelo eletromecânico são discretizadas utilizando a regra de integração trapezoidal.

Figura (5.1) - Representação mecânica da máquina síncrona

Figura (5.2) - Representação elétrica da máquina síncrona

5.3.1 Modelagem elétrica

Neste trabalho para representar eletricamente a máquina síncrona, por questões de simplicidade, utilizou-se um modelo no domínio d-q-0 ao invés de no domínio abc. Foi utilizado o modelo para os enrolamentos de eixo direto e de eixo em quadratura e o enrolamento de campo, conforme mostrado nas Figuras (5.2) e (5.3),

Figura (5.3) – Representação dos circuitos de eixos direto e em quadratura do modelo utilizado.

onde,

 x_s – reatância de dispersão do estator;

- xad-reatância de magnetização do estator, segundo o eixo direto;
- x_{lfd} reatância de dispersão do campo;

 $\begin{aligned} x_{ffd} &= x_{lfd} + x_{ad} - \text{reat} \hat{a} \text{ncia pr} \hat{o} \text{pria do campo}; \\ x_d &= x_s + x_{ad} - \text{reat} \hat{a} \text{ncia s} \hat{n} \text{cr} \text{on a de eixo direto}; \\ x'_d &= x_s + x_{ad}. x_{lfd} / x_{ffd} - \text{reat} \hat{a} \text{ncia transit} \hat{o} \text{ria de eixo direto}; \\ x_{aq} &- \text{reat} \hat{a} \text{ncia de magnetiza} \hat{c} \hat{a} \text{ o do estator, segundo o eixo de quadratura;} \\ x_q &= x_s + x_{aq} - \text{reat} \hat{a} \text{ncia s} \hat{n} \text{cr} \text{on a de eixo de quadratura;} \\ r_{fd} &- \text{resist} \hat{e} \text{ncia do campo.} \end{aligned}$

O modelo é representado por suas equações de Park, no referencial d-q-0. As correntes i_d , i_q e i_0 se relacionam com as correntes i_a , i_b e i_c através da matriz inversa da matriz de transformação de Park, conforme mostrado na Eq. (5.1). A matriz de transformação de Park é representada pela matriz **P** e a sua inversa pela matriz **P**⁻¹, de acordo com as Eq. (5.2) e (5.3),

$$\begin{bmatrix} \mathbf{i}_{d}(\mathbf{n}) \\ \mathbf{i}_{q}(\mathbf{n}) \\ \mathbf{i}_{0}(\mathbf{n}) \end{bmatrix} = \mathbf{P}^{-1} \begin{bmatrix} \mathbf{i}_{a}(\mathbf{n}) \\ \mathbf{i}_{b}(\mathbf{n}) \\ \mathbf{i}_{c}(\mathbf{n}) \end{bmatrix}$$
(5.1)

$$\mathbf{P} = \begin{bmatrix} \cos \theta \dots \sin \theta \dots \sin \theta \\ \cos(\theta - \frac{2.\pi}{3}) \dots \sin(\theta - \frac{2.\pi}{3}) \dots \sin(\theta - \frac{2.\pi}{3}) \dots \sin(\theta - \frac{4.\pi}{3}) \dots (\theta - \frac{$$

$$\mathbf{P}^{-1} = \frac{2}{3} \begin{bmatrix} \cos \theta \dots \cos(\theta - \frac{2.\pi}{3}) \dots \cos(\theta - \frac{4.\pi}{3}) \\ \sin \theta \dots \sin(\theta - \frac{2.\pi}{3}) \dots \sin(\theta - \frac{4.\pi}{3}) \\ \frac{1}{2} \dots \frac{1}{2} \dots \frac{1}{2} \end{bmatrix}$$
(5.3)

onde, θ é o ângulo referente a posição do rotor, em radianos elétricos, conforme mostrado na Figura (5.2).

Os valores dos fluxos eletromagnéticos nos enrolamentos da máquina síncrona são calculados a partir de i_d , i_q , i_0 e i_{fd} , e representados pelas Eq. (5.4) a (5.7), apresentadas a seguir.

$$\phi_{d}(t) = -L_{d}.i_{d}(t) + L_{ad}.i_{fd}(t)$$
(5.4)

$$\phi_q(t) = -L_q \dot{i}_q(t) \tag{5.5}$$

$$\phi_0(t) = -L_0 . i_0(t) \tag{5.6}$$

$$\phi_{fd}(t) = L_{fd} \cdot i_{fd}(t) - L_{ad} \cdot i_{d}(t)$$
(5.7)

As Eq. (5.8) a (5.10), se constituem no modelo do enrolamento do estator da máquina síncrona.

$$v_{d}(t) = \frac{d}{dt}\phi_{d}(t) - w(t).\phi_{q}(t) - r_{s}.i_{d}(t)$$
 (5.8)

$$v_{q}(t) = \frac{d}{dt}\phi_{q}(t) + w(t).\phi_{d}(t) - r_{s}.i_{q}(t)$$
(5.9)

$$v_0(t) = \frac{d}{dt}\phi_0(t) - r_s i_0(t)$$
(5.10)

As Eq. (5.8) a (5.10) são discretizadas, obtendo-se as Eq. (5.11) a (5.13).

$$v_{d}(n) = \frac{2}{T} \cdot (\phi_{d}(n) - \phi_{d}(n-1)) - w(n) \cdot \phi_{q}(n) - w(n-1) \cdot \phi_{q}(n-1) - r_{s} \cdot (i_{d}(n) + i_{d}(n-1)) - v_{d}(n-1)$$
(5.11)

$$v_{q}(n) = \frac{2}{T} \cdot (\phi_{q}(n) - \phi_{q}(n-1)) + w(n) \cdot \phi_{d}(n) + w(n-1) \cdot \phi_{d}(n-1) - r_{s} \cdot (i_{q}(n) + i_{q}(n-1)) - v_{q}(n-1)$$
(5.12)

$$v_0(n) = \frac{2}{T} \cdot (i_0(n) - i_0(n-1)) - r_s \cdot (i_0(n) + i_0(n-1)) - v_0(n-1)$$
(5.13)

A Eq. (5.14) se constitui no modelo do enrolamento do rotor da máquina síncrona.

$$v_{fd}(t) = \frac{d}{dt}\phi_{fd}(t) + r_{fd}.i_{fd}(t)$$
 (5.14)

Após sofrer manipulações algébricas e substituições, a Eq. (5.14) se transforma na Eq. (5.20), que faz parte do modelo do controle de tensão da máquina síncrona e é apresentada em sua forma discreta na Seção 5.4.1.

5.3.2 Modelagem do sistema mecânico

A equação diferencial de segunda ordem denominada equação de oscilação pode ser decomposta nas duas equações diferenciais de primeira ordem, definidas pelas Eq. (5.15) e (5.16).

$$\frac{\mathrm{d}}{\mathrm{dt}}\theta(t) = \mathrm{w}(t) - \mathrm{w}_{\mathrm{s}} \tag{5.15}$$

$$H.\frac{d}{dt}w(t) = P_{m}(t) - P_{e}(t) - D.(w(t) - w_{s})$$
(5.16)

onde,

ws = $4.\pi$.f/p – velocidade síncrona da máquina (em radianos mecânicos/s);

f – freqüência (em Hertz);

p - número de polos da máquina síncrona;

D - amortecimento do sistema;

H – constante de inércia da máquina síncrona;

θ- posição angular do rotor (em radianos elétricos), indicado na Figura (5.2);

w - velocidade angular do rotor (em radianos/s). Quando a máquina funciona em regime permanente, w = ws.

As equações relativas à modelagem do sistema de controle de velocidade da máquina são apresentadas, em sua forma discreta, na Seção 5.5.

5.4 Modelagem do sistema de controle de tensão da máquina síncrona

Foram testados dois tipos de controle de tensão que chamaremos de tipo a e tipo b, conforme será mostrado nas Seções 5.4.1 e 5.4.2 [28,29,30,31,32].

5.4.1 Controle de tensão do tipo a

O controle de tensão do tipo a é representado como um sistema de realimentação que mede a tensão terminal do gerador, compara com uma referência e passa por um ganho que vai modificar a tensão do campo e conseqüentemente modificar a tensão interna gerada pela máquina, conforme mostrado na Figura (5.4) e representado pelas Eq. (5.17) a (5.20). Não foi considerada a saturação da tensão de campo.

Figura (5.4) – Representação do controle de tensão do tipo a da máquina síncrona.

$$V_{t}(t) = \sqrt{(v_{d}(t))^{2} + (v_{q}(t))^{2}}$$
(5.17)

$$e_{r}(t) = V_{ref} - V_{t}(t)$$
 (5.18)

$$E_{fd}(t) = k_a \cdot e_r(t)$$
(5.19)

A Eq. (5.14), após sofrer diversas manipulações algébricas e substituições, conduz à Eq. (5.20).

$$\frac{d}{dt}E'_{q}(t) = \frac{1}{T'_{d0}} [E_{fd}(t) - E'_{q}(t)]$$
(5.20)

As Eq. (5.17), (5.18) e (5.19) são utilizadas diretamente no modelo digital, apenas substituindo t por n. A variável n representa os instantes de tempo e varia

de 1 até o número de instantes de tempo simulados. A forma discreta da Eq. (5.20) é mostrada na Eq. (5.21).

$$E'_{q}(n) = \frac{(2.T'_{d0} - T)}{(2.T'_{d0} + T)} E'_{q}(n-1) + \frac{T}{(2.T'_{d0} + T)} [E_{fd}(n) + E_{fd}(n-1)]$$
(5.21)

5.4.2 Controle de tensão do tipo b

O controle de tensão do tipo b é conhecido como modelo tipo 1 do IEEE [32]. Seu diagrama de blocos é mostrado na Figura (5.5). O modelo é representado pelas Eq. (5.17), (5.18), (5.22) até (5.26).

Figura (5.5) – Representação do controle de tensão do tipo b da máquina síncrona.

$$T_{a} \cdot \frac{d}{dt} V_{r}(t) = -V_{r}(t) + k_{a} \cdot e_{r}(t) - k_{a} \cdot V_{s0}(t)$$
(5.22)

$$T_{e} \cdot \frac{d}{dt} E_{fd}(t) = -k_{e} \cdot E_{fd}(t) + V_{r}(t) - S_{e}(t)$$
(5.23)

$$S_{e}(t) = k.e^{Efd(t)}$$
(5.24)

$$T_{f} \cdot \frac{d}{dt} V_{s0}(t) = -V_{s0}(t) + k_{f} \cdot \frac{d}{dt} E_{fd}(t)$$
(5.25)

$$\frac{d}{dt}E'_{q} = \frac{1}{T'_{d0}}.(E_{fd}(t) - E'_{q}(t) - w(t).(L_{d} - L'_{d}).i_{d}(t))$$
(5.26)

O modelo digital do controle de tensão do tipo b é representado pelas Eq. (5.24), (5.27), (5.28), (5.29) e (5.30).

$$V_{r}(n) = \frac{(2.Ta - T)}{(2.T_{a} + T)} V_{r}(n - 1) + \frac{T.k_{a}}{(2.T_{a} + T)} (e_{r}(n) + e_{r}(n - 1) - V_{s0}(n) - V_{s0}(n - 1))$$
(5.27)

$$E_{fd}(n) = \frac{(2.T_e - T.k_e)}{(2.T_e + T.k_e)} \cdot E_{fd}(n-1) + \frac{(T)}{(2.T_e + T.k_e)} \cdot (V_r(n) + V_r(n-1) - S_e(n) - S_e(n-1))$$
(5.28)

$$V_{s0}(n) = \frac{(2.T_f - T)}{(2.T_f + T)} V_{s0}(n-1) + \frac{(2.k_f)}{(2.T_f + T)} (E_{fd}(n) - E_{fd}(n-1))$$
(5.29)

$$E'_{q}(n) = \frac{2.T'_{d0} - T}{2.T'_{d0} + T} \cdot E'_{q}(n-1) + \frac{T}{2.T'_{d0} + T} (E_{fd}(n) + E_{fd}(n-1) - w(n) \cdot (L_{d} - L'_{d}) \cdot i_{d}(n) - w(n-1) \cdot (L_{d} - L'_{d}) \cdot i_{d}(n-1)$$
(5.30)

5.5 Modelagem do sistema de controle de velocidade da máquina síncrona

O controle de velocidade é representado, como indicado na Figura (5.6), por um sistema de realimentação que compara a freqüência nos terminais da máquina com uma determinada referência [1,2]. Este sinal passa pelo primeiro bloco, cuja saída é comparada com a potência gerada fixada. Finalmente passa pelo segundo bloco (representando a turbina), cuja saída é representativa da potência mecânica gerada. Não foram considerados os limites máximo e mínimo da potência gerada.

Figura (5.6) - Representação do controle de velocidade da máquina síncrona

As equações que constituem o modelo são apresentadas a seguir,

$$\Delta w(t) = w_s - w(t) \tag{5.31}$$

$$\frac{d}{dt}P_{gv}(t) = \frac{1}{T_{gv}} [P_{set} - P_{gv}(t) - \frac{1}{R_d . w_s} . (w(t) - w_s)]$$
(5.32)

$$\frac{d}{dt}P_{m}(t) = \frac{1}{0.5.T_{w}} \cdot (P_{gv}(t) - P_{m}(t) - T_{w} \cdot \frac{d}{dt}P_{gv})$$
(5.33)

$$P_{e}(t) = \frac{w(t).p}{2}(\phi_{d}(t).i_{q}(t) - \phi_{q}(t).i_{d}(t))$$
(5.34)

onde,

p – número de polos da máquina síncrona.

As Eq. (5.31), (5.32), (5.33) e (5.34), juntamente com as Eq. (5.15) e (5.16), apresentadas na Seção 5.3.2, constituem o modelo do sistema de controle de velocidade.

As Eq. (5.31), (5.34), (5.35), (5.36), (5.37) e (5.38) constituem o modelo do sistema de controle de velocidade em sua forma discreta.

$$P_{gv}(n) = \frac{(2.T_{gv} - T)}{(2.T_{gv} + T)} P_{gv}(n - 1) + \frac{T}{(2.T_{gv} + T)} [2.P_{set} - \frac{1}{R_{d}.w_{s}} (w(n) - w_{s})]$$
(5.35)

$$P_{m}(n) = \frac{T_{w} - T}{T_{w} + T} P_{m}(n-1) + \frac{T - T_{w}^{2}}{T_{w} + T} P_{gv}(n) - \frac{T + T_{w}^{2}}{T_{w} + T} P_{gv}(n-1)$$
(5.36)

$$w(n) = \frac{2.M - D.1}{2.M + D.T} . w(n-1) + \frac{T}{2.M + D.T} . (P_m(n) + P_m(n-1) - P_e(n) - P_e(n-1) + 2.D.w_s)$$
(5.37)

$$\theta(n) = \frac{T}{2} \cdot (w(n) + w(n-1) - 2 \cdot w_s) + \theta(n-1)$$
(5.38)

5.6 Inserção das equações discretizadas do gerador síncrono nos simuladores multitaxa

Todas as equações que compõem o modelo do gerador [33,34,35,36] são representadas pelo bloco Gerador, conforme mostrado na Figura (5.7).

Figura (5.7) – Equações que compõem o bloco Gerador.

O bloco gerador é então inserido nos simuladores multitaxa de acordo com as Figuras (5.8), (5.9), (5.10) e (5.11), que representam simuladores multitaxa com 1, 2, 3 e M níveis de decomposição em sub-bandas, respectivamente. Observa-se que as equações digitais da máquina síncrona são implementadas funcionando sempre na taxa de amostragem alta, isto é, externamente às subbandas, pois o modelo da máquina contém equações não-lineares e o método de decomposição em sub-bandas é utilizado apenas em sub-sistemas lineares.

No caso do simulador para sinais de faixa estreita de freqüência, com modelo de máquina síncrona, representado na Figura (5.11), é possível, a partir dos valores em taxa baixa gerados pelo simulador multitaxa, identificar a senóide na taxa de amostragem original. Esta senóide é que irá fornecer os valores de entrada da máquina síncrona ou de qualquer outro elemento não-linear. Para isto, é utilizado um algoritmo que identifica os parâmetros de senóides. A partir da freqüência de amostragem do sinal decimado calculado pelo simulador multitaxa e do seu número de decimações é possível obter a freqüência do sinal na taxa de amostragem original [22], de acordo com a Figura (4.14), apresentada na Seção

4.6. Assim, a partir da freqüência do sinal e dos valores das amostras calculadas pelo simulador multitaxa, o algoritmo identifica a equação da senóide na taxa de amostragem original, de acordo com o procedimento descrito no segundo exemplo da Seção 5.9.1.

Figura (5.8) – Simulador com um nível de decomposição em sub-bandas.

Figura (5.9) – Simulador com dois níveis de decomposição em sub-bandas.

Figura (5.10) – Simulador com três níveis de decomposição em sub-bandas.

Figura (5.11) – Simulador multitaxa para sinais de faixa estreita de freqüência com M níveis de decomposição em sub-bandas.

5.7 Esquema de predição

Para iniciar o cálculo das variáveis do bloco gerador é necessário predizer o valor de algumas dessas variáveis [37].

A velocidade de todas as máquinas é predita via extrapolação linear, de acordo com a Eq. (5.39).

$$w(t) = 2.w(t - \Delta t) - w(t - 2.\Delta t)$$
 (5.39)

As velocidades preditas são necessárias para a predição da tensão e para o cálculo do torque.

O ângulo do rotor θ deve ser predito para que a conversão dq $0 \rightarrow$ abc seja efetuada. O valor de θ é calculado da seguinte forma:

$$\theta(t) = \theta(t - \Delta t) + \frac{\Delta t}{2} \cdot \{w(t - \Delta t) + w(t)\}$$
(5.40)

A tensão de velocidade é predita indiretamente, através do produto das variáveis preditas, fluxo e velocidade. Para a predição do fluxo são necessárias as correntes $i_d e i_q$. Elas são obtidas a partir da multiplicação do vetor das correntes nas fases do gerador, i_a , $i_b e i_c$, pela matriz \mathbf{P}^{-1} , descrita pela Equação (5.3), isto é, pela inversa da matriz de transformação de Park. As correntes i_a , $i_b e i_c$ nas fases dos geradores são obtidas a partir do vetor j, das correntes nos ramos do sistema, calculado pelo simulador.

5.8 Oscilações numéricas nos resultados das simulações

Em alguns casos simulados observaram-se oscilações nos resultados, que se manifestaram principalmente na excursão ao longo do tempo das variáveis $v_d e v_q$. Estas oscilações são causadas pelo método de discretização utilizado [38]. Para melhor compreendê-las vamos introduzir o conceito de transformação bilinear, que é um método de discretização equivalente matematicamente à regra de integração trapezoidal, conforme será mostrado na Seção 5.8.2.

5.8.1 A transformação bilinear

A transformação bilinear é um método de discretização que substitui, para um intervalo de integração T, o termo s ou jw (correspondente à derivada), obtido após a Transformação de Laplace, por

$$jw = \frac{2}{T} \cdot \frac{1 - z^{-1}}{1 + z^{-1}} = \frac{2}{T} \cdot \frac{z - 1}{z + 1}$$
(5.41)

De acordo com a equação (5.41), é possível observar que a transformação bilinear introduz pólos e zeros sobre o círculo unitário, isto é, em -1 e +1, respectivamente, o que pode causar instabilidade numérica, ou seja, oscilações numéricas nos resultados das simulações [38]. A solução para este problema será vista mais adiante, neste trabalho.

5.8.2 Equivalência entre a transformação bilinear e a regra de integração trapezoidal

Aplicando a transformação bilinear na equação de tensão do indutor, apresentada na Seção 2.5.1, obtém-se a Eq. (5.42), apresentada a seguir.

$$e_{L}(s) = L.\frac{2}{T}.\frac{(1-z^{-1})}{(1+z^{-1})}i_{L}(s)$$
 (5.42)

Observa-se que a função impedância do indutor possui pólo em -1 e zero em +1. Como z^{-1} significa um atraso na variável associada, a Eq. (5.42) pode ser re-escrita da seguinte forma:

$$(e_{L}(n) + e_{L}(n-1)) \cdot \frac{T}{2} = L \cdot (i_{L}(n) - i_{L}(n-1))$$
 (5.43)

Como pode-se observar, a Eq. (5.43) é idêntica a Eq. (2.12), que foi obtida na Seção 2.5.1 através da utilização do método de integração trapezoidal.

Aplicando a transformação bilinear na equação de tensão do capacitor, apresentada na Seção 2.5.2, obtém-se a Eq. (5.44). Observa-se que a função

impedância do capacitor possui pólo em +1 e zero em -1, isto é, o inverso do indutor. Assim, observamos que quando certas variáveis atingem os valores de +1 e -1, ocorrem problemas relativos a estas singularidades, que podem se manifestar na forma de oscilações numéricas nos resultados das simulações.

$$i_{\rm C}(s) = {\rm C} \cdot \frac{2}{{\rm T}} \cdot \frac{(1-z^{-1})}{(1+z^{-1})} \cdot e_{\rm C}(s)$$
 (5.44)

A equação (5.44) pode ser re-escrita da seguinte forma.

$$(i_{C}(n) + i_{C}(n-1)) = \frac{2.C}{T} .(e_{C}(n) - e_{C}(n-1))$$
(5.45)

Como pode-se observar, a Eq. (5.45) é idêntica a Eq. (2.17), que foi obtida na Seção 2.5.2, através da aplicação da regra de integração trapezoidal.

5.8.3 Procedimento para correção das oscilações numéricas

Quando ocorrem oscilações numéricas, as equações digitais envolvidas são substituídas por outras, obtidas através de outro método de integração numérica. É utilizado o método de discretização de Euler, representado pela Eq. (5.46) [38]. O método, apesar de não ser tão preciso quanto a regra de integração trapezoidal é implicitamente estável.

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t}\Big|_{n-1}^{n} = \frac{x(n) - x(n-1)}{\mathrm{T}},\tag{5.46}$$

5.9 Exemplos Ilustrativos

Na Seção 5.9.1 são apresentados dois exemplos com resultados de simulações comparativas utilizando o modelo de máquina síncrona apresentado neste capítulo, com controle de velocidade e controle de tensão do tipo b.

O objetivo dos exemplos é avaliar o desempenho do sistema multitaxa resultante, composto pela rede elétrica linear (com linhas de transmissão modeladas a parâmetros concentrados e independentes da freqüência), decomposta em sub-bandas e o modelo que representa as máquinas síncronas, que é inserido fora das sub-bandas, conforme pode ser observado nas Figuras (5.8), (5.9), (5.10) e (5.11). O desempenho do sistema resultante é avaliado comparando-se o resultado de simulações utilizando os diversos simuladores multitaxa com resultados obtidos utilizando o simulador tradicional.

5.9.1 Sistema-teste 5

Os dados do diagrama unifilar de seqüência positiva do Sistema-teste 5 são indicados na Figura (5.12).

Figura (5.12) - Dados do Sistema-teste 5.

O valor das constantes dos geradores, e de seus sistemas de controle de tensão e de velocidade são apresentadas no Apêndice A.

No primeiro exemplo, a freqüência de amostragem utilizada foi de 538 Hz e o banco é composto por filtros do tipo Daubechies 2 [19], de terceira ordem. O sistema teste é simulado com as três estruturas de decomposição em sub-bandas mostradas nas Figuras (5.8), (5.9) e (5.10), e comparado com a simulação utilizando o método tradicional.

Após um período de tempo relativo a 135 passos de integração, ou seja, no instante t=(1/538).135=0.25s, a barra 5 sofre um curto-circuito trifásico. O curto é extinto no instante t=(1/538).195=0.36s. O tempo de duração do curto é de aproximadamente 0.11s e tempo total de simulação é de aproximadamente 1s.

A Figura (5.13) mostra o gráfico com os valores da corrente no capacitor 3 ao longo do tempo, utilizando os simuladores com 1, 2, 3 níveis de decomposição em sub-bandas e o simulador tradicional. A Figura (5.14) mostra o gráfico com os valores da tensão na barra 2 ao longo do tempo, utilizando os mesmos simuladores.

Para uma melhor visualização dos resultados das simulações apresentadas nos gráficos das Figuras (5.13) e (5.14), os atrasos dos simuladores multitaxa foram retirados. Como pode ser observado, as curvas se sobrepõem, isto é, os simuladores testados geram resultados equivalentes.

Figura (5.13) – Corrente no capacitor 3 do Sistema-teste 5.

Figura (5.14) - Tensão na barra 2 do Sistema-teste 5.

No segundo exemplo é utilizado o simulador multitaxa 7, para sinais de faixa estreita de freqüência, apresentado na Seção 4.6. O passo de integração ou taxa de amostragem original é T=1/2080s e o número de decimações realizadas pelo simulador multitaxa = 2^7 =128, isto é, M=128. A máquina síncrona é inserida no simulador multitaxa de acordo com a Figura (5.11).

O gráfico representado na Figura (5.15), plota em azul a senóide na taxa de amostragem original, gerada pelo simulador tradicional e assinala em vermelho os valores calculados pelo simulador multitaxa 7. O sinal gerado pelo simulador multitaxa 7 possui passo de integração 128 vezes maior que o original.

Figura (5.15)- Corrente no gerador 1 do Sistema-teste 5.

Para gerar a senóide azul a partir dos valores calculados pelo simulador multitaxa 7, é utilizado um algoritmo para identificar parâmetros de senóides, desenvolvido a partir da equação trigonométrica abaixo [38].

$$A.sen(w.t + \phi) = A.sen(w.t).cos(\phi) + A.cos(w.t).sen(\phi)$$
(5.47)

O primeiro passo é obter a freqüência do sinal na taxa de amostragem original. A partir da freqüência do sinal gerado pelo simulador multitaxa 7 é possível identificar a freqüência do sinal na taxa de amostragem original, que é de 60 Hz, neste exemplo. A seguir mede-se o valor da primeira amostra fornecida pelo simulador multitaxa 7 (x_0 = primeiro valor medido no gráfico da Figura (5.15)), a partir de um certo instante de tempo. Considere este instante de tempo como sendo o instante original (t=0). Assim, é possível escrever a Equação (5.48).

$$x_0 = 0,116 = A_c \cdot \cos(2.\pi.60.0) + A_s \cdot \sin(2.\pi.60.0)$$
 (5.48)

O passo seguinte é medir no gráfico da Figura (5.15) o valor da próxima amostra fornecida pelo simulador multitaxa 7 (x_1 = valor medido), assim como o intervalo de tempo entre as duas amostras consecutivas. A partir destes valores escreve-se a Equação (5.49).

$$x_1 = 0,0095 = A_c.\cos((377).(1).(0,0615)) + A_s.sen((377).(1).(0,0615))$$
 (5.49)

As Eqs. (5.48) e (5.49) formam um sistema possível e determinado, composto por duas equações e duas incógnitas, sendo assim, calculam-se os valores de $A_c = 0,116$ e $A_s = -0,0541$. De acordo com a Equação (5.47), escrevem-se as Eqs. (5.50), (5.51), (5.52) e (5.53).

$$A_c = A. \operatorname{sen} \phi \tag{5.50}$$

$$A_{s} = A.\cos\phi \tag{5.51}$$

$$A = \sqrt{A_c^2 + A_s^2} = 0,128 \tag{5.52}$$

$$\phi_1 = \arctan(\frac{A_c}{A_s}) = 2,0072 \text{rad}$$
(5.53)

Assim, são calculados os valores da Amplitude máxima da senóide na taxa de amostragem original e do ângulo de fase da amostra x_0 em relação a um período da senóide na taxa de amostragem original, de acordo com a Figura (5.15).

As Eqs. (5.48), (5.49), (5.50), (5.51), (5.52) e (5.53) são recalculadas, utilizando para x_0 o valor da segunda amostra medida no gráfico da Figura (5.15), 0,0095 e para x1 o valor da terceira amostra medida, -0,123. São obtidos os seguintes valores.

$$A_{c} = 0,0095$$

 $A_{s} = 0,1279$
 $A = \sqrt{A_{c}^{2} + A_{s}^{2}} = 0,128$

$$\phi_2 = \arctan(\frac{A_c}{A_s}) = 0,0741 \text{rad}$$

As Eqs. (5.48), (5.49), (5.50), (5.51), (5.52) e (5.53) são recalculadas, utilizando para x_0 o valor da terceira amostra medida no gráfico da Figura (5.15), -0,123 e para x1 o valor da quarta amostra medida, 0,0776. São obtidos os seguintes valores.

$$A_{c} = -0,123$$

$$A_{s} = -0,0348$$

$$A = \sqrt{A_{c}^{2} + A_{s}^{2}} = 0,128$$

$$\phi_{3} = \arctan(\frac{A_{c}}{A_{c}}) = -1,8465 \text{rad} = 4,444 \text{rad}$$

Logo, este procedimento é repetido para todos os valores calculados pelo simulador multitaxa 7. O sinal é reconstruído na sua taxa de amostragem original, através da identificação da equação da senóide na freqüência original (A.sen(wt+ ϕ)), a partir da qual poderão ser obtidos os valores de entrada na taxa de amostragem alta, da máquina síncrona ou de qualquer outro elemento não-linear presente no sistema.

Após um certo período de tempo, ou seja, no instante t=1,62s, a barra 5 sofre um curto-circuito trifásico. O curto é extinto no instante t=1,8s. O tempo de duração do curto é de aproximadamente 0,18s e tempo total de simulação é de aproximadamente 4,2s. A Figura (5.16) mostra o gráfico com os valores da tensão da barra 1 (reconstruída pelo processo de identificação descrito acima), utilizando o simulador com 7 níveis de decomposição e o simulador tradicional.

Figura (5.16) - Tensão reconstruída da barra 1 do Sistema-teste 5.

A Figura (5.17) mostra uma ampliação na região marcada da Figura (5.16). Como pode ser observado as curvas se sobrepõem, gerando resultados equivalentes.

Figura (5.17) – Ampliação da região marcada da Figura (5.16).

5.10 Conclusões

Neste capítulo foram apresentados modelos digitais de máquinas síncronas e de seus controles associados. Os modelos são inseridos nos simuladores multitaxa apresentados no Capítulo 4. O modelo resultante é composto pelas equações da rede elétrica linear, decomposta em sub-bandas de freqüência e as equações das máquinas síncronas, processadas fora das sub-bandas, isto é, um sistema misto, uma parte dele operando com taxa de amostragem alta e a outra parte operando com taxa de amostragem baixa. A interface entre estes dois sistemas é feita através de um algoritmo identificador de senóides, que a partir da freqüência de amostragem do sinal e dos valores das amostras na taxa de amostragem baixa, reconstrói a senóide na taxa de amostragem alta. O modelo é implementado e são apresentados exemplos ilustrativos com o objetivo de avaliar o desempenho do sistema resultante, através dos resultados de simulações comparativas utilizando os diversos simuladores multitaxa com modelo de máquinas síncronas+controles

associados e o simulador tradicional, também com modelo de máquinas síncronas+controles associados.

O algoritmo identificador de senóides torna possível uma nova abordagem no modelo de máquinas síncronas. No modelo apresentado no presente capítulo, utilizou-se um método numérico para calcular as suas derivadas e integrais a partir de valores de entrada e de valores passados das variáveis em questão. Como o algoritmo fornece a equação da senóide, é possível calcular as derivadas do modelo de uma nova maneira. Podem ser calculadas aplicando a fórmula da derivada diretamente à equação da senóide identificada, nos pontos desejados.