2 O simulador tradicional

2.1 Introdução

Um dos mais tradicionais (e amplamente utilizado) simuladores de transitórios em sistemas de potência é o EMTP [3]. Ele permite modelagem relativamente complexa dos elementos e pode simular detalhadamente sistemas trifásicos, utilizando as leis de Kirchoff para modelar o comportamento dinâmico dos Sistemas Elétricos de Potência. Uma das dificuldades do EMTP é que durante toda a simulação é utilizado um único passo de integração muito pequeno (da ordem de µs), para atender eventuais componentes de alta freqüência. Isto possibilita a representação de componentes de alta freqüência sem perda de precisão, porém torna o processamento lento. Neste capítulo serão apresentados os conceitos básicos do simulador tradicional [13,14], as leis de Kirchoff que modelam o sistema dinâmico, a topologia da rede representada por grafos orientados e os elementos lineares (R, C ou L) dos circuitos representados por uma forma discretizada de suas equações diferenciais. Logo, no sistema resultante, as equações diferenciais são transformadas em equações algébricas recursivas a tempo discreto, onde as variáveis são calculadas em função de valores passados e das entradas. Esta modelagem foi implementada, utilizando o programa MATLAB [45], e no final deste capítulo serão apresentados resultados de simulações obtidas através do método tradicional.

2.2 Topologia de redes elétricas

Topologia é o ramo da matemática que estuda as propriedades de figuras geométricas que não mudam, quando a sua estrutura é submetida a deformações. Topologia de redes elétricas representa as conexões entre os elementos, que formam a geometria da rede, independente dos tipos de elementos que constituem os seus circuitos. A estrutura resultante consiste de pontos interconectados por segmentos de linhas. O estudo destas estruturas é chamado de Teoria dos Grafos Lineares [13].

2.3 Alguns conceitos básicos de teoria de grafos lineares

A seguir serão apresentados alguns conceitos básicos de teoria dos grafos lineares utilizados para a solução de redes elétricas [14].

2.3.1 Grafo linear

É um conjunto de segmentos de linha chamados ramos e pontos chamados nós. Os ramos possuem seus extremos conectados aos nós, de acordo com a topologia da rede. Considere o circuito mostrado na Figura (2.1)(a). O grafo deste circuito, apresentado na Figura (2.1)(b), é formado a partir da sua estrutura topológica, desprezando-se a natureza dos ramos e substituindo-os por simples linhas.

Figura (2.1) - (a) Circuito;

(b) Grafo correspondente.

2.3.2 Subgrafo

É um subconjunto de ramos e nós de um grafo. É chamado de subgrafo próprio se não contém todos os ramos e nós do grafo. Caso contrário é o próprio grafo.

2.3.3 Grafo orientado e não-orientado

Um grafo é dito orientado se todos os seus ramos possuem um sinal (seta neste caso) para indicar a sua orientação. Se nenhuma orientação é assinalada em seus ramos, é dito não-orientado, conforme mostrado na Figura (2.2).

Figura (2.2) – (a) Grafo orientado;

(b) Grafo não-orientado.

2.3.4 Caminho

É um subgrafo particular consistindo de uma seqüência de ramos tendo as seguintes propriedades:

 1 – Ramos consecutivos sempre tem um nó comum, denominado nó interno, onde incidem exatamente dois ramos;

2 – Os dois nós restantes são chamados de nós terminais e somente um ramo incide neles;

 3 – Nenhum subgrafo próprio do caminho, que possua os mesmos dois nós terminais, atende às propriedades 1 e 2.

Por exemplo, na Figura (2.2)(b), os ramos (a h i c) formam um caminho entre os nós 1 e 2, os ramos (b g d e) não formam um caminho pois a propriedade 1 é violada, já os ramos(d h i), não formam um caminho pois a propriedade 2 é violada.

2.3.5 Grafo conexo

Um grafo é dito conexo se existe pelo menos um caminho entre qualquer par de nós do grafo. De outra forma o grafo é dito não conexo.

2.3.6 Circuito

Um subgrafo é considerado um circuito quando:

1 – O subgrafo é conexo;

2 – Todos os seus nós possuem exatamente dois ramos incidentes.

Por exemplo, na Figura 2.2(b), os ramos (a f h) formam um circuito.

Os ramos (c g i d e) não formam um circuito, pois a propriedade 2 é violada.

2.3.7 Árvore

Um subgrafo de um grafo conexo é uma árvore quando:

1 – O subgrafo é conexo;

2 - Contém todos os nós do grafo;

3 – Não possui circuitos.

Por exemplo, na Figura (2.2)(b), os ramos (b f h d) formam uma árvore.

Os ramos (b g d e) não formam uma árvore, pois a propriedade 1 é violada. Os ramos (b f g) também não formam uma árvore, pois as propriedades 2 e 3 são violadas. Corte de um grafo conexo é um conjunto mínimo de ramos que:

1 - Se removidos separam o grafo em dois subgrafos conexos distintos;

2 - Se apenas um destes ramos for restaurado, o grafo resultante torna-se novamente conexo.

Por exemplo, na Figura 2.2(b), os ramos (a f b) formam um corte, os ramos (abcd) não formam, pois violam a propriedade 1 e os ramos (a f b e) também não, pois violam a propriedade 2.

2.3.9 Matriz Incidência

As informações contidas em um grafo orientado podem ser completamente armazenadas em uma matriz, chamada Matriz Incidência. Para um grafo com n nós e r ramos (cada linha da matriz é identificada por um nó e cada coluna por um ramo), é definida pela seguinte matriz de dimensões n x r,

$$\mathbf{A}_{\mathbf{a}} = [\mathbf{a}_{\mathbf{i}\mathbf{i}}],\tag{2.1}$$

onde:

 $a_{ij} = 1$, se o ramo j é incidente no nó i e sua orientação aponta para fora do nó i;

 $a_{ij} = -1$, se o ramo j é incidente no nó i e sua orientação aponta para o nó i; $a_{ii} = 0$, se o ramo j não incide no nó i.

Por exemplo, para o grafo orientado da Figura (2.2)(a), obtém-se a seguinte Matriz Incidência.

	a	b	С	d	е	f	g	h	i
1	1	-1	0	0	0	1	0	0	0
Δ_2	0	1	1	0	0	0	1	0	0
^{~a –} 3	0	0	-1	1	1	0	0	0	-1
4	-1	0	0	-1	-1	0	0	-1	0
5	0	0	0	0	0	-1	-1	1	1

Pode-se observar que, como cada ramo incide sempre em dois nós, as colunas da Matriz Incidência são formadas sempre por um elemento 1, outro –1 e os restantes são zeros, o que permite a exclusão de qualquer uma de suas linhas sem perder informação alguma, isto é, a linha excluída pode sempre ser restaurada. A matriz obtida suprimindo uma linha da Matriz Incidência é chamada Matriz Incidência Reduzida, denotada por **A**. A matriz **A** gera um conjunto de equações linearmente independentes, o que não ocorre por construção com A_a .

2.4 Modelagem analógica da rede elétrica

A representação completa de uma rede elétrica deve conter informações sobre a forma como os ramos são conectados, a orientação adotada para cada ramo e a descrição eletromagnética dos elementos de cada ramo [13,14]. Um ramo geral k pode ser representado de acordo com o modelo indicado na Figura (2.3), isto é, os elementos do ramo em série com uma fonte de tensão equivalente e_k , que representa o somatório de todas as fontes contidas no ramo k (as fontes de corrente são transformadas em fontes de tensão). A Eq. (2.2) descreve o modelo.

Figura (2.3) – Modelo analógico do ramo geral

$$v_{k}(t) = e_{k}(t) + R_{k} \cdot i_{k}(t) + L_{k} \cdot \frac{d}{dt} i_{k}(t) + \sum_{\substack{j=l\\j \neq k}}^{n^{\circ} ramos} M_{jk} \cdot \frac{d}{dt} i_{j}(t) + \frac{1}{C_{k}} \cdot \int_{0}^{t} i_{k}(t) dt + v_{C_{k}}(0+)$$
(2.2)

A Eq. (2.2) é re-escrita na forma matricial, dando origem ao conjunto de equações que representa um sistema com r ramos e n nós, de acordo com a Eq.(2.3),

$$\mathbf{V}_{\mathrm{r}}(\mathbf{t}) = \mathbf{E}_{\mathrm{r}}(\mathbf{t}) + \mathbf{R}_{\mathrm{r}} \cdot \mathbf{I}_{\mathrm{r}}(\mathbf{t}) + \mathbf{L} \cdot \frac{\mathrm{d}}{\mathrm{dt}} \mathbf{I}_{\mathrm{r}}(\mathbf{t}) + \mathbf{D}_{\mathrm{r}} \cdot \int_{0}^{t} \mathbf{I}_{\mathrm{r}}(\mathbf{t}) \mathrm{dt} + \mathbf{V}_{\mathrm{r}}(\mathbf{0}+)$$
(2.3)

$$\begin{aligned} \mathbf{V}_{r}(\mathbf{t}) &= \begin{bmatrix} \mathbf{v}_{1}(t) \\ \mathbf{v}_{2}(t) \\ \vdots \\ \mathbf{v}_{r}(t) \end{bmatrix}; \\ \mathbf{I}_{r}(\mathbf{t}) &= \begin{bmatrix} i_{1}(t) \\ i_{2}(t) \\ \vdots \\ i_{r}(t) \end{bmatrix}; \\ \mathbf{E}_{r}(t) &= \begin{bmatrix} e_{1}(t) \\ e_{2}(t) \\ \vdots \\ e_{r}(t) \end{bmatrix}; \\ \mathbf{V}_{r}(\mathbf{0}+) &= \begin{bmatrix} \mathbf{v}_{C_{1}}(\mathbf{0}+) \\ \mathbf{v}_{C_{2}}(\mathbf{0}+) \\ \vdots \\ \mathbf{v}_{C_{r}}(\mathbf{0}+) \end{bmatrix}; \\ \mathbf{R}_{r} &= \begin{bmatrix} \mathbf{R}_{1}.....0 \\ \mathbf{0}...\mathbf{R}_{2}....0 \\ \vdots \\ \mathbf{0}....\mathbf{R}_{r} \end{bmatrix}; \\ \mathbf{L}_{r} &= \begin{bmatrix} \mathbf{L}_{1}...\mathbf{M}_{12}...\mathbf{M}_{13}.....\mathbf{M}_{1r} \\ \mathbf{M}_{21}...\mathbf{L}_{2}...\mathbf{M}_{23}....\mathbf{M}_{2r} \\ \vdots \\ \mathbf{M}_{r1}..\mathbf{M}_{r2}...\mathbf{M}_{r3}....\mathbf{L}_{r} \end{bmatrix}; \end{aligned}$$

e

Aplicando a transformação de Laplace, representada pelo operador \pounds f, na Eq. (2.3), obtém-se a Eq. (2.4). Por simplicidade, dada a correspondência, está sendo utilizada a mesma notação no domínio do tempo e em Laplace, como pode ser observado na Tabela (2.1).

$\mathcal{L}\{V_{r}^{(t)}\}$	V _r (s)
<i>L</i> {E _r (t)}	$\mathbf{E_r}(\mathbf{s})$
$\mathcal{L}{I_{r}(t)}$	I _r (s)
$ \underset{0}{\overset{t}{\underset{r}{\int}}} \overset{t}{\underset{r}{\int}} \overset{t}{\underset{r}{\int}} (t) dt } $	$\frac{I_{r}(s)}{s}$
$\mathcal{L}\left\{\mathbf{I}_{\mathbf{r}}^{\prime}(\mathbf{t}) ight\}$	$sI_r(s)$ - $I_r(0+)$
$\mathcal{L}\{V_r(0+)\}$	$V_r(0+) \cdot \frac{1}{s}$

Tabela (2.1) – Transformadas de Laplace aplicadas à Eq. (2.3).

$$\mathbf{V}_{r}(\mathbf{s}) = \mathbf{E}_{r}(\mathbf{s}) + (\mathbf{R}_{r} + s\mathbf{L}_{r} + \frac{1}{s}\mathbf{D}_{r}).\mathbf{I}_{r}(\mathbf{s}) + \frac{1}{s}.\mathbf{V}_{r}(\mathbf{0}) - \mathbf{L}_{r}.\mathbf{I}_{r}(\mathbf{0})$$
(2.4)

Re-escrevendo a Eq. (2.4), em função de $I_r(s)$ obtém-se:

$$\mathbf{I}_{r}(\mathbf{s}) = \mathbf{Z}_{r}(\mathbf{s})^{-1} \cdot \left\{ \mathbf{V}_{r}(\mathbf{s}) - \mathbf{E}_{r}(\mathbf{s}) + \mathbf{L}_{r} \cdot \mathbf{I}_{r}(\mathbf{0}) - \frac{1}{s} \mathbf{V}_{r}(\mathbf{0}) \right\},$$
(2.5)

onde,

$$\mathbf{Z}_{r}(\mathbf{s}) = (\mathbf{R}_{r} + s\mathbf{L}_{r} + \frac{1}{s}\mathbf{D}_{r}).$$
(2.6)

Aplicando a Lei de Kirchoff das Correntes na Eq. (2.5) obtém-se

$$\mathbf{A}.\mathbf{I}_{\mathrm{r}}(\mathbf{s}) = \mathbf{0} \tag{2.7}$$

Sabendo-se que,

$$\mathbf{V_r}(\mathbf{s}) = \mathbf{A}^{\mathrm{t}} \cdot \mathbf{V_n}(\mathbf{s}), \tag{2.8}$$

onde, $V_n(s)$, vetor de potenciais nos nós, é um vetor de dimensão n (número de nós), cujas linhas são formadas pelos valores das tensões nos respectivos nós, em relação ao terra.

Assim, são obtidas as equações analógicas que representam o comportamento dinâmico do sistema a partir da Lei de Kirchoff.

2.5 Modelagem digital da rede elétrica

Para transformar as equações diferenciais dos elementos da rede elétrica de sua forma contínua (analógica) para uma forma discreta (digital), é necessária a utilização de um método de discretização. O método de discretização utilizado neste trabalho é o derivado da regra da integração trapezoidal, introduzido por Dommel [15]. Segundo esta regra, a integral de uma função em um certo intervalo de tempo T, que começa no instante n-1 e termina no instante n, é aproximada pela área do trapézio definido por estes pontos [16], ou seja

$$\int_{t=n-1}^{t=n} f(t)dt = (f(n) + f(n-1)) \cdot \frac{T}{2}.$$
(2.9)

O erro introduzido pelo método de discretização pode ser desprezado, supondo-se o intervalo de integração T suficientemente pequeno para permitir tal consideração. Os modelos finais são puramente resistivos e a "memória" do elemento é representada por condições iniciais.

2.5.1 Modelo digital do elemento linear a parâmetro concentrado L, (indutor)

A variação da corrente de um indutor L, linear e invariante no tempo, de um certo ramo k, é descrita através de

$$\frac{di_{k}(t)}{dt} = \frac{1}{L_{k}} \cdot e_{k}(t), \qquad (2.10)$$

que pode ser integrada do instante n-1 ao instante n.

$$i_k(n) - i_k(n-1) = \frac{1}{L_k} \int_{t=n-1}^{t=n} e_k(t) dt$$
 (2.11)

Aplicando a regra de integração trapezoidal, com intervalo de integração T, obtém-se as relações

$$i_{k}(n) = \frac{T}{2.L_{k}} \cdot (e_{k}(n) + e_{k}(n-1)) + i_{k}(n-1), \qquad (2.12)$$

e

$$e_{k}(n) = \frac{2.L_{k}}{T} \cdot (i_{k}(n) - i_{k}(n-1)) - e_{k}(n-1)$$
(2.13)

onde e_k e i_k são respectivamente a tensão e a corrente do elemento.

A Figura (2.4) ilustra a transformação decorrente do processo de discretização do indutor.

$$\mathbf{e}_{\mathbf{k}}^{(t)} \models \mathbf{L}_{\mathbf{k}} \xrightarrow{\operatorname{Transformação}} \mathbf{e}_{\mathbf{k}}^{(n)} = \mathbf{e}_{\mathbf{k}}^{(n)} \xrightarrow{\mathbf{i}_{\mathbf{k}}^{(n)}} \mathbf{h}_{\mathbf{k}}^{(n-1)} = \mathbf{i}_{\mathbf{k}}^{(n-1)} + \frac{\mathbf{T}}{2.\mathbf{L}_{\mathbf{k}}} \cdot \mathbf{e}_{\mathbf{k}}^{(n-1)}$$

Figura (2.4) - Modelo discreto do indutor

2.5.2 Modelo digital do elemento linear a parâmetro concentrado C, (capacitor)

A variação da tensão de um capacitor C de um certo ramo k, é descrita por

$$\frac{\mathrm{d}\mathbf{e}_{k}(t)}{\mathrm{d}t} = \frac{1}{C_{k}}.\dot{\mathbf{i}}_{k}(t) \tag{2.14}$$

que pode ser integrada do instante n-1 ao instante n.

$$e_{k}(n) - e_{k}(n-1) = \frac{1}{C_{k}} \int_{t=n-1}^{t=n} i_{k}(t) dt$$
(2.15)

Aplicando a regra de integração trapezoidal com intervalo de integração T, obtém-se

$$e_{k}(n) = (i_{k}(n) + i_{k}(n-1)) \cdot \frac{T}{2 \cdot C_{k}} + e_{k}(n-1))$$
(2.16)

e

$$i_{k}(n) = \frac{2.C_{k}}{T} \cdot e_{k}(n) - \frac{2.C_{k}}{T} \cdot e_{k}(n-1) - i_{k}(n-1) , \qquad (2.17)$$

onde e_k e i_k são respectivamente a tensão e a corrente no elemento.

A Figura (2.5) ilustra a transformação decorrente do processo de discretização do capacitor.

$$\mathbf{e}_{\mathbf{k}}^{(t)} \xrightarrow{\mathbf{k}} \mathbf{C}_{\mathbf{k}} \xrightarrow{\operatorname{Transformação}} \mathbf{e}_{\mathbf{k}}^{(n)} \xrightarrow{\mathbf{k}} \mathbf{E}_{\mathbf{k}}^{(n)} \xrightarrow{\mathbf{k}} \mathbf{E}_{\mathbf{k}}^{(n)} \xrightarrow{\mathbf{k}} \mathbf{E}_{\mathbf{k}}^{(n)} \xrightarrow{\mathbf{k}} \mathbf{E}_{\mathbf{k}}^{(n)} \xrightarrow{\mathbf{k}} \mathbf{E}_{\mathbf{k}}^{(n-1)} \xrightarrow{\mathbf{k}} \mathbf{E}_{\mathbf{$$

Figura (2.5) - Modelo discreto do capacitor

2.5.3 Modelo digital do elemento linear a parâmetro concentrado R, (resistor)

A relação entre tensão e corrente de um resistor R de um certo ramo k, é dada pela Eq. (2.18), como neste caso não existe memória no dispositivo, o modelo é o próprio resistor.

$$i_k(n) = \frac{1}{R_k} e_k(n),$$
 (2.18)

2.5.4 Modelo digital do ramo geral

O modelo discreto do ramo geral, por simplicidade, é representado por um único elemento (R, C ou L) em série com uma fonte de tensão e em paralelo com uma fonte de corrente. O modelo analógico mostrado na Seção 2.4 representa um ramo geral composto por três elementos R, L e C em série com uma fonte de tensão. Portanto, no modelo discreto apresentado, o número de ramos e nós é maior, já que cada ramo contém um único elemento, o que causa aumento na dimensão da matriz admitância do sistema, porém os elementos desta matriz são números reais, conforme será mostrado na Seção 2.5.5, e não números complexos como no modelo analógico, o que simplifica o processo. As fontes do modelo discreto são ditas independentes e representam possíveis geradores conectados ao ramo. O modelo é ilustrado pela Figura (2.6) e representado pelas Eq. (2.19), (2.20) e (2.21).

Figura (2.6) – Modelo discreto do ramo geral

$$v_k(n) = e_k(n) + vs_k(n)$$
 (2.19)

$$j_k(n) = i_k(n) + js_k(n)$$
 (2.20)

$$i_k(n) = G_k \cdot e_k(n) + h_k(n-1)$$
 (2.21)

Sabendo-se que,

 $e_k(n)$ – tensão no elemento do ramo;

 $i_k(n)$ – corrente no elemento do ramo;

 $vs_k(n)$ -fonte de tensão independente;

 $js_k(n)$ – fonte de corrente independente;

 $h_k(n-l)=i_k(n-l)+G_ke_k(n-l)$ (2.22) é a fonte de corrente que representa os valores passados dos correspondentes elementos C ou L.

A equação de corrente no ramo geral é obtida substituindo as Eq. (2.19), (2.21) e (2.22) na Eq. (2.20).

$$j_{k}(n) = G_{k} \cdot v_{k}(n) - G_{k} \cdot v_{sk}(n) + j_{k}(n-1) - j_{sk}(n-1) + G_{k} \cdot v_{k}(n-1) + G_{k} \cdot v_{sk}(n-1) + j_{sk}(n)$$
(2.23)

2.5.5 Modelo digital de redes elétricas monofásicas

A rede elétrica é representada a partir do modelo discreto do ramo geral. Apesar de não haver restrições em relação à numeração dos ramos, neste trabalho, para fins de implementação, ramos com resistores, capacitores e indutores são numerados obedecendo a esta ordem.

Re-escrevendo a Eq. (2.23) na forma matricial, onde cada linha das matrizes e vetores representa um ramo do sistema com r ramos e n nós, obtém-se a Eq. (2.24),

$$\mathbf{j}(n) = \mathbf{G} \mathbf{v}(n) - \mathbf{G} \mathbf{v}_{\mathbf{s}}(n) + \hat{\mathbf{G}} \mathbf{v}(n-1) - \hat{\mathbf{G}} \mathbf{v}_{\mathbf{s}}(n-1) + \hat{\mathbf{L}} \mathbf{j}(n-1) - \hat{\mathbf{L}} \mathbf{j}_{\mathbf{s}}(n-1) + \mathbf{j}_{\mathbf{s}}(n)$$
(2.24)

onde,

$$\mathbf{j}(\mathbf{n}) = \begin{bmatrix} j_1(\mathbf{n}) \\ j_2(\mathbf{n}) \\ \dots \\ j_r(\mathbf{n}) \end{bmatrix}, \text{ é o vetor das correntes nos ramos ordenados (r x 1);}$$

$$\mathbf{v}(n) = \begin{bmatrix} v_1(n) \\ v_2(n) \\ \dots \\ v_r(n) \end{bmatrix}, \text{ é o vetor das tensões nos ramos ordenados (r x 1);}$$

$$\mathbf{j}(n-1) = \begin{bmatrix} j_1(n-1) \\ j_2(n-1) \\ \dots \\ j_r(n-1) \end{bmatrix}, \text{ é o vetor das correntes nos ramos em t=n-1(r x 1);}$$

$$\mathbf{v}(n-1) = \begin{bmatrix} v_1(n-1) \\ v_2(n-1) \\ \dots \\ v_r(n-1) \end{bmatrix}, \text{ é o vetor das tensões nos ramos ordenados em t=n-1(r x 1);}$$

$$\mathbf{j}_{s}(\mathbf{n}) = \begin{bmatrix} \mathbf{j}_{s_{1}}(\mathbf{n}) \\ \mathbf{j}_{s_{2}}(\mathbf{n}) \\ \cdots \\ \mathbf{j}_{s_{r}}(\mathbf{n}) \end{bmatrix}, \text{ é o vetor das fontes de corrente independentes dos ramos (r x 1);}$$

$$\mathbf{v}_{s}(n) = \begin{bmatrix} \mathbf{v}_{s_{1}}(n) \\ \mathbf{v}_{s_{2}}(n) \\ \dots \\ \mathbf{v}_{s_{r}}(n) \end{bmatrix}, \text{ é o vetor das fontes de tensão independentes dos ramos (r x 1);}$$

$$\mathbf{j}_{s}(n-1) = \begin{bmatrix} j_{s_{1}}(n-1) \\ j_{s_{2}}(n-1) \\ \dots \\ j_{s_{r}}(n-1) \end{bmatrix}, \text{ é o vetor das fontes de corrente independentes em t=n-1(r x 1);}$$

$$\mathbf{v}_{s}(n-1) = \begin{bmatrix} \mathbf{v}_{s1}(n-1) \\ \mathbf{v}_{s_{2}}(n-1) \\ \dots \\ \mathbf{v}_{s_{r}}(n-1) \end{bmatrix}, \text{ é o vetor das fontes de tensão independentes em t=n-1(r x 1);}$$

$$\mathbf{G} = \begin{bmatrix} \mathbf{G}_{\mathbf{R}} \dots \dots \mathbf{0} \\ 0 \dots \mathbf{G}_{\mathbf{C}} \dots \dots \mathbf{0} \\ 0 \dots \dots \mathbf{G}_{\mathbf{L}} \end{bmatrix}, \text{ é a matriz das condutâncias (r x r), onde as submatrizes } \mathbf{G}_{\mathbf{R}}$$

 $G_C e G_L$ são matrizes diagonais formadas pelos valores das condutâncias de todos os resistores, capacitores e indutores do sistema, respectivamente. Assim, G_R , G_C e G_L possuem dimensões respectivamente iguais ao número de resistores, capacitores e indutores.

$$\hat{\mathbf{G}} = \begin{bmatrix} 0....0\\ 0...-\mathbf{G}_{C}...0\\ 0....\mathbf{G}_{L} \end{bmatrix}, \text{ é a matriz das condutâncias dos elementos que possuem}$$

condições iniciais (r x r);

$$\hat{\mathbf{I}} = \begin{bmatrix} 0.....0\\ 0...-\mathbf{I}_{C}....0\\ 0....0....\mathbf{I}_{L} \end{bmatrix}, \text{ é a matriz diagonal formada por elementos com o valor -1 se o}$$

ramo corresponde a um capacitor e 1 se o ramo corresponde a um indutor, isto é, as sub-matrizes I_C e I_L representam matrizes identidades de dimensões iguais ao número de capacitores e indutores do sistema, respectivamente.

A Lei de Kirchoff das Correntes é aplicada, com a utilização da matriz de incidência reduzida **A**, do grafo associado ao sistema, através de

$$\mathbf{A}.\mathbf{j}(\mathbf{n}) = \mathbf{0} \tag{2.25}$$

Substituindo a Eq. (2.24) na Eq. (2.25), obtém-se

$$\mathbf{A}.\mathbf{G}.\mathbf{v}(\mathbf{n}) = -\mathbf{A}.\mathbf{j}_{t}(\mathbf{n}), \qquad (2.26)$$

onde,

$$\mathbf{j}_{\mathbf{t}}(n) = -\mathbf{G}\mathbf{v}_{\mathbf{s}}(n) + \hat{\mathbf{G}}\mathbf{v}(n-1) - \hat{\mathbf{G}}\mathbf{v}_{\mathbf{s}}(n-1) + \hat{\mathbf{L}}\mathbf{j}(n-1) - \hat{\mathbf{L}}\mathbf{j}_{\mathbf{s}}(n-1) + \mathbf{j}_{\mathbf{s}}(n)$$
(2.27)

Sabendo-se que,

$$\mathbf{v}(\mathbf{n}) = \mathbf{A}^{\mathrm{t}} \cdot \mathbf{V}_{\mathbf{n}}(\mathbf{n}), \qquad (2.28)$$

onde, $V_n(n)$ é o vetor das tensões dos nós, de dimensão igual a (n x 1). Cada linha deste vetor corresponde à tensão no correspondente nó do sistema em relação ao nó terra. Substituindo a expressão (2.28) na Eq. (2.26), obtém-se a Eq. (2.29),

$$\mathbf{A}.\mathbf{G}.\mathbf{A}^{\mathrm{t}}.\mathbf{V}_{\mathbf{n}}(\mathbf{n}) = -\mathbf{A}.\mathbf{j}_{\mathbf{t}}(\mathbf{n}), \qquad (2.29)$$

onde,

$$\mathbf{A}.\mathbf{G}.\mathbf{A}^{\mathrm{t}} = \mathbf{Y}_{\mathbf{n}},\tag{2.30}$$

logo,

$$\mathbf{V}_{\mathbf{n}}(\mathbf{n}) = -\mathbf{Y}_{\mathbf{n}}^{-1} \cdot \mathbf{A} \cdot \mathbf{j}_{\mathbf{t}}(\mathbf{n}) \,. \tag{2.31}$$

Substituindo (2.31) na Eq. (2.28), obtém-se a Eq. (2.32),

$$\mathbf{v}(\mathbf{n}) = -\mathbf{A}^{\mathrm{t}} \cdot \mathbf{Y}_{\mathbf{n}}^{-1} \cdot \mathbf{A} \cdot \mathbf{j}_{\mathbf{t}}(\mathbf{n}), \qquad (2.32)$$

onde,

$$\boldsymbol{\alpha} = -\mathbf{A}^{\mathrm{t}} \cdot \mathbf{Y}_{\mathbf{n}}^{-1} \cdot \mathbf{A} \,, \tag{2.33}$$

logo,

$$\mathbf{v}(\mathbf{n}) = \boldsymbol{\alpha} \cdot \mathbf{j}_{\mathbf{t}}(\mathbf{n}) \,. \tag{2.34}$$

Substituindo a Eq. (2.34) na Eq. (2.24), obtém-se a Eq. (2.35),

$$\mathbf{j}(\mathbf{n}) = (\mathbf{I} + \mathbf{G}.\boldsymbol{\alpha}).\mathbf{j}_{\mathbf{t}}(\mathbf{n}), \qquad (2.35)$$

onde I é a matriz identidade, de dimensão correspondente ao número de ramos do grafo associado e

$$\boldsymbol{\beta} = (\mathbf{I} + \mathbf{G}.\boldsymbol{\alpha}) \,. \tag{2.36}$$

Substituindo a Eq. (2.36) na Eq. (2.35), obtém-se a Eq.(2.37).

$$\mathbf{j}(\mathbf{n}) = \mathbf{\beta} \cdot \mathbf{j}_{\mathbf{t}}(\mathbf{n}) \,. \tag{2.37}$$

Substituindo $j_t(n)$ nas Eq. (2.34) e (2.37), obtém-se as Eq. (2.38) e (2.39),

$$\mathbf{v}(n) = \boldsymbol{\alpha}(\mathbf{j}_{s}(n) - \hat{\mathbf{L}}\mathbf{j}_{s}(n-1) - \mathbf{G}\mathbf{v}_{s}(n) - \hat{\mathbf{G}}\mathbf{v}_{s}(n-1) + \hat{\mathbf{L}}\mathbf{j}(n-1) + \hat{\mathbf{G}}\mathbf{v}(n-1))$$
(2.38)

$$\mathbf{j}(n) = \boldsymbol{\beta} \cdot (\mathbf{j}_s(n) - \hat{\mathbf{L}} \cdot \mathbf{j}_s(n-1) - \mathbf{G} \cdot \mathbf{v}_s(n) - \hat{\mathbf{G}} \cdot \mathbf{v}_s(n-1) + \hat{\mathbf{L}} \cdot \mathbf{j}(n-1) + \hat{\mathbf{G}} \cdot \mathbf{v}(n-1)),$$
(2.39)

que simulam o comportamento dinâmico do sistema, isto é, a cada instante são calculados novos valores de tensões e correntes a partir dos valores de entrada e variáveis anteriormente determinadas.

2.5.6 Modelo digital de redes elétricas trifásicas

Na simulação, para representar-se corretamente as três fases acopladas do sistema, é necessário incluir na matriz das condutâncias, todas as indutâncias e capacitâncias mútuas entre as fases. Por exemplo, as indutâncias mútuas que representam o acoplamento entre as fases de linhas de transmissão, que são aqui representadas por parâmetros concentrados e independentes da freqüência. A corrente no indutor referente a uma certa linha de transmissão é descrita pela Eq. (2.40).

$$j(n) = \frac{T}{2.L} \cdot (v(n) + v(n-1)) + j(n-1)$$
(2.40)

Para um sistema trifásico com acoplamento, a Eq. (2.40) é re-escrita na forma matricial, de acordo com a Eq. (2.41),

$$\begin{bmatrix} j_{a}(n) \\ j_{b}(n) \\ j_{c}(n) \end{bmatrix} = \Gamma \begin{bmatrix} v_{a}(n) \\ v_{b}(n) \\ v_{c}(n) \end{bmatrix} + \Gamma \begin{bmatrix} v_{a}(n-1) \\ v_{b}(n-1) \\ v_{c}(n-1) \end{bmatrix} + \begin{bmatrix} j_{a}(n-1) \\ j_{b}(n-1) \\ j_{c}(n-1) \end{bmatrix},$$
(2.41)

onde,

$$\boldsymbol{\Gamma} = \frac{T}{2} \cdot \mathbf{L}^{-1} \tag{2.42}$$

Desta forma, observa-se que as equações do simulador, que calculam a cada instante os novos valores de tensões e correntes nos ramos ainda são as Eq. (2.38) e (2.39), desenvolvidas na Seção 2.5.5. Apenas toma-se o cuidado de incluir nas matrizes das condutâncias $\mathbf{G} \in \hat{\mathbf{G}}$ todas as indutâncias e capacitâncias mútuas entre as fases, o que faz com que estas matrizes deixem de ser diagonais. Devemos observar também que a dimensão do sistema matricial resultante cresceu, o sistema passa a ter um número de ramos e de nós três vezes maior, conforme será mostrado na Seção 2.6.2.

2.6 Exemplos de modelagem e simulação

A seguir serão apresentados resultados de simulações realizadas em redes monofásica e trifásica, com o objetivo de descrever e exemplificar o método tradicional de simulação.

37

2.6.1 Simulação de redes elétricas monofásicas – Sistema-teste 1

O Sistema-teste 1, apresentado na Figura (2.7), é utilizado para exemplificar o método tradicional de modelagem e simulação de transitórios em redes elétricas monofásicas ou sistemas trifásicos balanceados, representado por uma de suas fases ou pelo seu diagrama unifilar de seqüência positiva.

A Figura (2.7) apresenta as impedâncias de seqüência positiva de um sistema de 6 barras utilizado na solução do fluxo de carga de um sistema trifásico balanceado.

Figura (2.7) – Sistema-teste 1.

Cada elemento do circuito dá origem a um ramo, que é orientado em um determinado sentido positivo das correntes e ordenado para facilitar a obtenção das matrizes que participam do processo de simulação. A numeração dos ramos é efetuada de maneira que primeiro sejam numerados os ramos que possuam elementos resistivos, depois os capacitivos e por último os indutivos. O grafo associado ao sistema da Figura (2.7), isto é, que representa a sua topologia, é mostrado na Figura (2.8).

Figura (2.8) – Grafo associado ao Sistema-teste 1.

A Matriz Incidência A_a , que representa o grafo da Figura (2.8), é definida

por:

	r1	r2	r ₃	r ₄	r ₅	r ₆	r ₇	r ₈	r ₉	r ₁₀	r ₁₁	r ₁₂ .
n ₁	0	0	0	-1	0	1	1	0	0	0	0	0
n ₂	1	0	0	0	0	-1	0	1	-1	0	0	0
n ₃	0	1	1	0	0	0	-1	-1	0	-1	0	0
$A_a = n_4$	0	0	0	0	-1	0	0	0	1	1	0	0
n ₅	-1	0	0	0	0	0	0	0	0	0	1	0
ⁿ б	0	-1	0	0	0	0	0	0	0	0	0	1
n7	0	0	-1	1	1	0	0	0	0	0	-1	-1

Conforme dito na Seção 2.3.9, a Matriz Incidência gera um grupo de equações linearmente dependentes, por isto, torna-se necessário trabalharmos com a Matriz Incidência Reduzida **A**, que é obtida retirando da Matriz Incidência a linha correspondente ao nó de referência (terra). A Matriz Incidência Reduzida **A**, que gera um conjunto de equações linearmente independentes, e por isto com solução possível, é definida a seguir.

		Г.	r ₁	r ₂	r ₃	r ₄	r ₅	r ₆	r ₇	r ₈	r ₉	r ₁₀	r ₁₁	r ₁₂	-
	n_1		0	0	0	-1	0	1	1	0	0	0	0	0	
	n_2		1	0	0	0	0	-1	0	1	-1	0	0	0	
	n ₃		0	1	1	0	0	0	-1	-1	0	-1	0	0	
A =	n4		0	0	0	0	-1	0	0	0	1	1	0	0	
	n5		-1	0	0	0	0	0	0	0	0	0	1	0	
	пб		0	-1	0	0	0	0	0	0	0	0	0	1	

A partir da Matriz Incidência Reduzida, dos valores dos elementos (resistores, capacitores e indutores) dos ramos e do período de amostragem da simulação (neste exemplo, o período de integração utilizado foi T=1/2000 s), são calculadas as matrizes G, \hat{G} , \hat{I} , $\alpha \in \beta$, conforme mostrado na Seção 2.5.5. Com estas matrizes calculadas e também com os valores das fontes independentes de tensões e correntes, resolve-se as Eq. (2.38) e (2.39) para cada instante de tempo n e obtém-se os valores das tensões e correntes dos ramos em cada instante.

O Sistema-teste 1, ilustrado na Figura (2.7), recebe um curto-circuito trifásico na barra 2 em n=200 instantes de tempo ou t=(1/2000).200s=0.1s. O

curto é retirado em n=250 ou t=(1/2000).250s=0,125s. As Figuras (2.9) e (2.10) representam as simulações da corrente no ramo 3 e da tensão na barra 3, respectivamente.

Figura (2.9) – Corrente no ramo 3 do Sistema-teste 1.

Figura (2.10) – Tensão na barra 3 do Sistema-teste 1.

2.6.2 Simulação de redes elétricas trifásicas – Sistema-teste 2

O Sistema-teste 2, apresentado na Figura (2.11), é utilizado para exemplificar o método tradicional de modelagem e simulação de transitórios em redes elétricas trifásicas. A Figura (2.11) representa um sistema trifásico, representado por uma de suas fases. Cada elemento do circuito dá origem a três ramos, um referente à fase a, outro à fase b e outro à fase c. A linha de transmissão representada pela indutância L_5 , possui acoplamento entre as fases. O valor das indutâncias mútuas entre as fases da referida linha de transmissão é $L_m=0.3 \text{ mH}$.

Figura (2.11) – Sistema-teste 2.

O grafo associado ao sistema da Figura (2.11), isto é, que representa a sua topologia, é mostrado na Figura (2.12).

Figura (2.12) - Grafo associado ao Sistema-teste 2.

	\sim	- ¹ 2	1 _b	$1_{\rm C}$	2a	2ъ	2c	3a	3ъ	3 _c	4a	⁴ ь	4 _c	5 _a	5 _b	5 _c .
	(<u>1</u> a)	-1	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	(lb)	0	-1	0	0	0	0	0	0	0	0	0	0	0	1	0
	6	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	1
	2	0	0	0	1	0	0	1	0	0	0	0	0	-1	0	0
A =	6	0	0	0	0	1	0	0	1	0	0	0	0	0	-1	0
	20	0	0	0	0	0	1	0	0	1	0	0	0	0	0	-1
	B	0	0	0	-1	0	0	0	0	0	1	0	0	0	0	0
	6	0	0	0	0	-1	0	0	0	0	0	1	0	0	0	0
	6	0	0	0	0	0	-1	0	0	0	0	0	1	0	0	0

A Matriz Incidência Reduzida A, que representa o grafo da Figura (2.12) é dada por

A partir da Matriz Incidência Reduzida A, dos valores dos elementos (resistores, capacitores e indutores) dos ramos e do período de amostragem da simulação, são calculadas as matrizes G, \hat{G} , \hat{I} , $\alpha \in \beta$, conforme mostrado na Seção 2.5.6. Com estas matrizes calculadas e também com os valores das fontes independentes de tensões e correntes, resolvem-se as Eq. (2.38) e (2.39) e obtém-se os valores das tensões e correntes dos ramos a cada instante de tempo. O período de amostragem ou passo de integração utilizado neste exemplo foi de T=1/2000 s.

O Sistema-teste 2, ilustrado na Figura (2.11), recebe um curto-circuito monofásico (fase-terra) na fase a, na barra 2, no instante de tempo n=172 ou t=(1/2000).172=0.086 s. O curto é retirado em n=222 ou t=(1/2000).222=0.111 s. As Figuras (2.13) e (2.14), apresentadas a seguir, representam as simulações da tensão nas três fases do nó 1 e da corrente nas três fases do ramo 5, respectivamente. Como pode ser observado nas Figuras (2.13) e (2.14), devido à existência de indutâncias mútuas entre as fases da linha de transmissão, as fases b e c sofreram influência do curto que ocorreu na fase a.

Figura (2.13) – Tensão na barra 1 do Sistema-teste 2

Figura (2.14) – Corrente no ramo 5 do Sistema-teste 2.

2.7 Conclusões

Este capítulo mostrou algumas definições básicas de Teoria dos Grafos e Teoria de Circuitos Elétricos e apresentou um método de simulação de redes elétricas baseado nas Equações Nodais, chamado de método tradicional. Ele é semelhante ao método utilizado no programa EMTP e será a base da nova metodologia proposta e implementada neste trabalho, que será apresentada no Capítulo 4. O método tradicional foi implementado e será utilizado para validar o método proposto quanto à precisão e comparação da carga computacional de ambos os métodos. Para finalizar, foram apresentados exemplos de simulações de sistemas monofásicos e trifásicos utilizando o simulador tradicional implementado.