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Abstract 

 

 

Lampe Linhares da Fonseca, Cesar Augusto; Weber, Hans Ingo (Advisor); 
Ferreira Santos, Ilmar (Co-advisor). Analyzing the use of active pins in 
safety bearing. Rio de Janeiro, 2013. 113p. MSc. Dissertation - 
Departamento de Engenharia Mecânica, Pontifícia Universidade Católica 
do Rio de Janeiro. 

This work intends to show the possibility of using active pins in rotating 

machines to reduce amplitudes of orbits at critical situations through an analytical 

investigation with experimental validations. The pins shall operate as a safety 

measure when the rotor becomes unstable or starts to oscillate by any reason. 

To this purpose a thorough study is made of the influence of the presence of pins 

inside the retainer bearing. Four pins were installed within two existing test rigs in 

the laboratory. Their actuation comes from step motors, which insert them until a 

certain length in the inner side of the retainer bearing, or the gap between the 

rotor and the bearing wall. First, a mathematical approach of the involved 

phenomena is developed, providing the equations to perform numerical 

simulations of the system. Then, experiments where performed in the test rigs 

and relevant data were collected and compared to the simulation results. They 

showed positive accordance, which helped to validate the concept of properly 

inserting active pins inside the retainer bearings to avoid possible hazardous 

conditions, such as, friction, full annular rubbing, and abrasive effects. 

 

 

 

 

 

 

 

 

 

Keywords 
Rotordynamics; rotors; friction; impacts; critical velocity; annular rub; 

DBD
PUC-Rio - Certificação Digital Nº 1112069/CA



 
Resumo 

 

 

Lampe Linhares da Fonseca, Cesar Augusto; Weber, Hans Ingo. Análise 
do uso de pinos ativos em mancais de segurança. Rio de Janeiro, 
2013. 113p. Dissertação de Mestrado - Departamento de Engenharia 
Mecânica, Pontifícia Universidade Católica do Rio de Janeiro. 

Este trabalho pretende demonstrar a possibilidade de usar pinos ativos em 

máquinas rotativas de forma a reduzir as amplitudes de órbitas em situações 

críticas através de uma investigação analítica com validação experimental. Os 

pinos funcionam como medida de segurança quando o rotor se torna instável ou 

começa a oscilar por qualquer razão. Para este propósito, foi realizado um 

estudo completo da influência da presença dos pinos dentro do mancal de 

retenção. Quatro pinos foram posicionados em duas bancadas de testes já 

existentes no laboratório. A atuação deles provém de motores de passo, que os 

inserem até um determinado comprimento na parte interna do mancal, isto é, a 

folga radial entre o rotor e a parede do mancal. Primeiramente, uma análise 

matemática dos fenômenos envolvidos foi desenvolvida, fornecendo as 

equações necessárias para as simulações numéricas do sistema. Em seguida, 

foram realizados testes experimentais nas bancadas e informações relevantes 

foram adquiridas e comparadas com os resultados das simulações. Eles 

demonstraram estar consistentes, o que ajudou a validar o conceito de inserção 

de pinos ativos no mancal de segurança, de modo a evitar possíveis condições 

perigosas, como atrito, roçamento total e efeitos abrasivos. 

 

 

 

 

 

 

 

Palavras-chave 
Dinâmica rotativa; rotores; atrito; impacto; velocidade crítica; roçamento 

circular; 
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“Life is like riding a bicycle. To keep your balance you must keep moving.” 
Albert Einstein 
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1 
Introduction 

The study of rotor dynamics is a topic which is getting more attention decade after 

decade. Rotors and axles are the main mechanical elements when converting one 

form of energy into another. They are present in our daily life since ancient times. 

They are found as components on common things from razors and small motors, to 

medium-size machines like the wheel hub axis of cars, electric motors, and to large-

size machines like industrial compressors and pumps, aircraft engines, electric 

power generators, and oil well drilling rigs. Rotor dynamics has been studied more 

closely, in order to prevent possible inherent defects or assembly and process 

failures, like imbalance and thermal bucking and to avoid undesirable phenomena, 

such as resonance and backwards whirl. The former appears in every system model 

in engineering with elastic and inertia properties, as a consequence when it is 

excited by an oscillatory force at a specific frequency. Its response reaches endless 

limits if damping is not considered. The latter effect happens in rotor dynamics 

when the rotor collides on the wall of a catcher bearing and starts spinning against 

its own rotation. For the industry, this means that friction starts between elements 

and may cause rotor element to failure.  

Nonetheless, there are several effects that may happen inside the rotating 

machine, making the orbit amplitude get higher and higher, which may be strange 

to be found or too fast to be avoided. The gap between the rotor and the stator 

wall is a matter of design; its size determines how much the rotor is allowed to 

move inside the stator so that no contact occurs. In most cases the gap must be set 

to the minimum, even for the biggest existing turbines, like the Itaipu dam 

turbines, in South Brazil. For this dam, the gap between the Francis turbine with 

12m of diameter and the containment ring is around 4mm. So, the control of the 

vibration is a big issue regarding all these problems described above.  
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The mathematical study of rotating objects began with Euler’s equations of 

rotation. The first successful models were developed only in the end of 19th century 

by the Swedish engineer Gustaf de Laval in 1895, and the English Henry Homan 

Jeffcott, Professor of Engineering at the Royal College of Science for Ireland 

between 1910 and 1922. Although the first work ever published on this matter was 

by the German engineer August Föppl, history ignores his achievements. De 

Laval’s mechanical model consists on adding eccentrically a concentrated mass on a 

rotating shaft. The interaction between them can be modeled as a damped mass-

spring system with the materials’ properties. It shall be presented several times in 

this dissertation. 

 

 

Figure 1-1: De Laval's steam turbine test rig [Deutsches Museum, Munich]. 

 

Since the works of Jeffcott and de Laval were widely read and their models 

were in fact identical, the model became known as the Jeffcott-de Laval rotor. It 

described the self-centering behavior of the rotor at high rotations, above the 

resonance.  The resonance in rotating systems is explained in terms of the angular 

velocity, which is called the resonance condition and can appear many times. When 

one operates a rotating machine, the critical situations must be known and special 

care must be taken. In order to enhance their visualization the Campbell diagram, 

after Wilfred Campbell (Campbell, 1924), should be plotted. It is a chart 

containing all identified critical speeds as a function of the rotor rotational speed. 

Besides, since the rotor is excited by several oscillating forces, the lateral 
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movements can be seen as spectral functions. It means that the movement can be 

plotted not only over time but over the frequency domain. The signals collected 

from the sensors are analyzed using the Fourier Transform. The spectral graph 

illustrates which frequencies are dominant with respect to the others, see Figure 

1-2. 

 

 

Figure 1-2: Raw sampling of lateral vibration data from the oscilloscope 

screen. The peak at 23Hz comes from imbalance, synchronous to the rotation. 

 

In recent times, with the continuous progress in the computational field, the 

use of Finite-elements methods to determine the eigenfrequencies and modal 

frequencies spread. Nowadays, with available fast computers, it is possible to 

simulate the dynamics of the rotor with high precision and accuracy quite easily. 

Tools like Matlab® help to develop programs with its intrinsic mathematical and 

plotting functions.  On the edge of technology lies the development of the 

magnetically levitated rotor, where an induced magnetic field lifts the shaft. This 

kind of rotor has high efficiency ratios thanks to the absence of friction in the gap. 

The shaft rises in the air or in vacuum, leaving negligible friction force to reduce its 

energy. 
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1.1. 
Bibliographic review 

 

In the second half of the 20th century, the leading researchers Ehrich, Muzsinska, 

Bently, Lund, and Markert set for years the framework for rotor dynamics studies 

and most of them make big concern on how the resonance response should be 

lowered; the understanding of chaotic movements; and the development of bearings 

and controls to prevent crashes or impacts. 

Ehrich’s work (Ehrich, 1969) describes the influence of how supercritical 

resonance points present themselves and in influence.  

Bently (Bently & Hatch, 2002) dedicated his entire life on experimental 

analysis and patented methods of acquiring data with the proximity sensor. His 

works with such sensors have changed the way vibration data could be gathered 

directly from inside the machine. 

In his doctorate thesis, Szczygielsky (Szczygielsky, 1986) in Zurich analyzed 

the behavior of a rotor while it starts to hit several times on a plate. It worked as a 

limiter of the amplitudes; also, it describes the phases of impacts of the rotor 

during successful impacts. 

Then, the work done by Fumagalli (Fumagalli, 1997) investigates the 

performance of the retainer bearings and verifies the applied contact models 

through experimental tests analyzing vibration data and force components. 

In his master thesis, Meggiolaro (Meggiolaro, 1996) uses finite-element 

methods to combine the interaction of the rotor to the stator within a journal 

bearing. He exhibits the self-excited frequencies below the synchronous frequency 

and the response on the dynamics of the rotor. 

Simon (Simon, 2000) has developed a series of numerical and practical 

studies of different concepts of safety bearings in his doctorate thesis. The bearings 

had different geometries in various polygonal shapes and he compares them to a 

usual round bearing. 
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Eckert and Popprath (Eckert & Popprath, 2007) discuss several contact 

models for rotor and stator and make a numerical study of them. In addition, they 

vary different parameters to investigate their influence in the contact dynamics and 

present the results with Poincaré maps. 

Zülow and Liebich (Zülow & Liebich, 2009) have a similar idea to the one 

used in the present dissertation by adding external elements with a round top 

instead of active pins with solid face. 

Segayer, (Segayer, 2000) has done in his dissertation the first works in the 

present test rigs. Then, Lahiri et al. (Lahiri, Santos, Weber, & Hartmann, 2012) 

presented basic studies for the concept of the present work. 

This work intends to show the aspects written above with mathematical 

approach, a numerical simulation and experiments on test rigs.  

 

1.2. 
Objectives and structure of this work 

The goal of this work is to validate a new concept of safety bearing of rotors. The 

analysis is divided in three chapters. In the second chapter, a mathematical 

approach of the involved phenomena is developed and its numerical considerations. 

Physical properties like impact and friction force are presented to be used in the 

simulation. 

The third chapter exhibits in graphs the results of the conducted simulations 

done, which uses the equations defined in the former chapter. 

In the fourth chapter, the text describes the components of the experiments 

and illustrates them with sketches and photographs. The data was collected and 

their results from different situations are also shown in the illustrations.  

The chapter number five is a compendium of work done with its final 

conclusions and considerations. Besides, it leaves some important notes to be used 

by anyone, who would like to continue from where it has stopped. 

In the last part, three Appendixes detail the simulation and the experimental 

analysis set up with tables and CAD illustrations. 
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2 
Mathematical analysis of rotors 

Every mechanical device has a mathematical model, which represents its behavior, 

through the equations of motion. These equations are obtained using Newton’s law 

and Euler’s law of motion or from the Lagrange variational formulation of energies. 

Figure 2-1 presents a sketch of the model of a vertical rotor intended to be 

analyzed. The elements of the rotor are its mass, its moments of inertia, together 

with springs and dampers. It is the simplest representation of a rotor in a test rig.  

 

 

Figure 2-1: The vertical rotor model of a Laval rotor. 

 

2.1. 
The Laval-Jeffcott model 

The Laval-Jeffcott model has the following characteristics: 

- The rotor shaft has to be considered as a one-dimensional massless 

beam; 
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- The rotor disc has three degrees of freedom: two displacement 

coordinates and a rotational one around its spinning axis ( no 

gyroscopic effects in this model);  

- The elastic restitution coefficient comes from the geometric beam 

configuration; 

- The damping coefficient is considered as coming from a viscous external 

force being applied on the disc of the rotor; 

- The disc center of mass is dislocated with respect to the disc geometric 

center (which may arrive due to non-homogeneous mass distribution). 

 

 

Figure 2-2: Representation of the implemented model. 

 

2.2. 
The unbalanced Laval rotor at fixed coordinates 

We start the modeling by establishing a fixed coordinate system, whose origin is at 

the center of the bearing. The bearing and the rotor are both cylindrical, one inside 

the other, with their symmetry axes parallel to each other (there is no tilting of the 

disc). The bearing is a fixed element whereas the rotor is free to move and to 

rotate inside the bearing. Taking into account the axial symmetry of such rotor-
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bearing assembly, it is sufficient to consider a planar system with coordinates � and �, as can be seen in Figure 2-3. 

 

Figure 2-3: Coordinates of the system. The origin is at the center of the 

bearing. The point (�, �) gives the position of the disc center. 

Next, the distribution of the disc mass is not homogenous, so it has a center of 

mass dislocated with respect to the disc geometric center. The center of mass keeps 

a fixed radial distance parameter � to the center of the disc. The radius of the disc 
� and the radius of the bearing 
� must be known, so that the radial gap, ��, is 
calculated as the difference between them.  

By neglecting the gyroscopic effect, since the rotor moves only in a ��-plane, 

there are only two forces acting on the disc: the inertial force and the elastic force 

(Segayer, 2000). The former is proportional to the eccentric position � and to the 

disc squared angular velocity. The latter is the reaction of the shaft when it bends 

or deforms and its vector is positioned on the disc center. Further details are shown 

later in this chapter.  

The elastic force is a linear function of �, the radial distance of the disc 

center to the origin. However, when the rotor moves farther from the gap, �� or |�| ≥ ��, the interaction of the between the rotor and the bearing wall, which 

� 

� 

� 

� 
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changes the elastic force. It is still a linear function, but with steeper slope. When 

the rotor displacement is greater than ��, a contact between the disc edge and the 

bearing wall takes place. The disc penetration into the bearing wall can also be 

modeled as an elastic force with a much higher stiffness coefficient. In other words, 

the disc-wall contact stiffness is much bigger than the stiffness of the beam. 

 

 

Figure 2-4: The elastic force variation with the radial distance �. (Isaksson, 1994) 

 

Figure 2-4 is a qualitative representation of the elastic force as a function of the 

disc spatial displacement. Let us express the force -. as 

 

 /. 0	 1��|�|,																																					if	� 4 ����|�| 5 %�� 5 ��&��, if	� , ��. (1) 

 

It is important to stress that the model used in this work considers the bearing as a 

fixed massless object with elastic properties. Other models like one studied by 

(Isaksson, 1994) consider that the bearing is able to move with respect to the 

origin. The consideration of the angular velocity, when impact occurs, will be dealt 

later in Section 2.7. 

 

�� 
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2.3. 
Basic equations of rotor dynamics 

2.3.1. 
Rotor’s equation without contact 

To obtain the equations of motion, we begin by locating the origin of the 

coordinate system at the center of the bearing. Figure 2-5 shows the bearing and 

the disc center displaced by � at the horizontal direction and by � at the vertical 

direction on the plane of the figure. Next we state the Newton’s laws for our two-

dimensional system: 

 -7 = � *�*8� %� + � cos �&, (2) 

 -= 0 � *�*8� (� + � sin�). (3) 

 

 

� 
� 

� � � 

� 

C 

A 

B 

� 

Figure 2-5: The disc and the bearing at a random position. The point A is the 

origin and the center of the bearing; Point B is the center of the rotor and where 

the shaft is fixed; Point C is where the center of mass � is located. 
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The forces in equations (4) and (5) below are the elastic and damping forces caused 

by the rotor axis and from the environment: 

 

 -7 =	5%��� + 	��?&, (4) 

 -= 0	−(��� + 	��? ). (5) 

 

Then equations (2) and (3) can be combined with (4) and (5), resulting in the 

following system of differential equations: 

 

 ��@ + 	��? + ��� 0 ���@ sin� + ���?� cos �, (6) 

 ��@ + 	��? + ��� 0 −���@ cos � +���?� sin �. (7) 

 

These are the usual equations of rotor dynamics for the Laval-Jeffcott rotor. 

However, there is no equation for the angular acceleration of the rotor. For most 

analysis in rotor dynamics, either a constant angular acceleration or a constant 

angular velocity is applied. Also, the system is considered orthotropic, because the 

elastic constant is the same for both equations.  

Nevertheless, the angular velocity is not considered constant in this work. To 

take into account its variation in time, a third equation of motion regarding the 

rotor moment of inertia and the torque applied has to be written as:  

 

 ��@ 0 �� + ���(� cos� − � sin �), (8) 

 

where � is the polar rotor moment of inertia, given for a disc by  

 

 � 0 1 2C �
�� (9) 

 

and �� is the torque supplied by the motor. 
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2.3.2. 
Unbalanced response without damping and impact 

The first solution to be analyzed here comes from equations (6) and (7), without 

the damping term. We consider a constant angular velocity, so we have �@ = 0. We 

wish to obtain the particular solutions of eqs. (6) and (7). First we introduce the 

resonance frequency ω and the actual angular velocity Ω. The angular velocity 

relationship ' is commonly written as 

 

 ω = F��� (10) 

 ' = FΩ�	. (11) 

 

Now, the particular solutions are obtained from the “ansatz” 

 

 �G = � H η�1 5 '�J cos �8, 
�G 0 � H η�1 5 '�J sin�8, 

(12) 

so that 

 |�G| 0 K�G� 9 �G� 0 L� H η�1 5 '�JL. (13) 

 

 

Figure 2-6: Magnitude of the orbit radius �G as function of angular velocity 

relationship '. 
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Figure 2-6 is the representation of equation (13) which shows that at higher 

angular velocities, well above the resonance frequency �, the radial displacement 

reaches �. When ' is equal to 1, it is said that the rotor is at the critical speed, 

which equals the resonance frequency and the rotor’s amplitude is infinite.  

 

2.3.3.  
Response with damping 

From equation (6) and (7), the dynamical response is similar to the previous case 

but the radial distance does not grow to infinity as it crosses the the critical speed. 

Due to the presence of damping, it can be adjusted a limit for amplitude range 

increasing or decreasing the damping coefficient.  

The solution is similar to the case before, but it can be better handled using 

polar coordinates �, �. Introducing the position of the disc center as a complex 

number  � 0 � + M� we may transform eqs. (6) and (7) into 

 

 �@ + 	� �C �? + ω�� 0 �Ω�NOPQ. (14) 

 � 0 tanT� � �C  (15) 

 

A damping factor   

 

 � 0 	�2�� (16) 

 

can be introduced in equation (16), becoming 

 

 �@ + 2���? + ω�� 0 �Ω�NOPQ. (17) 

 

The homogeneous solution of equation (17) is obtained through its 

characteristic equation: 

 

 U� + 2��U + �� 0 0, (18) 
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whose the solution is  

 

 U�,� 0 V� ± M�� , (19) 

   

which can be written as  

 
 

 U�,� 0 −��XYZ ± M �[�� − 1\]]^]]_`Z . (20) 

 

The square root in the above eq. classifies the damping as supercritical, 

critical or subcritical: 

• When � is greater than 1, then the system is considered 

supercritically damped. There are no overshoots and almost no 

oscillations. 

• When � is equal to 1, there is a double eigenvalue; this is the critical 

damping. So, if � 0 1, then 	� 0 2��. 

• When � is smaller than 1, the system becomes oscillatory and the 

smaller � gets, the greater the peak becomes. 

 

The homogeneous solution of equation (17) for the center of the disk is 

 

 �a 0 	bNcdQ + eNcfQ . (21) 

 

For now, we are interested in the particular solution and not in the 

transient response. The particular solution of equation (17) is of the form 

 

 �(8) 0 �G(8)	NOPQ. (22) 

 

With this “ansatz” the radial equation is written 

DBD
PUC-Rio - Certificação Digital Nº 1112069/CA



Mathematical analysis of rotors  33 

 

 �G = �'�%1 5 '�& + M2�'. (23) 

 

In Figure 2-7, the stationary values of orbits radii given by (23) are plotted 

for different values of the damping factor. 

 

 

Figure 2-7: Orbit radius as a function of the angular velocity for different 

damping factors � at certain angular velocity relationship '. 
It can be seen that all curves are asymptotic to the value �. 
 

2.4. 
Rotor passage through the resonance  

In the previous sections, it was shown that the critical velocity and resonance 

point, where the maximal values of radii occur, require special attention; therefore, 

it is a situation which should avoided. However, it is rather common that a 

machine shall operate above the critical speed. It is important not to remain near 

the resonance point, so one must know how fast the rotor must be accelerated in 

order to reduce the high vibration amplitudes. In this case we need to combine 

� 
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homogeneous and particular solutions of equations and consider also the angular 

acceleration of the rotor. 

The acceleration on rotors comes from an external source of power, like an 

electric motor or combustion engine providing torque. Although there are influences 

of the electric grid or from thermodynamical effects, it is supposed the torque is 

constantly supplied to the system. We start analyzing the transient part of the 

motion by solving equation (17) for �%8&	with the initial conditions �%0) 0 0,�?(0) 0 0	for the sum of the homogenous (21) and the particular (22) solutions, 

disregarding for the moment the angular acceleration.  

 

   �(8) 0 gbNcdQ + eNcfQh + �GNiPQ. (24) 

 

To obtain the integration constants b and e we need 

 �?(8) 0 gbU�NcdQ + eU�NcfQh + �GiΩNiPQ 
                           0 V�NYZQ(b��N`ZQ + e��NT`ZQ) + 

                              +M��NYZQ(b��N`ZQ − e��NT`ZQ)�GiΩNiPQ (25) 

Hence, 

 �(0) 0 b + e + �G (26) 

 �?(0) 0 V�(b + e) + M��(b − e) + MΩ�G . (27) 

 

For this special case the solution to the system is 

 

 b 0 −�G j12 + Ω2�� − V�2M��k 0 −�G H12 + ' − M�2[1 − ��J (28) 

 e 0 −�G j12 − Ω2�� + V�2M��k 0 −�G H12 − ' − M�2[1 − ��J. (29) 

 

This will give in (24) is the complete solution to the response to an unbalanced 

force for a rotor that reaches the critical speed centered and suddenly is released. 
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However, to establish a constant angular velocity the torque �� 	given must 

equilibrate the torque of the unbalanced force. Then from equation (8) it must be 

given by 

 �� ≡ ���%� sin � − � cos �), 
 

so that the angular acceleration	�@ remains zero. 

Now, if the rotor has a high unbalance parameter or a weak power source, 

it is possible that the rotor stays at great amplitudes without surpassing the 

resonance point. This is called the Sommerfeld effect. There is, though, a minimum 

torque which was obtained numerically by (Markert, Pfützner, & Gasch, 1980) 

with the approximation 

 

 �mOn ≈ 1.3H �

J
qr 

����, (30) 

or non-dimensionally written  

 �smOn ≈ 1.3H �

J
qr. (31) 

 

 

2.5. 
The gyroscopic effect 

All equations in the previous section constitute a representation of the rotor, which 

has its mass concentrated in one point or when the disc is located on a position in 

which it does not tilt, see Figure 2-8 . Nevertheless, in a real system, it is not 

possible to build a rotor’s disc without any eccentric mass in just one point, or 

assemble it exactly at a non-tilting position. Figure 2-9 identifies the angles and 

tilts movements from the rotor. 
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Figure 2-9: Orientation of the torques and angles (Gasch, Nordman, & Pfützner, 

Rotordynamik, 2002). 

2.5.1. 
Equations of motion 

The first step to build the equations with the gyroscopic effect is to require the 

dependence of the displacement with the rotation caused by the forces and 

momenta on the disc. The corresponding matrix is written as 

 

 t = u��� ��� 	 	��� ��� 	 		 	 ��� 5���	 	 5��� ��� v u
�w7�w=v. (32) 

Figure 2-8: In a): A rotor with mass as a point. In b): A rotor's disk staying in a 

position, which it does not tilt at lower speeds. 

a) 

 

 

b) 

w7 x7 

w= x= 

xy wy 

Ω 
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For a homogeneous cantilever beam, the elastic coefficients are 

 

��� = 12���r	 ; ��� 0 4��� ; ��� 0 ��� 0 6���� . 
 

Besides the coordinate system of Figure 2-9, assuming a new coordinate system S 

located on the undeformed shaft position and the disc center is then displaced with �} and �} with respect to the origin and tilted with small angles w7 and w=, so that 

the sequence of rotation loses its importance, see Figure 2-10 and Figure 2-11.  

 

 

Figure 2-10: Tilting angle. 

 

Now the momenta coordinates are 

  

 ~7� 0 ��w?7�� 		,  

 ~=� 0 ��w?=�� 		, (33) 

 ~y� 0 �w?y�� 		,  

 

where �� and � are defined as 

 

� 0 �2 
��,			�� 0 �12 g3
�� + ℎ��h. 
 

Where ℎ� is the thickness of the disc. The inertia tensor can be written in this 

coordinate system as 

�y 
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 � = ��� 0 00 �� 00 0 ��. (34) 

 

 

Figure 2-11: Momenta components. 

 

In this chapter we will consider the momenta component �y 0 �y� due to small 

angles and setting w?y 0 Ω constant. Then  

 

 �= 0 �=� +�y�w7� 		,  

 �7 0 �7� −�y�w=� 	. (35) 

and 

 �= 0 ��w?=� + �Ωw7� 		,  

 �7 0 ��w?7� − �Ωw=� 		. (36) 

Since  

� 0 *~*8 	, 
then 

 x= 0 ��w@=� + �Ωw?7� 		,  

 x7 0 ��w@7� − �Ωw?=� 		. (37) 

 

Writing equations (37) together with the Newton’s laws in matricial form, 

 

�  

�  

�  

w7�  
�  

�  

�  

�′  �′  

�′  

w7�  �′  
�′  

�′  

�=�  
�y�  

�y� 

�7�  
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���
� -7x=-=x7��

�� = u� 0 	 	0 �� 	 		 	 � 0	 	 0 ��v ���
���@�w@=��@�w@7����

�� + u 	 	 0 0	 	 0 Ω�0 0 	 	0 −Ω� 	 	 v ���
���?�w?=��?�w?7����

��, 
or 

 

 t 0 ������	�������@ + ������������	�������? . (38) 

 

Finally, to build the equation of motion, a term containing the stiffness matrix (32) 

is added to equation (38), 

 

u� 0 	 	0 �� 	 		 	 � 0	 	 0 ��v ���
���@�w@=��@�w@7����

�� + u 	 	 0 0	 	 0 	Ω�0 0 	 	0 −Ω� 	 	 v ���
���?�w?=��?�w?7����

��

+ u��� ��� 	 	��� ��� 	 		 	 ��� −���	 	 −��� ��� v u
�w7�w=v 0 0, 

(39) 

 

or, expressed in terms of the polar coordinates, 

 

 �� 0 �� + M��		, � 0 � + M�		, w� 0 w7� + Mw=� 		, w 0 w7 + Mw=			, (40) 

 �� 00 ��  � �@�w@�  + ¡0 00 �Ω¢ � �?�w?�  + � ��� −M���M��� ���   ¡�w¢ 0 0. (41) 

 

With the unbalance condition 

 

 �� 0 � + �NO(PQ£¤) (42) 

 

and with a constant initial angle tilt �, which comes from bad assembly or bent 

shaft, from the disc to the shaft 
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 w� = w + �NO%PQ	£¥&, (43) 

 

it becomes the commonly known representation of a rotor equation system 

 

 �� 00 ��  ��@w@   + ¡0 00 �Ω¢ ��?w?   + � ��� −M���M��� ���   ¡�w¢
0 Ω� � ��NO(PQ£¤)(�� − �)�NO(PQ	£¥)  

(44) 

 

or written as 

 ���@w@   + � ��?w?   + ¦ ¡�w¢ 0 /(Ω, t). (45) 

 

2.6. 
The natural frequencies of a beam as a continuous r otor 

The model of a beam with distributed mass and excited by a distributed force §(�, 8) is 
 

 �� ¨q ¨�q + ¨� ¨8� 0 §(�, 8), (46) 

 

where the product of Young modulus � and the area moment of inertia � is 

constant throughout the domain. Then by defining  

 

� 0 �� ; 				' 0  � ; 				© 0 8��F���b ; 				ª 0 §(�, 8)�r�� , 
 

equation (46) becomes 

 

 ¨q'¨�q + ¨�'¨©� 0 ª(�, ©). (47) 

 

Through the method of separation of variables, we take the solution as 
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 '%�, ©) 0 «(�)Θ(©) (48) 

   

Combining eqs. (47) and (48), one gets 

 

 «­®(�)«(�) 0 −Θ@ (©)Θ(©) 0 ζ�, (49) 

 

where γ is a constant given by 

 

 ζ ≡ �� 0 F�b�� ���. (50) 

 

The solutions for the spatial coordinate «(�) are presented as 

 

 

We may have infinite solutions for the parameters �, each of them (��, ��, �r, … ) representing a natural frequency of vibration. To determine them, 

one must apply the boundary conditions for each case of beam configuration. They 

are presented on Table 2.1. 

Table 2.1: Numerical frequencies for �� for some boundary conditions. (Thomson, 

1972). 

Beam boundary conditions ²³́ ²´́ ²µ́ 
Simply supported 9.87 39.5 88.9 

Free-free 22.4 61.7 121.0 

Cantilever 3.52 22.4 61.7 

Hinged-free 0 15.4 50.0 

 

 «(�) 0 ¶� sin�� + ¶� cos�� + ¶r sinh�� + ¶q cosh��. (51) 
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On rotors, one cannot observe as a two-dimensional plane problem, so there 

are two equations that need to be analyzed, one for each coordinate axis. The point ¸%�& is the center of mass of the shaft section for a � position. 

 

 

 �� ¨q ¨�q + �¨� ¹¨8� = 0, (52) 

 �� ¨q"¨�q + �¨�"¹¨8� 0 0. (53) 

 

 

Figure 2-12: A shaft section with displacements   and " and eccentricity � 
and constant mass density � (Gasch, Nordman, & Pfützner, Rotordynamik, 2002). 

  

Since the relationships between  ¹ and  , "¹ and " are given by  

 

  ¹ 0  + �(�) cos(Ω8 + (), (54) 

 "¹ 0 " + �(�) sin(Ω8 + (), (55) 

 

we differentiate them twice with respect to time and insert them in eqs. (52) and 

(53), getting 

 

 �� ���� + � @ 0 �(�)�Ω� cosgΩ8 + ((�)h, (56) 

º(�) � 

� 

� 

  

" 

�(�) ((�) 
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 ��"���� + �"@ = �%�&�Ω� singΩ8 + ((�)h. (57) 

 

With the polar coordinate » 0  (�) + M"(�) and with eqs. (56) and (57) we have 

 

 ��»���� + �»@ 0 Ω��(�)NOgPQ£¤(y)h. (58) 

 

The equation above can be solved by the method of separation of variables, which 

results in the following expression 

 

 »(�, 8) 0¼�n(�) H Ω��� − Ω�J �½¾¿,n(�)NOgPQ£¤(y)hn , (59) 

 

where the �n(�) are the modal eigenfunctions given from the solution of eq. 

(51), according to the boundary conditions imposed and using the associated 

parameters �n from Table 2.1. Also, a generalized eccentricity �½¾¿ is defined as 

 �½¾¿,n 0 À½¾¿,n�½¾¿,n, (60) 

 

where  

 À½¾¿,n 0 Á$(�)�(�)NOgPQ£¤(y)h�n�(�)	*� (61) 

 

And 

 �½¾¿,n 0 Á$(�)�n�(�)	*�. (62) 

 

2.7. 
The contact state  

So far, the equations written were the basic ones of rotor dynamics. However, as 

seen before, because of the unbalance and elastic properties, amplitudes can reach 

high values as the rotation increases. In the real world it is important to restrain 

high amplitudes, due to different reasons such as safety measures. One does not 
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want a machine which oscillates significantly, that may cause small parts to get 

loose. Also, the rotor must be supported by bearings, either by sleeve or rolling 

bearings. In the case of the sleeve bearing, the thin layer of oil works as an external 

stiffness element. Even though, with amplitudes getting higher and higher, it is 

possible that the rotor collides with the bearing wall and starts to rub partially or 

completely. On the contact state, the rotor is also under the influence of the 

friction force which appears orthogonally against the rotational velocity.  

The friction force is modeled as the dry friction, following the analysis of 

(Isaksson, 1994). The friction force maximal value is proportional to the normal 

force or to the impact force by a constant coefficient $:  
 

 t = $Ã. (63) 

 

The normal force exists only when the radial position of the disc center 

overpasses the difference between the radii (gap), � , ��. In this case, the normal 

force Ã points to the disc center: 

 

Ã = %�� 5 ��&%|�| 5 ��&5�|�| , if	|�| ≥ ��.	 (64) 

 

We also take  

 Ã 0 Ä, for	|�| < ��. 
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Figure 2-13: The contact state with the configuration of the normal and friction 

forces. 

Figure 2-13 shows the configuration of forces when � , 	 ��. The normal 

force points to the center of the disc and the friction force must be along the 

opposite direction of the velocity at the contact point. Thus, the velocity of the 

edge of the disc is calculated by the expression: 

 

 Æ¾Ç½¾ = ÈÉÊË + ÆÌ. (65) 

 

The operator ~ is the matricial representation of the cross product: 

 

b 0 ������r� , e 0 ������r� 
b × e 0 bÏe 0 � 0 −�r ���r 0 −��−�� �� 0 � ������r�. 

 

The friction force is mathematically expressed by 

� � � 

� 
� 

� 

) 

-Ð �?  
� 

�� 
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 /Ñ = 5$|Ã| ∙ Æ¾Ç½¾ÓÆ¾Ç½¾Ó. (66) 

 

The equations (6), (7) and (8) are rewritten to include both impact forces on 

them: 

 

 ��@ + 	��? + ��� + |Ã|(cos� − $ sin�)	 0 ���@ sin� + ���?� cos �, (67) 

 ��@ + 	��? + ��� + |Ã|(sin � + $ cos�)	 0 −���@ cos � +���?� sin �, (68) 

 ��@ 0 �� + ���(� cos � − � sin �) + ÓÃÉ Ê¸ ÔÓ + Ó/ÉÕ Ê¸ ÔÓ. (69) 

 

 
  

2.8. 
The bearing with pins 

One often designs a safety bearing with different geometries to restrain high 

vibrations. Moreover, the use of active pins modifies the internal geometry when 

needed. In this case, no special or complex geometry is required. First, some 

considerations must be made regarding the pin modeling. 

A pin is like a small one-dimensional bar, and it deforms only along its 

length, i.e., it does not suffer the effects of buckling or lateral deformation. It is 

considered a massless object and can resist fatigue and strong impacts. Its stiffness 

can be estimated by the expression found in every solid mechanics book in 

engineering (Gere, 2003). 

 

 Ö� 0 ��b��� . (70) 

 

While the Young elastic constant �� is characteristic to the material chosen 

to build the pin and the area b�	is its cross section. The length �� of the pin is 

critical parameter and has to have a minimum value. The idea is that the pin is a 

retractile device which minimizes the gap and avoids impacts or high amplitudes. 
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The question is: how long they should go and how many pins are needed? Whether 

there are too few pins, or whether they are too short it is possible that the disc hits 

the wall or whether they are too long that they choke the rotor and it loses its 

ability to rotate. 

An idealized concept to prevent any impact on the bearing structure is to 

leave the exact free space for the rotor to move without the possibility of hitting 

the wall. Figure 2-14 illustrates this condition.  

 

 

Figure 2-14: The configuration of the pins inside the bearing and the free area. 

The shadowed area inside the image above is the space where the rotor is able to 

move. Its corners are the only points where the rotor really hits the structure of the 

bearing. Anything longer than this minimum length, ��, will prevent the bearing 

from being hit by the rotor. The geometry of the free area is perimeter of the rotor 

center motion as it rolls on the edge of the pins until it hits the next pin and the 

bearing wall in just one point. Clearly, the minimum length �� is a geometric ratio 

of the radii of the disc 
� and of the bearing 
�. It is easily calculated as the roots 

of a second order equation, 
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 �� > 
� 5K2
�� . (71) 

  

2.9. 
The contact state with pins 

When one considers the impacts now on the pins, but not on the bearing wall, the 

equations (67), (68) and (69) change a little bit because the direction of the normal 

force and likewise the friction force change. The normal force still points to the 

center of the disc. Its magnitude is calculated as how much the rotor’s disc 

compresses the pin, i.e., how much the disc edge deforms the pin. Mathematically, 

the contact happens when the distance from the disc center to the top of the pin is 

smaller than the size of the radius of the disc: 

 

 |ØO| ≡ |position	vector	of	pinO 	− Ì| 0 ÜÓ �ÌÝ Ó ≤ 
� → impact,Ó �ÌÝ Ó > 
� → no	impact. (72) 

 Ø� is a vector pointing from the top of the Máâ pin to the disc edge and Ì is a vector 

pointing from the origin to the disc center, see Figure 2-5. This is an arbitrary 

convention which implies the sign on the impact formulation to be written below. 

The angle �, defined in the previous section, is of no use for the impact calculus; 

instead, the angle of incidence ( on the impact in a local reference frame, see 

Figure 2-15. 
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Figure 2-15: Angle of impact ( and the impact force ) pointing the rotor's 

center. 

Thus, the vector Ø has the components 

 

 Ø = ãV7V=0 ä = ã
|Ø| cos(|Ø| sin (0 ä. (73) 

   

Then the normal force is an elastic response of the pin to the deformation and is 

written as 

 

 Ã 0 5Ö�Ø 0 5Ö� ãV7V=0 ä 0 5Ö� ã|Ø| cos(|Ø| sin (0 ä. (74) 

 

Therefore, the friction force has the same formulation of equation (66) and is 

orthogonal with respect to the normal force. Since the center of mass is dislocated 

from the center of the disc, there is a torque applied from the normal force besides 

the torque of the friction force. The parameter Ë in Figure 2-16 is the distance 

Ì 
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between the disc center to the top of the pin. Lastly, the contact state condition 

with pins, eq. (74) is inserted into equations (6), (7) and (8), putting 	� = 0: 
 

 ��@ + ��� 0 ���?� cos � +���@ sin � − Ö�V7 + Ö�V=$	signgæ¾Ç½¾h  (75) 

 ��@ + ��� 0 ���?� sin� − ���@ cos� − Ö�V= −Ö�V=$	signgæ¾Ç½¾h  (76) 

 ��@ 0 �� + ���(cos � � − sin � �) + ÓËÉÃÓ + ÓËÉ/ÑÓsign	gÆ¾Ç½¾h.  (77) 

 

 

2.10. 
Dimensionless equations 

Chapter 3 will present a mathematical program containing all developments made 

in the previous sections in order to simulate the impacts on the disc and on the 

pins. It is convenient to write the equations as dimensionless ones, because it helps 

the visualization of the relationship between the parameters, saves computational 

time and increases numerical precision since values are also normalized. The first 

Ë 

Ì 

�?  

Figure 2-16: Explanation of vector * when disc is impacting. 

Ã /t 
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rule to write them in the non-dimensional form is to introduce a non-dimensional 

time © as 

 

 © = ω8, (78) 

 

where �	is the non-damped eigenfrequency (10). The time derivatives in all 

equations must obey the chain rule of derivation; 

 

 **8 0 **© *©*8 0 � **© (79) 

 *�*8� 0 j*©*©k� *�*©� + *�©*8�çè�
**© 0 ω� *�*©�. (80) 

 

In order to generalize the coordinates � and �, both must be divided by a common 

parameter of the same dimension of length. The unbalance parameter � is such an 

appropriate constant, so we may define 

 

 � 0 �� ; 		� 0 ��	. (81) 

 

Without contact on the disc surface, equations (6), (7) and (8) can be rewritten 

taking into account equations (78), (79), (80) and (81). For this formulation 

damping is not considered. We obtain 

 

 ��� + � 0 �′� cos� + �′′ sin�, (82) 

 ��� + � 0 �′� sin � + �′′ cos �, (83) 

 θ′′ 0 ��12�
���� + j
�
�k� (cos � � − sin � �). (84) 

 

The same is done with the contact state equations (75), (76) and (77), which 

represent the dynamical analysis of impacts occurring on the pins,  
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 ��� + � = �′� cos� + �′′ sin� − ê��� ë� jV7� k + ê��� ë� HV=� J $	sign	(Vá) (85) 

 ��� + � 0 �′� sin � − �′′ cos � − ê��� ë� HV=� J − ê��� ë� jV7� k $	sign	(Vá) (86) 

 ��� 0 �s� + j �
�k� (cos� � − sin� �) + ê��� ë� H 2
��J ÓËÉØÓg1 + $sign(Vá)h, 
 

(87) 

where  

�� 0 FÖ�� 			and			�s� 0 ��12�
����. 
 

One can notice that there is a relationship between the frequencies involved in the 

equations above. By varying the coefficients of elasticity it is possible to perform a 

more profound analysis in the case of nonlinear fields. 
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3 
The numerical simulation 

As part of the whole analysis of this work, the simulation plays an important role. 

It certifies before going to practice if an idea can actually work. Then, once it 

produces adequate results, the parameters can be adjusted to perform different 

situations.  

The implemented model is that of a simple rotor inside a greater circular 

radius representing the retainer bearing. We consider a stiffness force coming from 

the shaft, which pushes back the rotor center as it moves sideways inside the 

bearing. In the last section of the previous chapter, the dynamical equations of 

motion are written in the non-dimensional form. Two main situations may occur; 

either the rotor is in the non-contact state or in the impacting one. Thus, the 

simulation program must have a rule that alternates accordingly the modeling the 

state space equations. 

On circular bearings this rule is quite simple. The gap, or difference between 

the radii, indicates whether the rotor is impacting or not. It gets much more 

difficult when the pins are considered and the internal geometry changes. So the 

gap is larger or shorter in different places inside the bearing.  

 

3.1.  
State space equations 

As said before, the dimensionless equations are better for simulation because they 

require less memory from the computer and prevent numerical errors due to the 

normalized matrix components.  

A state space of variables is chosen in the following order: 
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 î = �����, (88) 

 

� 0 jîî′k 0
���
���
����′�′�′��
���
�. (89) 

 

Equations (81), (83) and (84) of the non-contact state and eqs. (85), (86) and 

(87) can be rewritten again with the underline symbol, which denotes a matrix: 

 

 �î′′ + ¸î′ + ¦î 0 /. (90) 

 

Then 

 

 î′′ 0 �T�g/ − ¸î′ − ¦îh. (91) 

 

They are written on the dimensionless form as: 

 

� 0 �1 0 − sin�0 1 cos �0 0 1 � , ¸ 0 �2� 0 −�′ cos �0 2� −�′ sin�0 0 0 � , ¦ 0 �1 0 00 1 00 0 0�, 
 �T�/ 0	 u 00�s� + j �
�k� (Ycos � − � sin�)v. (92) 

 

The same is done to the equation that corresponds to the impact state. The only 

change is in the force vector �T�/, which reads 

 

�T�/ 0	
���
���

g-Ñ7 + -iðñ7 hê-Ñ= + -iðñ= ë
�s� + j �
�k� (� cos� − � sin �) + ê��� ë� H 2
��J ÓËÉØÓg1 + $sign(Vá)h���

���. (93) 
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We are now able to write the following dimensionless form of the system in terms 

of the state space variables 

 

 �′ = H Ä ��T�g5¦h �T�g5¸hJ� +�T�/, (94) 

 

where � denotes the 3 × 3 identity matrix. 

 

3.2. 
The Runge-Kutta method 

Since we are facing non-linear equations even when there are no impacts, a 

numerical method must be taken account to solve and simulate the whole behavior 

through time. The Runge-Kutta method is a highly accurate technique of solving 

numerically differential equations. It was developed early 20th century by the 

German mathematicians Carl D. Runge and Martin W. Kutta. The most common 

form of the Runge-Kutta method is widely known as the Runge-Kutta of 4th order. 

It is the weighted average of four functions beginning with an initial value state. 

By defining a step size Δ8 and �� the initial state vector or 

 �? 0 ó(8, �), �(8�) 0 �� 
 

The next state is 

 

�n£� 0 �n + 16 (¦³ + 2¦´+ 2¦µ +¦ô)	and	8n£� 0 8n + Δ8, õ 0 1, 2, 3, … 

 

where the coefficients ¦³, ¦´, ¦µ and ¦ô are functions to increment the actual 

state to the next one. 

 

 ¦³ 0 Δ8ó(8n, �n), (95) 

 ¦´ 0 Δ8óg8n + Δ8 2C , �n +¦³ 2C h, (96) 
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 ¦µ = Δ8óg8n + Δ8 2C , �n +¦´ 2C h, (97) 

 ¦ô = Δ8ó%8n + Δ8, �n +¦µ&. (98) 

 

If one analyzes the coefficient of ¦³, it is the Euler’s method of solving numerical 

equations. It means that the next value, �n£�, is the derivative of the function 

applied to the next step Δ8 added to current �. But, after some iteration, the 

Euler’s methods deviate too much from the actual function. The Runge-Kutta 

improves it by adding a weighted average with the values at the middle point of 

the increment.  

Next, the chosen software to perform the simulation and to solve the 

numerical equation is the Matlab®. It has already implemented a Runge-Kutta 

Algorithm ode45 to solve equations numerically. In Figure 3-1, we can see 

graphically the difference between the Euler’s method and the Runge-Kutta of an 

ordinary function ó%�&. 
 

 

Figure 3-1: Comparison between the numerical method of an ordinary function. 

Thus, due to the high precision and accuracy the ode45 from Matlab® is the best 

choice for numerical analysis. 
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3.3. 
Simulation cases 

The conducted studies were completely designed with the Matlab® software. It is a 

powerful tool full of embedded mathematical functions. There are two main cases, 

the first without pins and the second with pins. They show different situations and 

initial conditions. Regarding the simulation with pins, it has more boundaries 

conditions and limitations. All of them have the same parameters for disc and 

dimensions to ensure a good comparison. The simulation parameters are given on 

the Appendix A. 

 

3.3.1. 
A disc without a shaft 

As a matter of comparison with further experiments a disc without a shaft is an 

interesting case of study of how the friction force in the contact  process acts on a 

metallic disc with unbalance. First a disc without rotational speed, but with an 

initial translational velocity of its center, floating on an air cushion, is simulated. 

The results of the hits are in Figure 3-2. 

 

Figure 3-2: Series of hits of a shaftless rotor. Rotor does not rotate. 

Then a second and a third case are shown when the rotor has a small angular 

velocity Ω = 1Hz or Ω = 2Hz. Elastic impacts are considered here. 
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Figure 3-3: Whirl of the shaftless rotor on the bearing wall (1Hz). 

 

 

Figure 3-4: Whirl of the shaftless rotor on the bearing wall (2Hz). 
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3.3.2. 
Disc with shaft, simulations without pins  
 

The first simulations show when the disc has an initial angular velocity and also 

some velocity of its center starting from origin. Then due to the imbalance the 

eccentric and transient motion appears. When there is no damping the motion 

orbits around the center of the bearing. The next figures Figure 3-5, Figure 3-6 and 

Figure 3-7 show the motion of 1Hz, 2Hz and 4Hz. Then on the following figures 

Figure 3-7, Figure 3-8 and Figure 3-9, the disc is accelerated by the minimum 

torque possible (30). The initial conditions set are all the same: 

 �Ä = ø	0m 0m 0rad 0.001m s⁄ 0.005m s⁄ 2π. Hzüý 
 

or dimensionless written with � 0 14.0 rad sC  

 

�Ä 0 þ0 0 0 0.159 0.795 2π. Hz ωC �ý. 
 

 

 

Figure 3-5: Movement of the disc center position inside the gap when rotating at 1Hz. 

The dashed red line is boundary without hitting the wall. 
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Figure 3-6: Same as Figure 3 4, but the disc is rotating 2Hz and starts 

hitting the wall. 

In Figure 3-6 the disc moves near the resonance velocity of 2.22Hz and therefore its 

trajectory is a spiral and hits the wall once, bounces and then starts to move 

against the its own circular movement. 

 

The friction force coefficient is according to (Kent, 1950) steel on steel dry. 	$�Q���/�Q��� = 0.56. 

Figure 3-7: The orbit of the disc above the resonance rotation, 4Hz. No hits 

happen. 
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So it is supposed that the disc does not slide on the wall.  

 

 

 

 

 

Figure 3-8: Movement of disc center when the minimum torque is applied to the 

dynamical system. 

Figure 3-9: Radial distance of the disc center from origin in the middle of the 

bearing. 
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Figure 3-10: The rising angular speed by applying the minimum torque. Its two 

sudden decreases are shown when two close impacts occur. On the second impact it 

starts to roll. 

 

Now, by changing the initial condition to 

 �Ä = þ0m 0.95��m 0rad 0.075m s⁄ 0m s⁄ 0 rad sC �
ý
 

 

So the disc is starting from an offset that almost touches the bearing’s wall and 

also has an initial horizontal velocity. Neither there is an initial rotation velocity 

nor is a torque inserted into the system. The results of this case are shown on 

Figure 3-11. 

1st Hit 

2nd Hit 
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Figure 3-11: Series of hits when there is a bump and an offset as initial condition. 

 

 

Figure 3-12: Oscillation of the disc's center from origin. 

 

DBD
PUC-Rio - Certificação Digital Nº 1112069/CA



The numerical simulation  64 

 

Figure 3-13: Variation of energy through from 0 to 2 seconds. 

 

After the first impact the disc gets a slower speed, the next impacts now have a 

friction force against it, inducing a whirl on the wall. Since there is this no external 

damping, the total energy only decreases after each impact, see a more detailed 

plot in Figure 3-14. 

 

 

Figure 3-14: Close up showing the decrease of total energy after each impact. 
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A third simulation was conducted in order to demonstrate the backward 

whirl effect. Thus, once again, we changed the initial condition to the following 

condition: 

�Ä = þ0m 0.9��m 0rad 50.1m s⁄ 0m s⁄ 2�3.2 rad sC �
ý
. 

 

The results are shown in the next figure, Figure 3-15 and Figure 3-16. 

 

Figure 3-15: Backward whirl orbits at �� described in simulation. 

 

 

Figure 3-16: Radial distance from the origin and the disc center. 
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As it can be seen, the disc is rotating with angular velocity of 3.2Hz, and at 

the moment it hit the wall and friction starts to rub on the wall. This is the 

behavior we intent to avoid in the next section by adding the pins in the 

simulation and in the practical part in the next chapter. 

 

3.3.3. 
Simulation with pins 

The insertion of the pins on the simulation leads to a more complex boundary 

condition. At every step it is computed the distance of the edge of the disc to each 

pin inside and evaluates the necessary state-space of the dynamical analysis. Three 

situations are possible of happen. The non-collision state, the collision on a single 

pin, collision on two pins, and at last but highly improbable a hit on the wall. This 

last condition can exist because of the elastic modeling of the pins, if the disc 

penetrates deep inside the pin it could be possibly reach the bearing’s wall. In order 

to prevent that the pin have a 10% larger length as defined from equation (71).  

 

Figure 3-17: The flowchart of the simulation. 

Yes 

Initial conditions: §� 

Distances to the pins? 

Hit? 
Hit on one 

or two 
pins? 

Non-
collision 

state-space 
Collision 

state-space 
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In this case the equations of motion implemented are the dimensionless from 

section 2.10, because it saves simulation time and guaranties convergence of the 

numerical solution by avoiding stiff matrices. However, it is not possible to 

simulate a shaftless rotor because of the chosen non-dimensional time rule (78), 

which depends of resonance and therefore the shaft elastic coefficient	��. Another 

consideration is that the pins have a 10% larger than the minimum length from 

equation (71). This reduces the chances that the disc edge will hit the bearing wall. 

As there are only non-dimensional lengths in this case, the radii and the length of 

the pin should be adjusted too.  


�∗ = 
� �C , 
�∗ 0 
� �C , ��∗ 0 �� �C . 
 The first simulated case is a rotor which is already spinning from the 

beginning at a nominal velocity equal to the resonance velocity. It starts from the 

origin and because it is in the critical speed it moves on a spiral, like in previously 

cases. Now, before it hits the bearing wall, it reaches the pins, which push it back 

away from the wall. The disc begins to loose rotational energy after each impact. 

Figure 3-18 to Figure 3-22 illustrate the simulated behavior. 
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Figure 3-18: The disc center position being released from origin at the resonance 

speed. 

 

 

Figure 3-19: The radial distance �, its maximum value stays far away from the 

gap (top bold dashed line). 
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Figure 3-20: Oscillation of the X position through time. 

 

 

 

 

Figure 3-21: Angular velocity decreases after each impact. 

In Figure 3-19, presents two dashed lines, the thin one represents the minimum 

distance allowed to hit the pins, the bold line is the maximum allowed 

displacement that the disc may move from the origin. It represents a hit on the 

wall; it is a situation we want to avoid. Observing these figures, there were no hits 
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on the wall. Figure 3-21, is the variation of angular velocity in time, after each 

impacts it is seems like small portions of rotational energy is withdrawn from the 

disc.   

Figure 3-22 illustrates how the constrained free area looks like. The free area of 

motion is reduced by the pins. 

 

Figure 3-22: Larger view from the bearing with the four pins. The blue line is the 

constrained movement of the disc center. This figure is dimensionally corrected. 

 

A second case was simulated with a slight different initial condition. The disc starts 

from the rest at the origin, but a constant torque is applied to the system 

equations. Its value is the minimum torque, defined by (Markert, Pfützner, & 

Gasch, 1980) from equation (30). The disc begins to rotate and rapidly reaches the 

resonance angular velocity. Then a spiral movement and high lateral vibrations 

take place, soon the rotor begins to hit every pin in a regular shape, Figure 3-23, 

although it is unable to surpass any higher speeds than 20% from the resonance 

velocity, because at every hit a portion of angular velocity is taken from the rotor 

Pins 
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and as soon as it regained it a new hit happens, which removes it again, see Figure 

3-25. 

 

 

Figure 3-23: Disc center position trajectory. It does not hit the wall, but 

repeatedly hits the pins. 

 

Figure 3-24: Radial distance of the disc center. It does not hit the wall, but 

repeatedly hits the pins. 
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Figure 3-25: Although the angular velocity surpasses the critical speed, it is 

unable to reach higher velocities. 

As seen in Figure 3-23, Figure 3-24 and Figure 3-25 the applied minimum 

torque is not enough to reach the stability. So a new case is presented, whose 

applied torque is five times greater than the minimum torque. 

 

 

Figure 3-26: The disc center position with higher torque. The circular region 

shows a more stable orbit away from the wall and the pins 
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Figure 3-27: The angular velocity’s slope indicates that it can accelerate after a 

series of hits on the pins. 

 

 

Figure 3-28: Radial distance. Does not touch on the wall and stabilizes at 1. 
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Figure 3-29: Oscillation of the horizontal coordinate	�. 

 

Figure 3-28 shows after © = �8 = 180 a gradual decrease of the radial 

distance. It resembles the behavior theoretically shown in Figure 2-6 and Figure 2-7 

where after the critical speed, or resonance frequency, the radial distance value � 
converges to the value of �. This ensures of accuracy of the programs. 

Through the simulation it was confirmed that it is possible to reach more 

stable orbits inside the bearing preventing it to collide and rub on the wall. By 

restraining the movement the pins do their job, the disc bounces on them and stays 

far away from the wall. The amount of torque required to accelerate the disc varies 

from each set up of rotation machine. It differs when the relationship between the 

radii of the disc and the dry friction coefficient. 
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4 
The test rigs 

As part of the whole analysis of a new concept, an experimental part is required, so 

that a confirmation of what was simulated or stipulated theoretically is capable of 

happen in real machines. It was decided the test should progress step-by-step 

described in the following sectinos until it reaches its final stand. Besides, we 

preferred to use the tools available in the laboratory and the test rigs already 

developed from past works. Works from (Segayer, 2000), (Alvarado A. E., 1999) 

and (Lahiri, Santos, Weber, & Hartmann, 2012) provide a basis of study and 

opportunities to improve them.  

 

4.1. 
Sensoring 

4.1.1. 
Measuring position 

The sensors used are the inductive proximity sensors made by Balluf®. They 

convert distance to electric current when metallic objects come closer. They have a 

rather linear region from 1.75 mm to 6mm: getting closer the current does not 

change and at larger gaps, it slowly saturates too. Consequently the sensor must be 

calibrated and positioned with a gap of 1.75mm from the nearest position of the 

disc rotor. Figure 4-1 is a chart from its datasheet which exhibits the current 

correspondence to the distance. Also it was established as origin the center of the 

safety bearing, considered as the zero point and the circular gap, previous 

determined theoretically as ��, as having a range from 51 to 1. Figure 4-2 allows 

us to visualize the coordinate system. 
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Figure 4-1: Current (mA) versus distance (mm) of the inductive sensor. The 

arrows point to correct curve. The blue line approximates the linear regions 

(Balluf, 1996). 

 

 

Figure 4-2: The coordinate system of the test rig. 

 

A small board with resistances of 1kΩ nominal is used to convert the provided 

signal to voltage for sampling. They are supplied by a power source of 26V DC and 

the acquisition terminals are the electrical potential difference between the 

resistance terminals, see as sketched in Figure 4-3. 


 

� 
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Figure 4-3: The sensor assembly diagram (Balluf, 1996). 

 

4.1.2. 
Angular velocity 

Another important magnitude to be collected and analyzed is the angular velocity. 

It is measured using a single Hall sensor with a TTL (5V) power source. It works 

similar as a transistor; when there is no magnetic field it closes the input terminal 

with the signal output. As the magnet approaches it changes and closes the signal 

with the ground terminal. Therefore, without any magnets in the proximity the 

output is 5V, on the contrary it is 0V. The small electronic device is seen in Figure 

4-4. A small magnet 1cm Î 0.2cm of size is attached to a very light plastic disc on 

the top of the shaft. At every passage of the magnet, an inverted pulse is generated 

to the acquisition board. 

 

 

Figure 4-4: Hall sensor. 
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4.2. 
Shaft and rotor 

From the beginning the shaft material was chosen to be steel, because of the 

availability in the laboratory and its well-known properties. The shaft has 1m of 

length and 8mm of diameter. It is precision manufactured, so that one can infer 

that it has a homogeneous mass distribution. It already has been used several times 

in past works and therefore before assembling and testing the skewness of the shaft 

was measured using a high-precision dial indicator and a standardized test rig, 

Figure 4-5. The maximum deviation measured from the shaft is 0.1mm, which was 

considered irrelevant for the experimental analysis. 

 

 

Figure 4-5: Evaluating the skewness of the shaft. 

4.3. 
The step motor 

 

The step motor is a frequent tool in engineering and is a major component in 

different machines as actuators, like printers, robotic joint’s motors and in 

automated machines in the industry. A step motor gives the advantage of working 

with discrete angles, but lacks in feedback control and modeled torque equations, 

(Cardozo, 2012). It works as an open loop control mesh. The motor receives a series 

of pulses and by each pulse the rotor moves the same amount of angles. They were 

used in the past in floppy discs drives to control the reading head position. The 

ones used in this work are four phase motor of 1.8°. It means that there are 
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necessary 200 pulses to make a full turn. Several configurations of setting the order 

of the phases are possible. The most common is a sequential one, where the each 

pulse is directed to one phase only. The next pulse goes to the following phase. 

 

Figure 4-6: Size of the step motor. 

 

4.4. 
The pin assembled prototype 

 

The prototype was built to see the accuracy and the speed when the motion goes 

forth and back. It is a concept design that will serve as inspiration for the final test 

rig. It consists of three small walls and a block of acrylic, two rods, a step motor 

and a bronze round with a 1.25mm per turn screw. The motor is mounted and 

fixed on the block and its output shaft attached to a bronze rod. The steel rods 

work as a linear rail where the block can have a sliding oscillatory motion when 

moved due to the motion of the bronze screw in a fixed support. The photography 

from Figure 4-7 shows the assembly of the prototype. 
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Figure 4-7: Prototype as assembled. 

 

The prototype was controlled by a simple Labview® program which 

generated the chain of pulses to the phases. A measuring clock is positioned on the 

bronze rod end and adjusted the needle to mark zero, see Figure 4-8. The purpose 

of this test is to see whether the motor is capable to pull itself, if it loses a step and 

check the rotational speed.  

By applying a series of 1000 pulses at 10 milliseconds the needle showed a 

variation of 5 to 10 microns	%10T�m&. But by turning back it came back to zero. 

The reason to this small error is that the prototype is not fixed on the table it 

moves a little bit. However, the test showed that the motor was capable of 

translate itself with an acceptable accuracy.  
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Figure 4-8: The prototype and the dial indicator. 

 

4.5. 
The first experiment 

 

In the following a rotor stator setup consisting of a disc suspended by a compressed 

air cushion in a metal cylinder stator is investigated. The aim of the project is to 

discover and describe trends in rotor stator contact dynamics, when the rotating 

rotor is excited by an impulse. 

 

Figure 4-9: Test rig number 1. 
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The setup is a disc suspended by an air cushion obtained injecting 

compressed air through the basis of a metal cylinder. Four sensors embedded in the 

metal stator measure the disc location in the two lateral directions, with an 

approximate minimum distance of 1.75 mm between each sensor and the measuring 

surface on the disc. The measuring interval was for all tests one measurement per 

10ms. The displacement readings were analog and the angular velocity readings 

digital. The concept design is illustrated in Figure 4-10,  a vertical view in Figure 

4-11 and a picture of the experimental setup above in Figure 4-9.  

 

 

Figure 4-10: Illustration of the pressurized air levitating the rotor inside the 

cylinder (Segayer, 2000). 

 

The minimum distances for each configuration (with pins and without pins) 

were determined by conducting three tests where the disc were positioned as close 

to each sensor as possible. The global minimum for the three tests were then found 

and used in the following calculations. For conducting the rotation tests the disc 

was spinned by hand. For the impact measurements, an impulse was exerted in the 

center of the disc once it had reached stable rotation, causing disc cylinder-pin 

contact. 

Pressurized air 

Air cushion Rotor 

Cylinder 
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Figure 4-11: Vertical view of the rotor stator arrangement (Fleischer, 2011) 

The first disc (in the following named the acrylic disc) is a three stage disc 

with an acrylic lid and bottom, but a polished metal annular piece and with 

magnets mounted on top in a 90 degrees arrangement. Its total weight is 472.5 g. 

The second disc (in the following named the metal disc) is also a three stage disc 

but with metal bottom and middle pieces, and with the same acrylic lid as the first 

disc. The total weight of the metal disc is 1543.3 g.  

The position of the center of the disc in time is found by calculating an 

average between the two sensor signals in one direction. The maximum value for 

each sensor is subtracted from each reading and then divided by the full sensor 

span in order to normalize the sensor readings, as follow from equations (99) and 

(100). 

 �� = �� 5 ��,m�7��,m�7 5 ��,mOn	 , �� = �� 5 ��,m�7��,m�7 5 ��,mOn	, (99) 

 �� = �� 5 ��,m�7��,m�7 5 ��,mOn	 , �� = �� 5 ��,m�7��,m�7 5 ��,mOn	, (100) 

 � = �� + ��2 , � = �� + ��2 . (101) 
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The functions polyval and polyfit from Matlab® are used to fit a second degree 

polynomial to the angular velocity data. 

The angular velocity signal is digital and displays ones when there is no 

magnet reading and 0 for a magnet reading. Since the time steps are fixed to 10ms 

the angular velocity is calculated as the distance between every 0 reading which is 

larger than 1 (more readings typically occur on one magnet), ∆d divided by ∆t 

and multiplied with 2π to get it in radians per second. 

 Ω 0 ΔdΔt . 2π4  (102) 

In equation (102) the one fourth factor appears, because of the four magnets on the 

lid and as such each reading corresponds to only one fourth of a rotation. 

 

4.5.1. 
Results: no pins 

The first experiments were conducted without the use of pins to see how the disc 

would react to an impulse exerted in the center once it had reached stable rotation. 

It was found that after a few impacts the disc reduced its angular velocity by a full 

annular rub. This was the case for both the acrylic and the heavy disc and two 

typical plots illustrating the accumulated disc center trajectory over the whole time 

range of the test can be found in Figure 4-13. 

Looking more closely at these plots it is evident that the readings in the x 

direction are more aligned than in the y direction. This is likely due to one of the 

sensors not measuring directly perpendicular to the surface of the annular stator, 

but with a few degrees "turn" to one side or the other. The same tendency is seen 

in the measurements on the metal disc, but here it is the case for both the x and 

the y direction. The consequence of this is an average which is either too high or 

too low compared to the actual center of the disc. If we are only investigating the 

trends in disc stator contact this has however no significance. 
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Figure 4-12: Readings from the channels and the average position, acrylic disc 

(Fleischer, 2011). 

It can be noticed from Figure 4-13, that the metal disc seems to enter the full 

annular rub before the acrylic disc, which is also a general tendency for all the tests 

(Fleischer, 2011).  

 

 

Figure 4-13: Movement of the disc center. Left: acrylic disc. Right: Metal 

disc (Fleischer, 2011). 

4.5.2. 
Results: Minimum length pins  

The term ‘minimum length pins’ means that the pins are at a minimum 

configuration, which just ensures that the disc makes contact only with the pins 

and not with the metal stator, as it is shown in Figure 2-14. The following average 
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position plots were standardized using a gap of 1 mm from the pin edge to the disc 

wall.  

 

Figure 4-14: Minimum length pin configuration tests. Top: Acrylic disc. 

Bottom: Metal disc (Fleischer, 2011). 

4.5.3. 
Results: Tight pins 

The ‘tight’ pin configuration refers to a pin setup where the disc has very 

little space to move around because the pins restrict the movement. The results for 

the collision tests in this configuration are presented in Figure 4-15. From the 

position plot of the acrylic disc the crocked square shape is seen to be clearly 

defined, due to the restrictions of the disc movements. It is clear that the sample of 

points of the disc center represented in Figure 2-14 in the previous chapter, but 

with less space to move.  

 

DBD
PUC-Rio - Certificação Digital Nº 1112069/CA



The test rigs  87 

 

Figure 4-15: Tight pins configuration tests. Top: Acrylic disc. Bottom: 

Metal disc (Fleischer, 2011). 

The angular velocity plots of both discs are relatively unaltered. However, 

the time the discs take to reach velocities below 4 rad/s is decreased in comparison 

to the minimum length pin configuration. From visually observing the tests this is 

due to an increased number of impacts and hence more energy dissipation over a 

shorter amount of time. 

 

4.6. 
The final test rig 

The final test rig is a full set for the study of rotors. The concept comes from the 

work of (Segayer, 2000) and the undergraduate project from (Aguiar, 2001) . Their 

project consists of a vertical rotor with one steel disc and a round bearing 

supported by four vertical rectangular shaped beams. The rotor has on the top a 

rolling bearing attached to an AC-synchronous motor; both are fixed on a C-

shaped cantilever on the wall. Later it was used in the work of by (Lahiri, Weber, 

Santos, & Hartmann, 2012), where the ideas of pins were brought. The 

modifications done in this work are to introduce a second disc, much lighter and 

made of aluminum, to serve as the hitting disc in a retainer bearing that preserves 
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the original disc. Therefore a new round structure (that will contain the pins) will 

be introduced on the same plane as the lighter disc.  

The steel disc has no bearing around it, only the position sensors are 

positioned on its plane. The angular velocity sensor is positioned on the cantilever 

where a light plastic disc is with one small magnet is fixed on the shaft. The 

structure of the retainer bearing received a small support for the new surface with 

pins and the step motors trails. The trails are small acrylic blocks glued to the 

structure and the step motor is allowed to slides in radial direction. The step 

motor’s axis has a bronze screw, which is the active pin. The whole setup is shown 

in Figure 4-16. 

 

Figure 4-16: Setup of the final test rig. Left: Sketch of the discs. Right: The real 

assembly. 

4.6.1. 
Acquiring and actuating the system 

4.6.1.1. 
Angular velocity 

The rotor has a free end and the other coupled to an AC motor, which gives it 

angular speed. The motor is controlled by a frequency inverter; which changes the 

frequency of electric grid to a desired one. Unfortunately, by now, it was not 

Shaft 

Light disc to hit 

with pins 

4 step motors 

and the pins 

AC motor 
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possible to change the frequency automatically, only manually and direct on its 

display. 

 

 

Figure 4-17: Coupling motor/shaft. 

 

The angular velocity is measured in the same as the previously experiments, 

but with one difference: There is one magnet on the plastic disc, so each pulse 

represents one angular revolution.  Equation (102) is multiplied by four to give the 

exact number of revolutions per minute. 

The motor specifications are: 

• Three phase 2-poles induction motor  

• Externally sealed; 

• Mass: 3.3kg 

• Power: 1/6 (0.12KW) 

• Rotation: Variable, controlled by frequency inverter 

• Nominal voltage: 220V 

• Nominal current: 1.1A 

 

AC motor 

Flexible coupling 

Hall sensor/ 
Angular velocity sensor 
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4.6.1.2. 
Acquisition boards 

Two I/O1 boards were used in the experimental analysis. The NI-6229 from 

National Instruments® and the Arduino Uno(CC). The NI-6229 is a powerful 

laboratory tool with four 16-bit analogs outputs, thirty-two 16-bit analog inputs  

and forty-eight digital I/O. It is already assembled and communicates with an USB 

cable with a regular PC. From the computer the user can program with the 

software Labview® the processing of the signals.  

 

Figure 4-18: The NI-6229 acquisition board with its lid open used in all 

experimental parts. 

The Arduino UNO(CC) board is well known nowadays because it is fitted to 

a huge variety of uses. It has a processing unit, thirteen digital I/O and five analog 

inputs. A small programing with a PC-interface, its programing language is similar 

to C, so one can develop innumerous types of programs and embark them on the 

electronic board.  

The flow of data shown in Figure 4-20, the proximity probes and the angular 

velocity sensor send their voltage to the NI-6229 board and then to the PC to be 

computed. The Labview® program and the NI-6229 analyze all data and change 

information with the Arduino board. The Arduino is responsible to generate the 

series of pulses to the step motors drive.  

                                                
1 Input & Output 
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Figure 4-19: The Arduino board showing its I/O ports and electronic 

components. 

Two digitals signals are sent from the Arduino back to the NI-6229. A digital 

signal goes back to program when the chain of pulses ends and one that gives the 

status of the pins, whether they are inside or outside the bearing wall.  

 

 

Figure 4-20: Information exchange diagram of the elements. 

The pins stop to screw when the series of pulses end. 

 

4.6.2. 
Labview Software and Controlling 

Labview® is a block programing tool, whose blocks have embedded programs and 

the functions communicate through lines. The program is responsible to optimize 

the line codes. The advantage of this kind of software is to allow the user to have a 

panoramic view of the program and the flow of data inside it. Figure 4-20 and 

Figure 4-21 are pictures taken from the screen. 
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Figure 4-21: Labview control screen. 

 

 

 

Figure 4-22: Labview block program. 
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Figure 4-23: Detailing the Labview program. 

 

Due to high noise gathered by the angular velocity small data processing 

must have been done. Mean time between the velocity two positive transitions of 

the velocity pulses and a moving average of five data was implemented as well 

whist the running experiment.  

There were two types of alarms that triggered the Arduino board to generate 

the pulses. A resonance alarm and a position alarm. The resonance points should 

be identified before running the experiment and set as variable to the program. 

They are explained in the next section as the eigenfrenquencies of the beam. 

Additionally, a position alarm is present in the controlling logic too. The position 

measured by the proximity probes is compared against the gap. The rules for 

controlling the pins are: 

If the measured angular velocity is near ±20% of the known resonance or if 

the measured position reaches 90% of the gap, an alarm of actuation of the pins is 

set to ON. Otherwise, the pins stay as they are. If the pins are already advanced 
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and the alarm is set to ON, no action is taken. With no angular velocity the pins 

are always retrieved. 

 

4.6.3. 
Vibration modes 

Although the beam is much lighter than the mass of the metallic disc making the 

center of mass virtually be on the disc, as the rotor rotates, the beams induces 

natural modes shapes. The shaft is free in one end and it can be considered only 

supported, since the coupling shaft-motor and the upper ball rolling bearing allow 

the shaft to have an angular deflection, but no displacements. In other words, the 

shaft is in the condition known as hinged-free (Thomson, 1972). 

Experimentally, three stages of high vibration were detected. One is at very 

low angular velocity, the other two, around 23Hz and around 75Hz. The first one is 

considered to be cause by a pendulum oscillation; the other two are visually 

categorized as the first and the second modes of a beam deflection. When the shaft 

rotates around a 23Hz the whole beam bends in the form of an arch. By rotating it 

around 75Hz, the shape of the deflection is different leaving a small region without 

moving, hence it is a nodal point. Further resonance points were not searched due 

to the high velocity we were leading with (75Hz equals to 4500RPM). 

Theoretically, the natural vibration frequencies are calculated as follows. 

 

-
�� = 12� j(�k�F�b�� . 
 

According to Table 2.1, the hinged-free ( coefficients give the results 

 -� 0 24.82��			and			-� 0 80.59��. 
 

The resonance frequencies match the experimental ones with errors of 5.3% and 

6.9%. It is a quite satisfactory comparison of both experimental and theoretical. 
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Figure 4-24: First resonance (23Hz) as seen experimentally with a strobe 

light. Yellow line is an exaggerated representation of the deformed shaft. 
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Figure 4-25: Second resonance (75Hz) as seen experimentally with a strobe 

light. Yellow line is an exaggerated representation of the deformed shaft. 

 

 

4.7. 
Results and graphs 

The gathered data is collected and shrunk in one text file for post-processing. 

Again Matlab® is the chosen software for plotting and analyzing. Three types of 

test were done:  

• One without the actuation of the pins; 

• the passage through the first resonance velocity of 23Hz; 

• at high angular velocity an impulse is given to the shaft. 

It was stipulated that in all test the nominal angular speed should not pass 

50Hz (3000RPM) due to potential damage it can cause to the structure and the 

Nodal point 
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pins. The motor can deliver high torques, so in order to simulate a low torque 

condition, the velocity grows slowly and manually operated on the frequency 

inverter’s console-table. 

The first test begun from zero velocity and as it gained speed the radial 

position increases until a long series of hits happen even when the disc was 

spinning at 50Hz. Also a full rub happen on the safety bearing wall. It took a while 

to the rotor to stay away from any critical speed. Rubbing and impacts are the 

worst conditions to be expected from a rotating machine. If it stays like this or 

operates like this for a long time, a dangerous situation may occur. This should be 

avoided at all. 

 

 

Figure 4-26: Radial position. No pin configuration 
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Figure 4-27: XY plot of the disc center.  

 

The second experiment begins also from the resting condition. The disc 

accelerates and passes through the critical velocity until it rotates at 50Hz. 

However, the pins are active, and the controlling units are sending their signals to 

the step motors. As the rotor reaches 80% of the resonance point the pins are 

ordered to advance. The hits happen, but constrained. They are not on the wall, 

only on the pins. After 50Hz of rotational speed it stabilizes. Then, due to the 

vibration of other components like the C-shaped horizontal beam, the radial 

position induces a slow growth. Thanks to the position alarm, the pins prevent 

anything contact to the wall and push the disc back to a smaller orbit. In Figure 

4-28 and Figure 4-29 the red dot means that the pins are inside the structure. 
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Figure 4-28: Radial position. Active pin configuration. Blue line: Radial position; 

Dashed green line: Angular velocity. 

 

Figure 4-29: XY plot of the disc center. After collisions on the pins the rotor 

reaches stable orbits. 
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The third experiment is simpler; it measures the reaction time of the pins 

when the shaft receives an external hit. It starts with the rotor already rotating at 

50Hz, when a bump is given to the shaft the disc indeed rubs the bearing wall, 

because the pins did not have enough time to counter-react, but as the pins are 

screwing themselves into the inner structure, the disc deviates from the wall and 

the disc stays on a safer orbit. Then, the same happened as the previous test, the 

radial position increases slowly. Likewise, the pins prevented the disc to rub the 

wall. Soon the rotor stays in a much safer orbit. The behavior can be seen in 

Figure 4-30 and Figure 4-31. 

 

 

Figure 4-30: Radial position. Active pins configuration. Blue line: Radial position; 

Dashed green line: Angular velocity. 

 

External hits 
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Figure 4-31: XY plot of the disc center. First hit from 3 to 4 seconds; Second hit 

from 6 to 7seconds. 
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5 
Conclusions 

The use of pins inside the structure of a bearing has shown us that they can 

provide a good solution on restraining abnormal oscillatory movements of the 

rotors, which may occur by any reason. Numerical simulations in this work were 

created to model the impacts on the wall and on the pins. They showed that the 

behavior of the disc causes either a full annular rub, or a series of impacts of the 

disc on the wall. 

The next simulated case models the behavior of the disc in the presence of 

pins. First, the disc is released from the origin at the critical speed. It starts with 

spiral trajectory and a few instants later, the disc begins to hit the pins, thereby 

losing a small amount of energy after each impact, and then stays on safer inner 

orbits. This is a much better choice than to expect it to rub on surface of the 

bearing. Since most rotating machines work above the critical speed, a new case 

considering an accelerating movement is conducted. It consists of including a 

constant torque term to the system of equations. In this case, the disc starts from 

rest and begins to impact several times on the pins. After a while, the disc returns 

to much safer orbits inside the bearing and accelerates without restriction.  

The simulated results showed that the pins were able to prevent the full or 

partial annular rub, when the disc is about to collide on the bearing wall. Also, it is 

seen in the simulation that, when the disc is accelerated with minimum torque, 

causing high amplitudes of oscillation, the pins help the disc to surpass the critical 

speed without any hit on the wall. 

Afterwards, the experiments were conducted to test the simulated behavior. 

The design of the pin has proved to be efficient and adaptable on the existing test 

rig. Experimental results on the first and on the second test rig demonstrate that 

the concept works and limits the oscillations during the expected resonance point 
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and they help to overpass it, or when the shaft receives an external thump. 

Moreover, the pins are automatic and move in and out when requested by a 

program. When not needed, they are automatically retracted, leaving a usual round 

bearing. 

The concept of pins inside the retainer bearing is fitted for critical systems, 

which either rub constantly the wall, or have fragile elements and require that no 

impacts are allowed. Machines like magnetic bearings work in vacuum or thin air 

and, therefore, have low damping. Also, they rely on the electric grid, so safety 

measures are required in order to prevent a sudden blackout or instability of the 

grid. A safety bearing containing active pins could work as an emergency tool until 

the machine return to normality. 

 

5.1. 
Difficulties and future works 

In order to improve the work done, some features of the assembly should further 

analyzed and some others should be modified: 

• The step motors can offer a good precision in its angular position, but 

lack in feedback control and, after a series of impacts on the pins, 

their position may be altered. Besides, the time to generate the chain 

of pulses was considered too long, causing a slow actuation. 

• Controlling strategies: The control of the length of the pins using 

standard control techniques such as PID and Fuzzy logic should be 

implemented. 

• Although the linear impact showed in simulation a good response, for 

a more profound and realistic mathematical modeling of the impacts, 

non-linear considerations are needed. 

• The angular velocity sensor gathered data with high levels of noise, 

which should be minimized by standard filtering methods. 

• Measurement of the impacts magnitude on the pins. 
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Appendix A 

This appendix has the values which were used in the numerical simulations. 

 

Table 2: Parameter values used in simulations. 

� = 	2.46	�� Disc mass 
� 0 	0.05 Disc radius 
� 0 	0.055  Disc bearing � 0 	1mm  Mass eccentricity  $ 0 	0.56  Friction coefficient (no pins) $ 0 	0.08  Friction coefficient (with pins) 

�� 0 	482.54N/m Shaft elastic coeficient 	� 0 0.012	)�/�	  Damping coefficient (simulation  

DBD
PUC-Rio - Certificação Digital Nº 1112069/CA



  109 

Appendix B 

 

Table 3: Size of the components of test rigs. 

Shaft diameter 8mm 

Shaft length 1m 

Distance from the shaft end to the disc 0,8m 

Light rotor diameter 10cm 

Heavy rotor diameter 10cm 

Bearing inner diameter 105.5mm 

Diameter of the pin 0,375in 
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Appendix C 

This Appendix contains the isometric, lateral and superior views of the 

concept made with CAD software. 

 

 

Figure C-1: Lateral views from the assembly. 
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Figure C-2: Isometric view of the whole set up. 
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Figure C-3: Superior view without the AC motor. Representation of the 

positioning of the pins and stepmotors. 

Step motor 
Pin 

Light disc 

Position sensor  
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