

Willian Felipe Theobald

Análise de um Compressor Inovador Rotativo de Deslocamento Positivo

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do grau de Mestre em Engenharia Mecânica.

Orientador: Prof. José Alberto dos Reis Parise

Volume I

Rio de Janeiro Agosto 2013

Willian Felipe Theobald

Análise de um Compressor Inovador Rotativo de Deslocamento Positivo

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia Mecânica da PUC-Rio. Aprovado pela Comissão Examinadora abaixo assinada.

> Prof. José Alberto dos Reis Parise Orientador Departamento de Engenharia Mecânica – PUC-Rio

> Prof. Sérgio Leal Braga Departamento de Engenharia Mecânica – PUC-Rio

> Pesq. Alan da Silva Esteves Departamento de Engenharia Mecânica – PUC-Rio

> > Carlos Eduardo Reuther de Siqueira Petróleo Brasileiro S. A.

José Eugenio Leal Coordenador do Centro Técnico Científico da PUC-Rio

Rio de Janeiro, 27 de agosto 2013

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Willian Felipe Theobald

Graduou-se em Engenharia Mecânica (Universidade Católica de Petrópolis) em 2008. Atua como Engenheiro na MJW Eletromecânica Ltda Me, sendo responsável por diversos projetos nas áreas aeronáutica, ferroviária, naval e petrolífera.

Ficha Catalográfica

Theobald, Willian Felipe

Análise de um compressor inovador rotativo de deslocamento positivo / Willian Felipe Theobald ; orientador: José Alberto dos Reis Parise. – 2013.

2v. f. : il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2013.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Compressor rotativo. 3. Kopelrot. 4. Excentricidade. 5. Câmara. 6. Deslocadores e sistema de acionamento. I. Parise, José Alberto dos Reis. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

Aos meus pais Ana Lúcia Pereira dos Santos Theobald e Marcos Antônio Theobald pelo apoio, ajuda e confiança. Para minha noiva Janaina Santos de Paula pela fé, paciência e ajuda ao longo deste projeto. Obrigado por estar ao meu lado e por ter compreendido o quão importante este projeto foi para mim. Desculpe-me por fazê-la esperar, e estou

preparado para enfrentar qualquer batalha ao seu lado.

Agradecimentos

Ao meu orientador Professor José Alberto dos Reis Parise, pela confiança, paciência, dedicação e parceria para a realização deste trabalho.

A Hugo Júlio Kopelowicz, pela oportunidade de trabalhar e desenvolver uma nova versão do compressor Kopelrot.

À MJW Eletromecânica Ltda Me, onde tive a liberdade de fabricar todas as peças do Kopelrot.

Aos funcionários da MJW Eletromecânica Ltda Me, pelas idéias, experiência, paciência e boa vontade de trabalhar nas confecções das peças fora da jornada normal de trabalho, o que tomou muito tempo.

A Janaina Santos de Paula, minha noiva, à qual devo toda a paciência, apoio, atenção, carinho e estímulo. Sem ela não teria forças para concluir o mestrado.

Aos meus pais e familiares, pelo apoio, atenção e estímulo.

Aos meus amigos, que confiaram no meu trabalho e na minha dedicação ao projeto.

Aos professores que participaram da banca examinadora, pelas sugestões e comentários esclarecedores.

Resumo

Theobald, Willian Felipe; Parise, José Alberto dos Reis. **Análise de um Compressor Inovador Rotativo de Deslocamento Positivo.** Rio de Janeiro, 2013. 451p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

A presente dissertação trata do projeto, construção e ensaio preliminar de um novo modelo do compressor Kopelrot. É uma máquina de deslocamento positivo baseada em seis patentes depositadas desde 1998. Esta tecnologia está em desenvolvimento há aproximadamente 8 anos, tendo gerado artigos e dissertações, assim como a construção de dois protótipos. É apresentada, inicialmente, uma revisão dos trabalhos publicados sobre a tecnologia Kopelrot. Foram construídos junto ao novo modelo de compressor Kopelrot um novo sistema de acionamento e uma base para a fixação de ambos a um motor elétrico. Durante a elaboração dos desenhos foram realizadas simulações preliminares da geometria para definir a fabricação de algumas peças importantes. A base permite regular a excentricidade entre os eixos de centro do compressor e do sistema de acionamento e, dessa forma, variar a vazão volumétrica do compressor. Simulou-se a variação de volume no interior da câmara com o conjunto compressor Kopelrot/Sistema de acionamento, ajustado para 5 excentricidades diferentes, a fim de mapear o comportamento do Kopelrot quando sua capacidade é variada, deslocando-se os eixos de centro do compressor e do sistema de acionamento. Para as excentricidades escolhidas, foram calculadas, a partir de modelo termodinâmico simplificado, as variações de pressão, temperatura e massa no interior da câmara do compressor. Valores globais de potência consumida e eficiência volumétrica também foram calculados. Durante o funcionamento do protótipo identificaram-se alguns problemas tipicamente encontrados em tecnologias inovadoras. Devido a esses problemas, não foi possível a realização dos testes do compressor operando em condições normais de pressão.

Palavras-chave

Compressor rotativo; Kolperot; excentricidade; câmara; deslocadores; sistema de acionamento

Abstract

Theobald, Willian Felipe; Parise, José Alberto do Reis (Advisor). **Analysis of an Innovative Positive Displacement Rotary Compressor.** Rio de Janeiro, 2013. 451p. MSc Dissertation – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The present dissertation addresses the design, construction, simulation and preliminary tests of an innovative positive displacement rotary compressor. A review is presented on the previous works, papers and dissertations, based on this new this new Kopelrot technology. A new prototype, employing a new driving system, was manufactured. The main feature of the machine is that, by adjusting the eccentricity between compressor cylinder and driving mechanisms axis, a variable capacity device is obtained. Design, manufacturing and assembly of components and subsystems of the compressor are presented in detail. Design data of the compressor allowed for a simple thermodynamic simulation model to be developed. Main conclusions of the simulation are that a full positive displacement compression cycle can be attained with the Kopelrot technology and that use of discharge and suction valves is required in order to have the compressor operating under different conditions.

Keywords

Rotary compressor; Kolperot; eccentricity; chamber; displacers; drive system

Sumário

1. Introdução	35
1.1. Tecnologia Kopelrot	35
1.2. Objetivo do trabalho	40
1.3. Organização do trabalho	40
2. Breve revisão bibliográfica	42
2.1. Compressores rotativos	42
2.2. Tecnologia Kopelrot	43
3. Fabricação do novo compressor Kopelrot	46
3.1. Cilindro de compressão do compressor Kopelrot	46
3.2. Sistema de acionamento do compressor Kopelrot	49
3.3. Manufatura dos componentes do cilindro de compressão	51
3.3.1. Rotor interno	51
3.3.2. Rotor externo	55
3.3.3. Placa de janelas	61
3.3.4. Deslocadores	64
3.3.5. Raspadores	70
3.3.6. Bucha do rotor interno	73
3.3.7. Bucha do rotor externo	75
3.3.8. Carcaça dianteira	78
3.3.9. Carcaça traseira	83
3.4. Manufatura dos componentes do sistema de acionamento	89
3.4.1. Braços retos principais	89
3.4.2. Braços em curva	92
3.4.3. Buchas pequenas	94
3.4.4. Eixos dos braços	96
3.4.5. Buchas grandes	98
3.4.6. Eixos do volante	99
3.4.7. Volante	101

3.4.8. Buchas do volante	103
3.4.9. Espaçadores	104
3.4.10. Bucha do motor	106
3.5. Suporte de fixação	108
3.5.1. Parte fixa do suporte de fixação	109
3.5.2. Parte móvel do suporte de fixação	112
3.5.3. Montagem do compressor Kopelrot	116
4. Simulações	118
4.1. Simulação gráfica do sistema de acionamento	118
4.2. Simulação do compressor Kopelrot	121
4.2.1. Variação de volume	121
4.2.2. Pressão	129
4.2.3. Temperatura e massa	143
4.3.2.1. Massa	144
4.3.2.2. Temperatura	145
4.2.4. Trabalho e potência	159
4.2.5. Vazão e eficiência volumétrica	161
5. Simulações adicionais	166
5.1. Simulação para pressão de descarga de 750 kPa	167
5.1.1. Pressão de descarga de 750 kPa	167
5.1.2. Temperatura e massa para pressão de descarga de	
750 kPa	175
5.1.3. Trabalho, potência, vazão e eficiência volumétrica	
para pressão de descarga de 750 kPa	179
5.2. Simulação para pressão de descarga de 250 kPa	183
5.2.1. Pressão de descarga de 250 kPa	183
5.2.2. Temperatura e massa para pressão de descarga de	
250 kPa	190
5.2.3. Trabalho, potência, vazão e eficiência volumétrica	
para pressão de descarga de 250 kPa	194
5.3. Simulação do compressor Kopelrot com válvulas	198

5.3.1. Pressão de descarga de 500 kPa utilizando válvula	
nas janelas	198
5.3.2. Temperatura e massa para pressão de descarga de	
500 kPa utilizando válvula nas janelas	206
5.3.3. Trabalho, potência, vazão e eficiência volumétrica	
para pressão de descarga de 500 kPa utilizando válvula	
nas janelas	214
6. Testes preliminares	220
6.1. Inversor e freqüência	220
6.2. Motor elétrico	221
6.3. Funcionamento do compressor	222
6.4. Primeiros testes	226
6.5. Danos acarretados ao braço em curva	230
6.6. Vazamentos	231
7. Conclusão	236
8. Referências bibliográficas	238
	055
Apendice I – Suporte de fixação	255
Adaptação do motor ao suporte de fixação	255
Apêndice II - Algumas soluções técnicas descartadas	260
Placa de janelas	260
Anéis de vedação	263
	200
Apêndice III – Recentes alterações	266
Carcaça traseira	266
-	
Apêndice IV – Variação de volume	267
Apêndice V – Valores da simulação para pressão de	
descarga de 500 kPa	276

Apêndice VI – Valores obtidos nas simulações adicionais	320
Valores para pressão de descarga de 750 kPa	320
Valores para pressão de descarga de 250 kPa	364
Valores para pressão de descarga de 500 kPa utilizando	
válvulas nas janelas	407

Lista de figuras

Figura 1 – Modelo simplificado do núcleo do compressor.	
(Barreto et al., 2004)	35
Figura 2 – Vista explodida. (Barreto et al., 2004)	36
Figura 3 – Conjunto montado. (Barreto et al., 2004)	37
Figura 4 – Funcionamento ao longo de uma volta	
completa do eixo motriz (passo de 45º). (Barreto et al., 2004)	37
Figura 5 – Movimento das guias ao longo de uma	
volta completa do eixo motriz (passo de 45º). (Barreto et al., 2004)	38
Figura 6 – Vista em corte do compressor. (Barreto et al., 2004)	39
Figura 7 – Desenho em corte do novo modelo do cilindro	
de compressão do compressor Kopelrot	47
Figura 8 – Câmara formada pelos rotores e deslocadores	48
Figura 9 – Vista isométrica do sistema de acionamento do	
compressor Kopelrot	49
Figura 10 – Vista lateral do sistema de acionamento	51
Figura 11 – Rotor interno	52
Figura 12 – Rotor interno em corte	53
Figura 13 – Rotor interno com a parte de torno fabricado	54
Figura 14 – Rotor interno fabricado	54
Figura 15 – Corpo do rotor externo	55
Figura 16 – Corpo do rotor externo em corte	56
Figura 17 – Vista em corte do sistema de refrigeração	57
Figura 18 – Corpo do rotor externo, peça bruta e fabricada	57
Figura 19 – Frente do rotor externo	58
Figura 20 – Vista traseira da frente do rotor externo	59
Figura 21 – Vista em corte da frente do rotor externo	60
Figura 22 – Frente do rotor externo, peça bruta e fabricada	60
Figura 23 – Rotor externo montado	61
Figura 24 – Placa de janelas	62
Figura 25 – Vista traseira da placa de janelas	63

Figura 26 – Vista em corte da placa de janelas	63
Figura 27 – Placa de janelas fabricada	64
Figura 28 – Deslocadores	64
Figura 29 – Esquema de usinagem dos deslocadores	65
Figura 30 – Rasgos do deslocador do rotor interno	66
Figura 31 – Vista em corte do deslocador do rotor interno	67
Figura 32 – Deslocador do rotor interno com raspadores	
fabricados	67
Figura 33 – Rasgos do deslocador do rotor externo	68
Figura 34 – Vista em corte do deslocador do rotor externo	69
Figura 35 – Detalhe dos furos referente ao sistema de	
refrigeração do deslocador do rotor externo	69
Figura 36 – Deslocador do rotor externo com raspadores	
fabricados	70
Figura 37 – Conjunto de raspadores	70
Figura 38 – Vedações do raspador do deslocador interno	71
Figura 39 – Vedações do raspador do deslocador externo	72
Figura 40 – Fabricação dos raspadores	72
Figura 41 – Rotores retificados, deslocadores e raspadores	
montados	73
Figura 42 – Montagem da câmara	73
Figura 43 – Bucha do rotor interno	74
Figura 44 – Detalhe de montagem da bucha do rotor interno	74
Figura 45 – Rotor interno, bucha e rolamento montados	75
Figura 46 – Esquema de montagem do rotor interno	75
Figura 47 – Bucha do rotor externo	76
Figura 48 – Vista em corte da bucha do rotor externo	77
Figura 49 – Bucha do rotor externo fabricada	77
Figura 50 – Esquema de montagem do rotor externo	78
Figura 51 – Carcaça dianteira	78
Figura 52 – Vista explodida da carcaça dianteira	79
Figura 53 – Carcaça dianteira fabricada	79
Figura 54 – Vista em corte da peça nº 1 da carcaça dianteira	80
Figura 55 – Peça nº 1 da carcaça dianteira fabricada	81

Figura 56 – Vista em corte da peça nº 2 da carcaça dianteira	81
Figura 57 – Peça nº 2 da carcaça dianteira fabricada	82
Figura 58 – Vista em corte da peça nº 3 da carcaça dianteira	83
Figura 59 – Peça nº 3 da carcaça dianteira fabricada	83
Figura 60 – Carcaça traseira	84
Figura 61 – Vista em corte da carcaça traseira	84
Figura 62 – Vista da face de trás da carcaça traseira	86
Figura 63 – Detalhe de montagem da carcaça traseira	87
Figura 64 – Vista frontal da carcaça traseira	88
Figura 65 – Carcaça traseira fabricada	88
Figura 66 – Braços retos principais	89
Figura 67 – Haste do braço reto principal	90
Figura 68 – Corpo do braço reto principal	91
Figura 69 – Braço reto principal do rotor interno com as	
buchas fabricadas	92
Figura 70 – Braço reto principal do rotor externo com as	
buchas fabricadas	92
Figura 71 – Braços em curva	93
Figura 72 – Esquema de fabricação dos braços em curva	93
Figura 73 – Braços em curva fabricados	94
Figura 74 – Bucha pequena	95
Figura 75 – Esquema de montagem das buchas nos braços	95
Figura 76 – Buchas pequenas fabricadas	96
Figura 77 – Eixo dos braços	96
Figura 78 – Vista em corte de montagem do eixo do braço	97
Figura 79 – Eixos dos braços fabricados	97
Figura 80 – Bucha grande	98
Figura 81 – Buchas grandes fabricadas	99
Figura 82 – Buchas dos braços fabricadas	99
Figura 83 – Eixo do volante	100
Figura 84 – Eixos do volante fabricados	100
Figura 85 – Volante	101
Figura 86 – Base do volante fabricada	102
Figura 87 – Volante com as buchas montadas	102

Figura 88 – Buchas do volante	103
Figura 89 – Buchas do volante fabricadas	104
Figura 90 – Espaçadores	104
Figura 91 – Espaçadores fabricados	105
Figura 92 – Esquema de montagem dos eixos, buchas,	
braços espaçadores e volante	105
Figura 93 – Vista em corte de montagem do volante, eixo,	
buchas, espaçadores e braço em curva	106
Figura 94 – Bucha do motor	106
Figura 95 – Vista em corte de montagem do volante com a	
bucha do motor	107
Figura 96 – Bucha do motor fabricada	107
Figura 97 – Montagem do cilindro de compressão e do	
sistema de acionamento	108
Figura 98 – Suporte de fixação do conjunto Cilindro de	
compressão / Sistema de acionamento / Motor	109
Figura 99 – Suporte de fixação fabricado e pintado	109
Figura 100 – Parte fixa do suporte de fixação	110
Figura 101 – Primeira e segunda chapa da parte fixa	111
Figura 102 – Espaçadores, barras de amarração e chapa	
lateral de fechamento da caixa de óleo e terceira chapa	
da parte fixa	111
Figura 103 – Base móvel	112
Figura 104 – Base móvel fabricada	113
Figura 105 – Componentes da parte móvel	114
Figura 106 – Guias, batentes e fixadores montados	114
Figura 107 – Vista em corte da parte móvel	115
Figura 108 – Parte móvel do suporte de fixação montada	115
Figura 109 – Vista de frente do conjunto Cilindro de	
compressão / Sistema de acionamento / Motor	116
Figura 110 – Vista superior do conjunto nos pontos de	
excentricidades 0 e 95 mm	117
Figura 111 – Compressor Kopelrot montado ao suporte de	
fixação com excentricidade de 95 mm	117

Figura 112 – Sistema de acionamento com excentricidade	
de 95 mm (rotação no sentido horário)	119
Figura 113 – Sistema de acionamento com excentricidade	
nula (rotação no sentido horário)	121
Figura 114 – Desenho em corte da câmara do cilindro de	
compressão	122
Figura 115 – Simulação dos volumes das câmaras para	
uma excentricidade de 95 mm	124
Figura 116 – Gráfico de variação do volume das câmaras	
simulados em função do ângulo do eixo para	
excentricidade de 95 mm	126
Figura 117 – Gráfico de variação do volume das câmaras	
simulados em função do ângulo do eixo para	
excentricidade de 90 mm	126
Figura 118 – Gráfico de variação do volume das câmaras	
simulados em função do ângulo do eixo para	
excentricidade de 85 mm	127
Figura 119 – Gráfico de variação do volume das câmaras	
simulados em função do ângulo do eixo para	
excentricidade de 80 mm	127
Figura 120 – Gráfico de variação do volume das câmaras	
simulados em função do ângulo do eixo para	
excentricidade de 75 mm	128
Figura 121 – Gráfico de variação do volume das câmaras	
simulados em função do ângulo do eixo para todas as	
excentricidades escolhidas	128
Figura 122 – Posições finais das janelas de compressão e	
descarga	130
Figura 123 – Placa de janelas com as janelas para	
excentricidade de 95 mm	133
Figura 124 – Gráfico de pressão x volume simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 95 mm. Janelas de sucção e descarga	
otimizadas	134

Figura 125 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 95 mm. Janelas de sucção e descarga	
otimizadas	135
Figura 126 – Gráfico de pressão x volume simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 90 mm	136
Figura 127 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 90 mm	136
Figura 128 – Gráfico de pressão x volume simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 85 mm	138
Figura 129 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 85 mm	138
Figura 130 – Gráfico de pressão x volume simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 80 mm	139
Figura 131 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 80 mm	139
Figura 132 – Gráfico de pressão x volume simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 75 mm	140
Figura 133 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 75 mm	140
Figura 134 – Gráfico de pressão x volume simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa	
para todas as excentricidades escolhidas	142
Figura 135 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa	
para todas as excentricidades escolhidas	142

Figura 136 – Gráfico de temperatura x ângulo simulado	
para pressão de descarga de 500 kPa, sucção de	
101,32 kPa e excentricidade de 95 mm	149
Figura 137 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa,	
e excentricidade de 95 mm	150
Figura 138 – Gráfico de temperatura x ângulo simulado	
para pressão de descarga de 500 kPa, sucção de	
101,32 kPa e excentricidade de 90 mm	151
Figura 139 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa	
e excentricidade de 90 mm	152
Figura 140 – Gráfico de temperatura x ângulo simulado	
para pressão de descarga de 500 kPa, sucção de	
101,32 kPa e excentricidade de 85 mm	153
Figura 141 – Gráfico de temperatura x ângulo simulado	
para pressão de descarga de 500 kPa, sucção de	
101,32 kPa e excentricidade de 80 mm	153
Figura 142 – Gráfico de temperatura x ângulo simulado	
para pressão de descarga de 500 kPa, sucção de	
101,32 kPa e excentricidade de 75 mm	154
Figura 143 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa	
e excentricidade de 85 mm	155
Figura 144 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa	
e excentricidade de 80 mm	155
Figura 145 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa	
e excentricidade de 75 mm	156
Figura 146 – Gráfico de temperatura x ângulo simulado	
para pressão de descarga de 500 kPa, sucção de	
101,32 kPa para todas as excentricidades escolhidas	157

Figura 147 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa	
para todas as excentricidades escolhidas	158
Figura 148 – Gráfico de pressão x volume simulado para	
pressão de descarga de 750 kPa, sucção de 101,32 kPa	
e excentricidade de 95 mm	168
Figura 149 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 750 kPa, sucção de 101,32 kPa	
e excentricidade de 95 mm	168
Figura 150 – Gráfico de pressão x volume simulado para	
pressão de descarga de 750 kPa, sucção de 101,32 kPa	
e excentricidade de 90 mm	170
Figura 151 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 750 kPa, sucção de 101,32 kPa	
e excentricidade de 90 mm	170
Figura 152 – Gráfico de pressão x volume simulado para	
pressão de descarga de 750 kPa, sucção de 101,32 kPa	
e excentricidade de 85 mm	171
Figura 153 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 750 kPa, sucção de 101,32 kPa,	
e excentricidade de 85 mm	171
Figura 154 – Gráfico de pressão x volume simulado para	
pressão de descarga de 750 kPa, sucção de 101,32 kPa	
e excentricidade de 80 mm	172
Figura 155 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 750 kPa, sucção de 101,32 kPa	
e excentricidade de 80 mm	172
Figura 156 – Gráfico de pressão x volume simulado para	
pressão de descarga de 750 kPa, sucção de 101,32 kPa	
e excentricidade de 75 mm	173
Figura 157 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 750 kPa, sucção de 101,32 kPa	
e excentricidade de 75 mm	173

Figura 158 – Gráfico de pressão x volume simulado para	
pressão de descarga de 750 kPa e sucção de 101,32 kPa	
para todas as excentricidades escolhidas	174
Figura 159 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 750 kPa e sucção de 101,32 kPa	
para todas as excentricidades escolhidas	174
Figura 160 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 750 kPa, sucção de 101,32 kPa e	
excentricidade de 95 mm	176
Figura 161 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 750 kPa, sucção de 101,32 kPa e	
excentricidade de 90 mm	177
Figura 162 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 750 kPa, sucção de 101,32 kPa e	
excentricidade de 85 mm	177
Figura 163 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 750 kPa, sucção de 101,32 kPa e	
excentricidade de 80 mm	178
Figura 164 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 750 kPa, sucção de 101,32 kPa e	
excentricidade de 75 mm	178
Figura 165 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 750 kPa e sucção de 101,32 kPa	
para todas as excentricidade escolhidas	179
Figura 166 – Gráfico de pressão x volume simulado para	
pressão de descarga de 250 kPa, sucção de 101,32 kPa e	
excentricidade de 95 mm	184
Figura 167 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 250 kPa, sucção de 101,32 kPa e	
excentricidade de 95 mm	184
Figura 168 – Gráfico de pressão x volume simulado para	
pressão de descarga de 250 kPa, sucção de 101,32 kPa e	
excentricidade de 90 mm	185

Figura 169 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 250 kPa, sucção de 101,32 kPa e	
excentricidade de 90 mm	186
Figura 170 – Gráfico de pressão x volume simulado para	
pressão de descarga de 250 kPa, sucção de 101,32 kPa e	
excentricidade de 85 mm	186
Figura 171 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 250 kPa, sucção de 101,32 kPa e	
excentricidades de 85 mm	187
Figura 172 – Gráfico de pressão x volume simulado para	
pressão de descarga de 250 kPa, sucção de 101,32 kPa e	
excentricidades de 80 mm	187
Figura 173 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 250 kPa, sucção de 101,32 kPa e	
excentricidades de 80 mm	188
Figura 174 – Gráfico de pressão x volume simulado para	
pressão de descarga de 250 kPa, sucção de 101,32 kPa e	
excentricidades de 75 mm	188
Figura 175 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 250 kPa, sucção de 101,32 kPa e	
excentricidades de 75 mm	189
Figura 176 – Gráfico de pressão x volume simulado para	
pressão de descarga de 250 kPa e sucção de 101,32 kPa	
para todas as excentricidades escolhidas	189
Figura 177 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 250 kPa e sucção de 101,32 kPa	
para todas as excentricidades escolhidas	190
Figura 178 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 250 kPa, sucção de 101,32 kPa e	
excentricidade de 95 mm	191
Figura 179 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 250 kPa, sucção de 101,32 kPa e	
excentricidade de 90 mm	192
Figura 180 – Gráfico de massa x ângulo simulado para	

pressão de descarga de 250 kPa, sucção de 101,32 kPa e	
excentricidade de 85 mm	192
Figura 181 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 250 kPa, sucção de 101,32 kPa e	
excentricidade de 80 mm	193
Figura 182 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 250 kPa, sucção de 101,32 kPa e	
excentricidade de 75 mm	193
Figura 183 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 250 kPa e sucção de 101,32 kPa	
para todas as excentricidades escolhidas	194
Figura 184 – Gráfico de pressão x volume simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 95 mm, utilizando válvulas nas janelas	199
Figura 185 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 95 mm, utilizando válvulas nas janelas	200
Figura 186 – Gráfico de pressão x volume simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 90 mm, utilizando válvulas nas janelas	201
Figura 187 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 90 mm, utilizando válvulas nas janelas	201
Figura 188 – Gráfico de pressão x volume simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 85 mm, utilizando válvulas nas janelas	202
Figura 189 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 85 mm, utilizando válvulas nas janelas	202
Figura 190 – Gráfico de pressão x volume simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 80 mm, utilizando válvulas nas janelas	203
Figura 191 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	

excentricidade de 80 mm, utilizando válvulas nas janelas	203
Figura 192 – Gráfico de pressão x volume simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 75 mm, utilizando válvulas nas janelas	204
Figura 193 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 75 mm, utilizando válvulas nas janelas	204
Figura 194 – Gráfico de pressão x volume simulado para	
pressão de descarga de 500 kPa e sucção de 101,32 kPa	
para todas as excentricidades escolhidas, utilizando	
válvulas nas janelas	205
Figura 195 – Gráfico de pressão x ângulo simulado para	
pressão de descarga de 500 kPa e sucção de 101,32 kPa	
para todas as excentricidades escolhidas, utilizando	
válvulas nas janelas	205
Figura 196 – Gráfico de temperatura x ângulo simulado	
para pressão de descarga de 500 kPa, sucção de	
101,32 kPa e excentricidade de 95 mm, utilizando válvulas	
nas janelas	207
Figura 197 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 95 mm, utilizando válvulas nas janelas	207
Figura 198 – Gráfico de temperatura x ângulo simulado	
para pressão de descarga de 500 kPa, sucção de	
101,32 kPa e excentricidade de 90 mm, utilizando válvulas	
nas janelas	208
Figura 199 – Gráfico de temperatura x ângulo simulado	
para pressão de descarga de 500 kPa, sucção de	
101,32 kPa e excentricidade de 85 mm, utilizando válvulas	
nas janelas	209
Figura 200 – Gráfico de temperatura x ângulo simulado	
para pressão de descarga de 500 kPa, sucção de	
101,32 kPa e excentricidade de 80 mm, utilizando válvulas	
nas janelas	209

Figura 201 – Gráfico de temperatura x ângulo simulado	
para pressão de descarga de 500 kPa, sucção de	
101,32 kPa e excentricidade de 75 mm, utilizando válvulas	
nas janelas	210
Figura 202 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 90 mm, utilizando válvulas nas janelas	211
Figura 203 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 85 mm, utilizando válvulas nas janelas	211
Figura 204 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 80 mm, utilizando válvulas nas janelas	212
Figura 205 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 500 kPa, sucção de 101,32 kPa e	
excentricidade de 75 mm, utilizando válvulas nas janelas	212
Figura 206 – Gráfico de temperatura x ângulo simulado	
para pressão de descarga de 500 kPa e sucção de	
101,32 kPa para todas as excentricidades escolhidas,	
utilizando válvulas nas janelas	213
Figura 207 – Gráfico de massa x ângulo simulado para	
pressão de descarga de 500 kPa e sucção de 101,32 kPa	
para todas as excentricidades escolhidas, utilizando	
válvulas nas janelas	214
Figura 208 – Inversor de freqüência	221
Figura 209 – Motor elétrico	222
Figura 210 – Funcionamento do sistema de acionamento	
com excentricidade 0 mm	223
Figura 211 – Posição dos braços a uma excentricidade de	
95 mm: vista frontal	224
Figura 212 – Posição dos braços a uma excentricidade de	
95 mm: vista lateral	224

Figura 213 – Simulação de abertura e fechamento do	
conjunto de braços do rotor interno para uma	
excentricidade de 95 mm	225
Figura 214 – Braço em curva quebrado	230
Figura 215 – Braço em curva soldado	231
Figura 216 – Identificação dos vazamentos, hipóteses 1, 2 e 4	232
Figura 217 – Identificação dos vazamentos, hipótese 3	232
Figura 218 – Alinhamento do conjunto	255
Figura 219 – Posicionamento das colunas e guias em	
relação ao motor	256
Figura 220 – Dentes usinados nas colunas	256
Figura 221 – Calços usinados para compensar a altura do motor	257
Figura 222 – Distância da guia para a terceira chapa da	
parte fixa do suporte de fixação	257
Figura 223 – Extensor das guias	258
Figura 224 – Fixador com as escalas	258
Figura 225 – Parafusos de fixação da base móvel e	
escala no fixador	259
Figura 226 – Vista de montagem em corte da carcaça	
traseira e da placa de janelas	261
Figura 227 – Detalhe de montagem na carcaça traseira	
com a placa de janelas antiga	261
Figura 228 – Placa de janelas antiga fabricada em aço 1020	262
Figura 229 – Placa de janelas antiga fabricada em celeron	263
Figura 230 – Conjunto de anéis de vedações montados	263
Figura 231 – Vista em corte do conjunto de anéis	264
Figura 232 – Detalhe de montagem dos anéis no compressor	265
Figura 233 – Carcaça traseira com parafusos extratores	266

Lista de tabelas

Tabela 1 – Trabalhos publicados sobre compressores e	
motores a combustão interna utilizando a tecnologia	
Kopelrot	45
Tabela 2 – Razão de espaço nocivo para todas as	
Excentricidades escolhidas	125
Tabela 3 – Posições dos ângulos de compressão,	
descarga e sucção para as excentricidades de 85 mm,	
80 mm e 75 mm	137
Tabela 4 – Posições dos ângulos para o início da	
compressão teórica efetiva e pressão atingida (pressão de	
descarga) para as excentricidades de 85 mm, 80 mm e 75 mm	141
Tabela 5 – Valores de várias temperaturas e massas para	
as excentricidades de 85 mm, 80 mm e 75 mm	158
Tabela 6 – Valores de trabalho para pressão de descarga	
de 500 kPa e sucção de 101,32 kPa, para todas as	
excentricidades escolhidas	159
Tabela 7 – Valores de potência para pressão de descarga	
de 500 kPa e sucção de 101,32 kPa, para todas as	
excentricidades escolhidas	160
Tabela 8 – Valores de massa admitida por ciclo para	
pressão de descarga de 500 kPa e sucção de 101,32 kPa,	
para todas as excentricidades escolhidas	161
Tabela 9 – Valores de vazão mássica para pressão de	
descarga de 500 kPa e sucção de 101,32 kPa, para todas	
as excentricidades escolhidas	162
Tabela 10 – Valores de volume específico na sucção para	
pressão de descarga de 500 kPa e sucção de 101,32 kPa,	
para todas as excentricidades escolhidas	162

Tabela 11 – Valores de volume deslocado para pressão de	
descarga de 500 kPa e sucção de 101,32 kPa, para todas	
as excentricidades escolhidas	163
Tabela 12 – Valores de eficiência volumétrica para	
pressão de descarga de 500 kPa e sucção de 101,32 kPa,	
para todas as excentricidades escolhidas	163
Tabela 13 – Valores de temperatura de descarga teórica	
para pressão de descarga de 500 kPa e sucção de	
101,32 kPa, para todas as excentricidades escolhidas	164
Tabela 14 – Posições dos ângulos de compressão, descarga,	
re-expansão e sucção para as excentricidades escolhidas	167
Tabela 15 – Valores de trabalho para pressão de descarga	
de 750 kPa e sucção de 101,32 kPa, para todas as	
excentricidades escolhidas	180
Tabela 16 – Valores de potência para pressão de descarga	
de 750 kPa e sucção de 101,32 kPa, para todas as	
excentricidades escolhidas	180
Tabela 17 – Valores de massa admitida por ciclo para	
pressão de descarga de 750 kPa e sucção de 101,32 kPa,	
para todas as excentricidades escolhidas	181
Tabela 18 – Valores de vazão mássica para pressão de	
descarga de 750 kPa e sucção de 101,32 kPa, para todas	
as excentricidades escolhidas	181
Tabela 19 – Valores de eficiência volumétrica para pressão	
de descarga de 750 kPa e sucção de 101,32 kPa, para	
todas as excentricidades escolhidas	182
Tabela 20 – Valores de temperatura de descarga teórica	
para pressão de descarga de 750 kPa e sucção de	
101,32 kPa, para todas as excentricidades escolhidas	182
Tabela 21 – Valores de trabalho para pressão de descarga	
de 250 kPa e sucção de 101,32 kPa, para todas as	
excentricidades escolhidas	194

Tabela 22 – Valores de potência para pressão de descarga	
de 250 kPa e sucção de 101,32 kPa, para todas as	
excentricidades escolhidas	195
Tabela 23 – Valores de massa admitida por ciclo para	
pressão de descarga de 250 kPa e sucção de 101,32 kPa,	
para todas as excentricidades escolhidas	196
Tabela 24 – Valores de vazão mássica para pressão de	
descarga de 250 kPa e sucção de 101,32 kPa, para todas	
as excentricidades escolhidas	196
Tabela 25 – Valores de eficiência volumétrica para pressão	
de descarga de 250 kPa e sucção de 101,32 kPa, para	
todas as excentricidades escolhidas	197
Tabela 26 – Valores de temperatura de descarga teórica	
para pressão de descarga de 250 kPa e sucção de	
101,32 kPa, para todas as excentricidades escolhidas	197
Tabela 27 – Valores de trabalho para pressão de descarga	
de 500 kPa e sucção de 101,32 kPa, para todas as	
excentricidades escolhidas, utilizando válvulas nas janelas	215
Tabela 28 – Valores de potência para pressão de descarga	
de 500 kPa e sucção de 101,32 kPa, para todas as	
excentricidades escolhidas, utilizando válvulas nas janelas	215
Tabela 29 – Valores de massa admitida por ciclo para	
pressão de descarga de 500 kPa e sucção de 101,32 kPa,	
para todas as excentricidades escolhidas, utilizando válvulas	
nas janelas	216
Tabela 30 – Valores de vazão mássica para pressão de	
descarga de 500 kPa e sucção de 101,32 kPa, para todas	
as excentricidades escolhidas, utilizando válvulas nas janelas	216
Tabela 31 – Valores de volume específico na sucção para	
pressão de descarga de 500 kPa e sucção de 101,32 kPa,	
para todas as excentricidades escolhidas, utilizando válvulas	
nas janelas	217

Tabela 32 – Valores de eficiência volumétrica para pressão	
de descarga de 500 kPa e sucção de 101,32 kPa, para todas	
as excentricidades escolhidas, utilizando válvulas nas janelas	217
Tabela 33 – Valores de temperatura de descarga teórica	
para pressão de descarga de 500 kPa e sucção de	
101,32 kPa, para todas as excentricidades escolhidas,	
utilizando válvulas nas janelas	218
Tabela 34 – Valores de corrente (A) de trabalho do motor	
para as excentricidades de acordo com as velocidades	
em que estão operando	229
Tabela 35 – Variação de volume das câmaras do	
compressor, para as excentricidades	267
Tabela 36 – Valores de pressão temperatura e massa	
para a excentricidade de 95 mm, com pressão de descarga	
de 500 kPa obedecendo as etapas de compressão,	
descarga, re-expansão e sucção do ângulo em relação ao	
ponto de referência	276
Tabela 37 – Valores de pressão temperatura e massa para	
a excentricidade de 90 mm, com pressão de descarga de	
500 kPa obedecendo às etapas de compressão, descarga,	
re-expansão e sucção do ângulo em relação ao ponto de	
referência	285
Tabela 38 – Valores de pressão temperatura e massa para	
a excentricidade de 85 mm, com pressão de descarga de	
500 kPa obedecendo às etapas de compressão, descarga e	
sucção do ângulo em relação ao ponto de referência	293
Tabela 39 – Valores de pressão temperatura e massa para	
a excentricidade de 80 mm, com pressão de descarga de	
500 kPa obedecendo às etapas de compressão, descarga e	
sucção do ângulo em relação ao ponto de referência	302
Tabela 40 – Valores de pressão temperatura e massa para	
a excentricidade de 75 mm, com pressão de descarga de	
500 kPa obedecendo às etapas de compressão, descarga e	
sucção do ângulo em relação ao ponto de referência	311

Tabela 41 – Valores de pressão temperatura e massa para a excentricidade de 95 mm, com pressão de descarga de 750 kPa, obedecendo às etapas de compressão, descarga e sucção do ângulo em relação ao ponto de referência 320 Tabela 42 – Valores de pressão temperatura e massa para a excentricidade de 90 mm, com pressão de descarga de 750 kPa, obedecendo às etapas de compressão, descarga 329 e sucção do ângulo em relação ao ponto de referência Tabela 43 – Valores de pressão temperatura e massa para a excentricidade de 85 mm, com pressão de descarga de 750 kPa, obedecendo às etapas de compressão, descarga e sucção do ângulo em relação ao ponto de referência 338 Tabela 44 – Valores de pressão temperatura e massa para a excentricidade de 80 mm, com pressão de descarga de 750 kPa, obedecendo às etapas de compressão, descarga e sucção do ângulo em relação ao ponto de referência 346 Tabela 45 – Valores de pressão temperatura e massa para a excentricidade de 75 mm, com pressão de descarga de 750 kPa, obedecendo às etapas de compressão, descarga e sucção do ângulo em relação ao ponto de referência 355 Tabela 46 – Valores de pressão temperatura e massa para a excentricidade de 95 mm, com pressão de descarga de 250 kPa, obedecendo às etapas de compressão, descarga e sucção do ângulo em relação ao ponto de referência 364 Tabela 47 – Valores de pressão temperatura e massa para a excentricidade de 90 mm, com pressão de descarga de 250 kPa, obedecendo às etapas de compressão, descarga e sucção do ângulo em relação ao ponto de referência 373 Tabela 48 – Valores de pressão temperatura e massa para a excentricidade de 85 mm, com pressão de descarga de 250 kPa, obedecendo às etapas de compressão, descarga e sucção do ângulo em relação ao ponto de referência 381

Tabela 49 – Valores de pressão temperatura e massa para	
a excentricidade de 80 mm, com pressão de descarga de	
250 kPa, obedecendo às etapas de compressão, descarga	
e sucção do ângulo em relação ao ponto de referência 3	90
Tabela 50 – Valores de pressão temperatura e massa para	
a excentricidade de 75 mm, com pressão de descarga de	
250 kPa, obedecendo às etapas de compressão, descarga	
e sucção do ângulo em relação ao ponto de referência 3	99
Tabela 51 – Valores de pressão temperatura e massa para	
a excentricidade de 95 mm, com pressão de descarga de	
500 kPa, utilizando válvulas nas janelas. Obedecendo às	
etapas de compressão, descarga e sucção do ângulo em	
relação ao ponto de referência 4	08
Tabela 52 – Valores de pressão temperatura e massa para	
a excentricidade de 90 mm, com pressão de descarga de	
500 kPa, utilizando válvulas nas janelas. Obedecendo às	
etapas de compressão, descarga e sucção do ângulo em	
relação ao ponto de referência 4	16
Tabela 53 – Valores de pressão temperatura e massa para	
a excentricidade de 85 mm, com pressão de descarga de	
500 kPa, utilizando válvulas nas janelas. Obedecendo às	
etapas de compressão, descarga e sucção do ângulo em	
relação ao ponto de referência 4	25
Tabela 54 – Valores de pressão temperatura e massa para	
a excentricidade de 80 mm, com pressão de descarga de	
500 kPa, utilizando válvulas nas janelas. Obedecendo às	
etapas de compressão, descarga e sucção do ângulo em	
relação ao ponto de referência 4	34
Tabela 55 – Valores de pressão temperatura e massa para	
a excentricidade de 75 mm, com pressão de descarga de	
500 kPa, utilizando válvulas nas janelas. Obedecendo às	
etapas de compressão, descarga e sucção do ângulo em	
relação ao ponto de referência 4	43

Lista de símbolos

A _{RE}	Área do rotor externo	(mm^2)
A _{RI}	Área do rotor interno	(mm ²)
C1	Câmara 1 do compressor	(-)
C2	Câmara 2 do compressor	(-)
c _{p0}	Calor específico a pressão constante e pressão zero	(kJ/kg \cdot K)
c_{v0}	Calor específico a volume constante e pressão zero	(kJ/kg·K)
D _{RE}	Diâmetro do rotor externo	(mm)
D _{RI}	Diâmetro do rotor interno	(mm)
h	Entalpia específica	(kJ/kg)
h _s	Entalpia específica na sucção	(kJ/kg)
k	Relação entre calores específicos	(-)
m	Massa	(kg)
m ₁	Massa no estado 1	(kg)
m ₂	Massa no estado 2	(kg)
ṁ	Vazão mássica	(kg/s)
m _{com}	Massa na compressão	(kg)
m _{re}	Massa na re-expansão	(kg)
ms	Massa na sucção	(kg)
n	Expoente politrópico	(-)
Ν	Velocidade	(RPS)
p_1	Pressão no estado 1	(kPa)
p ₂	Pressão no estado 2	(kPa)
p _d	Pressão de descarga	(kPa)
p _s	Pressão de sucção	(kPa)
P _C	Comprimento da câmara	(mm)
Q	Calor transferido total	(kJ)

r	Razão de espaço nocivo	(%)
R	Constante do gás	$(kJ/kg \cdot K)$
S	Entropia específica	$(kJ/kg \cdot K)$
T ₁	Temperatura no estado 1	(°C)
T ₂	Temperatura no estado 2	(°C)
T _d	Temperatura de descarga	(°C)
T _{d teoric}	a Temperatura de descarga teórica	(°C)
T _s	Temperatura de sucção	(°C)
U	Energia interna total	(kJ)
U ₀	Energia interna total do meio	(kJ)
U ₁	Energia interna total no estado 1	(kJ)
U ₂	Energia interna total no estado 2	(kJ)
V _s	Volume específico na sucção	(m^3/kg)
V	Volume	(mm ³)
V ₁	Volume no estado 1	(mm ³)
V ₂	Volume no estado 2	(mm ³)
V _{CD}	Volume da câmara do comp. com deslocadores	(mm ³)
V _{desl}	Volume deslocado	(mm ³)
V _{max}	Volume máximo	(mm ³)
V _{min}	Volume mínimo	(mm ³)
V _{RE}	Volume do rotor externo	(mm ³)
V _{RI}	Volume do rotor interno	(mm ³)
V _{SD}	Volume da câmara do comp. sem deslocadores	(mm ³)
W	Trabalho total	(kJ)
Ŵ	Potência	(kW)

Símbolos Gregos

θ	Ângulo em relação ao ponto de referencia	(°)
$\eta_{\rm V}$	Eficiência volumétrica	(%)
τ	Período de tempo	(s)