

Renato Nunes Teixeira

Development of High Temperature Comparison Artefacts for Radiation Thermometry

Tese de Doutorado

Thesis presented to the Programa de Pós-Graduação em Engenharia Mecânica, PUC-Rio as partial fulfillment of the requirements for the degree of Doutor em Engenharia Mecânica.

> Advisor: Prof. Alcir de Faro Orlando Co-Advisor: Prof. Graham Machin

> > Rio de Janeiro July 2013

Renato Nunes Teixeira

Development of High Temperature Comparison Artefacts for Radiation Thermometry

Thesis presented to the Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio, as partial fulfillment of the requirements for the degree of Doutor.

Prof. Alcir de Faro Orlando Advisor Departamento de Engenharia Mecânica – PUC-Rio

> Prof. Graham Machin Co-Advisor

NPL - UK

Prof. José Alberto dos Reis Parise Departamento de Engenharia Mecânica – PUC-Rio

Prof. Luis Fernando Alzuguir Azevedo Departamento de Engenharia Mecânica – PUC-Rio

Prof. Maurício Nogueira Frota Programa de Pós-Graduação em Metrologia – PUC-Rio

> Prof. José Ricardo Sodré PUC-Minas

Prof. Hans Peter Henrik Grieneisen Inmetro

Prof. José Eugênio Leal Sectoral Coordinator of the Centro Técnico Científico – PUC-Rio

Rio de Janeiro, July 19th 2013

Renato Nunes Teixeira

The author is graduated in Mechanical Engineering from Universidade Federal Fluminense in 1988, he obtained the degree of Mestre at PUC-Rio in 1992. He is an employee of the Instituto Nacional de Metrologia, Tecnologia e Qualidade – Inmetro since 1998, where he is currently the head of the Thermal Metrology Division – Diter.

Bibliographic Data

Teixeira, Renato Nunes

Development of high temperature comparison artefacts for radiation thermometry / Renato Nunes Teixeira; advisor: Alcir de Faro Orlando; co-advisor: Graham Machin. – 2013.

120 f. : il. (color.) ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2013.

Inclui bibliografia

 Engenharia Mecânica – Teses. 2. Pontosfixos de alta temperatura. 3. Termometria de radiação. 4. Artefatos de comparação. 5. Altas temperaturas. I. Orlando, Alcir de Faro. II. Machin, Graham. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

CDD:621

PUC-Rio - Certificação Digital Nº 0821309/CA

To my daughter Nina

Acknowledgements

To my parents, for giving me opportunities to achieve this;

To my wife Iakyra and my daughter Nina, for all their support, care and love;

To the advisors Alcir and Graham, for their support, trust and stimulus;

To the professors from PUC-Rio, for the teaching and friendship;

To PUC-Rio for all the support, that made this thesis possible;

To Inmetro, for making this thesis possible to be developed;

To the post-graduation colleagues, for their friendship;

To all the colleagues from Inmetro/Diter, specially Ricardo, Mário and Elsenir for all their help;

To professor Roberto Avillez, for all his wise suggestions, support and patience;

To all the administrative staff of the Mechanical Engineering Department, for all their help;

To Dr. Ursula Kattner from NIST, for her collaboration in the simulation of the doped metal-carbon alloys.

Abstract

Teixeira, Renato Nunes; Orlando, Alcir de Faro; Machin, Graham. **Development of High Temperature Comparison Artefacts for Radiation Thermometry.** Rio de Janeiro, 2013. 120p. Doctoral Thesis – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

High stability tungsten strip lamps are no longer suitable comparison artefacts for high temperature radiation thermometry, because they are fragile, have a small target size, are restricted in temperature range and are not blackbodies. This study developed proof-of-concept high performance comparison artefacts, which overcome the problems encountered when using such lamps in comparisons of the International Temperature Scale of 1990 (ITS90) among National Metrology Institutes (NMIs). This work demonstrated the concept of using high temperature fixed points (HTFPs) that have unknown temperatures and hence suitable as "blind" comparison artefacts. Four of these novel HTFPs were designed, constructed, filled and measured in the work described here. Initially Co-C was chosen but due to robustness issues, Ni-C was the selected the base eutectic alloy. The Ni-C cells were doped in two different concentrations with selected elements in a successful attempt to change the pure eutectic transition temperature by some tenths of degrees Celsius. The realization temperatures of eutectic cells determined at Inmetro were compared to the ones predicted by thermochemical simulation, using Thermo-Calc software and thermochemical property databases. In addition they were used to perform a "blind" comparison with the National Physical Laboratory (UK), which did not know beforehand what their temperatures were. Very good results were achieved (scale agreement and cell stability), demonstrating that doped cells are very suitable high temperature comparison artefacts for radiation thermometry.

Keywords

High Temperature Fixed-points; Radiation Thermometry; Comparison Artefacts; High Temperatures.

Resumo

Teixeira, Renato Nunes; Orlando, Alcir de Faro; Machin, Graham. Desenvolvimento de Artefatos de Comparação de Alta Temperatura para Termometria de Radiação. Rio de Janeiro, 2013. 120p. Tese de Doutorado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Lâmpadas de fita de tungstênio de alta estabilidade não são mais adequadas como artefatos de comparação para termometria de radiação de alta temperatura, por conta de serem frágeis, terem um tamanho de alvo pequeno, serem limitadas com relação a faixa de temperatura e não serem corpos negros. Este estudo desenvolveu protótipos de artefatos de comparação de alto desempenho, os quais podem superar os problemas existentes ao usar tais lâmpadas em comparações da Escala Internacional de Temperatura de 1990 (EIT-90) entre Institutos Nacionais de Metrologia (INMs). Este trabalho demonstrou o conceito de utilização de pontos fixos de alta temperatura (PFATs) que tenham temperaturas desconhecidas e assim sejam adequados como artefatos de comparações "às cegas". Quatro destes novos PFATs foram projetados, construídos, preenchidos e medidos no trabalho aqui descrito. Inicialmente Co-C foi escolhido, mas devido a problemas de robustez, a liga eutética base selecionada foi Ni-C. As células Ni-C foram dopadas em duas concentrações diferentes com elementos selecionados em uma tentativa bem sucedida de modificar temperatura de transição do eutético puro em alguns décimos de graus Celsius. As temperaturas de realização das células eutéticas determinadas no Inmetro foram comparadas com aquelas previstas por simulação termoquímica, usando o programa Thermo-Calc e bancos de dados de propriedades termoquímicas adequados. Além disso, elas foram utilizadas para realizar uma comparação "às cegas" com o National Physical Laboratory (NPL -UK), o qual não sabia "a priori" quais eram essas temperaturas. Resultados muito bons foram alcançados (concordância das escalas e estabilidade das células), demonstrando que as células dopadas são artefatos de comparação de alta temperatura bem adequados para termometria de radiação.

Palavras-chave

Pontos-fixos de Alta Temperatura; Termometria de Radiação; Artefatos de Comparação; Altas Temperaturas.

Contents

1 Introduction	14
1.1. Background	14
1.2. Motivation for this research	19
1.3. Scope of the work	21
1.4. Structure of the thesis	23
2 Principles of temperature measurement	25
2.1. Temperature scales	27
2.2. The International Temperature Scale of 1990 (ITS-90)	30
2.3. Temperature sensors	34
2.3.1. Contact sensors	34
2.3.2. Non-contact temperature sensors	37
3 State of the art in radiation thermometry	39
3.1. Review of radiation thermometry	39
3.2. High temperature eutectic cells	41
3.3. Description of the standard pyrometer, the LP3	44
4. Thermodynamic modeling of multicomponent phase equilibria	49
4.1. The CALPHAD method	49
4.1.1. Introduction	49
4.1.2. History	50
4.1.3. Scope of phase diagram calculations	51
4.1.4. Thermodynamic descriptions and models	51
4.1.5. Continuous improvements	54
4.1.6. Computer software and databases	55
4.2. Systems modeled	55
4.2.1. Cobalt-Carbon	56
4.2.2. Nickel-Carbon	58

4.3. Summary of the chapter	59
5 Experimental methods	60
5.1. Design and construction of the cells	60
5.2. Choosing of the dopant for the eutectic cell	63
5.3. Melting point determination	65
5.4. Preliminary measurements with Co-C system	66
5.5. Definition of transition temperature in M-C fixed-points	69
5.6. Filling of high temperature fixed points	70
5.7. High temperature equipment used for this research	71
5.8. Experimental setup	73
5.8.1. Weighing balance Sartorius ME235S	73
5.8.2. Carbolite furnace model TZF 18/75/600	74
5.8.3. Carbolite furnace model TZF 12/75/600	76
5.8.4. Silver fixed point cell	77
5.9. Data reduction in the temperature determination	78
5.10. Summary of the chapter	81
C Deputte of Ni C and Ni C Cu sutestie celle	00
6 A Ni C reference cell (Ni C #6)	82
6.1.1 Experimental results	02
6.1.2. Simulation results	02
6.2. Ni C Cu 4168 ppm dopod coll (Ni C Cu $\#$ 7)	00
6.2.1 Experimental results	85
6.2.2. Simulation results	87
6.3 Ni-C-Cu 7686 ppm doped cell (Ni-C-Cu #8)	88
6.3.1 Experimental results	88
6.3.2 Simulation results	Q1
6.4. Summary of Ni-C-Cu measurements	91
6.5. Summary of the chapter	91
0.3. Outlinary of the chapter	55
7 Results of Ni-C-Sn eutectic cells	94
7.1. Ni-C-Sn 828 ppm doped cell (Ni-C-Sn #9)	94
7.1.1. Experimental results	94

7.1.2. Simulation results	96
7.2. Ni-C-Sn 392 ppm doped cell (Ni-C-Sn #10)	96
7.2.1. Experimental results	96
7.2.2. Simulation results	98
7.3. Summary of Ni-C-Sn measurements	98
7.4. Summary of the chapter	100
8 Results of a blind comparison with NPL using the Ni-C-Cu cells	101
8.1. Introduction	101
8.2. Measurements with the Ni-C-Cu #7 (4168 ppm) cell	103
8.3. Measurements with the Ni-C-Cu #8 (7686 ppm) cell	104
8.4. Furnace effects of the temperature realised for the Ni-C-Cu cells	105
8.5. Summary of the chapter	106
9 Uncertainty evaluation	107
9.1. Uncertainty in the determination of the temperature of phase	
transition of the metal-carbon eutectic cell	107
9.2. Uncertainty in the determination of the concentration of dopants	
in the metal carbon alloy	109
10 Conclusions and suggestions for future work	111
References	114

List of figures

Figure 1: Defining fixed points of the ITS-90 and interpolating	
thermometers	33
Figure 2: Representation of a typical phase diagram of an alloy that	
forms a eutectic	42
Figure 3: Schematic diagram of the optical design of the LP3	45
Figure 4: Spectral responsivity curve for 650 nm interference filter	47
Figure 5: Spectral responsivity curve for 900 nm interference filter	47
Figure 6: Example of a binary phase diagram	50
Figure 7: A Thermo-Calc screen to select the elements	56
Figure 8: Phase diagram of the Co-C system	57
Figure 9: Phase diagram of the Ni-C system	58
Figure 10: Blackbody cell design used in this study – dimensions in	
millimeters	60
Figure 11: Parts of the eutectic cell	62
Figure 12: Typical eutectic cell	62
Figure 13: Thermal Technologies Furnace	63
Figure 14: Example of the determination of the point of inflection of the	
melting curve of the Ni-C eutectic	66
Figure 15: Realization of Co-C (left) and Co-C-Cu (right) eutectics	67
Figure 16: Blackbody cavities – (a) Old model (b) New model	67
Figure 17: Typical realization curve of the Co-C eutectic in the carbolite	
3-zone furnace	68
Figure 18: Heating and cooling program for Thermal Technologies	
furnace	71
Figure 19: Measurement setup at Pyrometry Laboratory	72
Figure 20: Sartorius ME235S Balance	74
Figure 21: Heating/cooling program of the Carbolite TZF18 furnace	75
Figure 22: Assembly of the eutectic cell inside Carbolite TZF 18 furnace	76
Figure 23: Assembly of the silver cell inside the furnace	77
Figure 24: Original (left) and modified (right) silver blackbody cavity	78

Figure 25: Typical freezing plateau of the silver fixed point cell	79
Figure 26: Measurement data as processed by the Scilab/Gnuplot	
software	80
Figure 27: Realization of the Ni-C #6 eutectic cell	83
Figure 28: Realization of the Ni-C-Cu #7 eutectic cell	86
Figure 29: Realization of the Ni-C-Cu #8 eutectic cell	89
Figure 30: LP3 pyrometer equipped with thermal radiation shield	90
Figure 31: Comparison of realization curves of Ni-C and Ni-C-Cu	
eutectic cells	92
Figure 32: Effect of addition of copper in the Ni-C eutectic alloy	93
Figure 33: Realization of the Ni-C-Sn #9 eutectic cell	95
Figure 34: Realization of the Ni-C-Sn #10 eutectic cell	97
Figure 35: Comparison of realization curves of Ni-C and Ni-C-Sn	
eutectic cells	99
Figure 36: Effect of addition of tin in the Ni-C eutectic alloy	99
Figure 37: Effect of the furnace on the melting temperature of	
Ni-C-Cu #7	104
Figure 38: Different furnace effects on the realized temperature of	
the Ni-C-Cu cells	106

List of tables

Table 1: Base units of the International System of Units (SI)	15
Table 2: Metal-carbon and metal carbide-carbon eutectics and their	
approximate fixed-point temperature	17
Table 3: Defining fixed-points of the ITS-90	32
Table 4: Melting temperature of some metal-carbon eutectic alloys	43
Table 5: Summary of temperatures calculated for Co-C/Co-C-Cu	57
Table 6: Summary of temperatures calculated for Ni-C/Ni-C-Cu	59
Table 7: Summary of temperatures calculated for Ni-C/Ni-C-Sn	59
Table 8: Thermophysical properties of 1940PT graphite	61
Table 9: Physical properties of Co, Ni and selected dopants	69
Table 10: Ni-C #6 realisations	84
Table 11: Ni-C melting temperature	85
Table 12: Ni-C-Cu #7 realisations	87
Table 13: Simulated and Measured Temperatures for	
Ni-C-Cu 4168 ppm	88
Table 14: Ni-C-Cu #8 realisations	89
Table 15: Simulated and Measured Temperatures for	
Ni-C-Cu 7686 ppm	91
Table 16: Results for the Ni-C-Sn 828 ppm eutectic cell	95
Table 17: Simulated and Measured Temperatures for Ni-C-Sn 828 pp	m 96
Table 18: Results of the realization of Ni-C-Sn #10	97
Table 19: Simulated and Measured Temperatures for Ni-C-Sn 392 pp	m 98
Table 20: Summary of temperature measurements of Inmetro and	
NPL for the Ni-C-Cu #7 cell	103
Table 21: Summary of temperature measurements of Inmetro and	
NPL for Ni-C-Cu #8	105
Table 22: Uncertainty budget of the temperature determination	109