6 Conclusões

No âmbito da pavimentação, a drenagem das águas superficiais é um tema importante. Neste trabalho, a solução para a problemática do escoamento de águas superficiais foi estudada utilizando-se geocomposto drenante, sendo o enfoque de maior interesse a interação solo-geocomposto.

Este análise foi realizada com ensaios de curto e médio prazo em laboratório baseado no ensaio de permeabilidade planar e transmissividade, tendo as seguintes considerações:

- No caso do ensaio de permeabilidade planar e transmisividade, considerando um carregamento constante de 10 (kPa) e um gradiente hidráulico constante i=1, sendo a diferença de carga total entre o ingresso e a saída da máquina de ensaio H = 0,30 m, tem-se que a amostra conseguiu se deformar 18,20% da espessura inicial, que foi 4,4 mm.
- Observa-se que se apresentam duas regiões bem marcadas de deformação, a primeira no inicio do ensaio apresenta uma deformação imediata de 14,5% até chegar ao valor de 17,5%, e na segunda região o grau de deformação decresce até chegar ao valor de 18,20%.
- Avaliando-se a variação do fluxo ao longo do tempo tem-se o processo inverso, onde à medida que a amostra se deforma a vazão diminui. Esta diminuição é proporcional a deformação, apresentando também duas regiões bem marcadas de variação de vazão, a primeira decresce 13,5%, e a segunda chega a uma diminuição de capacidade de vazão de 16,5%.
- Da figura 5.6 também pode-se ver o comportamento da permeabilidade planar ao longo da deformação da amostra, sendo que esta diminui 16% da permeabilidade inicial.

Nesta pesquisa para fins comparativos, foi realizado o estudo de caso no PLAXIS do estudo de caso, tem-se as seguintes conclusões:

- Em geral todas as modelagens realizadas apresentaram o mesmo comportamento, aonde à medida que o corpo vai-se deslocando e deformando no

tempo a vazão no dreno diminui, por se tratar de um material elástico e pela redução da espessura do dreno.

- Fazendo uma análise das deformações e deslocamento da amostra em estudo pode-se verificar que a variação de número de drenos não altera os valores obtidos. Mas a variação da permeabilidade gera mudanças nos valores obtidos de deformação e deslocamento, onde para valores de permeabilidade maiores, as deformações e deslocamentos são menores.
- Outro aspecto observado foi que em todos os casos, à medida que o nível freático vai diminuindo na interação solo-geocomposto, as deformações vão aumentando. No caso 1 obteve- se um incremento na deformação de 70%, e no caso 2 um incremento de 10%, concluindo que se tem deformações menores para valores de permeabilidade maiores, conforme dito no parágrafo anterior.
- Para o caso do rebaixamento do lençol freático comparando, tem-se que o nível rebaixou em 7 dias, tanto para o caso 1-1 e 1-2 correspondente a um dreno como está dado no problema, sendo que a poro-pressão vai diminuindo à medida que o lençol freático vai rebaixando, mas este cálculo é uma aproximação, já que o dreno ainda continua trabalhando.
- Nos casos que apresentam 2 e 3 drenos verificou-se que a poro pressão se mantém constante no quinto dia, mas os drenos também ainda continuam trabalhando.
- Conseguiu-se atingir o fluxo de todo o solo saturado com a utilização de três drenos, nos casos 1 e 2.
- Fazendo uma analise das vazões da amostra em estudo pode ver que a vazão diminui ao longo do tempo à medida que a amostra se deforma, este comportamento foi o mesmo para todos os casos.

Os resultados foram satisfatórios conseguindo-se avaliar a fluência de um geocomposto drenate no solo em relação à sua capacidade de vazão e se conclui que há geração de deformações causadas pelos carregamentos no solo, que influenciam na capacidade de vazão de drenagem do conjunto.

6.1. Sugestões para Trabalhos Futuros

Neste trabalho foram efetuados ensaios de curto e médio prazo mostrando que existe a variação da vazão com a fluência, mas pra clarificar este comportamento vazão-fluência, recomenda-se realizar ensaios ao longo prazo, já que as deformações no corpo de proba ainda continuam ao longo do tempo, assim com essa análise vamos a obter com maior precisão a porcentagem de vazão que diminui no dreno.

Assim também acredito que é importante, fazer a toma das amostras nas rodovias que trabalham com este sistema de drenagem, e conferir o comportamento deles no laboratório realizando o ensaio de transmisividade verificando à sua capacidade de vazão e à sua variação com a fluência, obtendo assim uma pesquisa mais completa.