Aplicação dos Modelos e Resultados

No presente capítulo iremos efetuar a aplicação dos modelos de amortecimento direto e do Holt-Winters com múltiplos ciclos, apresentados no capítulos 3 e no capítulo 4 dessa dissertação, respectivamente. Irão ser feitas previsões dos dados de carga horária de demanda por energia elétrica da Espírito Santo Centrais Elétricas (ESCELSA), concessionária essa fornecedora do serviço para boa parte do Estado do Espírito Santo. A área de concessão da ESCELSA está disposta na Figura 5.1 abaixo.

Figura 5.1 – Área de Concessão da ESCELSA

A tabela 5.1 apresenta alguns dados sobre a concessão. Pode ser constatado que a prestadora do serviço é responsável por, aproximadamente, 90% do fornecimento de

energia elétrica de todo o estado, estando o restante do território sob concessão da Empresa Luz e Força Santa Maria (ELFSM).

Empresa	Área de	Municípios	População(Mil)
	Concessão	Atendidos	
	(Km²)		
ESCELSA	41.372	67	2.892
ELFSM	4.812	8	201
Ambos		3	
TOTAL	46.184	78	3.093

Tabela 5.1 – Números da Concessão no Estado do Espírito Santo

Os dados utilizados na aplicação para a concessionária ESCELSA estão compreendidos entre o período de 5 de janeiro de 1999 até 5 de junho de 2001, o início e o término dos dados se dão numa quinta-feira. Antes de qualquer modelagem, convém que se faça uma analise da serie. Portanto, iremos antes de apresentarmos as aplicações e os resultados obtidos para cada um dos dois modelos mencionados anteriormente, fazer uma analise detalhada da serie em questão, a serie da ESCELSA. É muito importante que essa analise seja feita para que possamos observar e determinar algumas características existentes na serie. Características essas que nos ajudarão muito na etapa de modelagem e previsão.

Todos os procedimentos da análise e da modelagem da série foram efetuados no software Matlab 6.1.

Analise da Serie da ESCELSA

A figura 5.3 mostra a demanda de energia elétrica da concessionária prestadora do serviço, em todo o período em que os dados encontram-se disponíveis. Pode ser notado, ao observar a figura, que a serie em estudo, praticamente, não possui tendência ou crescimento. Também podemos observar a existência de alguns picos de demanda ao longo da serie. Para que a serie se torne um pouco mais comportada foram retirados os picos de freqüência mencionados acima, podendo os mesmos serem considerados outliers dentro da serie temporal estudada. A Figura 5.2b mostra a serie após a retirada dos outliers.

Figura 5.2a - Serie de Demanda de Carga de Energia Elétrica da ESCELSA com Outliers

Figura 5.2b - Serie de Demanda de Carga de Energia Elétrica da ESCELSA sem Outliers

Sabemos que as series horárias de energia contém mais que um ciclo. A sazonalidade, nesse tipo de serie se encontra diluída ao longo dos dados, não ocorrendo mudanças bruscas de comportamento da demanda ocasionadas pela transição das estações do ano. Nosso próximo passo será, então, plotar um gráfico onde somente estarão dispostos 336 observações dos dados, ou seja, 2 semanas de dados. Essa representação pode ser observada na Figura 5.3.

Figura 5.3 – Demanda Horária para uma Quinzena

Na figura podemos observar, claramente, a existência de ciclos diários (de 24 em 24 pontos), bem como de ciclos semanais (de 180 em 180 pontos). Nesse gráfico, notamos a existência de tendência ou crescimento, no período da serie que está sendo visualizado, diferente do observado na Figura 5.2b, onde não se pode notar a presença de tendência na serie.

Também a visualização da autocorrelação e da autocorrelação parcial da serie, são boas formas de se detectar características intrisecas a mesma, onde também pode ser visualizado os ciclos. A figura 5.4 apresenta a autocorrelação e a autocorrelação parcial da serie. Nota-se a existência de ciclos na serie através de ambas as figuras. Isso nos deixa clara a possibilidade de ser modelar a serie por uma função trigonométrica, possivelmente com pares de senos e cosenos.

Figura 5.4 – Função de Autocorrelação e de Autocorrelação Parcial da Serie

5.1.1 Analise Espectral e Periodograma

Nesse item iremos apresentar a analise espectral da serie, onde poderemos, como mencionado anteriormente, verificar a existências dos picos observados pela representação gráfica, contida na Figura 5.1. É preciso ser dito que essas informações, (as informações a respeito da quantidade de picos siginificativos existentes), serão de extrema importância no momento da determinação do modelo de amortecimento direto que irá ser utilizado na modelagem. Essa analise será realizada fazendo uso de uma ferramenta chamada periodograma de Schuster, visto que não temos nenhum conhecimento de antemão a respeito do número de senóides significativas, e também quanto as freqüências em que as mesmas ocorrem. O periodograma terá a função de nos fornecer essas informações. Segue abaixo, na Figura 5.5, o periodograma da serie.

Figura 5.5. Periodograma da Serie - ESCELSA

Através da visualização do periodograma, pode-se constatar a existência de 6 picos significativos na serie, sendo os restantes somente considerados pequenas perturbações. A tabela 5.2 mostra os picos significativos, suas respectivas freqüências e períodos.

Tabela 5.2 – Picos Significativos

Pico	Freqüência	Período
1.44E+07	0.0353	177.99
1.49E+07	0.0196	320.57
1.91E+07	0.0471	133.40
2.08E+07	0.0824	76.25
3.19E+07	0.0431	145.78
1.67E+08	0.0039	1611.07

Em posse das freqüências significativas apresentadas na tabela acima, podemos determinar quantos pares seno e coseno irá ser incluído no modelo de amortecimento direto. Dado que existem, 6 picos de freqüência a serem modelados, irão ser, por

conseguinte, incluídos na modelagem de amortecimento direto 6 pares de seno coseno. No próximo sub-item, iremos apresentar as modelagens realizadas via amortecimento direto.

5.2

Amortecimento Direto

5.2.1

Modelagem via Amortecimento Direto – Uso da Análise Espectral

Constatamos nas analises feitas até então, a clara existência de componentes sazonais dentro da serie que desejamos modelar. Como já foi demonstrado no capítulo 3, para que incluamos no modelo componentes sazonais, somente é necessário que a função $z_i(t)$ seja definida como uma função trigonométrica. Uma função seno e coseno seria um bom exemplo desse tipo de função, além de ser a função que usaremos para modelar a serie em estudo, variando somente, o número de pares de seno e coseno usados, e sendo os mesmo determinados pela quantidade de picos significativos existentes nas series.

Na serie de carga de energia elétrica horária da ESCELSA foi escolhido um modelo linear sazonal para a modelagem, sendo adotada a função trigonométrica de pares de seno e coseno para defini-la, tal como mencionado no parágrafo anterior. A quantidade de pares foi determinada via analise espectral, feita através do periodograma de Schuster, onde foi efetuada a verificação da quantidade de freqüências escondidas existentes. Os valores presentes na tabela 5.2, serão necessários para a formulação do modelo.

Visto que foram determinados 6 picos significativos na serie em estudo, a formulação matemática do modelo pode ser apresentada da seguinte maneira :

 $x_{T} = a_{1} + a_{2}t + a_{3} \operatorname{sen} w_{1}t + a_{4} \cos w_{1}t + a_{5} \operatorname{sen} w_{2}t + a_{6} \cos w_{2}t + a_{7} \operatorname{sen} w_{3}t + a_{8} \cos w_{3}t + a_{9} \operatorname{sen} w_{4}t + a_{10} \cos w_{4}t + a_{11} \operatorname{sen} w_{5}t + a_{12} \cos w_{5}t + a_{13} \operatorname{sen} w_{6}t + a_{14} \cos w_{6}t$

Sabemos que $z_T(t+1) = Lz_T(t)$, e fazendo a transposta da matriz L, obtemos o seguinte resultado :

I	_'=													
ſ	1.000	1.000	0	0	0	0	0	0	0	0	0	0	0	0]
	0	1.000	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	1.000	-0.0039	0	0	0	0	0	0		0	0	0
	0	0	0.0039	1.000	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0.9991	-0.0431	0	0	0	0	0	0	0	0
	0	0	0	0	0.0431	0.9991	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0.9966	-0.0823	0	00	0	0	0	0
	0	0	0	0	0	0	0.0823	0.9966	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0.9989	-0.0471	0	0	0	0
	0	0	0	0	0	0	0	0	0.0471	0.9989	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0.9998-	-0.0196	0	0
	0	0	0	0	0	0	0	0	0	0	0.0196	0.9998	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0.9994	-0.0353
	0	0	0	0	0	0	0	0	0	0	0	0	0.0353	0.9994

A partir das somas infinitas apresentadas na tabela 3.1 e demonstrativo da arrumação da matriz G, mostrados no capítulo 3, podemos calcular o valor dos componentes da matriz, sendo a ela disposta a seguir. É preciso ser mencionado que o valor de beta adotado foi de 0.95.

 $\begin{array}{c} 0.0020 - 0.0380 - 0.0001 0.0020 - 0.0010 0.0012 - 0.0009 0.0006 - 0.0010 0.0011 - 0.0006 0.0018 - 0.0009 0.0014 \\ - 0.0380 1.4820 & 0.0057 & 0.0373 & 0.0219 & 0.0038 & 0.0095 - 0.0047 0.0205 & 0.0017 & 0.0221 & 0.0247 & 0.0241 & 0.0092 \\ - 0.0001 0.0057 - 0.0000 - 0.0001 - 0.0001 - 0.0000 - 0.0000 - 0.0001 - 0.0000 - 0.0001 - 0.0001 - 0.0001 - 0.0000 \\ 0.0020 & 0.0373 - 0.0001 0.0020 - 0.0010 0.0012 - 0.0009 0.0006 - 0.0010 0.0011 - 0.0010 0.0017 - 0.0009 0.0014 \\ - 0.0010 0.0219 - 0.0001 - 0.0007 - 0.0004 - 0.0005 0.0001 - 0.0007 - 0.0003 - 0.0004 - 0.0008 - 0.0007 - 0.0003 \\ 0.0012 & 0.0038 - 0.0000 0.0012 - 0.0004 0.0013 - 0.0008 0.0008 - 0.0005 0.0013 - 0.0001 0.0012 - 0.0003 0.0013 \\ - 0.0009 0.0095 - 0.0000 - 0.0009 - 0.0005 - 0.0008 - 0.0003 - 0.0005 - 0.0008 - 0.0001 - 0.0009 - 0.0004 - 0.0008 \\ 0.0016 - 0.0047 0.0000 & 0.0006 & 0.0001 & 0.0008 - 0.0003 - 0.0005 - 0.0008 - 0.0004 - 0.0009 - 0.0007 - 0.0006 \\ 0.0011 & 0.0017 - 0.0000 & 0.0001 - 0.0005 - 0.0005 & 0.0001 - 0.0008 & 0.0004 - 0.0004 - 0.0009 - 0.0007 - 0.0006 \\ 0.0011 & 0.0017 - 0.0000 & 0.0011 - 0.0003 0.0013 - 0.0008 & 0.0008 - 0.0004 - 0.0004 - 0.0009 - 0.0007 - 0.0002 \\ 0.0018 & 0.0247 - 0.0001 0.0017 - 0.0008 & 0.0012 - 0.0009 & 0.0004 - 0.0004 - 0.0005 - 0.0004 - 0.0002 \\ 0.0018 & 0.0247 - 0.0001 0.0017 - 0.0008 & 0.0012 - 0.0009 & 0.0004 - 0.0009 - 0.0005 - 0.0004 - 0.0005 - 0.0004 - 0.0005 - 0.0004 - 0.0005 - 0.0004 - 0.0005 - 0.0004 - 0.0005 - 0.0004 - 0.0005 - 0.0004 - 0.0005 - 0.0004 - 0.0005 - 0.0004 - 0.0005 - 0.0004 - 0.0005 - 0.0004 - 0.0005 - 0.0004 - 0.0005 - 0.0004 - 0.00005 - 0.0004 - 0.0001 - 0.0004 - 0.0001 - 0.0004 - 0.0004 - 0.0005 - 0.0004 - 0.0002 \\ 0.0018 & 0.0247 - 0.0001 0.0017 - 0.0008 & 0.0012 - 0.0009 & 0.0012 - 0.0005 & 0.0016 - 0.0008 & 0.0014 \\ - 0.0009 & 0.0241 - 0.0001 - 0.0007 - 0.0003 - 0.0004 & 0.0001 - 0.0007 - 0.0002 - 0.0004 - 0.0008 - 0.0005 \\ 0.0014 & 0.0092 - 0.0000 & 0.0014 - 0.0006 & 0.0013 - 0.0008 & 0.0007 - 0.0006 & 0.0012 - 0.0002 & 0.0014 - 0.0005 & 0.0014 \\ 0.0012 - 0.0000 & 0.0014$

A etapa seguinte, é a da determinação da matriz h e da função z(0). Em posse desses dados podemos determinar os parâmetros iniciais do modelo. A determinação dos parâmetros iniciais do modelo foi feita através de regressão linear múltipla. Abaixo segue a matriz h e a z(0).

h =

	$\langle \alpha \rangle$	
71	11	<u>۱</u>
- 74	v) —
_ (/

[1]
0
0
1
0
1
0
1
0
1
0
1
0
[1]

e finalmente, temos que as equações do modelo, que são as seguintes :

$$\underline{\hat{a}}(T) = \underline{L}^{T} \underline{\hat{a}}(T-1) - \underline{h} e_{1}(T)$$
, sendo

$$\hat{a}_{1}(T) = \hat{a}_{1}(T-1) + \hat{a}_{2}(T-1) - 0.0000e_{1}(T)$$

$$\hat{a}_{2}(T) = \hat{a}_{2}(T-1) + 0.0000e_{1}(T)$$

$$\hat{a}_{3}(T) = \hat{a}_{3}(T-1) - 0.0039\hat{a}_{4}(T-1) - 2.0309e_{1}(T)$$

$$\hat{a}_{4}(T) = 0.0039\hat{a}_{3}(T-1) + \hat{a}_{4}(T-1) - 0.0018e_{1}(T)$$

$$\hat{a}_{5}(T) = 0.9991\hat{a}_{5}(T-1) - 0.0431\hat{a}_{6}(T-1) + 4.2991e_{1}(T)$$

$$\hat{a}_{6}(T) = 0.0431\hat{a}_{5}(T-1) + 0.9991\hat{a}_{6}(T-1) - 0.4689e_{1}(T)$$

$$\hat{a}_{7}(T) = 0.99661\hat{a}_{7}(T-1) - 0.0823\hat{a}_{8}(T-1) + 0.0898e_{1}(T)$$

$$\hat{a}_{8}(T) = 0.08231\hat{a}_{7}(T-1) + 0.99661\hat{a}_{8}(T-1) - 0.0716e_{1}(T)$$

$$\hat{a}_{9}(T) = 0.9989\hat{a}_{9}(T-1) - 0.4971\hat{a}_{10}(T-1) - 2.5106e_{1}(T)$$

$$\hat{a}_{10}(T) = 0.49711\hat{a}_{9}(T-1) + 0.9989\hat{a}_{10}(T-1) + 1.2877e_{1}(T)$$

$$\hat{a}_{12}(T) = 0.0196\hat{a}_{11}(T-1) - 0.0353\hat{a}_{14}(T-1) - 2.5012e_{1}(T)$$

$$\hat{a}_{14}(T) = 0.03534\hat{a}_{13}(T-1) + 0.9994\hat{a}_{14}(T-1) + 0.1502e_{1}(T)$$

Com isso, temos a seguinte equação de previsão de carga de energia elétrica horária:

$$\hat{x}_{T+1}(T) = \hat{a}_1(T) + \hat{a}_2(T) + 0.0039 \hat{a}_3(T) + \hat{a}_4(T) + 0.0431 \hat{a}_5(T) + 0.9991 \hat{a}_6(T) + 0.0823 \hat{a}_7(T) + 0.9966 \hat{a}_8(T) + 0.4971 \hat{a}_9(T) + 0.9989 \hat{a}_{10}(T) + 0.0196 \hat{a}_{11}(T) + 0.9998 \hat{a}_{12}(T) + 0.0353 \hat{a}_{13}(T) + 0.9994 \hat{a}_{14}(T)$$

Modelagem via Amortecimento Direto – Uso de Picos Definidos nos Périodos 24 e 168

Para efeito de comparação, decidimos utilizar, alternativamente, um modelo linear sazonal, modelado por uma função trigonométrica de pares de seno e conseno, onde a determinação dos pares será feita de forma semelhante o do modelo de Holt-Winters com Múltiplos Ciclos. Ou seja, somente serão utilizados 2 pares de seno e cosseno, estando os mesmos localizados nos períodos 24 e 168, respectivamente. Será forçada a determinação desses dois picos, a fim de verificar se a dada modelagem obtém um resultado mas satisfatório que a modelagem feita via analise espectral.

A formulação matémática do modelo é a que segue :

$$x_{T} = a_{1} + a_{2}t + a_{3} \operatorname{sen} w_{1}t + a_{5} \operatorname{sen} w_{2}t + a_{6} \operatorname{cosw}_{2}t$$

Dado que $z_T(t+1) = Lz_T(t)$, e transponto a matriz L, obtemos o seguinte resultado:

	[1.000	1.000)	0	0	0	0
	0	1.000)	0	0	0	0
I'-	0	0	0	.9659-	-0.2588	8 0	0
L –	0	0	0	.2588	0.9659	0 0	0
	0	0		0	0	0.9993	0.0374
	0	0		0	0	0.0374	0.9993

Após os cálculos da matriz G, utilizando um beta de 0.95, obtemos as matriz h e da função z(0), estando as duas apresentadas a seguir :

$$h = \begin{bmatrix} 0.0018\\ 0.0002\\ -0.0274\\ 0.0893\\ 0.0207\\ 0.0487 \end{bmatrix} \qquad z(0) = \begin{bmatrix} 1\\ 0\\ 0\\ 1\\ 0\\ 1 \end{bmatrix}$$

obtendo então, as seguintes equações do modelo e equação de previsão :

$$\hat{a}_{1}(T) = \hat{a}_{1}(T-1) + \hat{a}_{2}(T-1) - 0.0018e_{1}(T)$$

$$\hat{a}_{2}(T) = \hat{a}_{2}(T-1) - 0.0002e_{1}(T)$$

$$\hat{a}_{3}(T) = 0.9659\hat{a}_{3}(T-1) - 0.2588\hat{a}_{4}(T-1) + 0.0274e_{1}(T)$$

$$\hat{a}_{4}(T) = 0.2588\hat{a}_{3}(T-1) + 0.9659\hat{a}_{4}(T-1) - 0.0893e_{1}(T)$$

$$\hat{a}_{5}(T) = 0.9993\hat{a}_{5}(T-1) - 0.0374\hat{a}_{6}(T-1) + 0.0207e_{1}(T)$$

$$\hat{a}_{6}(T) = 0.0374\hat{a}_{5}(T-1) + 0.99931\hat{a}_{6}(T-1) - 0.0487e_{1}(T)$$

Poderá ser notado que os resultados obtidos, utilizando esse modelo alternativo foram mais satisfátórios. Então, por esta razão, somente iremos apresentar os seus resultados gráficos. No item 5.4, onde será efetuada uma comparação entre os MAPEs dos modelos, apresentaremos os resultados obtidos em ambas as modelagens.

É preciso ser mencionado que as previsões efetuadas, tem como data de início, uma sexta-feira, dia 29 de Junho de 2001. No item seguinte estão dispostos os resultados gráficos das previsões.

5.2.2.1

Resultados Gráficos da Modelagem via Amortecimento Direto – Uso de Picos Definidos nos Périodos 24 e 168

----- valor da serie

----- valor previsto

Figura 5.6a – Previsão do Primeiro Dia : 29/06/2001 (Sexta-Feira)

Figura 5.6b – Previsão do Segundo Dia : 30/06/2001 (Sábado)

Figura 5.6c – Previsão do Terceiro Dia : 01/07/2001 (Domingo)

Figura 5.6d - Previsão do Quarto Dia : 02/07/2001 (Segunda-Feira)

Figura 5.6e – Previsão do Quinto Dia : 03/07/2001 (Terça-Feira)

Figura 5.6f – Previsão do Sexto : 04/07/2001 (Quarta-Feira)

Figura 5.6g - Previsão do Sétimo : 05/07/2001 (Quinta-Feira)

Figura 5.7 – Gráfico de Previsão da Serie Offsample

5.3 Modelagem via Holt-Winters com Múltiplos Ciclos

Com base nas analises gráficas feitas para a serie em questão, no item 5.1 do presente capítulo, foi notada a existência de comportamentos cíclicos diários e semanais na mesma. Por esta razão, iremos então, utilizar a extensão do modelo de Holt-Winters, o modelo de Holt-Winters para múltiplos ciclos (Taylor, 2002[27]) para modelá-la.

Na aplicação para a serie de carga horária de energia elétrica da ESCELSA, iremos determinar somente dois ciclos, o diário e o semanal, sendo os mesmos especificados como L_1 e L_2 , respectivamente. Em outras palavras, L_1 terá 24 fatores de amortecimento, cada um correspondendo a cada uma das 24 horas do dia, e L_2 terá 168 fatores de amortecimento, cada uma correspondendo a cada uma das 168 horas de uma semana.

Os parâmetros iniciais serão calculados seguindo os procedimentos descritos no item 4.2, do capítulo 4, tendo como base a metodologia proposta por Taylor (Taylor, 2002[27]). Abaixo seguem os parâmetros iniciais encontrados.

Nível Inicial

 $\hat{b}_1(0) = 1002.3$

Tendência Inicial

 $\hat{b}_2(0) = -1.8121$

Os fatores de amortecimento iniciais dos ciclos diários e semanais, encontram-se dispostos nas tabelas 5.3 e 5.4, respectivamente. É necessário ser dito que os fatores foram padronizados, de maneira que a soma dos mesmos seja igual ao valor de L_1 e L_2 .

Hora	Fatores	Hora	Fatores
	do Ciclo		do Ciclo
	Diário		Diário
1	0.9930	13	0.9830
2	0.9571	14	1.0167
3	0.9463	15	1.0248
4	0.9353	16	1.0251
5	0.9279	17	0.9994
6	0.9255	18	0.9709
7	0.8902	19	0.9603
8	0.9184	20	1.1080
9	0.9696	21	1.2005
10	0.9857	22	1.1617
11	0.9937	23	1.0944
12	0.9635	24	1.0491

Tabela 5.3 - Fatores Iniciais do Ciclo Diário

Tabela 5.4 - Fatores Iniciais do Ciclo Semanal

Hora	Fatores	Hora	Fatores	Hora	Fatores	Hora	Fatores
	do Ciclo		do Ciclo		do Ciclo		do Ciclo
	Semanal		Semanal		Semanal		Semanal
1	0.9469	43	1.0770	85	1.1432	127	1.0094
2	0.9594	44	1.0413	86	1.1240	128	0.9728
3	0.9760	45	1.0234	87	1.1209	129	0.9739
4	0.9589	46	1.0272	88	1.1281	130	0.9950
5	0.9568	47	1.0513	89	1.1674	131	1.0132
6	0.9617	48	1.0369	90	1.1300	132	1.0127
7	0.9466	49	1.0187	91	1.0752	133	0.9955
8	0.8880	50	1.0253	92	1.0557	134	0.9768
9	0.8442	51	1.0435	93	1.0300	135	0.9902
10	0.8245	52	1.0316	94	1.0359	136	0.9975
11	0.8245	53	1.0287	95	1.0278	137	0.9902
12	0.8307	54	1.0426	96	1.0491	138	0.9897
13	0.8348	55	1.0652	97	1.0347	139	0.9939
14	0.8309	56	1.0928	98	1.0306	140	0.9698
15	0.8428	57	1.1174	99	1.0667	141	0.9231
16	0.8650	58	1.1193	100	1.0648	142	0.8985
17	0.8807	59	1.1312	101	1.0647	143	0.9072
18	0.9014	60	1.1147	102	1.0641	144	0.8967
19	0.9614	61	1.1485	103	1.0701	145	0.8786
20	0.9865	62	1.1599	104	1.0631	146	0.8740
21	0.9722	63	1.1552	105	1.0521	147	0.8877
22	0.9897	64	1.1717	106	1.0127	148	0.9091
23	0.9755	65	1.1791	107	0.9961	149	0.9126

24	0.9599	66	1.1099	108	1.0346	150	0.9149
25	0.9353	67	1.0767	109	1.0559	151	0.9432
26	0.9399	68	1.0342	110	1.0482	152	0.9093
27	0.9570	69	1.0326	111	1.0619	153	0.8849
28	0.9403	70	1.0318	112	1.0665	154	0.8679
29	0.9503	71	1.0657	113	1.1048	155	0.8452
30	0.9602	72	1.0342	114	1.0277	156	0.8584
31	0.9656	73	1.0388	115	1.0133	157	0.8481
32	0.9998	74	1.0097	116	0.9974	158	0.8638
33	1.0459	75	1.0036	117	0.9847	159	0.8710
34	1.0573	76	0.9693	118	0.9870	160	0.8764
35	1.0656	77	0.9915	119	1.0044	161	0.8823
36	1.0609	78	0.9820	120	0.9757	162	0.8997
37	1.0766	79	0.9913	121	0.9643	163	0.9665
38	1.0950	80	1.0787	122	0.9637	164	0.9873
39	1.1143	81	1.1250	123	0.9776	165	0.9307
40	1.1318	82	1.1155	124	0.9793	166	0.9049
41	1.1330	83	1.1317	125	0.9635	167	0.8590
42	1.1081	84	1.1103	126	0.9619	168	0.8482

As constantes de amortecimento, á, ã, â e ä foram estimadas seguindo um procedimento de otimização, onde o objetivo era a busca da combinação dos hiperparâmetros que minimize a soma do quadrado dos erros. As constantes de amortecimento estimadas foram as seguintes : 0.92 para a constante de nível, 0.00 para a constante de tendência, e 1.00 para as constantes de ciclo diário e semanal.

Podemos então. com base nas informações descritas nos parágrafos anteriores. escrever as equações dos parâmetros do modelo. e a equação de previsão do mesmo.

Nível :
$$\hat{b}_1(T) = 0.92 (x_T / \hat{c}_{1h_1(T)}(T-1) \hat{c}_{2h_2(T)}(T-1)) + (1-0.92) (\hat{b}_1(T-1) + \hat{b}_2(T-1))$$
 (5.1)

Tendência :
$$\hat{b}_2(T) = 0.00(\hat{b}_1(T) - \hat{b}_1(T-1)) + \hat{b}_2(T-1)$$
 (5.2)

Ciclo 1:
$$\hat{c}_{1h_1(T)}(T) = 1.00(x_T/\hat{b}_1(T)\hat{c}_{2h_2(T)}(T-1)) + (1-1.00)\hat{c}_{1h_1(T)}(T-1)$$
 (5.3)

Ciclo 2:
$$\hat{c}_{2h_2(T)}(T) = 1.00(x_T/\hat{b}_1(T)\hat{c}_{1h_1(T)}(T-1)) + (1-1.00)\hat{c}_{2h_2(T)}(T-1)$$
 (5.4)

Os resultados gráficos são apresentados no item a seguir.

Resultados Gráficos do Modelo Holt-Winters com Múltiplos Ciclos

---- valor da serie ----- valor previsto

Figura 5.8a – Previsão do Primeiro Dia : 29/06/2001 (Sexta-Feira)

Figura 5.8b – Previsão do Segundo Dia : 30/06/2001 (Sábado)

5.3.1

Figura 5.8c – Previsão do Terceiro Dia : 01/07/2001 (Domingo)

Figura 5.8d – Previsão do Quarto Dia : 02/07/2001 (Segunda-Feira)

Figura 5.8e - Previsão do Quinto Dia : 03/07/2001 (Terça-Feira)

Figura 5.8f – Previsão do Sexto : 04/07/2001 (Quarta-Feira)

Figura 5.8g - Previsão do Sétimo : 05/07/2001 (Quinta-Feira)

Figura 5.9 – Gráfico de Previsão da Serie Offsample

Comparação dos Erros de Previsão

Os erros de previsão foram calculados. e encontram-se dispostos na tabela 5.5. que segue. Foi utilizado o erro percentual absoluto médio como forma de comparar os dois métodos de previsão. permitindo que optemos pelo método que apresente os melhores resultados para uma serie temporal.

101

O erro percentual absoluto médio (MAPE). é calculado da seguinte forma :

MAPE =
$$\frac{1}{N-K} \sum_{t=k}^{N-1} \frac{|e_{T}(1)|}{x_{T}(1)} \cdot 100$$
 (5.5)

O período escolhido para previsão foi a semana de 29 de junho a 5 de julho. Os dois modelos realizaram previsões horárias de carga elétrica (24-passos-à-frente).

Tabela 5.5 – Erros Percentuais Absolutos Médios (MAPE)

Dia	Erro dePrevisão Amortecimento Direto - Via Analise Espectral	Erro dePrevisão Amortecimento Direto - Via Picos nos Períodos 24 e 168	Erro de Previsão Holt-Winters Múltiplos Ciclos
29/6/01	5.9850	8.8579	0.5008
30/6/01	8.1237	6.2041	0.4308
1/7/01	8.8174	5.8798	0.5139
2/7/01	5.5085	6.8263	0.2620
3/7/01	8.1710	5.9570	0.2677
4/7/01	18.0705	11.5979	0.2915
5/7/01	36.7595	10.1772	0.3315
Total		8.1004	0.3714