

Mario Germino Ferreira da Silva

Aplicação de laser para canhoneio de poços de petróleo

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientador: Professor Arthur Martins Barbosa Braga Co-orientador: Giancarlo Vilela de Faria

Rio de Janeiro Dezembro de 2013

Mario Germino Ferreira da Silva

"Aplicação de laser para canhoneio de poços de petróleo"

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Arthur Martins Barbosa Braga Orientador Departamento de Engenharia Mecânica – PUC-Rio

> **Prof. Giancarlo Vilela de Faria** Departamento de Engenharia Mecânica – PUC-Rio

> Prof. Luiz Carlos Guedes Valente Departamento de Engenharia Mecânica – PUC-Rio

> Paulo Dore Fernandes Departamento de Engenharia Mecânica – PUC-Rio

> > Cristiane Richard de Miranda Petrobras

> > > Adolfo Polillo Filho Petrobras

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 05 de dezembro de 2013

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem a autorização da universidade, do autor e do orientador.

Mario Germino Ferreira da Silva

Graduou-se como Químico Industrial pela Faculdade Nuno Lisboa em 1986 e realizou curso de pós-graduação em Engenharia de Petróleo pela Universidade Pontifícia Universidade Católica em 2007.

Ficha Catalográfica

Silva, Mario Germino Ferreira da

Aplicação de laser para canhoneio de poços de petróleo / Mario Germino Ferreira da Silva ; orientador: Arthur Martins Barbosa Braga ; co-orientador: Giancarlo Vilela de Faria. – 2013.

180 f. : il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2013. Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Laser. 3. Canhoneio. 4. Poço. 5. Carbonato. 6. Reservatório. 7. Estimulação. I. Braga, Arthur Martins Barbosa. II. Faria, Giancarlo Vilela de. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

CDD: 621

Dedico este trabalho aos meus pais: Germino Ferreira da Silva e Cristina Dias Ferreira em memória e à minha esposa Ana Paula Barreto Cordeiro Ferreira.

Agradecimentos

Ao Deus criador dos céus, da terra, do mar e de tudo que neles habita seja dada a honra e a glória pela sua majestade e excelência.

A meu Pai Celestial agradeço por toda atenção, apoio, carinho e ajuda constantes no decorrer deste trabalho.

A meus pais pelo exemplo de vida, apoio e dedicação que deixaram.

A minha esposa Ana Paula pela compreensão e apoio ao longo desta jornada. por ser uma dádiva de Deus na minha vida.

A Petrobras pela oportunidade de realizar esta tese.

Ao GG Luiz Felipe Bezerra Rego pelo apoio para a realização da tese.

Ao Adolfo Polillo Filho pela sugestão sobre o tema, apoio e cooperação.

Ao professor e orientador Arthur Braga pela orientação desta dissertação.

Ao professor e co-orientador Giancarlo Vilela de Faria pelo constante apoio orientação e disponibilidade na condução dos testes de perfuração a laser.

A Cristiane Richard de Miranda pela atenção dedicada à preparação da parte de cimentação e utilização de tomografia como método de análise.

A Elisabete Ferreira Campos, Rodrigo Surmas, Andreidy Andrade e pela colaboração na realização dos ensaios de microtomografia e tomografia.

A Aline de Azevedo Vargas de Melo pelo empenho no preparo das amostras de cimento e fabricação do dispositivo para o teste de bancada.

Aos colegas de mestrado que contribuíram na superação dos desafios.

Resumo

Ferreira da Silva, Mario; Braga, Arthur Martins Barbosa. **Aplicação de laser para canhoneio de poços de petróleo**. Rio de Janeiro, 2013. 180p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Esta dissertação apresenta os resultados de um estudo visando à avaliação do uso de lasers de alta potência para operações de canhoneio em poços revestidos e cimentados em reservatórios carbonáticos, cujo objetivo é introduzir furos laterais nas paredes do poço para permitir o escoamento do fluido do reservatório para o poço. Numa revisão bibliográfica de patentes internacionais publicadas na última década, levantou-se o atual estado da arte do uso de lasers para perfuração de rochas. Foram publicados 226 documentos de patentes desde o ano de 2008, indicando a grande relevância tecnológica do tema desta dissertação. São apresentados os resultados de testes de Resistência a Compressão e análises de microtomografia, realizados em amostras de pastas de cimento com formulações usadas nos poços do Pré-sal e de rochas carbonáticas com características próximas às encontradas nesses reservatórios. O laser a fibra utilizado apresentava potência de até 1,5 kW e comprimento de onda de 1.064 µm. Para a caracterização destes materiais, antes e após a produção de canhoneios, foram realizados ensaios de Difração de Raios X e de Espectrometria de Fluorescência de Raios X. Na avaliação da estrutura das amostras, foram utilizados um tomógrafo de raios-X e um microtomógrafo. Energia específica estimada em 243 J/mm3 para carbonato. Testes em corpos de prova compostos de revestimento/cimento/carbonato. Com laser de potência de 1,5 Kw por 80 segundos, produziram furos de 5 mm de diâmetro e 50 mm de profundidade. Os resultados obtidos demostram, ainda que preliminarmente, o potencial do uso dessa tecnologia em operações de canhoneio.

Palavras-chave

Laser; canhoneio; poço; carbonato; reservatório; estimulação.

Abstract

Ferreira da Silva, Mario.; Braga, Arthur Martins Barbosa (advisor). Application of lasers for perforation of petroleum wells. Rio de Janeiro, 2013. 180p. MSc. Dissertation – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

This thesis presents the results of a study evaluating the application of highpowered lasers when perforating cement-lined wells in carbonate rock reservoirs. The focus is on the creation of lateral channels in the walls of the well to allow the flow of the oil into the well. Through an intensive literature review of the international patents published in the last decade, the current state-of-the-art use of lasers in the perforation of rocks was evaluated. Specifically, 226 patent documents were found to have been published since 2008, showing the great importance of laser technology in this field. The results of the Resistance to Compression tests and the microtomography analysis are presented, showing samples of the cement slurry formulation used in pre-salt wells and carbonate rocks with characteristics close to the ones found in these types of reservoirs. The fiber laser utilized presented an output of up to 1.5kW and a wavelength of 1,064µm. The characterization of this material, before and after the production of perforations, was analyzed using X-ray Diffraction and X-ray Fluorescence Spectroscopy. To evaluate the structure of the samples, X-ray tomography and microtomography were employed. The specific energy was estimated at 243 J/mm³ for the carbonate rocks. The final tests to represent the well architecture were realized with samples of liner/cement/carbonate. By means of lasers with the power of 1.5kW for 80 seconds, channels with 5mm diameters and 50mm depths were produced. The results obtained show, although only preliminarily, the potential of using this technology in perforation operations.

Keywords

Laser; perforation; well; carbonate; reservoir; stimulation.

Sumário

1. Introdução	23
1.1. Motivação	26
1.2. Objetivos	27
1.3. Estrutura do trabalho	27

2. Breve Histórico do uso de Laser para Perfuração e Canhoneio de
Rocha29
2.1. Tecnologia Laser
2.2. Interação Laser-Rocha
2.2.1. Energia Específica Carbonato Bege Bahia
2.2.2. Energia Específica Carbonato Travertino
2.3. Histórico da aplicação de Laser
2.3.1. Histórico de aplicação de Laser para operações de canhoneio40
2.4. Monitoramento Tecnológico sobre Laser para Perfuração e
Canhoneio de Rochas Reservatório47
2.4.1. Evolução temporal da publicação de patentes47
2.4.2. Principais atores no desenvolvimento da tecnologia
2.4.3. Caracterização da colaboração para pesquisa e
desenvolvimento da tecnologia49
2.4.4. Principais mercados de interesse na comercialização da
tecnologia50
2.4.5. Detalhamento da tecnologia através da análise de assunto
dos documentos51
2.4.6. Considerações finais da análise52
3. Preparo de amostras54

3.1.2. Usinagem para preparação de amostras com Carbonato
Bege Bahia54
3.2. Cimento
3.2.1. Matéria Prima
3.2.2. Preparo dos Cubos
3.3. Aço/Cimento/Carbonato
3.3.1. Matéria Prima
3.3.2. Preparo do corpo de prova aço/cimento/carbonato60
3.4. Ensaios de criação de túneis através da aplicação de laser61
3.4.1. Carbonato61
3.4.1.1. Amostras de carbonato Bege Bahia de dimensões
10x10x10cm
3.4.1.2. Amostras de carbonato Bege Bahia nas dimensões
5x5x5 cm
3.4.1.3. Amostras de carbonato bege bahia cilíndricas nas
dimensões 38x88 mm64
3.4.2. Cimento
3.4.2.1. Ensaios de compressão para as amostras de cimento
3.4.2.2. Ensaio a Laser amostras de cimento nas dimensões
5x5x5 cm
3.4.3. Aço/Cimento/Carbonato
3.5. Técnicas de Avaliação70
3.5.1. Resistência a compressão
3.5.2. Tomografia de Raio-X
3.5.3. Microtomografia de Raios-X
3.5.4. Interação com Energia Radiante de Laser
3.5.4. Analisador Termogravimétrica74
3.5.5. Difração de raios-X
3.5.6. Espectrometria de Fluorescência de Raios X
4. Análise dos Resultados76

4.1. Análise por Microtomografia	76
4.1.1. Análise das imagens de Microtomografia das amostras	
cilíndricas de bege bahia	76

4.1.1.2. Energia específica das amostras cilíndricas de bege bahia82
4.1.2. Microtomografia das amostras cúbicas de Bege Bahia83
4.1.2.1. Análise das imagens de Microtomografia das amostras
cúbicas de dimensões de 5x5x5 cm de Bege Bahia83
4.1.3. Análise Termogravimétrica (ATG) e Calorimetria Diferencial
de Varredura (DSC) do carbonato Bege Bahia87
4.1.4. Análise das imagens de Microtomografia das amostras cúbicas
de Pasta de Cimento Curadas nas dimensões de 5x5x5 cm
4.2. Fluorescência de Raios X97
4.3. Analise Difração de Raios X98
4.4. Avaliação da Capacidade de perfuração do Aço-Cimento-
Formação99
4.4.1. Tomografia de Raios-X99
4.5. Análise Visual102
5. Conclusões107
5.1. Sugestões para os próximos trabalhos109
6. Referências Bibliográficas111
Apêndice A – Tecnologias convencionais116
Apêndice B – Canhoneio120
Apêndice C – Revestimentos153
Apêndice D – Cimentação de poços de petróleo161
Apêndice E – Rochas Sedimentares Rochas Sedimentares171

Lista de Figuras

Figura 1 – Localização do pré-sal no Brasil24
Figura 2 – Localização de alguns campos do pré-sal no Brasil24
Figura 3 – Estratificação e camada litológica do pré-sal25
Figura 4 – Diagrama de classificação dos tipos de laser29
Figura 5 – Espectro eletromagnético
Figura 6 – Mecanismos básicos para desintegração e remoção de
uma rocha
Figura 7 – Formação de dano no canhoneio [Well completion
Designer]41
Figura 8 – Mapa de relacionamento entre os depositantes de patentes 50
Figura 9 – Distribuição geográfica de patentes baseada no país de
publicação51
Figura 10 – Amostra de carbonato Bege Bahia dimensões
10x10x10 cm55
Figura 11 – Amostra de carbonato Bege Bahia dimensões 5x5x5cm55
Figura 12 – Amostras cilíndricas de carbonato Bege Bahia56
Figura 13 – À esquerda: misturador de paleta. À direita: molde57
Figura 14 – Banho Termostático utilizado no preparo das amostras58
Figura 15 – Amostra CIM 040/13, do cubo de cimento de 5x5x5 cm58
Figura 16 – Amostra CIM 042/13, do cubo de cimento pré-sal de
5x5x5 cm
Figura 17 – Vistas da amostra aço/cimento/carbonato59
Figura 18 – Esquema de montagem do aparato de cimentação dos
corpos de prova de aço/cimento/carbonato travertino61
Figura 19 – Aplicação de laser na 2º amostra cúbica de 10 cm (nº 2)63
Figura 20 – 2º Amostra cúbica de 10 cm após a criação do túnel63
Figura 21 – Aplicação de laser nas amostras cúbicas de 5 cm64
Figura 22 – Amostra cúbica de 5x5x5 cm após a criação do túnel64

Figura 23 – Aplicação de laser nas amostras cilíndricas65
Figura 24 – Amostra cilíndrica após a criação do túnel65
Figura 25 – Aplicação do laser na amostra de pasta pura de cimento67
Figura 26 – Pasta pré-sal e pasta pura, curadas, após a criação do
túnel67
Figura 27 – Aplicação do laser na amostra de aço/cimento/travertino69
Figura 28 – Amostra de aço/cimento/travertino após a criação do túnel70
Figura 29 – Prensa hidráulica e painel de controle
Figura 30 – Corpos de prova de carbonato Bege Bahia de 10 cm no
Tomógrafo de Raio-X71
Figura 31 – Vistas do corpo de prova, com pasta pré-sal (CIM 042/13)
$n^{o}1,$ dentro do tomógrafo em dois sentidos72
Figura 32 – Corpo de prova de aço/cimento/carbonato pasta pré-sal
(CIM 042/13) nº1 no tomógrafo72
Figura 33 – Microtomógrafo da GE73
Figura 34 – Laser a fibra YLS-1500 com potência máxima de 1500 W74
Figura 35 – Analisador Térmico Simultâneo (STA-6000) da
Perkin-Elmer74
Figura 36 – Vistas da tomografia da amostra BB1 pelo eixo XY antes
da irradiação a laser76
Figura 37 – Imagens da Micro-tomografia da amostra BB1, cilindro de
Bege Bahia após a irradiação com laser77
Figura 38 – Imagem da Microtomografia da vista superior da amostra
BB2, cilindro de Bege Bahia após a irradiação com laser77
Figura 39 – Imagens da Microtomografia da amostra BB2, cilindro de
Bege Bahia após a irradiação do laser com laser78
Figura 40 – Imagem da Micro-tomografia da vista superior da amostra
BB3, cilindro de Bege Bahia após a irradiação com laser78
Figura 41 – Imagens da Microtomografia da amostra BB3, cilindro de
Bege Bahia após a irradiação com laser79
Figura 42 – Imagem da Microtomografia da vista superior da amostra
BB4, cilindro de Bege Bahia após a irradiação do laser com laser80
Figura 43 – Imagens da Microtomografia da amostra BB4, cilindro de
Bege Bahia após a irradiação com laser80

Figura 44 – Imagens da Microtomografia da amostra CBB 1 de Bege
Bahia após a irradiação do laser
Figura 45 – Imagens da Microtomografia da amostra CBB2 de Bege
Bahia após a irradiação do laser com laser84
Figura 46 – Imagens da Microtomografia da amostra CBB3 de Bege
Bahia após a irradiação do laser
Figura 47 – Imagens da Microtomografia da amostra CBB5 de Bege
Bahia após a irradiação do laser85
Figura 48 – Rompimento da amostra de pasta pré-sal (CIM 042/13)
ao final da criação do canal a laser92
Figura 49 – Vídeo da 4º amostra de pasta de cimento pura curada
(CIM 040/13) com o canal criado pelo laser93
Figura 50 – Vídeo da 3º Amostra de pasta de cimento pré-sal
(CIM 042/13) com o canal criado pelo laser94
Figura 51 – Análise da porosidade de uma amostra de pasta de
cimento pura curada (CIM 040/13) através de microtomografia antes
da exposição ao laser94
Figura 52 – Análise da porosidade de uma amostra de pasta pré-sal
(CIM 042/13) através de microtomografia antes da exposição ao laser95
Figura 53 – Análise da porosidade da 1º amostra de pasta de
cimento pura curada (CIM 040/13) através de microtomografia após
a exposição ao laser96
Figura 54 – Análise da porosidade da 3º amostra de pasta pré-sal
(CIM 042/13) através de microtomografia após a exposição ao laser97
Figura 55 – Vista transversal do 1º corpo de prova de
aço/cimento/carbonato travertino (pasta pré-sal) com um furo
central que atravessou a amostra100
Figura 56 – Vista longitudinal do 1º corpo de prova de
aço/cimento/carbonato travertino (CIM 042/13 - pasta pré-sal) com
um canal central que atravessou a amostra100
Figura 57 – Tomografia do 4º corpo de prova de aço/cimento/
carbonato travertino (CIM 040/13 - pasta de cimento pura curada) 101
Figura 58 – Tomografia do 4º corpo de prova de aço/cimento/
carbonato travertino (CIM 040/13 - pasta de cimento pura curada) 102

Figura 59 – Vista dos furos na placa de aço e na placa de travertino
(nos círculos vermelhos) da 5ª amostra de aço/cimento/
carbonato travertino(CIM 040/13 - pasta de cimento pura curada) 103
Figura 60 – Vista dos furos na placa de aço e na placa de travertino
(nos círculos amarelos) da 2ª amostra de aço/cimento/carbonato
travertino (CIM 042/13 - pasta pré-sal)104
Figura 61 – Vista do furo central na placa de aço e na placa de
travertino da 3ª amostra de aço/cimento/carbonato travertino
(CIM 042/13 - pasta pré-sal)105
Figura 62 – Medida do diâmetro do furo central com paquímetro
digital na placa de aço da 3ª amostra de aço/cimento/carbonato
travertino (CIM 042/13 - pasta pré-sal)105
Figura 63 – Vista do furo central na placa de aço da 6ª amostra de
aço/cimento/carbonato travertino (CIM 040/13 - pasta de cimento
pura curada)106
Figura 64 – Métodos de completação de reservatórios117
Figura 65 – Métodos de completação superior118
Figura 66 – Canhoneio imediatamente após a criação120
Figura 67 – Composição do canhão121
Figura 68 – Esquema de canhoneio em poço de petróleo122
Figura 69 – Variáveis de projeto de canhoneio122
Figura 70 – Técnicas de canhoneio126
Figura 71 – Túnel canhoneado128
Figura 72 – Tunel perfurado por bala129
Figura 73 – Carga moldada130
Figura 74 – Arranjo do canhão131
Figura 75 – Esquema do trem de explosivos133
Figura 76 – A estabilidade da temperatura dos principais explosivos 135
Figura 77 – Geometria típica de um canhoneio136
Figura 78 – No exterior do revestimento com uma perfuração de
diâmetro pequeno136
Figura 79 – Container, a carga e a camisa137
Figura 80 – Explosivos Secundários137
Figura 81 – Seqüência da detonação da carga Big Hole138

Figura 82 – Seqüência da detonação da carga "Deep Penetration"	138
Figura 83 – Variáveis do canhão	140
Figura 84 – Processo de penetração	141
Figura 85 – Diferentes técnicas de canhoneio	144
Figura 86 – Permeabilidade antes do canhoneio	
(Well completion design)	145
Figura 87 – Permeabilidade depois do canhoneio	
(Well completion design)	146
Figura 88 – Ferramenta para canhoneio com jato de areia	147
Figura 89 – Canhoneio imediatamente após a criação	148
Figura 90 – Foto da montagem de um canhão	149
Figura 91 – Componentes do canhão	149
Figura 92 – Esquema de um canhão.	150
Figura 93 – Fases do canhão	150
Figura 94 – Resíduos gerados pela carga	151
Figura 95 – Detonador da empresa Halliburton	151
Figura 96 – Carregando as cargas moldadas do canhão	152
Figura 97 – Carregando os canhões no corpo externo	152
Figura 98 – Esquema mostrando o poço e seus revestimentos	154
Figura 99 – Exemplo de acoplamento entre duas juntas de	
revestimentos	156
Figura 100 – Desenho Esquemático de uma coluna de	
revestimentos e seus acessórios incluindo a sapata	156
Figura 101 – (A) Broca com Underreamer (empresa TESCO) (B)	
Underreamer (empresa SMITH)	160
Figura 102 – esquema de poço com falha de cimentação	163
Figura 103 – Ferramenta e perfil ultra-sônico	165
Figura 104 – Exemplo de um perfil USIT-CBL-VDL-CCL-GR	166
Figura 105 – Amostra de calcário	172
Figura 106 – amostra de marga	172
Figura 107 – Exemplo de caverna gerada pelo processo de	
carstificação em carbonatos	174
Figura 108 – Exemplo de coquina	176
Figura 109 – Tipos de calcita	177

Figura 110 – Amostra de Dolomita	178
Figura 111 – Mostra de Argonita	178
Figura 112 – Mostra de um travertino italiano	180

Lista de Gráficos

Gráfico 1 – Efeito da potência do laser na energia específica do
carbonato
Gráfico 2 – Distribuição de patentes a partir da data de publicação48
Gráfico 3 – Distribuição geográfica de patentes baseada no país de
prioridade
Gráfico 4 – Principais atores
Gráfico 5 - Detalhamento da Classificação Internacional de Patentes 52
Gráfico 6 – Perfil de decomposição térmica do carbonato62
Gráfico 7 – Comparação dos diâmetros dos canais ao longo do
comprimento das amostras cilíndricas BB2, BB3 e BB481
Gráfico 8 – Comparação dos volumes ao longo do comprimento dos
canais formados nas amostras cilíndricas BB 2, BB 3 e BB 482
Gráfico 9 – Comparação dos diâmetros dos canais ao longo do
comprimento das amostras cúbicas CBB 1, CBB 2, CBB 3 e CBB 585
Gráfico 10 – Comparação dos volumes dos canais ao longo do
comprimento das amostras cúbicas CBB 1, CBB 2, CBB 3 e CBB 586
Gráfico 11 – Comparação do volume ao longo canal das amostras
cúbicas versus amostras cilíndricas87
Gráfico 12 – ATG/DSC da amostra 05.04/2013 de carbonato bege
bahia
Gráfico 13 – ATG/DSC da amostra 06.04/2013 de carbonato bege
bahia88
Gráfico 14 – Comparação dos diâmetros dos canais ao longo
do comprimento das três amostras cúbicas de pasta de cimento
pura curada (CIM 040/13)89
Gráfico 15 – Comparação dos volumes dos canais ao longo do
comprimento das amostras cúbicas de pasta de cimento pura curada
(CIM 040/13)

Gráfico 16 – Comparação dos diâmetros dos canais ao longo do
comprimento das duas amostras cúbicas de pasta pré-sal
(CIM 042/13)90
Gráfico 17 – Comparação dos volumes dos canais ao longo do
comprimento das amostras cúbicas de pasta pré-sal (CIM 042/13)90
Gráfico 18 – Comparação dos diâmetros dos canais ao longo do
comprimento das amostras cúbicas de pasta de cimento pura
curada (CIM 040/13) e pasta pré-sal (CIM 042/13)91
Gráfico 19 – Comparação dos volumes dos canais ao longo do
comprimento das amostras cúbicas de pasta cimento pura curada
(CIM 040/13) e pasta pré-sal (CIM 042/13)91
Gráfico 20 – Porosidade das amostras de pasta de cimento pura
curada (CIM 040/13) e pasta pré-sal (CIM 042/13)96

Lista de tabelas

Tabela 1 – Energia específica do carbonato bege bahia
Tabela 2 – Composição da amostra da pasta básica CIM 040/1357
Tabela 3 – Potência e tempos de aplicação do laser nas amostras de
carbonato Bege Bahia de formato cúbico de dimensões 10x10x10 cm62
Tabela 4 – Potência e tempos de aplicação do laser nas amostras
cúbicas de 5cm63
Tabela 5 – Potência e tempos de aplicação do laser nas amostras
cilíndricas64
Tabela 6 – Boletim teste de resistência à compressão amostra CIM
040/13
Tabela 7 – Boletim teste de resistência à compressão amostra CIM
042/13
Tabela 8 – Potência e tempos de aplicação do laser nas amostras de
pasta de cimento66
Tabela 9 – Amostras de aço/cimento/carbonato68
Tabela 10 – Posição e sequência de aplicações de laser na amostra
pasta pura (CIM 040/13)68
Tabela 11 – Posição e sequência de aplicações de laser na 2º
amostra pasta pré-sal (CIM 042/13)69
Tabela12 – Comparativa do comprimento, diâmetro e volume dos
canais das amostras cilíndricas81
Tabela 13 – Valores de energia específica das amostras cilíndricas82
Tabela 14 – Comparativa do comprimento, diâmetro e volume dos
canais das amostras cúbicas de 5X5X5 cm de carbonato Bege Bahia86
Tabela 15 – Comparativa do comprimento, diâmetro e volume dos
canais das amostras cúbicas de pasta de cimento pura curada
(CIM 040/13) e pasta pré-sal (CIM 042/13)92

Tabela 16 – Análise de fluorescência de Raio X das amostras pasta
decimento pura curada (CIM 040/13)/(Scad 2013-013060-51) e
pasta pré-sal (CIM 042/13)/(Scad 2013-013061-32)
Tabela 17 – Análise de Difração de Raio X das amostras pasta de
cimento pura curada (CIM 040/13)/ (Scad 2013-013060-51) e pasta
pré-sal (CIM 042/13)/(Scad 2013-013061-32)99
Tabela 18 – Posição e sequência de aplicações de laser na 5ª
amostra de aço/cimento/carbonato travertino (CIM 040/13 - pasta de
cimento pura curada)102
Tabela 19 – Posição e sequência de aplicações de laser na amostra
2ª amostra de aço/cimento/carbonato travertino (CIM 042/13 - pasta
pré-sal)
Tabela 20 – tipos de perfis aplicados na avaliação de cimentação 163
Tabela 21 – tipos de perfis utilizados para avaliar cimentação165
Tabela 22 – Principais componentes químicos do cimento Portland 167
Tabela 23 – condiçoes de uso em relação a profundidade e
temperatura dos poços168
Tabela 24 – Principais aditivos para cimentação169
Tabela 25 – Classificação granulometrica dos calcários173
Tabela 26 – classificação mineralógica dos carbonatos, de acordo
com o teor de dolomita173

Lista de siglas e símbolos

λ	Comprimento de onda
COIL	Chemical Oxygen-Iodine Laser
Debris	fragmentos, cascalhos.
E	Máxima energia
MIRACL	Mid-Infrared Advanced Chemical Laser
MSE	Mechanical specific energy
Nd:YAG	Neodymium yttrium aluminum garnet
nm	nano metro
Pav	Máxima potência média
Рр	Máxima potência de pico
R	Taxa de repetição
ROP	Taxa de penetração da broca
SE	Specific energy
Spallation	descamação, estilhaçamento.
UCS	(unconfined stress): tensão não confinada
WOB	Peso sobre a broca
Wp	Largura do pulso

PUC-Rio - Certificação Digital Nº 1121544/CA

E conhecereis a verdade, e a verdade vos libertará. João 8:32