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Abstract

Ebrahimi, Rouhollah; Nunokawa, Hiroshi (Advisor); Zohren, Ste-
fan (Co-Advisor). Extreme Value Statistics of Random Nor-
mal Matrices. Rio de Janeiro, 2017. 135p. Tese de doutorado –
Departamento de Física, Pontifícia Universidade Católica do Rio
de Janeiro.
With diverse applications in mathematics, physics, and finance, Ran-

dom Matrix Theory (RMT) has recently attracted a great deal of atten-

tion. While Hermitian RMT is of special importance in physics because of

the Hermiticity of operators associated with observables in quantum me-

chanics, non-Hermitian RMT has also attracted a considerable attention,

in particular because they can be used as models for dissipative or open

physical systems. However, due to the absence of a simplifying symmetry,

the study of non-Hermitian random matrices is, in general, a difficult task.

A special subset of non-Hermitian random matrices, the so-called random

normal matrices, are interesting models to consider, since they offer more

symmetry, thus making them more amenable to analytical investigations.

By definition, a normal matrixM is a square matrix which commutes with

its Hermitian adjoint, i.e., [M;M y] = 0. In this thesis, we present a novel

derivation of extreme value statistics (EVS) of Hermitian random matri-

ces, namely the approach of orthogonal polynomials, to normal random

matrices and 2D Coulomb gases in general. The strength of this approach

is its physical and intuitive understanding. Firstly, this approach provides

an alternative derivation of results in the literature. Precisely speaking,

we show convergence of the rescaled eigenvalue with largest modulus of

a Ginibre ensemble to a Gumbel distribution, as well as universality for

an arbitrary radially symmetric potential which meets certain conditions.

Secondly, it is shown that this approach can be generalised to obtain con-

vergence of the eigenvalue with smallest modulus and its universality at

the finite inner edge of the eigenvalue support. One interesting aspect of

this work is the fact that we can use standard techniques from Hermitian

random matrices to obtain the EVS of non-Hermitian random matrices.

Keywords
Random Normal Matrices; Extreme Value Statistics; Universality;

Orthogonal Polynomials.
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Resumo

Ebrahimi, Rouhollah; Nunokawa, Hiroshi; Zohren, Stefan. Esta-
tísticas de Valor Extremo de Matrizes Aleatórias Normais.
Rio de Janeiro, 2017. 135p. Tese de Doutorado – Departamento
de Física, Pontifícia Universidade Católica do Rio de Janeiro.
Com diversas aplicações em matemática, física e finanças, Teoria das

Matrizes Aleatórias (RMT) recentemente atraiu muita atenção. Enquanto

o RMT Hermitiano é de especial importância na física por causa da Her-

menticidade de operadores associados a observáveis em mecânica quân-

tica, O RMT não-Hermitiano também atraiu uma atenção considerável,

em particular porque eles podem ser usados como modelos para sistemas

físicos dissipativos ou abertos. No entanto, devido à ausência de uma si-

metria simplificada, o estudo de matrizes aleatórias não-Hermitianas é, em

geral, uma tarefa difícil. Um subconjunto especial de matrizes aleat órias

não-Hermitianas, as chamadas matrizes aleat’orias normais, são modelos

interessantes a serem considerados, uma vez que oferecem mais simetria,

tornando-as mais acessíveis às investigções analíticas. Por definição, uma

matriz normal M é uma matriz quadrada que troca com seu adjunto

Hermitiano. Nesta tese, amplicamos a derivação de estatísticas de valores

extremos (EVS) de matrizes aleatórias Hermitianas, com base na aborda-

gem de polinômios ortogonais, em matrizes aleatórias normais e em gases

Coulomb 2D em geral. A força desta abordagem a sua compreensão física

e intuitiva. Em primeiro lugar, essa abordagem fornece uma derivação al-

ternativa de resultados na literatura. Precisamente falando, mostramos a

convergência do autovalor redimensionado com o maior módulo de um

conjunto de Ginibre para uma distribuição de Gumbel, bem como a uni-

versalidade para um potencial arbitrário radialmente simtérico que atenda

certas condições. Em segundo lugar, mostra-se que esta abordagem pode

ser generalizada para obter a convergência do autovalor com menor mó-

dulo e sua universalidade no limite interno finito do suporte do autovalor.

Um aspecto interessante deste trabalho é o fato de que podemos usar

técnicas padrão de matrizes aleatórias Hermitianas para obter o EVS de

matrizes aleatórias não Hermitianas.
Palavras-chave

Matrizes Aleatórias Normais; Estatísticas de Valor Extremo; Uni-

versalidade; Polinômios Ortogonais.
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If there is anything that can bind the heav-
enly mind of man to this dreary exile of
our earthly home and can reconcile us
with our fate, so that one can enjoy liv-
ing, then, it is verily, the enjoyment of the
mathematical sciences and astronomy.

J. Kepler, in a letter to J. Batrsch.
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1
Introduction

I found it difficult, to keep my mind from the wandering into the

magical world of random matrices.

F. J. Dyson

Random Matrices have fascinated both mathematicians and physicists, since

they were first introduced in mathematical statistics by Wishart [1]. Then,

this subject gained prominence when Wigner introduced the concept of

statistical distribution of nuclear energy levels in 1950 [2]. The mathematical

foundations of Random Matrix Theory (RMT) were stablished in a series

of beautiful papers by Dyson [3–7] in which he introduced the classification

of random matrix ensembles according to their invariance properties under

time reversal. RMT has since become a rich and flourishing subject, with

an enormous and growing literature and applications to numerous areas of

physics and even to pure mathematics.

Being an active branch of mathematical research per se, RMT has

turned out to be a quite powerful tool with a wide breadth of applications

in many disciplines of science, engineering and finance [8]. Examples include

quantum mechanics [9], condensed matter physics [10], classical and quan-

tum optics [11] and wireless communication [12], to name just a few.

Moreover, different approaches to RMT provide links to other areas of

mathematics, which makes it an interesting field of research in its own right;

e.g., the Coulomb gas method can be interpreted in terms of algebraic geom-

etry and loop equations can be solved using topological recursion, while the

orthogonal polynomials technique makes connection with integrable systems

[13].

An interesting subject which lies at the interface between RMT, proba-
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Chapter 1. Introduction 16

bility theory and statistics, is the Extreme Value Statistics (EVS) of random

matrices. In this thesis we focus on the EVS of random normal matrices.

In part I of this thesis, we review the probabilistic aspects of the sub-

ject. In Ch. 2 we have a brief look at the basic concepts of probability theory

which provide the theoretical foundations for the rest of the thesis. Our focus

is on the continuous random variables. Specially, we introduce two different

kinds of convergence, i.e., convergence in probability and convergence in

distribution, which are necessary tools during the subsequent discussions in

Ch. 3. Furthermore, the notion of tail distributions and their classification

are reviewed in this chapter.

Ch. 3 is concerned with the central result of classical extreme value

theory, the extermal types theorem, which specifies the possible forms for

the limiting distribution of maxima (minima) in sequence of iid random

variables. The asymptotic formulation of classical extreme value statistics is

discussed, and then three classes of extreme value distributions along with

their tail behaviour, are studied.

Part II is devoted to the study of foundations of RMT. After giving

motivation for random matrix models in Ch. 4, We introduce the three

classical ensembles of random matrices. Then, the notion of universality

as a reason for wide range applications of RMT is discussed. In Ch. 5 we

focus on the Gaussian unitary ensemble (GUE): first, we derive the joint

probability distribution of eigenvalues and subsequently, we present two

methods of analysis of large N limit of GUE; i.e., the saddle point method

and the method of orthogonal polynomials. The generalization of these

methods for an arbitrary potential are also presented. In Ch. 6 we show how

one can implement complex analysis and diagrammatic methods to obtain

the eigenvalue density for the the case of Ginibre ensemble. In the final

chapter of this part, Ch. 7, we introduce the ensemble of random normal

matrices as a special case of non-Hermitian random matrices, and we show

how their symmetry can be employed to apply the aforementioned methods,

i.e., saddle point and orthogonal polynomials method in this case.
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Chapter 1. Introduction 17

Chapters 1-7 of the first two parts as well as Ch. 8 of the last part

of this thesis include introductory and review material which don’t include

new results and references to the original works are provided. In Ch. 8 we

review the celebrated Tracy-Widom law for the probability distribution of

the GUE. The approach used is based on a method implemented in [14]

which makes connection to integrable systems.

The novel part of this thesis is presented in Chapter 9, which is based

on the following article:

“On the extreme value statistics of normal random matrices” ,

R. Ebrahimi, S. Zohren, [arXiv: 1704.07488v1].

In this article we introduce a new approach to calculate the EVS of

random normal matrices. It is both intuitive and general, allowing us to give

a simplified proof of results known in the literature as well as new results. The

strength of this approach lies in the fact that it provides a method to derive

the EVS of random normal matrices for arbitrary ring distributions, both

at the outer and inner (finite) edges of the eigenvalue support. Furthermore,

one, in principle, is able to use this method to calculate finite N corrections

to the EVS of normal matrix models.
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2
Basic Notions of Probability Theory and Statistics

The true logic of this world lies in probability theory.

J. C. Maxwell

This chapter, which has a brief look on some fundamental concepts and

methods of probability theory and statistics, is included for this thesis to be

(almost) self-contained and provides the theoretical basis for whole thesis.

Most of the material of the first two sections can be found in any standard

textbook on the subject, such as [15–19]. Furthermore, the last two sections

of this chapter are devoted to discuss convergence of sequence of random

variables and tail distribution, which will be of frequent use in the next

chapter.

2.1
Univariate Random Variables

The basic ingredients of a statistical model are the following:

� A sample space 
, which is the set of all possible outcomes.

� A �-algebra F , which is a collection of all the events.

� A real-valued probability measure function P : F ! [0; 1] which assigns

probabilities to the events, satisfying the Kolmogorov axioms [15]:

1. 0 � P(E) � 1; 8E 2 F .

2. P(
) = 1.

3. P
�S

i
Ei

�
=
P

iP(Ei); for every (finite or infinite) sequence of events

E1; E2; : : : .
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Chapter 2. Basic Notions of Probability Theory and Statistics 20

The triplet (
;F ;P) is a probability space that models a real-world process

(or “experiment”) consisting of states that occur randomly.

A random variableX : 
! S is a real-valued measurable function from

the sample space 
 to another measurable space S, called the state space.

Although X is usually a real-valued function (S � R), it does not return

a probability. The probabilities of different outcomes or sets of outcomes

(events) are already given by the probability measure P with which 
 is

equipped. Rather, X describes some numerical property that outcomes in 


may have. Recording all the probabilities of output ranges of a real-valued

random variable X, yields the probability distribution function of X. When

the image (or range) of X is finite or countably infinite, the random variable

is called a discrete random variable and its probability distribution function

can be described by a probability mass function which assigns a probability

to each value in the image of X. More precisely, the probability mass function

pX : S ! [0; 1] is defined as

pX(x) � P(X = x) := P
�
f! 2 
 : X(!) = xg

�
: (2-1)

Most of the random variables to which extreme value methods (see

next chapter) are applied, are continuous random variables. This means

they have a sample space 
 that is continuous.1 Because of the continuity,

it is not possible to assign probabilities to all possible values of the random

variable in a meaningful way. Loosely speaking, there are simply too many

possible values on a continuous scale. Instead, probability distributions can

be specified by their cumulative distribution function (cdf), or simply

distribution function PX : R! [0; 1], defined as

PX(x) := P(X � x); 8x 2 R; (2-2)

where the right-hand side represents the probability that the random vari-

able X takes on a value less than or equal to x. For the axioms of probability

to be satisfied, PX must satisfy the following conditions:

1. Monotonicity: if x � y, then PX(x) � PX(y).

1Hereafter, we suppose 
 = R, unless indicated otherwise.
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Chapter 2. Basic Notions of Probability Theory and Statistics 21

pX(u)

u
x

PX(x)

Figure 2.1: Relation between
cdf and pdf.

u
a b

P(a  X  b)

pX(u)

Figure 2.2: Probability of find-
ing X in the interval [a; b].

2. Limiting values: limx!�1 PX(x) = 0, and limx!+1 PX(x) = 1.

3. Right-continuity: lim�&0 PX(x+ �) = PX(x), 8x 2 R.

Though it no longer makes sense to talk about probabilities of individual

values of x, we can calculate from (2-2) the probabilities of X falling within

intervals as

P(a � X � b) = PX(b)� PX(a): (2-3)

If the distribution function P is differentiable, it is also useful to define the

probability density function (pdf) pX : R! [0;1) of X as2

pX(x) :=
d

dx
PX(x); (2-4)

and hence, (see Fig. 2.1)

PX(x) =

ˆ x

�1
dupX(u): (2-5)

Since limx!+1 PX(x) = 1, the pdf must satisfy
ˆ 1

�1
dupX(u) = 1: (2-6)

Furthermore,

P(a � X � b) =

ˆ b

a

dupX(u); (2-7)

that is, the probability that a random variable X has value between x = a

and x = b is the area under the graph of the density function between x = a

2In statistical physics, a non-formal reformulation of the relation (2-3) between the
derivative of the cdf and the pdf is generally used as the definition of the probability density
function: If dt is an infinitely small number, the probability that X is included within the
interval [t; t+ dt] is equal to pX(t) dt, or: P(t � X � t+ dt) � pX(t) dt.
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Chapter 2. Basic Notions of Probability Theory and Statistics 22

and x = b (see Fig. 2.2 ).

It is often convenient to summarize a probability distribution by one

or two statistics that characterize its main features. The most common are

the expectation or mean, and variance. In the case of a continuous random

variable X with probability density function pX , the expectation is

� � E[X] :=

ˆ 1

�1
dx pX(x)x: (2-8)

More generally, the kth moment is defined for k 2 N by

mk := E[Xk] =

ˆ 1

�1
dx pX(x)x

k: (2-9)

The variance of a random variable X is the expected value of the squared

deviation from the mean of X, i.e.,

�2 � Var(X) :=

ˆ 1

�1
dx pX(x) (x� �)2 = E[X2]� E2[X]: (2-10)

2.1.1
Special Probability Distributions

In both discrete and continuous cases there are some well-known families of

probability distributions. An important example is the Poisson distribution

[18], corresponding to a random variable having probability mass function

p(x;�) = P(X = x) =
e�� �x

x !
; x 2 N0; (2-11)

where � > 0. The Poisson distribution is used as a model for the occurrence

of randomly occurring events in time: if events occur randomly in time at

an average rate of �, and independently of the time since the last event,

then the number of events arising in a unit time interval, X, has a Poisson

distribution with parameter �, denoted as X d
= Pois(�).

Perhaps the most widely used distribution in the continuous case is the

normal distribution. A random variable X is said to have a normal distri-

bution with parameters � and �, denoted X
d
= N(�; �2), if its probability

density function has the form
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Chapter 2. Basic Notions of Probability Theory and Statistics 23

p(x;�; �) =
1p
2��2

exp

 
�(x� �)2

2�2

!
; �1 < x <1; (2-12)

where � = E[X] and �2 = Var(X) are fixed parameters. The corresponding

cdf of (2-12) can be expressed in terms of the error function:

P (x;�; �) =
1

2

"
1 + erf

 
x� �p
2�

!#
; �1 < x <1: (2-13)

In the case X has normal distribution N(�; �2), it can easily be shown that

Z :=
X � �

�
d
= N(0; 1): (2-14)

The variable Z is said to have standard normal distribution .

Another example in the continuous case is the exponential distribution

which is the probability distribution that describes the time between events

in a Poisson process, i.e., a process in which events occur continuously

and independently at a constant average rate and it has the key property

of being memoryless [17]. The exponential distribution is an appropriate

model if the following conditions are true:

� X is the time (or distance) between events, with X > 0.

� The occurrence of one event does not affect the probability that a second

event will occur. That is, events occur independently.

� The rate at which events occur, �, is constant.

� Two events can not occur at exactly the same instant.

A random variable X is said to have exponential distribution with constant

rate parameter � > 0, denoted X
d
= Exp(�), if its pdf has the form

p(x;�) =

8<:0; x < 0;

� e��x; x � 0:
(2-15)

Hence, Its cdf is

P (x;�) =

8<:0; x < 0;

1� e��x; x � 0:
(2-16)

Next important example in the continuous case is Pareto or power law

distribution with pdf
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p(x;xm; �) =

8<:0; x < xm;
�x�m
x�+1

; x � xm;
(2-17)

where the scale parameter xm > 0 is the minimum possible value of

X
d
= Pareto(xm; �), and the shape parameter or tail index � > 0 determines

the strength of the tail at large x (see Fig. 2.4) .The corresponding cdf

P (x;xm; �) =

8<:0; x < xm;

1�
�
xm
x

��
; x � xm;

(2-18)

is not used frequently but rather its complement, 1�P (x) =: P (x) (see Sec.

2.4), as it is easier to normalize and compare it to the data: the ordinate

simply specifies the number of data points (measurements, events) that were

larger than the chosen value on the abscissa.

2.1.2
Moment-Generating Functions

Although the mean and variance of a random variable contain important

information about the random variable, they do not contain all the available

information about the density function of a random variable.

An alternative approach to specify the probability distribution of a

random variable X is based on its moment-generating function which en-

capsulates all the information about the random variable, or more precisely,

about its pdf. The moment-generating function MX : R! [0;1] associated

with a random variable X is defined by

MX(t) := E[etX ]; t 2 R; (2-19)

wherever this expectation exists, i.e., the domain in which MX defined is

DX = ft : MX(t) < 1g. In other terms, the moment-generating function

can be interpreted as the expectation of the random variable etX . If X is a

continuous random variable with pdf pX , then

MX(t) =

ˆ 1

�1
dx etx pX(x): (2-20)

We note that
MX(0) =

ˆ 1

�1
dx pX(x) = 1; (2-21)

which means we always have t = 0 2 DX . As an example, if X d
= Exp(�),

then
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MX(t) =

ˆ 1

0

dx etx � e��x =
�

�� t
; t < �; (2-22)

and if X d
= N(0; 1), we have

MX(t) =

ˆ 1

�1
dx etx

1p
2�

e�x
2=2

=
1p
2�

et
2=2

ˆ 1

�1
dx e�(x�t)2=2

= et
2=2; �1 < t <1: (2-23)

If X d
= N(�; �2), by a straightforward calculation, we find that X has the

moment generating function

MX(t) = e�t+�
2t2=2; (�1 < t <1): (2-24)

Moment generating functions provide many advantages. Here, we name

a few:

� The moment-generating function of a random variable X uniquely deter-

mines its pdf pX . More precisely, let MX(t) and MY (t) denotes the moment-

generating functions of random variables X and Y , respectively. If both

moment-generating functions exist and MX(t) = MY (t), for all values of

t, then X and Y have the same probability distribution, pX(x) = pY (x).

� They provide an easy way of calculating the moments of a distribution. To

see this, we notice that

MX(t) = E
h
etX

i
= E

" 1X
k=0

(tX)k

k!

#
=

1X
k=0

tk E[Xk]

k!
=

1X
k=0

tkmk

k!
: (2-25)

We thus have

mk =
dk

dtk
MX(t)

����
t=0

: (2-26)

For example, the mean � and the variance �2 are

� = M 0
X(0);

�2 = M 00
X(0)�

�
M 0

X(0)
�2
: (2-27)

� They provide an easy way of characterizing the distribution of the sum of

independent random variables. Strictly speaking, assume Sn := X1+ � � �+Xn
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denote the sum of n independent random variables Xi. From multiplicativity

of expectation for independent random variables

E
h
etSn

i
=
h
etX1 � � � etXn

i
= E

h
etX1

i
� � �E

h
etXn

i
(2-28)

follows that

MSn(t) = MX1(t) � � �MXn(t): (2-29)

If Xi’s are identically distributed as X, then

MSn(t) =
�
MX(t)

�n
: (2-30)

� They provide a bridge between complex analysis and probability, so that

methods of complex analysis can be applied to probability problems (see Sec.

5.2.1).

� They provide powerful tools for proving limit theorems, such as law of

large numbers and the central limit theorem (see Sec. 2.3).

2.2
Multivariate Random Variables

A multivariate random variable is a vector of random variables

XXX := (X1; : : : ; Xk): (2-31)

Each of the components Xi is a random variable in its own right, but

specification of the properties of XXX as a whole, requires information about

the influence of every variable on each of the others.

Generalizing the single variable case, the joint cumulative distribution

function of XXX is defined by

PXXX(x1; : : : ; xn) := P(X1 � x1; : : : ; Xk � xk): (2-32)

When Xi are continuous random variables, and provided it exists, the joint

probability density function (jpdf) is given by

pXXX(xxx) :=
@k

@x1 � � � @xkPXXX(x
xx); (2-33)

where xxx � (x1; : : : ; xk). In this case

PXXX(xxx) =

ˆ x1

�1
� � �
ˆ xk

�1
duk � � �du1 pXXX(u1; : : : ; uk); (2-34)

while for any set A � Rk,
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P(XXX 2 A) =
ˆ
� � �
ˆ
A
duuupXXX(uuu): (2-35)

The pdf of each of the individual Xi, calledmarginal density function,

is obtained by integrating out the other components. For instance,

pX1(x1) =

ˆ 1

�1
� � �
ˆ 1

�1
duk � � �du2 pXXX(x1; u2; : : : ; uk) (2-36)

is the marginal probability density function of the component X1. In the

special situation where the outcome of one random variable has no effect

on the probability distribution of another, the variables are said to be

independent. Formally, the variables X1 and X2 are independent, if their

jpdf factorizes, i.e.,

pX1;X2(x1; x2) = pX1(x1) pX2(x2): (2-37)

Generally, an arbitrary set of random variables X1; : : : ; Xk are mutually

independent if

pX1;:::;Xk
(x1; : : : ; xk) =

kY
i=1

pXi
(xi): (2-38)

2.3
Convergence of Sequence of Random Variables

It is often difficult to perform exact calculations with probability distribu-

tions. This might be because the distribution is unknown, or simply because

the analytical or computational burden is high. In these situations, it may

be possible to approximate the true distribution by a simpler distribution

obtained by a limiting process. This requires a definition of convergence of

sequences of random variables to some limit random variable, which is an

important concept in probability theory. There exist several different notions

of convergence of random variables. Here, we introduce two of these notions,

which in turn, we use them to prove two basic theorems of probability theory

with wide range applications in statistics.

2.3.1
Convergence in Probability and Weak Law of Large Numbers

The first notion of convergence we introduce here which is used very often

in statistics, is convergence in probability or weak convergence. The basic

idea behind this type of convergence is that the probability of an “unusual”
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outcome becomes smaller and smaller as the sequence progresses. A sequence

of random variables X1; X2; : : : converges in probability to a random variable

X, denoted as

Xn
P! X; (2-39)

if

lim
n!1P (jXn �Xj � �) = 0; 8� > 0: (2-40)

Convergence in probability can be used to prove the weak law of large

numbers. SupposeX1; X2; : : : is a sequence of random variables with E[X1] =

E[X2] = � � � = �. Then, weak law of large numbers states that

Xn
P! �; as n!1: (2-41)

To prove this theorem using moment-generating functions, we have to rely

on a theorem according which convergence of moment-generating functions

implies weak convergence of distributions [20]. Then suppose X1; X2; : : :

are sequence of iid random variables 3 with well-defined moment-generating

functions, and distributed as X with mean �, therefore,

MXn
(t) = E

h
etXn

i
= E

h
e
t
n
(X1+���+Xn)

i
= E

h
e
t
n
X1

i
� � �E

h
e
t
n
Xn

i
=

�
E
h
e
t
n
X
i�n

=

0@MX

�
t

n

�1An

=

0@MX(0) +
t

n
M 0

X(0) + o
�
t

n

�1An

�
�
1 +

t

n
�
�n

(2-42)

Therefore, limn!1MXn
(t) = et�. This means that the moment-generating

function of the variable Xn converges to he moment-generating function

a random variable with mean �, which in turn, means Xn converges in
3In probability theory and statistics, a sequence or other collection of random variables

is independent and identically distributed (iid), if each random variable has the same
probability distribution as the others and all are mutually independent.

DBD
PUC-Rio - Certificação Digital Nº 1222486/CA



Chapter 2. Basic Notions of Probability Theory and Statistics 29

probability to �, as stated before.

By the law of large numbers, the empirical sample average Xn of the

results obtained from a large number of trials, converges to the expected

value �. Another theorem, i.e., classical central limit theorem, describes

the size and the distributional form of the stochastic fluctuations around the

deterministic number � during this convergence.

2.3.2
Convergence in Distribution and Central Limit Theorem

The other notion of convergence which is useful for our purposes, is con-

vergence in distribution. A sequence of random variables X1; X2; : : : having

cumulative distribution functions P1; P2; : : :, respectively, is said to converge

in distribution to the random variable X, having distribution function P ,

denoted as

Xn  X; (2-43)

if the cdf of Xn converges pointwise to the cdf of X, i.e.,

lim
n!1Pn(x) = P (x); (2-44)

for all points x at which P is continuous [21].4 For statistical applications,

the utility of establishing a limit distribution P for a sequence of random

variables X1; X2; : : : is usually to justify the use of P as an approximation

to the distribution of Xn for large n.

The second fundamental result in probability theory, after the law of

large numbers is central limit theorem, stated here in its simplest form: Let

Sn = X1 + � � �+Xn, where X1; X2; : : : are sequence of iid random variables,

and distributed as X with mean � and finite variance �2. Then defining

Zn :=
Sn � n�p

n�2
; (2-45)

we have

Zn  Z; (2-46)

4It is worth emphasizing that since convergence in distribution only considers the cdf, is
in fact weaker than convergence in probability.
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as n!1, where Z is a standard normal random variable, i.e., Z d
= N(0; 1).

Here, we give a proof of this theorem, in the special case when the moment-

generating function of X is finite: Let Y := X��
�

and Yi :=
Xi��
�

. Then Yi’s

are independent and are distributed as Y , i.e., E[Yi] = 0 and Var(Yi) = 1.

We can write then Zn = (Y1 + � � �+ Yn)=
p
n. Hence,5

MZn(t) = E
h
etZn

i
= E

h
e

tp
n
Y1+���+ tp

n
Yn
i

= E
h
e

tp
n
Y1
i
� � �E

h
e

tp
n
Yn
i

=
�
E
h
e

tp
n
Y
i�n

=

 
MY

�
tp
n

�!n

=

0@MY (0) +
tp
n
M 0

Y (0) +
t2

n
M 00

Y (0) + o
�
t2

n

�1An

�
0@1 + t2

2n

1An

(2-47)

Therefore, limn!1MZn(t) = et
2=2 = MZ(t), where Z

d
= N(0; 1) (see (2-23)).

Then, the convergence in distribution Zn  Z can be deduced by the

convergence of the moment-generating functions. The central limit theorem

thus states that there exist sequences of numbers fan > 0g = f�png and

fbng = f�ng, such that Sn�bn
an

converges to a standard normal distribution,

regardless of the underlying distribution of the Xi. This is manifestation of a

general phenomenon known as universality. Analogous arguments are used

in next chapter to obtain approximating distributions for sample extremes.

Finally, we notice that central limit theorem is a stronger result than the

weak law of large numbers: it gives more details about what the asymptotic

distribution actually looks like. In fact, we know not only that (from the

law of large numbers) the distribution of the sample mean approaches

the degenerate distribution on E[X], but moreover (from the central limit

theorem) we know exactly what this distribution looks like asymptotically,

5We notice that according to (2-42), the law of large numbers corresponds to a first order
expansion of the moment-generating function, while according to (2-47), the central limit
theorem corresponds to its second order expansion.
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if we zoom in on E[X], to a scale of N�1=2.

2.4
Tail Distribution

Sometimes, it is useful to study the opposite question and ask how often the

random variable is above a particular level. This is called the complementary

cumulative distribution function or simply the tail distribution, and is

defined as6

PX(x) := P(X > x)

=

ˆ 1

x

dupX(u)

=

ˆ 1

�1
dupX(u)�

ˆ x

�1
dupX(u); (2-48)

which using (2-5) and (2-6) gives

PX(x) = 1� PX(x): (2-49)

2.4.1
Concentration Inequalities and Tail Bounds

In probability theory, concentration inequalities provide bounds on how a

random variable deviates from some value (typically, its expected value).

For instance, we saw that the laws of large numbers state that sums of

independent random variables are close to their expectation with a large

probability. Such sums are the most basic examples of random variables

concentrated around their mean. Concentration inequalities can be classified

according to how much information about the random variable is needed

in order to use them. One way to control the tail distribution PX(x) is

by controlling the moments of the random variable X. Gaining control of

higher-order moments leads to correspondingly sharper bounds on tail prob-

abilities, ranging from Markov’s inequality (which requires only existence of

the first moment) to the Chernoff bound (which requires existence of the

moment generating function).

6In survival analysis, PX(x), or simply P (x), is called the survival function and denoted
S(x), while the term reliability function is common in engineering.
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The most elementary tail bound isMarkov’s inequality which does not

need any knowledge of the distribution of the non-negative random variable

X, except that it has a finite mean. It states that [22]

PX(x) � E[X]

x
; 8x > 0: (2-50)

Markov’s inequality can be applied to a random variable Y = f(X), in which

f : X ! R+ is a strictly increasing and non-negative function of X:

PX(x) = P(X � x) = P
�
f(X) � f(x)

�
� E[f(X)]

f(x)
: (2-51)

With a suitable choice for the function f , we can obtain better bounds. For

example, if we pick f(X) = X2 for a random variable X that also has a finite

variance, then we obtain a tighter bound [22]:

P(jX � E[X]j � x) = P
�
(X � E[X])2 � x2

�
� E[(X � E[X])2]

x2
(2-52)

which means

P(jX � E[X]j � x) � Var(X)

x2
; 8x > 0: (2-53)

or equivalently

P
�
jX � E[X]j � xVar(X)

�
� 1

x2
; 8x > 0: (2-54)

This is called Chebyshev inequality. Hence, Chebyshev’s inequality fol-

lows by applying Markov’s inequality to the non-negative random variable

Y := (X � E[X])2 and is a simple form of concentration inequality, guaran-

teeing that X is close to its mean E[X], whenever its variance is small.

Markov’s inequality can be applied to random variables with higher

order moments. For instance, whenever X has a moment of order k, an

application of Markov’s inequality to the random variable jX�E[X]jk yields

P(jX � E[X]jk � x) � E[jX � E[X]jk]
xk

; (8x > 0): (2-55)

The same procedure can be applied to functions other than polynomials

jX�E[X]jk. For instance, suppose that the random variable X has a moment

generating function in a neighborhood of zero, meaning that there is some

constant t0 > 0 such that the function MX�E[X](t) = E[et (X�E[X])] exists for

all 0 � t � t0. In this case, we may apply Markov’s inequality to the random

variable Y := et (X�E[X]), thereby obtaining the upper bound
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P
�
(X � E[X]) � x

�
= P

�
et (X�E[X]) � etx

�
� e�txMX�E[X](t): (2-56)

Optimizing our choice of t so as to obtain the tightest result, yields the

Chernoff bound [23]:

PX�E[X](x) � inf
t2[0;t0]

�
e�txMX�E[X](t)

�
: (2-57)

This result is usually stated in logarithmic form. To do this, let’s define

�(t) := log
�
MX�E[X](t)

�
. Then by taking logarithm of both side of (2-57),

we get

log
�
PX�E[X](x)

�
� ���(x); (2-58)

in which

��(x) := sup
t2[0;t0]

n
xt� �(t)

o
(2-59)

is the Legendre-Fenchel transformation of �(t) [22, 24, 25] (see Fig. 2.3).

y = ⇤(t)

t

y

⌧

⇤⇤(x)

y = xt

Figure 2.3: The function �(t) plotted against the line y = xt, in the case
when �0(0) = 0. The point � marks the value of t at which xt � �(t) is a
maximum, and this maximum is denoted ��(x).

Chernoff inequality gives exponentially decreasing bounds on tail dis-

tributions and hence, is a sharper bound than the known first or second

moment based tail bounds, i.e., Markov’s inequality or Chebyshev inequal-

ity, respectively, which only yield power-law bounds on tail decay. Moreover,

the Chernoff bound is most widely used in practice, due to the ease of ma-

nipulating moment generating functions. As an example if X d
= N(�; �2), we

have (see (2-24))
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sup
�1<t<1

�
tx� log

�
MX(t)

��
= sup

�1<t<1

�
tx� t2�2

2

�
=

x2

2�2
: (2-60)

From the Chernoff bound (2-58), we conclude that any random variable

X
d
= N(�; �2) satisfies

PX(�+ x) � e�
x2

2�2 ; 8x � 0; (2-61)

which is tight up to polynomial factor corrections.7

2.4.2
Classification of tails

Generally, probability distributions are classified by comparing their tail

distribution with the exponential tail distribution. In the case of exponential

distribution with pdf given in (2-15), the tail distribution is

P (x;�) =

8<:0; x < 0;

e��x; x � 0:
(2-62)

Then, a distribution P is called heavy-tailed iff its tail function P fails to

be bounded by any exponentially decreasing function [26, 27], i.e.,

lim
x!1 e�x P (x) =1; 8� > 0: (2-63)

In other words, heavy-tailed distributions have heavier tails than the expo-

nential distribution. This implies that large values can occur in a sample

with non-negligible probability. The definition (2-63) is equivalent to the

statement that the moment generating function of P , M(t), does not exist

for t > 0 [26]; that is, a distribution P with pdf p is heavy-tailed iff:

M(t) =

ˆ 1

�1
dx etx p(x) =1; 8t > 0; (2-64)

An important subclass of heavy-tailed class are fat-tailed distributions

which have power law decay in the tail of the distribution.8 The distribution

of a random variable X is said to have a fat tail with tail index �, if its

asymptotic behaviour is given by

7 Let pX(x) = 1p
2�

e�x
2=2 be the pdf of a standard normal variable X

d
= N(0; 1) (see

(2-12)), then the following two-sided inequality holds:

pX(x)

�
1

x
�

1

x3

�
� PX(x) � pX(x)

�
1

x
�

1

x3
+

3

x5

�
:

8However, they generally do not follow a power law everywhere.
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P (x) �
x!1 x��; � > 0; (2-65)

that is, if X has pdf

p(x) �
x!1 x�(1+�); � > 0: (2-66)

If we are “sufficiently close” to infinity to estimate the tail indices of two

distributions, then we can meaningfully compare their tail heaviness by

comparing their tail indices. (see Fig. 2.4).

� � � �

���

���

���

���

���

Figure 2.4: Tail of Pareto distribution with xm = 1, and for different values
of tail index �.

An example of fat-tailed distributions is Pareto distribution with cdf

given in (2-18). Its tail is thus:

P (x;xm; �) =

8<:1; x < xm;�
xm
x

��
; x � xm;

(2-67)

As we already expect, its moment generating function

M(t;xm; �) = � (�xmt)�� �(��;�xmt) (2-68)

is only defined for t � 0, where �(a; x) is the upper incomplete gamma

function (see App. B). Moreover, all moments mk are infinite for k � �.

Power laws usually occur in perturbed form. Deviation from power

law distributions leads to another class of heavy-tailed distributions, i.e.,

distributions with regularly varying tails. A random variable X is said to

have a regularly varying tail distribution P with index � > 0 if P is a

regularly varying function, with index ��, P 2 RV1(��) (see App. A),

i.e.,
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P (x) = x��	(x); (2-69)

in which 	(x) is a slowly varying function. This can be reformulated solely

in terms of P (see App. A)

P (yx)

P (x)
�

x!1 y��; 8y > 0: (2-70)

DBD
PUC-Rio - Certificação Digital Nº 1222486/CA



3
Asymptotic Models of Classical Extreme Value Theory

The sole aim of science is the honor of human mind, and from this

point of view, a question about numbers is as important as a question

about the system of the world.

C. G. J. Jacobi

This chapter is concerned with the central result of classical extreme value

theory, the extermal types theorem, which specifies the possible forms for

the limiting distribution of maxima (minima) in sequence of iid random

variables. First, we briefly discuss the asymptotic formulation of classical

extreme value theory (EVT), and then introduce the three classes of extreme

value distributions along with their tail behaviour introduced in the previous

chapter. Finally, necessary and sufficient condition for the extermal types

theorem are provided in terms of the concept of domain of attraction.

3.1
Model Formulation

The asymptotic theory of sample extremes has been developed in parallel

with the central limit theory, and in fact the two theories have some

resemblance. Let X1; : : : ; Xn be a sample of n independent and identically

distributed random variables with common cdf P . The sample data are

typically used to study properties about the distribution function

P (x) = P(X � x): (3-1)

In classical statistics, one is often interested in the behaviour of the mean

or average. This average will then be described through the expected value

E(X) of the distribution. On the basis of the law of large numbers, the

sample mean X is used as an estimation of E(X). Furthermore, the central

limit theorem yields the asymptotic behaviour of the sample mean in case

the sample size, n, is sufficiently large, a condition necessary when invoking
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the central limit theorem.

Asymptotic models of classical extreme value theory; however, are

mainly concerned with the distribution of the random variable

Mn := max fX1; : : : ; Xng; (3-2)

when n is large. In theory (under the assumption that Xi’s are iid random

variables, and the fact that if Mn should be smaller than some x, then all

Xi simultaneously should be smaller than x) the distribution of Mn can be

derived exactly for all values of n:1

P(Mn � x) = P(X1 � x; : : : ; Xn � x)

=
nY
i=1

P(Xi � x)

=
�
P (x)

�n
: (3-3)

However, this is not of practical use, since the distribution function P is

not known a priori. A possible way is to use standard statistical techniques

to estimate P from observed data, but even small errors in P (particularly

in its tails) may imply large deviations in P n . An alternative approach is

to accept that P is unknown, and look for approximate families for P n by

which extreme data can be modeled directly [28, 29].

Moreover,

lim
n!1

�
P (x)

�n
=

8<:0; x < x+;

1; x = x+;
(3-4)

in which x+ is the outer edge of the support of P , x+ � sup fx : P (x) < 1g.
Hence, the distribution of Mn degenerates to a point at x+. In analogy with

central limit theorem for partial sums, the degeneracy of the limit can be

avoided by allowing a linear rescaling2 of the variable Mn:
1The corresponding pdf denoted �(x) is

�(x) = n
�
P (x)

�n�1
p(x);

where p(x) is the corresponding pdf of P .
2One can consider a wider class of resaclings. However, this linear rescaling already leads

to a sufficiently rich theory [30].
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M�
n :=

Mn � bn
an

; (3-5)

for sequences of constants fan 2 R+g and fbn 2 Rg. Appropriate choices

of the an and bn stabilize the location and scale of M�
n as n increases,

avoiding the difficulties that arise with the variable Mn. We therefore seek

limit distributions forM�
n, with appropriate choices of an and bn, rather than

Mn.

3.2
The Three Types of Extreme Value Distributions

Suppose there exist sequences of constants fan 2 R+g and fbn 2 Rg such

that (Mn � bn)=an converges in distribution to a nontrivial limit, i.e.,

lim
n!1P

 
Mn � bn

an
� x

!
� lim

n!1

�
P (anx+ bn)

�n
=: G(x); (3-6)

for every continuity point x of G, where G is a non-degenerate distribution

function.3

The problem is twofold: first, find all possible (non-degenerate) dis-

tribution functions G that can occur as a limit in (3-6), called stable

distributions or extreme value distributions ; next, for each of those limit

distributions, find necessary and sufficient conditions on the distribution P

for which there exist sequences fan 2 R+g and fbn 2 Rg, such that (3-6)

holds. The class of distributions P satisfying (3-6), is called the domain of

attraction of G and we write P 2 D(G) [31, 32].

Surprisingly, there are only three types of limiting distributions. This

fundamental result, known as Fisher-Tippett-Gnedenko theorem, was first

discovered by Fisher and Tippett [33], and later discussed more completely

by Gnedenko [34]. This theorem states that the maximum of a sample of iid

random variables,4 after proper rescaling, can only converge in distribution

to one of the following families [28, 30, 35, 36]:

I. Gumbel distribution
3A non-degenerate distribution function is a limiting distribution function that is not

concentrated on a single point.
4In fact, under suitable conditions, the theorem holds for dependent random variables as

well [35].

DBD
PUC-Rio - Certificação Digital Nº 1222486/CA



Chapter 3. Asymptotic Models of Classical Extreme Value Theory 40

G(x) = exp

(
�exp

"
�
 
x� b

a

!#)
; �1 < x <1: (3-7)

II. Fréchet distribution

G(x) =

8>><>>:
0; x � b;

exp
�
�
�
x�b
a

����
; x > b:

(3-8)

III. Weibull distribution

G(x) =

8>><>>:
exp

�
�
h
�
�
x�b
a

��i �
; x < b;

1; x � b:
(3-9)

For all three types, a > 0 and b 2 R and, in the case of families II

and III, � > 0. In other words, the rescaled sample maxima (Mn � bn)=an

converge in distribution to a variable having a distribution within one of the

families labeled I, II, and III. Collectively, these three classes of distribution

are termed as extreme value distributions. Each family has a location

parameter b and a scale parameter a; additionally, the Fréchet and Weibull

families have a shape parameter or tail index �.

This implies that, when Mn can be stabilized with suitable sequences

fang and fbng, the corresponding normalized variable M�
n has a limiting

distribution that must be one of the three types of extreme value distribu-

tion. The remarkable feature of this result is its universality ; that is, the

three types of extreme value distributions are the only possible limits for

the distributions of the M�
n, regardless of the distribution P . In this sense

the Fisher-Tippett-Gnedenko theorem provides an extreme value analog of

the central limit theorem (see the argument at the end of Sec. 2.3.2).

Although the distributions are known as extreme value, it must be

borne in mind that they do not represent distributions of all kinds of extreme

values (e.g., in samples of finite size), and they can be used empirically

(without an asymptotic model), using treshold models [28, 36].

3.3
The Generalized Extreme Value Distribution for Maxima

The three types of limits already discussed, have distinct forms of behaviour,

corresponding to the different forms of tail behaviour for the distribution
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function P of the Xi. This can be made precise by considering the behaviour

of the limit distribution G at the outer edge of its support, x+ . For the

Weibull distribution x+ is finite, while for both the Fréchet and Gumbel

distributions x+ = 1 (see Fig. 3.1); However, G decays exponentially for

the Gumbel distribution and polynomially for the Fréchet distribution,

corresponding to different rates of decay in the tail of P . It follows that in

applications, the three different families give quite different representations

of extreme value behaviour. A way to apply extreme value theory, its to

adopt one of the three families, and then to estimate the relevant parameters

of that distribution. But there are two weaknesses: first, a technique is re-

quired to choose which of the three families is most appropriate for the given

data; second, once the choice is made, subsequent inferences presume this

choice to be correct, and do not allow for the uncertainty such a selection

involves, even though this uncertainty may be substantial.

An alternative approach is to reformulate these three models in a single

model. Indeed, it is straightforward to check that the Gumbel, Fréchet and

Weibull families can be combined into a single family of models having

distribution functions of the form

G(x;�; �; �) := exp

(
�
�
1 + �

�
x� �

�

���1=�
)
; (3-10)

defined on the set fx : 1 + � (x � �)=� > 0g, where the parameters satisfy

�1 < � < 1, � > 0 and �1 < � < 1. This is the generalized extreme

value (GEV) family of distributions or Fisher-Tippett-Gnedenko distri-

bution [28, 29]. The model has three parameters: a location parameter �,

a scale parameter �, and a shape parameter �. Evidently the value of �

dictates the type of extreme value distribution, thus � is also referred to as

extreme value index.

Type II and type III classes of extreme value distribution correspond

respectively to the cases � > 0 and � < 0 in this parameterization and the

subset of the GEV family with � = 0 is interpreted as the limit of (3-10) as

� ! 0, leading to the Gumbel family with distribution function
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G(x;�; �; 0) := lim
�!0

G(x;�; �; �)

= exp
�
�exp

�
�
�
x� �

�

���
; �1 < x <1: (3-11)

For type I (� = 0), the outer edge of the support of distribu-

tion tends to infinity. The distribution is, however, rather light-tailed:

1�G(x; 0; 1; 0) � e�x as x!1, and all moment exist. For type II (� > 0),

the outer edge of the support of distribution is infinity. Moreover, as x!1,

1 � G(x; 0; 1; �) � (�x)�1=�, i.e., the distribution has a rather heavy right

tail; for example, moments greater than or equal to 1=� do not exist. Finally

for type III (� < 0), the outer edge of the support of distribution is ���1, so

it has a short tail, verifying 1�G(���1 � x; 0; 1; �) � (��x)�1=� as x& 0.

-� -� � �

���

���

���

���

Figure 3.1: Generalized extreme value densities, all with � = 0 and � = 1, and
different extreme value index �. Asterisks mark endpoints of the supports.

The density function corresponding to (3-10) is (see Fig. 3.1)

g(x;�; �; �) =
1

�
exp

�
�
�
x� �

�

��
exp

(
�
�
1 + �

�
x� �

�

���1=�
)
; (3-12)

again defined on the set fx : 1 + � (x� �)=� > 0g and is zero outside of the

relevant support. In the case � = 0, the density is positive on the whole real

line and is equal to

g(x;�; �; 0) =
1

�
exp

�
�
�
x� �

�

��
exp

�
�exp

��
�x� �

�

���
: (3-13)
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One can link the type I to types II and III the following way: if the

cdf of some random variable X is of type II, and with the positive numbers

as support, i.e., G(x; 0; �; �), then the cdf of logX is of type I, namely

G(x; log �; 1=�; 0). Similarly, if the cumulative distribution function of X is

of type III, and with the negative numbers as support, i.e., G(x; 0; �;��),
then the cdf of log (�X) is of type I, namely G(x;�log �; 1=�; 0).

The unification of the original three families of extreme value dis-

tribution into a single family greatly simplifies statistical implementation.

Through inference on �, the data themselves determine the most appropri-

ate type of tail behaviour, and there is no necessity to make a priori about

which individual extreme value family to adopt. Moreover, uncertainty in

the inferred value of � measures the lack of certainty as to which of the

original three types is most appropriate for a given dataset.

Interpreting the limit in Fisher-Tippett-Gnedenko theorem as an ap-

proximation for large values of n, suggests the use of the GEV family for

modeling the distribution of maxima of long sequences. The apparent diffi-

culty that the normalizing constants will be unknown in practice, is easily

resolved. Assuming (3-6),

P

 
Mn � bn

an

!
� G(x) (3-14)

for large enough n. Equivalently,

P(Mn � x) � G

 
x� bn
an

!
=: G�(x); (3-15)

where G� is another member of the GEV family. In other words, if Fisher-

Tippett-Gnedenko theorem enables approximation of the distribution of M�
n

by a member of the GEV family for large n, the distribution of Mn itself, can

be also approximated by a different member of the same family. Since the

parameters of the distribution have to be estimated anyway, it is irrelevant

in practice that the parameters of the distribution G are different from those

of G�.
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3.4
The Generalized Extreme Value Distribution for Minima

Some applications require models for extremely small, rather than extremely

large observations. Now we focus the statistical behaviour of

fMn := min fX1; � � � ; Xng: (3-16)

Assuming the Xi to be independent and identically distributed, analogous

arguments apply to fMn as were applied to Mn, leading to a limiting distri-

bution of a suitably rescaled variable.

The results are also immediate from the corresponding results for Mn.

Letting Yi = �Xi for i = 1; :::; n, the change of sign means that small values

of Xi correspond to large values of Yi. So if fMn = min fX1; : : : ; Xng and

Mn = max fY1; : : : ; Yng, then fMn = �Mn. Hence, for large n,

P(fMn � x) = P(Mn � �x)
= 1� P(Mn � �x)

= 1� exp

8<:�
"
1� �

 
x� ~�

�

!#�1=�
9=; ; (3-17)

on fx : 1�� (x�~�)=� > 0g, where ~� = ��. Therefore, if there exist sequences
of constants fan 2 R+g and fbn 2 Rg such that

lim
n!1P

 fMn � bn
an

� x

!
=: eG(x); (3-18)

for a non-degenerate distribution function eG, then eG is a member of the

family of distributions for minima:

eG(x) = 1� exp

8<:�
"
1� �

 
x� ~�

�

!#�1=�
9=; ; (3-19)

defined on the set fx : 1 � � (x � ~�)=� > 0g, where the parameters satisfy

�1 < ~� <1, � > 0 and �1 < � <1.

As an example, let Xi
d
= Exp(�) and fMn = min fX1; : : : ; Xng. Then it is

easy to show that fMn
d
= Exp(n�). In other words, if each of the n independent

variables Xi is exponentially distributed with parameter �, their minimal

value is also exponentially distributed, but with parameter n�.
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3.5
Domains of Attraction

In this section we state the necessary and sufficient criteria for the distribu-

tion function P to belong to the domain of attraction of G�, in which � is

the extreme value index of G, i.e.,

lim
n!1

�
P (anx+ bn)

�n
= G�(x); (3-20)

for some given � and all x.

Before stating the conditions, we make two points: firstly, the limit law

of a sequence of random variables is uniquely determined up to changes of

location and scale [37]. This means if there exist sequences fan 2 R+g and

fbn 2 Rg such that

lim
n!1P

 
Mn � bn

an
� x

!
= G�(x); (3-21)

then the relation

lim
n!1P

 
Mn � �n

�n
� x

!
= H�(x); (3-22)

holds for sequences f�n 2 R+g and f�n 2 Rg, iff

lim
n!1

an
�n

=: � 2 R+; and lim
n!1

bn � �n
�n

=: � 2 R: (3-23)

In this case, H(x) = G
�
(x � �)=�

�
, and we say that H and G are of the

same type. Thus, a distribution function P can not be in the domain of

attraction of G�1 and G�2 with �1 6= �2.

Furthermore, it may turn out that for a given distribution function P ,

there is no limit distribution G such that P 2 D(G). This simply means that

the maximum Mn does not have a nondegenerate limiting distribution un-

der any linear rescaling. (a common example is the Poisson distribution [35]).

Now we are in a position to state the necessary and sufficient conditions

for belonging to a domain of attraction. The Fréchet and Weibull cases are

dealt with the help of slowly varying functions. Instead, the Gumbel case

is more complex, for it would require the introduction of the von Mises

functions (see, e.g., [38]); therefore, we only provide a sufficient condition

[39]. These conditions, require the existence of one or two derivatives of P .
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The following theorem provides a characterization of the maximum domain

of attraction: The distribution P belongs to the domain of attraction for

maxima of the family

1.Type I (Gumbel) if

lim
x!x+

 
1� P (x)

P 0(x)

!0
= 0: (3-24)

2.Type II (Fréchet) iff x+ =1, and

1� P (x) = x��	(x); � > 0; (3-25)

for some slowly varying function 	 (see App. A).

3.Type III (Weibull) iff x+ <1, and

1� P (x+ � x�1) = x��	(x); � > 0; (3-26)

for some slowly varying function 	. If we only consider the sufficient

condition, we can reformulate the above theorem to unify the result: Let P

be a distribution function and x+ denotes the outer edge of its support and

suppose P 00(x) exists and P 0(x) is positive for all x in some neighbourhood

of x+. If

lim
x!x+

 
1� P (x)

P 0(x)

!0
= �; (3-27)

or equivalently,

lim
x!x+

�
1� P (x)

�
P 00(x)�

P 0(x)
�2 = �� � 1; (3-28)

then P 2 D(G�).

Eventually, the sequences fang and fbng can be calculated as follows:

1.Type I (Gumbel):

bn = P�1(1� 1=n); an = P�1(1� 1=en)� bn: (3-29)

2.Type II (Fréchet):

bn = 0; an = P�1(1� 1=n): (3-30)

3.Type III (Weibull):
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bn = x+; an = P�1(1� 1=n): (3-31)

Here, P�1 is the inverse cdf. The following a few examples show how choice

of rescaling sequences does lead to a limit distribution within the GEV

family, as implied by extermal types theorem.

Example 1.

If X1; X2; : : : is a sequence of independent standard exponential Exp(1)
variables, then P (x) = 1 � e�x for x > 0. In this case, letting an = 1 and

bn = logn,

lim
n!1P

 
Mn � bn

an
� x

!
= lim

n!1

�
P (x+ logn)

�n
= lim

n!1

h
1� e�(x+logn)

in
= lim

n!1[1� n�1 e�x]n = e�e
�x

(3-32)

for each fixed x 2 R. Hence, with the chosen an and bn, the limit distribution

of Mn as n ! 1 is the Gumbel distribution, corresponding to � = 0 in the

GEV family.

Example 2.

If X1; X2; : : : is a sequence of independent standard Fréchet variables,

then P (x) = exp(�1=x) for x > 0. Letting an = n and bn = 0,

lim
n!1P

 
Mn � bn

an
� x

!
= lim

n!1

�
P (nx)

�n
= lim

n!1[expf�1=(nx)g]
n = e�1=x (3-33)

for each fixed x > 0. Hence, the limit in this case is also the standard Fréchet

distribution with � = 1 in the GEV family.

Example 3.

If X1; X2; : : : is a sequence of independent uniform variables, then
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P (x) = x for 0 � x � 1. For fixed x suppose n > �x and let an = 1=n

and bn = 1. Then,

lim
n!1P

 
Mn � bn

an
� x

!
= lim

n!1

�
P (n�1x+ 1)

�n
= lim

n!1

�
1 +

x

n

�n
= ex: (3-34)

Hence, the limit distribution is of Weibull type, with � = �1 in the GEV

family.

There is some freedom in the choice of an and bn in such examples.

However, different choices that lead to a non-degenerate limit, always yield

a limit distribution in the GEV family with the same value of �, though

possibly with other values of the location and scale parameters.
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4
Introduction to Random Matrix Theory

It is not knowledge, but the act of learning, not possession but the

act of getting there, which grants the greatest enjoyment.

C. F. Gauss

In this chapter, we review the basic concepts of random matrix theory

(RMT). After motivating RMT as powerful phenomenological models, we

introduce the three classical ensembles along with the partition function

associated with each one. Then, we discuss the important concept of univer-

sality in the context of RMT which provides the foundational basis for the

applications of RMT in diverse areas.

4.1
Motivation

Except for textbook examples, problems in physics rarely have exact solu-

tion. Therefore, a physicist is often led to work with approximate “models”

which may disregard certain details of the system in question. In fact, it is

usually the case that, given the circumstances, one property of a physical

system is more important than others and a full description of the system is

not needed for answering the questions about that property. In certain situ-

ations, random matrix models are phenomenological models which provide

partial solutions to wide variety of problems in physics and other branches

of knowledge.

In the construction of a random matrix model for a given physical sys-

tem, one starts with identifying a linear operator which carries information

about the dynamics of the system. For example, this would usually be the

Hamiltonian for a quantum mechanical system which one wants to study its

spectrum. However, this might be difficult to be done analytically.
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Random matrix theory proceeds by identifying fundamental sym-

metries and constraints about the structure of this linear operator. For

example, it may be complex Hermitian or real symmetric, or it might posses

a certain block structure, or might have commutativity properties with

other operators. Once important symmetries and constraints are identified,

all other system specific information is “erased” from the model.

Discarding of information essentially corresponds to taking irrelevant

details to be random. Thus the actual linear operator which contains full

dynamical information is replaced by an ensemble of operators (matrices)

which are random, except for the imposed constraints and symmetries on

them. In most cases, an average over such an ensemble is much easier to

evaluate than computing the spectrum for the original problem.

Dyson called random matrix theory as a

“new kind of statistical mechanics, in which we renounce the exact knowledge

not of the state of a system, but of the nature of the system itself [3]”.

In ordinary statistical mechanics one typically considers a collection of identi-

cal dynamical systems realized at different points in the phase space. The averages

therefore are over those points (with respect to the Boltzmann weight). However, in

random matrix theory the averaging is done over an ensemble of different dynamical

systems (as represented by different linear operators) sharing the same symmetries

and constraints. Ensemble averages are performed as a weighted sum over this set of

dynamical systems. This kind of averaging wipes out any system specific informa-

tion. Only those properties that are shared by almost all dynamical systems in the

ensemble survive the averaging procedure. We refer to these properties as universal

properties.

4.2
Classical Ensembles of Random Matrices

A random matrix model is defined by:

� An ensemble E of N �N matrices M .

� A (not necessarily normalized) probability measure d�(M) for M 2 E, invariant

under the action of some symmetry group G.
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In order to be invariant (under G), the probability measure should depend only

on the invariants of the matrix M , i.e., the traces of the matrix and its powers

TrMk; k = 1; : : : ; N . To be more precise, according to a theorem due to Weyl [40],

all the invariants of a N � N matrix M (including any other TrMk; k > N and

the determinant) can be expressed in terms of the traces of the first N powers of M

[41, 42]. The simplest case which is of practical use is of the form1

d�(M) = e�N Tr V (M) dM; (4-1)

i.e., a Boltzmann weight times an integration measure. The potential V is often

chosen to be a polynomial. Then, the quantity which contains almost all the

information about the model is the partition function

ZN :=

ˆ
E
d�(M) =

ˆ
E
dM e�N Tr V (M) (4-2)

which is also invariant under G. Due to the symmetry under G, a matrix M in the

ensemble can be diagonalized as

M = U�U�1; � � diag(�1; : : : ; �N ): (4-3)

This is called angular-radial decomposition or spectral decomposition, where �

is the radial part and U is the angular part.

Local statistical properties of the spectrum such as level spacing are universal:

they depend only on the symmetry of the ensemble to which M belongs and do not

depend on the probability measure. So they were originally studied using Gaussian

measures, and the ensembles were called Gaussian ensmbles. Indeed, Dyson came

up with a classification of generic ensembles in the framework of non-relativistic

quantum mechanics:

� The Gaussian Orthogonal Ensemble (GOE) of real symmetric matrices.

� The Gaussian Unitary Ensemble (GUE) of complex Hermitian matrices.

� The Gaussian Symplectic Ensemble (GSE) of quaternionic Hermitian matrices.

Analyzing the consequences of the invariance under time-inversion T , Dyson showed

[3–7] that the previous classes of random matrices can describe a system which

� is T -invariant and rotational invariant or with integer magnetic moment.

� is not T -invariant, e.g., with a magnetic field without other discrete symmetries.

1Assuming the statistical independence, excludes everything except the traces of the first
two powers of M , which in turn, may occur only in exponential form [41].
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� is T -invariant and with half-integer magnetic moment.

Correspondingly, the matrix U in (4-3) belongs to a compact Lie group which

is called a circular ensemble :

� The Circular Orthogonal Ensemble (COE) of real symmetric matrices.

� The Circular Unitary Ensemble (CUE) of complex Hermitian matrices.

� The Circular Symplectic Ensemble (CSE) of complex symplectic matrices.

The Gaussian ensembles are denoted as E�
N and the Corresponding circular ensem-

bles as U�
N , with � 2 f1; 2; 4g is called Dyson index (see Tab. 4.1).

� Ensemble type E�
N Gaussian ensemble U�

N Circular ensemble

1 orthogonal SN GOE ON COE
2 unitary HN GUE UN CUE
4 symplectic QN GSE Sp2N CSE

Table 4.1: Gaussian and circular ensembles.

Each one of these ensembles can be realized as a set of N�N matrices whose entries

are real if � = 1, complex if � = 2, and quaternionic if � = 4. The entries can be

written as elements of a �-dimensional Clifford algebra over R, with generators

feee�g��1
�=0 , in which eee0 = 111 is the identity and feeeig3i=1 satisfy

eee2i = �111; eeeieeej = �ijkeeek: (4-4)

We recall that the conjugate of a quaternion q 2 of the form

q =
��1X
�=0

q(�)eee�; q(�) 2 R (4-5)

is defined as

�q := q(0)111�
��1X
i=1

qieeei: (4-6)

Defining the conjugate of a matrix M by My := MT , one can see the Gaussian

ensembles satisfy the constraint My = M , and the circular ensembles satisfy

MMy = 1. Furthermore, in the case of quaternionic ensembles, one may represent

the generators eeei by Pauli matrices; i.e., eeei = �i�i in which

�1 =

0@0 1

1 0

1A ; �2 =

0@0 �i
i 0

1A ; �3 =

0@1 0

0 �1

1A : (4-7)

On each of the Gaussian ensembles E
�
N , there is an invariant Lebesgue

measure, also called Haar measure which is the product of the Lebesgue measures
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on the real components of the matrix M . Denoting the real components of Mij as

M
(�)
ij , the Lebesgue measures are:2

dM =

8>>>>><>>>>>:

Q
i dMii

Q
i<j dMij ; � = 1;Q

i dMii
Q
i<j d(<Mij) d(=Mij); � = 2;Q

i dM
(0)
ii

Q
i<j

Q3
�=0 dM

(�)
ij ; � = 4;

(4-8)

which can be collected in a single formula

dM =
Y
i

dMii

Y
i<j

��1Y
�=0

dM
(�)
ij : (4-9)

The diagonalization (4-3) can be viewed as a change of variable M ! (�; U);

therefore, the Lebesgue measure dM can be written in terms of the measures on �

and U as

dM = j�(�)j� d�dUHaar; (4-10)

where d� =
QN
i=1 d�i is the Lebesgue measure on RN and the Jacobian is written

in terms of the Vandermonde determinant:

�(�) � det
�
�
j�1
i

�
1�i;j�N =

������������

1 �1 �21 � � � �N�1
1

1 �2 �22 � � � �N�1
2

...
...

...
. . .

...

1 �N �2N � � � �N�1
N

������������
=

Y
1�i<j�N

(�j � �i);

and dUHaar is the Haar measure on the circular ensemble UN which is characterized

as being invariant under the left and right action of the corresponding Lie group.3

The partition function (4-2) thus becomes

2In fact, one defines an invariant Hilbert-Schmidt inner product for two operators A and
B on a Hilbert space H as hA;BiHS := Tr(AyB) which induces the invariant measure (4-9),
possessing the property dM = d(U�1MU).

3The left (right) Haar measure dU
L(R)
Haar on a compact Lie group UN , is an infinitesimal

volume element of UN under which the integral over the whole group of some continuous
function f is invariant under left (right) group multiplication, i.e., for U;U 0 2 UN ,

ˆ
UN

dUL
Haar f(U

0U) =

ˆ
UN

dUL
Haar f(U);

ˆ
UN

dUR
Haar f(UU

0) =
ˆ
UN

dUR
Haar f(U):

Therefore, the Haar measure assigns an “invariant volume” to subsets of compact Lie
groups. It is clear that for consistency with the definition of integration, the Haar measure
must be used when integrating over the angular variables.
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ZN = Vol
 
E
�
N

RN

! ˆ
RN

d� j�(�)j� e�N Tr V (�); (4-11)

in which Vol
�
E
�
N

RN

�
is the volume of the flag manifold given by

Vol
 
E
�
N

RN

!
=

8>>>>>>><>>>>>>>:

2N�N(N+1)=4

N !
QN

K=1
�(k=2)

; � = 1;

�N(N�1)=2

N !
QN�1

K=0
�(k+1)

; � = 2;

�N(N�1)

N !
QN�1

K=0
�(2k+2)

; � = 4:

(4-12)

4.3
Universality of Random Matrix Theories

In spite of that random matrix models are extremely simple, they can be used

to reproduce certain features of the real spectra of physical systems. The reason

behind this applicability is universality.

The concept of universality was originally introduced in physics for the de-

scription of critical phenomena in statistical physics. The observation that critical

exponents are quite insensitive to many characteristics of a physical system, gave

rise to several experimental and theoretical efforts. Within that framework, the

term universality means that there are observables which are mainly independent

of any microscopic details of the system, but which show a very marked dependence

both on symmetry and on the number of space dimensions. This simple idea turned

out to be so fruitful that it spread out over several branches of theoretical physics,

involving in particular those related to the study of complex systems. Random

matrix theory is a remarkable example.

Within the context of random matrix theory, universality has a rather informal

meaning: there is no generally accepted formal definition of universality in random

matrix theory; However, it is generally agreed that, to call a property universal

it should not depend on the details of the probability measure imposed on the

ensemble. We recall that (see Sec. 4.2) the definition of a random matrix ensemble

not only requires the choice of a subset among matrices (i.e., universality class), but

also to assign a probability with respect to which all averages should be performed.

One typically works with Gaussian distributions as they are easier to handle;

however, for the outcomes of the model to have any significance, the arbitrary choice

of a weight function should not have any role. More precisely, rewriting the partition

function

ZN =

ˆ
E
�
N

dM e�N Tr V (M) (4-13)
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for a given ensemble E�
N , universality then means independence from the choice of

the potential V . Once a property is known to be universal, it can be studied using a

quadratic potential, which leads to a Gaussian matrix integral. In fact, Universality

arises in limit, where the matrix size N is large. Then, assuming that the potential

V has a finite large N limit, the partition function ZN can have a non-trivial large

N limit too:

lim
N!1

ZN =: Z: (4-14)

In fact, in order for this limit to exist, the action term must be of the same order as

the integration measure. If its order is larger, that means the measure is irrelevant

and the matrix is not random, rather it is trapped at the bottom of the potential.

On the other hand, if its order is smaller, the potential is irrelevant, and the matrix

is free at limit N !1 (see Sec. 5.1).

This form of universality is reminiscent of the central limit theorem. Like the

central limit theorem, universality studies in the context of random matrix theory,

establish certain spectral distributions to be invariant under changes of the defining

probability distribution for the ensemble in question. However, unlike in the case of

the central limit theorem, general proofs are harder to provide by and usually each

variation of a model, requires separate study.

4.3.1
Level Spacing Distribution

Statistical study of energy levels is a rather unusual approach. A Hamiltonian,

though it may be unknown or complicated, deterministically specifies the energy

levels of a system and there is no uncertainty involved. However, if one is not

concerned with the exact positions of energy levels, one might hope to understand

the relations between levels within a certain level of precision, such as correlations

or the average spectral density. Thus Wigner considered the spectrum of a random

matrix which shares the symmetries of the given Hamiltonian.

The interesting observable which Wigner studied [43, 44] is the statistical

distribution of the distance s between adjacent energy levels which appear in

experimental data as peaks of the diffusion rate of neutrons as a function of the

energy in the scattering of slow neutrons across nuclei (see Fig. 4.1).

More precisely, let �1 < � � � < �n < �n+1 < � � � be the ordered sequence of

energy levels. One defines the normalized spacings s := (�n+1 � �n)=E[s], where

E[s] = E[�n+1 � �n] is the mean spacing. If the energy levels were uncorrelated

random numbers, that is, the levels were distributed at random, the variable s
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Figure 4.1: Diffusion rate of neutrons as a function of the energy. The distance
between neighbouring energy levels is denoted by s.

would be governed by the Poisson distribution [41], with probability density4

p(s) = e�s: (4-15)

But the experimentally observed probability density looks quite different, and is

very well approximated (within 1%) by the Wigner surmise [45]

p�(s) = a� s
� e�b�s

2
; (4-16)

where the parameter � 2 f1; 2; 4g is determined by the symmetries of the nucleus

under time reversal and spin rotation, and the values of a� and b� are fixed by

normalizing p� and the average value of s, i.e.,
ˆ 1

0
ds p�(s) = 1 =

ˆ 1

0
ds p�(s) s: (4-17)

In fact, Wigner surmise for the three classical ensembles is (see Fig. 4.1)

p�(s) =

8>>>>><>>>>>:

�
2 s e

��
4
s2 ; � = 1;

32
�2 s

2 e�
4
�
s2 ; � = 2;

218

36�3 s
4 e�

64
9�
s2 ; � = 4:

(4-18)

The Wigner surmise is also a very good approximation of the large size

limit of the probability density for the distance between consecutive eigenvalues

of random matrices. Actually, this density is universal, in the sense that it does

not depend on the precise probability law of the random matrices, but only on the

choice of the matrix ensemble.

Nearest neighbour spacing in an energy spectrum and distance between

consecutive eigenvalues in the spectrum of random matrices are two examples of

4From characteristics of the Poisson process, spacings between consecutive energy levels
act as sequences of independent random variables. By the memoryless property of the
Poisson process (see Ch. 2), it also means that the number of energy levels with one particular
spacing is independent of the number of those with some other spacing.
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� � � �

���

���

���

���

���

���

Figure 4.2: Wigner surmise for level spacing probability distribution.

local properties of the corresponding spectrum. By local properties we mean those

properties that are relevant at the scale of the mean eigenvalue spacing.

4.3.2
Eigenvalue Distribution

On the other hand, the density of the eigenvalues (as opposed to their

distances) is not universal. In the case of Gaussian random matrices in the limit

of infinite size, it is given by the Wigner semi-circle law [46]

�(�) =
1

2�

p
4� �2 1fj�j�2g: (4-19)

However, for many physical systems, the average spectral density is a monotonically

increasing function of the energy. Therefore it is clear that such an approach cannot

say much about the overall shape of the spectral density; in other words, the

details of the system ignored by the random matrix model are important for the

determination of the average spectral density.
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5
Gaussian Unitary Ensemble

The beauty of mathematics only shows itself to more patient followers.

M. Mirzakhani

All information concerning the distribution of eigenvalues in any of the classical

ensembles (GOE, GUE, and GSE) is encoded in the jpdf. Getting information out

of the jpdf requires integration, and many of the integrals that arise can not be

evaluated in any nice closed form. Nevertheless, it is possible to show that as the

sizeN of the ensemble becomes large, certain interesting functions of the eigenvalues;

for instance, the maximum, have (after suitable re-centering and re-scaling) limit

distributions. The unitary ensembles are easier to handle than the orthogonal and

symplectic ones, so we will limit our attention to GUE in this chapter:

5.1
Spectral Representation of the Partition Function of GUE

According to the previous chapter, the partition function of GUE is given by

Z =

ˆ
HN

dM e�N Tr V (M); (5-1)

in which V (M) = 1
2M

2 and the integration measure is the following Lebesgue

measure

dM =
NY
i=1

dMii

Y
1�i<j�N

d(<Mij) d(=Mij): (5-2)

which is invariant under the conjugation

M ! U�1MU =: �; U 2 U(N); (5-3)

in which � := diag (�1; : : : ; �N ) 2 RN includes the (real) eigenvalues of M , and U

is a unitary matrix. Along with the invariance of the Lebesgue measure, the cyclic

property of the trace, i.e.,

TrM = Tr (UMU�1) (5-4)

implies the invariance of the partition function Z in (5-1) under the symmetry

group U(N).
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Moreover, the total number of degrees of freedom is N2. The Lebesgue mea-

sure dM is the product of Lebesgue measures for the N2 real components, i.e., of

order O
�
eN

2�
. The trace is a sum of N terms, and e�N Tr V (M) = O

�
e�N2�

, thanks to

the pre-factor N . Therefore, the partition function Z has a non-trivial large N limit.

Implementing the symmetry (5-3), one can integrate over the unitary part U of

M and the measure reduces to the measure over the diagonal part (the eigenvalues).

Then, one has to compute the Jacobian J = @M
@(U;�) of the transformation M !

(U;�):

dM = J d�dUHaar: (5-5)

Since dM is invariant under a unitary transformation, the Jacobian J depends only

on �, and it is sufficient to calculate it in the vicinity of U = 1. Differentiating (5-3)

we have

dM = (dU) �U�1 + U (d�)U�1 + U � (dU�1) (5-6)

with the additional constraint

d(U U�1) = (dU)U�1 + U (dU�1) = 0: (5-7)

Hence, for i = j: dMii = d�i, and for i < j: d(<Mij) = (�i � �j) d(<Uij), and
d(=Mij) = (�i � �j) d(=Uij). Therefore, the Jacobian is simply [7, 41, 47]

J = j�(�)j2; (5-8)

in which �(�) � Q
1�i<j�N (�j � �i) is the Vandermonde determinant. After

integrating over the unitary part, one obtains the eigenvalue representation of the

partition function1

ZN = 
N

ˆ
R

NY
i=1

d�i j�(�1; : : : ; �N )j2 e�N
PN

i=1
V (�i): (5-9)

in which
1We recall that in the context of group theory, Haar measure is a way to assign “invariant

volume” to subsets of compact groups and subsequently define an integral for functions on
those groups. Here,


N =
Vol
�
U(N)

�
jSN j

�
Vol
�
U(1)

��N =
1

N !
Vol
�

Flag(N)(C)
�
;

where jSN j = N ! is the order of the symmetry group SN , and Vol
�
U(N)

�
=
QN

k=1
2�k

(k�1)!

denotes the volume of the unitary group U(N) with respect to the Haar measure on
this group [48–51]. The eigenvalue permutation prefactor N ! reflects the ambiguity of the
representation M = U�U�1.
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N � 1

(2�)N N !

ˆ
U(N)

dUHaar =
�N(N�1)=2QN

k=1 k!
(5-10)

is the volume of the flag manifold [51, 52].

More generally, we are interested in global or in local statistics of the

eigenvalues. Global quantities involve a large number, e.g., O(N), of eigenvalues

like the expectation values of functions of the �i’s (observables of RMT):2

E[f(M)] :=
1

ZN

ˆ
dM e�N Tr V (M) f(M); (5-11)

with f invariant under M ! UMU�1. Such f is expressible in terms of eigenvalues

and we have3

E[f(�)] =
1

ZN

ˆ
R

d� j�(�)j2 e�N Tr V (�) f(�): (5-12)

Indeed the Gaussian unitary ensemble is exactly solvable and the partition

function Z and the expectation values E[f ] can be computed explicitly [53]. For

example, using Lebesgue measure (5-2), the partition function Z reads

ZN = 2N=2
�
�

N

�N2=2

: (5-13)

5.2
Methods of Analysis the Large N Limit

Based on the eigenvalue representation (5-9) of the partition function, we discuss

two different methods for analyzing the large N limit of GUE.

5.2.1
Saddle Point Method for GUE

The starting point of this method is to notice that one can rewrite the eigenvalue

representation of the partition function (5-9), omitting the prefactor 
N , as

ZN =

ˆ
R

NY
i=1

d�i e
�N2 Seff (�1;:::;�N ); (5-14)

where the effective action is given by

Seff (�1; : : : ; �N ) :=
1

N

NX
i=1

�2i
2
� 2

N2

X
1�i<j�N

lnj�i � �j j: (5-15)

Equation (5-15) (or equivalently (5-9)) exhibits a fundamental feature: due to the

presence of the Jacobian, given in terms of Vandermonde determinant, eigenvalues

2Here E[�] means average over systems with different Hamiltonians (potentials) but with
common global symmetries, in contrast to the traditional ensemble average of identical
physical systems (with fixed Hamiltonian) in statistical mechanics.

3In the language of group theory, f is called a calss function.
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can not coincide. This is referred to as repulsion of eigenvalues of random matrices.

Alternatively (5-15) may be regarded as describing a classical statistical mechanical

model of N charges on the real line, subjected to a one-body potential N�2=2 and

to a repulsive interaction which has the form of a 2D Coulomb repulsion. Assuming

the potential to be N -independent and all eigenvalues to be of order one, the sum

over N eigenvalues is roughly of order one. Therefore N2 Seff = O(N2), and in the

limit N !1, the integral (5-14) will be dominated by a saddle point configuration

that minimizes the effective action, i.e., we have to look for the solution (~�1; : : : ; ~�N )

of the following set of equations:

�

��i
Seff (�1; : : : ; �N )

�����
�i=~�i

= 0; i = 1; : : : ; N; (5-16)

which leads to the saddle point equation :

~�i =
2

N

NX0

j=1

1
~�i � ~�j

; i = 1; : : : ; N: (5-17)

In this saddle point configuration �i = ~�i, the eigenvalue density formally defined

for finite N as

�N (�) := E

�
1

N
Tr �(�1�M)

�
= E

"
1

N

NX
i=1

�(�� �i)

#
; (5-18)

becomes

�N (�) =
1

N

NX
i=1

�(�� ~�i): (5-19)

In this configuration, the large N limit of the partition function reads

ZN � e�N
2 Seff (~�1;:::;~�N ): (5-20)

More generally, any invariant expectation value of the form (5-11) is computable by

the saddle point method:

hf(M)i � f(~�1; : : : ; ~�N ): (5-21)

In the large N limit, it is reasonable to expect that the discrete eigenvalue

distribution (which is an observable) becomes a continuous function

�(�) := lim
N!1

�N (�) (5-22)

with compact support. Therefore, we assume that �(�) vanishes outside a real inter-

val S := supp (�) = [c�; c+]. This is the so-called one-cut solution. Furthermore, as

there are exactly N eigenvalues on the real axis, the density of eigenvalues is subject

to the normalization condition
ˆ
S
d� �(�) = 1: (5-23)
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We then can write the continuum limit of the equations of our matrix model in

terms of continuous quantities, by using the standard rule

1

N
E

"
NX
i=1

f(�i)

#
=

1

N

NX
i=1

f(~�i)!
ˆ
S
d� �(�) f(�): (5-24)

For example, the effective action in the continuum limit is given by

Seff [�] =
1

2

ˆ
S
d� �(�)�2 ��

ˆ
S�S

d�d�0 �(�) �(�0) lnj�� �0j; (5-25)

Therefore, in this large N limit, the eigenvalue density is such that the effective

action (5-25) attains its minimum, while the constraint (2-12) is imposed. We then

have to solve the following variational problem:

�

��(�)

"
1

2

ˆ
S
d�0 �(�0)�02 ��

ˆ
S�S

d�0 d�00 �(�0) �(�00) lnj�0 � �00j

+ c

�ˆ
S
d�0 �(�0)� 1

�#
= 0; (5-26)

in which c is a constant. Applying the variational derivative in (5-26), leads to

1

2
�2 = 2�

ˆ
S
d�0 �(�0) lnj�� �0j � c: (5-27)

Next, we take derivative of both sides of the above equation with respect to �, to

eliminate c. Thereby, we have

� = 2�
ˆ 1

�1
d�0

�(�0)
�� �0

: (5-28)

This is the continuum form of the saddle point equation (5-17), which is a singular

integral equation that allows one, in principle, to calculate �(�) [54, 55]. The result

is [41]

�(�) =

8<:
1
2�

p
4� �2; j�j < 2;

0; j�j > 2;
(5-29)

which is the celebrated Wigner’s semi-circle law for the Gaussian model (see Fig.

5.1). The 2nth moment of this distribution is given by

!2n =

ˆ 2

�2
d�

1

2�

p
4� �2 �2n = Cn; (5-30)

where Cn � 1
n+1

�2n
n

�
is Catalan number. In fact, the most direct combinatorics-

based proof of the semi-circle law was given by Wigner in his original paper [43].
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�

⇢(�) = 1
2⇡

p
4 � �2

Figure 5.1: Wigner’s semi-circle law for GUE.

5.2.2
Resolvent Formalism for Unitary Ensembles with Arbitrary Potential

In the case of an arbitrary potential V (�), the saddle point equation (5-17), reads

V 0(~�i) =
2

N

NX0

j=1

1
~�i � ~�j

; i = 1; : : : ; N: (5-31)

This means that the eigenvalues are subject to an effective potential

Veff (�i) = V (�i)� 2

N

X
1�i<j�N

lnj�i � �j j: (5-32)

At equilibrium, the eigenvalues tend to locate at the bottom of the potential. This

means that in this case, the interval S collapses to a point. The Coulomb repulsion,

however, forces the eigenvalues to be apart from each other and spread out over

an interval S. The eigenvalues are then kept away from each other by a distance,

typically of order O(1=N) (see Fig. 5.2).

O(1/N)
�

V (�)

Figure 5.2: Repulsion of the Coulomb gas of eigenvalues.

The saddle point equation (5-31) in the continuum limit reads

V 0(�) = 2�
ˆ
S
d�0

�(�0)
�� �0

; � 2 S: (5-33)

This time, however, instead of applying the tedious methods of the theory of integral

equations, we resort to the elegant and powerful methods of complex analysis which
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besides providing the solution, contain deep insight into its nature. The way to solve

(5-33), is to introduce an auxiliary function !(z), called resolvent, defined as4

! (z) :=
1

N
E

�
Tr 1

z1�M

�
=

1

N
E

"
NX
k=1

1

z � �k

#
=

1

N

NX
k=1

1

z � ~�k
: (5-34)

The resolvent is thus the generating function for the moments of the measure defined

by d�(�) := �(�) d�, i.e.,

!(z) =
1X
k=0

1

N
E
h
TrMk

i
z�k�1; (5-35)

where the expansion is valid for sufficiently large jzj (jzj > max fj�1j; : : : ; j�N jg).
According to (5-35), the resolvent is Z-transform of the coefficient of the expansion,
1
N E

h
TrMk

i
, the so called disc function, and therefore, the disc function is the

inverse Z-transform of the resolvent, given by

1

N
E
h
TrMk

i
=: !k =

1

2�i

‰
C
dz zk !(z); (5-36)

in which C is a counterclockwise contour encircling the origin and all the poles of

!(z). In the continuum limit, when N !1, the resolvent reads (see (5-34))

!(z) =

ˆ
S
d�

� (�)

z � �
; z =2 S: (5-37)

The resolvent is thus the Stieltjes transform5 of the measure d�(�) = �(�) d�, and

has two important properties:

• First, according to the equation (5-37), the integral has a singularity at � = z 2 S.
Therefore, analytic continuation of !(z) into the complex plane is well-defined on

C n S. Since all the poles of !(z) lie on the compact support S � R, forming a

branch-cut on the real line, we can deform the contour C in (5-36) to an infinitesimal

rectangular contour encircling S. Hence, we have

!k =

ˆ
S
d��k �(�): (5-38)

• Second, based on the equation (5-35) and normalization of the eigenvalue distri-

bution, it has the asymptotic behavior

4The resolvent formalism is a technique for applying concepts from complex analysis to
the study of the spectrum of operators. The resolvent captures the spectral properties of an
operator in the analytic structure of the resolvent.

5The Stieltjes transformation S�(z) of a continuous measure of density � on a real interval
I is a function of the complex variable z defined outside I by the formula

S�(z) :=

ˆ
I

dt
�(t)

z � t
; t 2 I; z 2 C n I:
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!(z) �
jzj!1

1

z
: (5-39)

One can now recover the density function � by computing the discontinuity of ! (z)

as one crosses the interval S (see Fig. 5.3). To this end, we consider the values

!� := !(� � i�), for � 2 S and � 2 R+, and use a version of the Sokhotski-

Weierstrauss theorem [56] for integrals over real line which states

�
z

!(z)

!(� + i✏)

!(�� i✏)

✏

�✏
c� c+

Figure 5.3: Discontinuity of the resolvent across the branch cut.

lim
�&0

1

�� z � i�
= P (

1

�� z
)� i� �(�� z); (5-40)

where P denotes the Cauchy principal value. Then it follows that

lim
�&0

(!+ � !�) = �2�i
ˆ
S
d� �(�) �(�� z);

which gives rise to Stieltjes-Perron inverse formula for the density of eigenvalues

�(�) = � 1

2�i
lim
�&0

�
! (�+ i�)� ! (�� i�)

�
: (5-41)

This, in turn, can be expressed as6

�(�) = � 1

�
lim
�&0

= !(�+ i�): (5-42)

Hence, if the resolvent is known, the eigenvalue density follows from the equation

(5-42). However, the resolvent is still unknown. In order to find the resolvent, we

substitute � in (5-33) by its value from (5-41) which yields

V 0(�) = lim
�&0

�
!(�+ i�) + !(�� i�)

�
; � 2 S; (5-43)

6According to the Schwarz reflection principle [56, 57], if a function f(z) is analytic over
some region including the real axis and is real when z is real, then f(z) = f(z). Therefore,
f(z)� f(z) = 2i= f(z) and f(z) + f(z) = 2< f(z) .
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along the cut, which determines the resolvent in terms of the potential. The

equations (5-41) and (5-43) define a scalar Riemann-Hilbert problem for the

function !(z) [56, 58, 59]. In order to find the resolvent, we write it as a sum

of an analytic or regular part !r(�), and a singular part !s(�):

!(�) = !r(�) + !s(�); (5-44)

we then have

lim
�!0+

n�
!r(�+ i�) + !s(�+ i�)

�
+
�
!r(�� i�) + !s(�� i�)

�o
= V 0(�); (5-45)

or since !r is analytic,

lim
�&0

n
2<
�
!r(�+ i�)

�
+
�
!s(�+ i�) + !s(�� i�)

�o
= V 0(�): (5-46)

It follows that the regular part of the resolvent is given by7

lim
�&0

<
�
!r(�+ i�)

�
= !r(�) =

1
2V

0(�); (5-47)

and its singular part satisfies the homogeneous equation

lim
�&0

�
!s(�+ i�) + !s(�� i�)

�
= 0: (5-48)

The simplest one-cut solution to this equation is

q
(�� c�)(�� c+) ;

in which c� and c+ are the inner and outer edge of the support, respectively. The

resolvent thus has the following general form under the assumption of the one-cut

solution

!(z) = !r(z) + !s(z) =
1

2

�
V 0(z)�M(z)

q
(z � c�)(z � c+)

�
; (5-49)

in which M(z) is a polynomial whose degree is one less than that of V 0(z), i.e.,

degM = deg V � 2: (5-50)

Based on the equation (5-49) and the asymptotic behavior of the resolvent,

given by the equation (5-39), M(z) can be determined uniquely:8

M(z) =

‰
C1

du

2�i

M(u)

u� z
=

‰
C1

du

2�i

V 0(u)
u� z

1p
(u� c�)(u� c+)

; (5-51)

where C1 is a counterclockwise contour enclosing the cut [c�; c+] (see Fig. 5.4).

Inserting this solution for M(z) into the equation (5-49), and using

7Again the first equality in (5-47) is held due to the Schwarz reflection principle.
8The first equality in (5-51) is valid for any analytic function and hence any polynomial.
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z

C1

Cz

C
c� c+

u

Figure 5.4: Counterclockwise contours C, Cz, and C1, and the cut S =

[c�; c+] in the complex u-plane.

V 0(z) =
‰
Cz

du

2�i

V 0(u)
u� z

=

‰
Cz

du

2�i

V 0(u)
u� z

s
(z � c�)(z � c+)

(u� c�)(u� c+)
;

in which Cz is a counterclockwise contour enclosing u = z (see Fig. 5.4), we obtain

!(z) =
1

2

(‰
Cz

du

2�i

V 0(u)
u� z

1p
(u� c�)(u� c+)

�
‰
C1

du

2�i

V 0(u)
u� z

1p
(u� c�)(u� c+)

)
�
q
(z � c�)(z � c+) : (5-52)

By deforming the contour C1 at infinity to a counterclockwise contour C which

encloses the cut [c�; c+] but not z, and noting that 	C1 = 	Cz + 	C, we deduce

!(z) =
1

2

‰
C

du

2�i

V 0(u)
z � u

s
(z � c�)(z � c+)

(u� c�)(u� c+)
: (5-53)

The solution (5-53) must have the asymptotic behavior !(z) � 1=z when jzj ! 1.

The asymptotic behavior of the integrand in (5-53) as a function of z is as following:

1

z � u

q
(z � c�)(z � c+) �

jzj!1
1 +

u

z
; (5-54)

consequently, the following equations must be held
‰
C

du

2�i

V 0(u)p
(u� c�)(u� c+)

= 0; (5-55)

‰
C

du

2�i

u V 0(u)p
(u� c�)(u� c+)

= 2: (5-56)

These equations are enough to determine the endpoints of the cut, c� and c+.

Equation (5-49) together with the equations (5-55) and (5-56) for the endpoints of

the cut, completely solve the GUE model for polynomial potentials with one cut, in

the large N limit. The eigenvalue density is

�(�) =
1

2�
M(�)

q
(�� c�)(c+ � �): (5-57)
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For practical purposes, we write these equations in terms of contour integrals

enclosing the origin. We therefore introduce a new variable � defined by u =: ��1.

The equation (5-51) then takes the form

M(z) =

‰
C0

d�

2�i

V 0(1=�)
1� z �

1p
(1� c� �)(1� c+ �)

; (5-58)

in which C0 is a counterclockwise contour which encircles � = 0. In the case of

equations (5-55) and (5-56), we first deform the contour C to infinity and then we

change the integration variable as u = ��1. We then obtain the following equations:
‰
C0

d�

2�i

1=� V 0(1=�)p
(1� c� �)(1� c+ �)

= 0; (5-59)

‰
C0

d�

2�i

1=�2 V 0(1=�)p
(1� c� �)(1� c+ �)

= 2: (5-60)

As an Example, we apply this method to the simplest case with Gaussian

potential V (M) = 1
2M

2. We first look for the position of the endpoints. According

to the equation (5-59), we must have
‰
C0

d�

2�i

1

�2
1p

(1� c� �)(1� c+ �)
= 0: (5-61)

Moreover, using the Cauchy’s integral formula, we have

‰
C0

d�

2�i

1

�2
1p

(1� c� �)(1� c+ �)
=

 
d

d�

1p
1� (c� + c+)� + c�c+ �2

! �����
�=0

=
1

2
(c� + c+); (5-62)

therefore c� + c+ = 0, in accordance with the symmetry of the potential. Taking

this into account, the equation (5-60) now becomes
‰
C0

d�

2�i

1

�3
1q

1� c2+ �
2
= 2; (5-63)

but

‰
C0

d�

2�i

1

�3
1q

1� c2+ �
2
=

1

2

0@ d2

d�2
1q

1� c2+ �
2

1A �����
�=0

=
1

2
c2+; (5-64)

therefore c+ = 2. The cut is thus given by S = [�2; 2]. Now we are able to compute

M(z) from the equation (5-58):

M(z) =

‰
C0

d�

2�i

1

�

1

(1� z�)
p
1� 4�2

=

 
1

(1� z�)
p
1� 4�2

! �����
�=0

= 1: (5-65)

Next, using the equation (5-49), we obtain the resolvent for the Gaussian model:

!(z) =
1

2

�
z �

p
z2 � 4

�
; (5-66)
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and eventually from the equation (5-42), we derive the density of eigenvalues for the

Gaussian model:

�(�) =
1

2�

p
4� �2; (5-67)

5.2.3
Orthogonal Polynomials Method for Unitary Ensemble with Arbitrary
Potential

The saddle point method allows a general discussion of the large N limit. It is

difficult, however, to calculate the subdominant orders in the 1=N expansion and

therefore to discuss perturbation theory to all orders. We now turn to a more

powerful procedure, based on orthogonal polynomials which was first developed in

[60].

The Starting point of the technique of orthogonal polynomials is the eigenvalue

representation of the partition function (5-9). The idea is to disentangle the repulsive

interaction between eigenvalues due to the squared Vandermonde determinant,

which makes a link between random matrix theory and the classical theory of

orthogonal polynomials. This method is based on one simple lemma: if we introduce

a set of monic polynomials P1(�); : : : ; Pn(�) of order n = 0; 1; : : : ; N � 1 in �, that

are orthogonal with respect to the Lebesgue measure d�(�) := e�N V (�) d� on R,

namely such that,

hPnjPmi� :=

ˆ
R

d�(�)Pn(�)Pm(�) = hn�nm; (5-68)

then by performing suitable linear combinations of preceding columns which leave

the determinant unchanged, one obtains

�(�1; : : : ; �N ) � det
�
�
j�1
i

�
1�i;j�N

= det
�
Pj�1(�i)

�
1�i;j�N

: (5-69)

Now using the Leibniz formula for determinants, we can expand (5-69) as follows

�(�1; : : : ; �N ) =
X
�2SN

sgn(�)
NY
k=1

P�(k)�1(�k); (5-70)

where the sum is over permutations � of N indices and sgn(�) is its sign. The inte-

grals over individual �i’s in the eigenvalue representation of the partition function

factorize, and due to orthogonality of the polynomials, the only contributions are

from terms with all Pi(�j)’s paired. There are N ! such terms, so
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ZN =

ˆ NY
k=1

d�k�
2 (�1; : : : ; �N ) e

�N
PN

k=1
V (�k)

=
X

�;�2SN
sgn(�) sgn(� )

NY
k=1

ˆ
d�(�k)P�(k)�1(�k)P�(k)�1(�k)

=
X

�;�2SN
���

N�1Y
j=0

hj

= N !
N�1Y
j=0

hj : (5-71)

The solution of the original matrix integral is thus reduced to the problem of

determining the normalization constants hi. In order to obtain them, we notice that

any orthogonal polynomials Pn satisfy a three-term recursion relation, expressing

�Pn(�) in terms of Pn�1(�); Pn(�) and Pn+1(�) [61]:

�Pn(�) = sn Pn(�) + Pn+1(�) + rn Pn�1(�): (5-72)

This relation comes from the fact that hPnjQi = 0 for any polynomial Q(�) with

degQ < degPn. For even potentials, �Pn(�) and Pn(�) have opposite parity and

the term involving Pn(�) is absent (sn = 0). Now based on the recursion relation

(5-72), we demonstrate that the coefficients rn and sn can be expressed in terms of

hn’s. From (5-72) we get

hPn�1j�Pni = rnhPn�1jPn�1i = rnhn�1: (5-73)

On the other hand, in (5-72) we let n! n� 1. We obtain

hPnj�Pn�1i = rnhPnjPni = hn: (5-74)

Left hand sides of (5-73) and (5-74) are equal, we thus obtain

rn =
hn
hn�1

; n � 1: (5-75)

The partition function is thus given by

ZN = N !hN0

NY
i=1

rN�ii : (5-76)

In order to determine the coefficients rn, we first introduce a set of orthonormal

polynomials �n(�) as

�n(�) :=
Pn(�)p
hn

=
1p
hn

�n +O(�n�1); (5-77)

which satisfy

h�nj�mi :=
ˆ 1

�1
d� e�N V (�)�n(�)�m(�) = �nm: (5-78)

Next, we introduce a set of multiplication and differentiation operators which

DBD
PUC-Rio - Certificação Digital Nº 1222486/CA



Chapter 5. Gaussian Unitary Ensemble 71

operate on the polynomials �n. We define the multiplication operator B as

Bnm�m(�) := ��n(�); (5-79)

which following the three-term recurrence relation for the orthogonal polynomials

given in (5-72) can be written as

Bnm�m(�) = sn�n(�) +
p
rn+1 �n+1(�) +

p
rn �n�1(�); (5-80)

where we have used the summation convention for the matrix multiplication on the

left hand side. Using the orthonormality of �n’s, one can write the elements of the

operator B as

Bnm = h�nj� �mi = sn �n;m +
p
rn+1 �n+1;m +

p
rn �n�1;m: (5-81)

Since Bnm = h�nj��mi = h�mj��ni = Bmn, the operator B is symmetric, or in

operator form

B = BT: (5-82)

We also denote the operator of differentiation with respect to � by A:

Anm�m(�) := @��n(�); (5-83)

which in component form becomes Anm = h�mj@��ni. Since the coefficients hn
are independent of �, the polynomial on the right hand side of (5-83) is at most of

degree n� 1, and hence,

An;n+k = 0; k > �1; (5-84)

which means the matrix representing A is strictly lower triangular.

Based on the definitions of the operators A and B, we have

(BA� AB)nm�m = @�(��n)� � @��n = �n = �m �nm; (5-85)

which in operator form means that A and B satisfy the commutation relation

[B;A] = 1: (5-86)

In the next step, the partition function can be determined from the so-called string

equation :

[B;P ] = 1; (5-87)

in which the operator P is defined as

P := �N
2

�
V 0(B)+ � V 0(B)�

�
: (5-88)

Here + and � refer to the upper and lower triangular parts of the matrix, respec-

tively. The diagonal part of P vanishes and since B is symmetric, obviously P
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is antisymmetric. Because P is expressed only in terms of powers of B, which is

tridiagonal, P has only a finite number of non-zero off-diagonals.

We are particularly interested in computing the eigenvalue distribution. In

fact, in the large N limit, the coefficients of the recursion relation become continuous

variables of the parameter 0 � � = n
N � 1, i.e., rn ! r(�) and sn ! s(�). Then it

can be demonstrated that [47]:

�(�) =
1

�

ˆ 1

0
d�

�(f(�;�))p
f(�;�)

; (5-89)

where �(�) is the Heaviside unit step function and f(�;�) = 4r(�) � �� + s(�))2.

It follows from this equation that �(�) is supported on the interval [�2pr(1) �
s(1); 2

p
r(1)� s(1)].

5.2.4
Results of Orthogonal Polynomials Method for GUE

The case of Gaussian potential can be handled easily. In fact, we already know that

Hermite polynomials defined as

Hn(�) := (�1)n e�2=2 dn

d�n
e��

2=2; n = 0; : : : ; N � 1; (5-90)

are orthogonal with respect to the standard normal probability density function,

i.e.,
ˆ
R

d� e��
2=2Hn(�)Hm(�) =

p
2� n! �nm: (5-91)

By changing the integration variable as � =:
p
N �0, we obtain

ˆ
R

d�0 e�N�02=2Hn(
p
N �0)Hm(

p
N �0) =

q
2�=N n! �nm; (5-92)

which immediately gives

hn =
q
2�=N n!; Pn(�) =

�
N

2�

�1=4 1p
n!

Hn(
p
N �): (5-93)

Furthermore, one can obtain the string equation for Gaussian potential with

V (M) = M2, and thereby the coefficients rn and sn. In fact, in this case one has

PGauss
nm = �N(

p
rn+1 �n+1;m �prn �n�1;m): (5-94)

Recursion relations for rn can be obtained from the string equation (8-35) by

considering the diagonals, i.e., we have the recursion relations

[B;P ]n;n � 1 =

�p
rn+1 V

0(B)n+1;n � n+ 1

N

�
�
�p

rn V
0(B)n;n�1 � n

N

�
= 0;

(5-95)
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and

[B;P ]n;n�1 = V 0(B)n;n � V 0(B)n�1;n�1 = 0; (5-96)

which are, in turn, implied by the integrated form of the string equation [53]:

p
rn V

0(B)n;n�1 =
n

N
; V 0(B)n;n = 0: (5-97)

�(�) =
1

�

ˆ 1

0
d�

�(4� � �2)p
4� � �2

=
1

2�

p
4� �2; (5-98)

which is in agreement with the previous result obtained by saddle point method.
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6
Ginibre Ensemble

Pure mathematics is, in its way, the poetry of logical ideas.

A. Einstein

Hermitian RMT is of special importance in physics, because of the Hermiticity

of operators associated with observables in quantum mechanics. However, non-

Hermitian random matrices have also attracted considerable attention, in particular

because they can be used as models for dissipative or open physical systems [62–64].

The study of eigenvalue statistics in the complex plane was initiated by

Ginibre [65]. Statistics of complex eigenvalues have many interesting applications

in modeling of a wide range of physical phenomena. They appear in the studies

of quantum chromodynamics at finite chemical potential [66], dissipative quantum

maps with eigenvalues having imaginary parts due to dissipation [67], fractional

quantum-Hall effect [68], and many other areas.

In this chapter, we show how the resolvent formalism, introduced in Ch. 5

can be again employed to obtain the eigenvalue density of non-Hermitian Gaussian

model. This is done by implementing a diagrammatic method, first for a Hermitian

model, followed by its generalisation for a non-Hermitian model.

6.1
Resolvent Formalism

Ginibre ensembles with non-Gaussian weight are typically difficult to deal with

due to the lack of symmetry. We consider the simplest case, the so-called complex

Ginibre ensemble, with V (X;Xy) = XXy and the probability measure

d�(X) =
1

ZN
e�N Tr (XXy) dX; (6-1)

in which the integration measure is the following Lebesgue measure:

dX =
NY

i;j=1

d(<Xij) d(=Xij): (6-2)
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We shall follow here the standard strategy of calculating the eigenvalue density

of a random matrix by first calculating the resolvent (or Green’s function) !(z; z)

and then using an exact relation between the eigenvalue density and the resolvent.

The crucial difference between the Hermitian and non-Hermitian case comes from

the fact that in non-Hermitian random matrix models, eigenvalues do not lie on the

real axis. In the large N limit, they may accumulate in two-dimensional domains in

the complex plane and the corresponding eigenvalue density

�(z; z) := lim
N!1

E

"
1

N

NX
i=1

�(2)(z � �i)

#
; (6-3)

where �i’s are eigenvalues of X and E[�] denotes averaging over a given ensemble of

N�N random non-Hermitian matrices generated by (6-1), may become a continuous

function with an extended support in the complex plane. If one wants to apply the

resolvent formalism for (6-3), one has to find a representation of the two-dimensional

delta function. A natural candidate is1

�(2)(z � �) =
1

�
lim
�!0

�2

(jz � �j2 + �2)2
=

1

�
lim
�!0

@

@z

"
z � �

jz � �j2 + �2

#
: (6-4)

Using this representation, one can write

�(z; z) = lim
�!0

lim
N!1

E

"
1

N

NX
i=1

�2

(jz � �ij2 + �2)2

#
(6-5)

or

�(z; z) =
1

�

@2�(z; z)

@z @z
; (6-6)

where

�(z; z) = lim
�!0

lim
N!1

E

"
1

N

NX
i=1

ln
�
jz � �ij2 + �2

�#
; (6-7)

or equivalently

�(z; z) = lim
�!0

lim
N!1

E

�
1

N
Tr ln

�
(z1�X)(z1�Xy) + �21

��
: (6-8)

One can interpret (6-5) (or equivalently (6-6)), as a Poisson equation for electro-

statics2 where �(z; z) is a two dimensional charge distribution, and �(z; z) is a elec-

1The principal value representation of the Dirac delta function in the real domain is

�(x) = �
1

�
lim
�&0

1

x+ i�
=

1

�
lim
�&0

�

x2 + �2
;

which can be verified by applying the Sokhotski-Weierstrauss theorem (5-40) to the
function f(x) = 1

x . The representation (6-4) is a natural extension to two dimensions which
satisfies the desired properties of the Dirac delta function.

2 We recall that if z = x+ iy, then

@

@z
=

1

2

�
@

@x
� i

@

@y

�
;

@

@z
=

1

2

�
@

@x
+ i

@

@y

�
:
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trostatic potential [63, 65, 69–72]. One can further exploit the electrostatic analogy

by introducing the corresponding electric field, which is indeed the resolvent:

!(z; z) � @�

@z
= lim

�!0
lim
N!1

E

"
1

N

NX
i=1

z � �i
jz � �ij2 + �2

#

= lim
�!0

lim
N!1

E

"
1

N
Tr z 1�Xy

(z 1�Xy)(z1�X) + �2 1

#
: (6-9)

� is a real-valued function on the complex plane, so it is a scalar field from the

point of view of two dimensional electrostatics, while ! is a complex function and

vector field. Moreover, the complex form of the Stieltjes-Perron inversion formula

(see (5-42)) lets us to write the Poisson equation as a Gauss law in two dimensions

[69–73]:

�(z; z) =
1

�

@

@z

(
lim
�!0

lim
N!1

E

"
1

N

NX
i=1

z � �i
�2 + jz � �ij2

#)
; (6-10)

or

�(z; z) =
1

�

@ !(z; z)

@ z
: (6-11)

In the large N limit, when the eigenvalues �i of the random matrix concentrate in

a certain domain D � C of the complex plane, the resolvent !(z; z) is no longer

holomorphic. Actually, as one can deduce from (6-11), the eigenvalue distribution

is related to the non-holomorphic behavior of the resolvent, i.e., the eigenvalue

distribution is non-zero, exactly where the resolvent ceases to be analytic (@ !@ z 6= 0).3

Before proceeding further, we remark a slight difference between our problem

and electrostatics. In electrostatics, one usually applies the Gauss law to determine

the electric field for a given charge density. In our problem, we proceed in the

opposite direction: first, we calculate the resolvent or Green’s function (electric

field) and then we use it to determine the eigenvalue density.

Note that the resolvent (6-9) is a complicated object which does not resemble

its Hermitian counterpart (5-34). In particular, in contrast to the Hermitian case, we

can not just apply the geometric series expansion as the Hermitian case (see (5-35)).

We can however, use a trick invented in [74], which allows us to apply the geometric

series expansion, but for a larger 2N � 2N matrix 
 with four N �N blocks:

Then, the Poisson equation r2�(x; y) = ��(x; y) can be written as 4@
2�(z;z)
@z @z = ��(z; z).

3We recall that a function f is analytic in a domain D, if @ f
@ z = 0;8z 2 D.
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 �
0@
zz 
zz


zz 
zz

1A := lim
�!0

lim
N!1

E

264 1

N
Trb

0@z1�X i�1

i�1 z1�Xy

1A�1
375 : (6-12)

in which the subscripts zz, zz, zz, and zz refer to the position of the N�N blocks in

the corresponding 2N�2N matrix and we have introduced the block-trace operation

Trb

0@A B

C D

1A
2N�2N

:=

0@TrA TrB
TrC TrD

1A
2�2

; (6-13)

which reduces 2N � 2N matrices to 2� 2 ones. The elements of 
 are given by


zz(z; z) = lim
�!0

lim
N!1

E

"
1

N
Tr z 1�Xy

(z 1�Xy)(z1�X) + �2 1

#


zz(z; z) = lim
�!0

lim
N!1

E

�
1

N
Tr �i�1

(z 1�Xy)(z1�X) + �2 1

�

zz(z; z) = lim

�!0
lim
N!1

E

�
1

N
Tr �i�1

(z 1�Xy)(z1�X) + �2 1

�

zz(z; z) = lim

�!0
lim
N!1

E

�
1

N
Tr z1�X

(z 1�Xy)(z1�X) + �2 1

�
: (6-14)

By comparing (6-9) and (6-14), one observes that

!(z; z) = 
zz(z; z): (6-15)

In order to calculate the Green’s function (6-9) or the matrix 
 in (6-12),

one has to perform a double limit. It is important to take the limits in the correct

order: first N tends to infinity and after � goes to zero, since if one took this

limit in the opposite order by first setting � = 0 for finite N , the expression in

the brackets in (6-9) has isolated poles on the complex plane. However, in the

limit N ! 1, the poles merge into a cut. One can not then make an analytic

continuation of the function from holomorphic to non-holomorphic region, as it is

done when calculating 
 by diagrammatic method which utilizes O(z�1) expansion.

A small � > 0 is necessary to make 
 analytic everywhere. If one first took the limit

� ! 0, and then the limit N ! 1, the matrix 
 would become block-diagonal:


zz = E[(z1�X)�1=N ], 
yzz = E[(z1�Xy)�1=N ] and 
zz = 
zz = 0, which is in

contrast to (6-14).

Finally, whenever we apply generating functions for planar diagrams, we can

automatically take the limit � ! 0, which trivially amounts to setting � = 0, since

the limit N !1 has already been taken by the planar approximation used to write

relations between generating functions for planar diagrams.
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6.2
Diagrammatic Method for Hermitian Random Matrices

In the Hermitian case, there are several ways of calculating resolvent, like saddle-

point method which we already discussed, and loop equations [75, 76]. Here,

we follow the diagrammatic approach. The starting point of the analysis is the

expression allowing for the reconstruction of the Green’s function from all the

moments E[TrMn]:

!(z) = E

�
1

N
Tr 1

Z �M

�
=

1

N
Tr
(z); (6-16)

where


(z) = Z�1 + E
h
Z�1MZ�1MZ�1

i
+ E

h
Z�1MZ�1MZ�1MZ�1MZ�1

i
+ � � �
(6-17)

in which Z := z1 is independent of M ’s and can be pulled out of the averaging

brackets. What remains are correlation functions of the type E[Mi1i2 � � �Mi2n�1i2n ]

which using the Wick theorem can be expressed as products of two-point functions

(propagators). We will use the diagrammatic method to evaluate efficiently the

sum of the moments on the right hand side of (6-17). We note, however, that in

general this series expansion is convergent only in a neighborhood of z = 1. So

the results of the diagrammatic calculation apply directly only there. For Her-

mitian random matrices this does not pose a problem. Since the eigenvalues lie

only on some intervals on the real axis, the Green’s function is a holomorphic

function of z on the complex plane, except for the cuts on the real axis. There-

fore, we can reconstruct the Green’s function everywhere by analytical continuation.

For illustration, we consider now the well-known case of a random Hermitian

ensemble with Gaussian distribution. We introduce a generating function with a

matrix source J :

Z(J) :=

ˆ
dM e�

N
2

TrM2+TrM:J ; (6-18)

in which M = My, and

dM =
NY
i=1

dMii

Y
1�i<j�N

d(<Mij) d(=Mij): (6-19)

All the moments follow directly from Z(J) through the relation

E [TrMn] =
1

Z(0)
Tr
�
@

@J

�n
Z(J)

�����
J=0

; (6-20)

and are straightforward to calculate, since in this case the partition function reads

Z(J) = e
1
2N

Tr J2 . The propagator thus reads
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a b
(Z�1)ab =

Figure 6.1: (Z�1)ab depicted as a line between a and b.

E[MabMcd] =
@2Z(J)

@Jba @Jdc
=

1

N
�ad �bc: (6-21)

The key idea in the diagrammatic approach is to associate to the expressions for the

moments, like (6-21), a graphical representation following a simple set of rules. The

power of this approach is that it enables to perform a resummation of the whole

power series (6-17) by identification of the structure of the relevant graphs. This

observation allows us to represent (6-17) as a sum over Feynman diagrams [77]. As

depicted in Fig. 6.1, the term (Z�1)ab is represented by a horizontal line, joining

the indices a and b. Each propagator (6-21) is depicted as a double arc joining two

pairs of matrix indices (Fig. 6.2). In order to calculate 
ab, one has to sum up

contributions of all connected diagrams with two external points a and b (Fig. 6.3).

For finite N , this is a formidable task, since there are infinitely many diagrams.

The problem, however, simplifies significantly in the limit N !1, because all non-

planar diagrams can be neglected [58, 78]. It turns out that all planar diagrams can

be summed up using a trick, known as Dyson-Schwinger equations. In this method,

the resummation (6-17) is done by introducing the self-energy � as a generating

function for all one-line irreducible diagrams (Fig. 6.4). �ab generates all one-line

irreducible diagrams with vertices a and b. 
 and � are related to each other through

the matrix equation (Fig. 6.5)


(z) =
1

z � �(z)
; (6-22)

which can be interpreted as the definition of �. However, one can write another

independent equation for 
 and �. It follows from observation that any one-line

irreducible diagram can be obtained from a diagram of 
 by adding an arc to it

(Fig. 6.6), i.e.,

�(z) = 
(z): (6-23)

Combining (6-22) and (6-23) gives immediately

!�(z) =
1

2

�
z �

p
z2 � 4

�
: (6-24)

Only the !� has the proper asymptotic behaviour !(z) �
jzj!1

1
z (see (5-39)). From

the discontinuity equation (5-42), one can recover the Wigner semi-circle law for the

distribution of the eigenvalues:

�(�) =
1

2�

p
4� �2: (6-25)
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E[MabMcd] =
ba c d

Figure 6.2: The propagator E[MabMcd] represented as a double arc, joining
a with d, and b with c, respectively.

= + + +

+ + · · ·

Figure 6.3: Diagrammatical representation of Eq. (6-17).

+ · · ·= +

Figure 6.4: Diagrammatical representation of self-energy �.

+ + + · · ·= ⌃ ⌃ ⌃

Figure 6.5: Diagrammatical representation of the first Dyson-Schwinger
equation.

=

Figure 6.6: Diagrammatical representation of the second Dyson-Schwinger
equation.
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6.3
Diagrammatic Method for Non-Hermitian Random Matrices

Before applying the diagrammatic method to non-Hermitian random matrices, we

try to understand why the direct series expansion of the resolvent does not work

when it is applied to the simplest non-Hermitian ensemble, namely Ginibre-Girko

ensemble [65, 72] with non-Hermitian matrices X, and the measure (6-1).

One can easily see that all moments E[TrXn] are zero for n = 1; 2; : : : . It

follows from the expansion (6-17) that !(z; z) = 1=z for all z 2 C. (this follows

diagrammatically from the fact that the propagator E[XabXcd] vanishes, and hence

� = 0). The correct answer is, however, different, and as we shall see, one has

!(z; z) = 1=z only for jzj > 1. For jzj < 1, the resolvent is non-holomorphic

and is given by !(z; z) = z. This failure is due to the fact that the resolvent

has poles which are scattered in the complex z-plane. In the limit N ! 1, the

poles accumulate in two dimensional regions in the complex plane, over which the

resolvent is no longer holomorphic (compare with the case of Hermitian random

matrices in which the real poles merge into a one dimensional cut in on the real

axis). Therefore, the resolvent can not be continued analytically to the interesting

region where @!=@z 6= 0 with a finite eigenvalue distribution.

It then follows that we must look for a generalized method which works for

small z too. Furthermore, we would like to implement the flexible diagrammati-

cal method and express the desired quantities in terms of some generalized moments.

Now, we calculate the resolvent in the case of non-Hermitian random matrices

with the probability measure

d�(X) / e�N Tr (XXy)
NY

i;j=1

d(<Xij) d(=Xij): (6-26)

One can calculate the propagators easily:

E[XabXcd] = E[X
y
abX

y
cd] = 0;

E[XabX
y
cd] = E[X

y
abXcd] =

1

N
�ad �bc: (6-27)

As before, we define a 2N � 2N matrix

X :=

0@Xzz Xzz
Xzz Xzz

1A �
0@X 0

0 Xy

1A : (6-28)

Analogously, the resolvent 
, the self-energy �, and the matrix Z are 2N � 2N
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matrices:


 =

0@
zz 
zz


zz 
zz

1A ; � =

0@�zz �zz

�zz �zz

1A ; Z =

0@Zzz Zzz

Zzz Zzz

1A : (6-29)

Then, following equation is held:0@
zz 
zz


zz 
zz

1A =

0@Zzz � �zz Zzz � �zz

Zzz � �zz Zzz � �zz

1A : (6-30)

The second equation, which is analogue of (6-22), can be derived using the propa-

gators in (6-27): 0@�zz �zz

�zz �zz

1A =

0@
zz:0 
zz


zz 
zz:0

1A =

0@ 0 
zz


zz 0

1A : (6-31)

The diagonal entries are zero, due to vanishing first two propagators in (6-27). The

matrix equations (6-30) and (6-31) completely solve the problem. Inserting (6-31)

to (6-30) yields: 0@
zz 
zz


zz 
zz

1A =
1

jzj2 � 
zz
zz

0@ z 
zz


zz z

1A : (6-32)

Looking at off-diagonal equations, we see that there are two solutions: the first one

corresponds to 
zz = 
zz = 0, which gives the holomorphic solution !(z; z) =

1=z, and is valid for large jzj; while the second solution is non-holomorphic and

corresponds to jzj2 � 
zz
zz = 1, and results in !(z; z) = z. Both solutions match

at jzj = 1 and we can write the complete result as

!(z; z) =

8<: z; jzj � 1;
1
z ; jzj > 1;

(6-33)

which results in celebratedGinibre-Girko distribution, also called as circular law :4

�(z; z) =
@!(z; z)

@z
=

8<:
1
� ; jzj � 1;

0; jzj > 1:
(6-34)

The complex eigenvalues of the Ginibre ensemble are therefore uniformly distributed

on the unit disc (see Fig. 6.7).

Briefly, using diagrammatic method, one can obtain a set of algebraic equa-

tions for 
 and � in the large N limit. One can set � = 0 in the equations, since

they are already obtained in the limit N !1.

4We recall that for z = x+ iy, @
@ z

�
1
z

�
= @

@ z

�
1
z

�
= � �(x) �(y) = � �(2)(z) = 0; 8z 6= 0:
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Figure 6.7: Circular law for the Ginibre ensemble.
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7
Random Normal Matrix Ensembles

While due to the absence of a simplifying symmetry, the study of non-Hermitian

random matrices is, in general, a difficult task, normal random matrices are inter-

esting models to consider, since they offer more probability measures amenable to

analytical investigations. Specially, the method of orthogonal polynomials which

is not applicable to the non-Hermitian matrix models, is a useful technique in the

study of normal random matrices.

By definition, a normal matrix is a square matrix which commutes with its

Hermitian adjoint. In this chapter, we consider ensembles of normal matrices with

polynomial potentials. Such ensembles are exactly solvable, because a normal matrix

and its adjoint are diagonalizable simultaneously by a unitary transformation.

Normal random matrix ensembles were first introduced in [79] in order to study

fractional quantum-Hall effect. In fact, as we already observed in Ch. 5, it is well-

known that wave functions describing the one-dimensional repulsive Coulomb gas

of particles can be constructed from the orthogonal polynomials of the Hermitian

matrix models. Analogously, the wave functions describing the two dimensional case

can be constructed from the orthogonal polynomials of the corresponding normal

matrix model.

7.1
Eigenvalue Representation of the Partition Function

We consider an ensemble of N � N random normal matrices M which satisfy the

constraint

[M;My] = 0; (7-1)

with the following probability measure:

P(M) dM =
1

ZN
e�N Tr V (M) dM; (7-2)

in which the partition function of the model is

ZN =

ˆ
NN

dM e�N Tr V (M): (7-3)
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Here, NN denotes the set of all N �N normal random matrices and the integration

measure is given by

dM =
NY

i;j=1

d(<Mij) d(=Mij): (7-4)

Since M is a normal matrix, there exists a unitary matrix U which simultane-

ously diagonalizes M and My to Z := diag (z1; : : : ; zN ) and Z := diag (z1; : : : ; zN ),
respectively.1 Hence, we have

M = Uy Z U; (7-5)

and

My = U Z Uy: (7-6)

Note that U in (7-5) and (7-6) is not unique, since there is freedom to multiply it

on the left by a diagonal unitary matrix of N arbitrary phases. Therefore, in order

to count the number of degrees of freedom in M , we have to consider the 2N real

and imaginary parts of of the eigenvalues, plus the N2 independent real parameters

of U , subtracted by the N arbitrary phases, adding up to N(N + 1) independent

real degrees of freedom.

So the measure and the weight in (7-3) are invariant and consequently, one can

simply derive the Jacobian for the transformation to the eigenvalues. The integration

measure dM in (7-3) factorizes to

dM = dU
Y

1�i<j�N
jzi � zj j2

NY
k=1

d2zk: (7-7)

The partition function (7-3) thus, up to a multiplicative constant factor, reads

ZN =

ˆ
C

NY
k=1

d�(zk) j�(z1; : : : ; zN )j2; (7-8)

in which the Lebesgue measure d�(z) is given by

d�(z) := e�N V (z) d2z: (7-9)

7.2
Saddle Point Method

Hence, once again, in the large N limit, one can apply the saddle pint method by

rewriting the partition function (7-3) as

ZN =

ˆ
C

d2zk e
�N2 Seff (z1;:::;zN ); (7-10)

1Normal matrices are the largest class of matrices that can be diagonalized by unitary
transformations [57, 80].
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where we have defined

Seff (z1; : : : ; zN ) :=
1

N

NX
i=1

V (zi)� 2

N2

X
1�i<j�N

lnjzi � zj j (7-11)

In this large N limit, the eigenvalue density

�N (z) := E

"
1

N

NX
i=1

�(2)(z � zi)

#
(7-12)

becomes a continuous function �(z) which satisfies the normalization condition
ˆ
C

d2z �(z) = 1: (7-13)

Furthermore, in the limit N !1, the effective action Seff (z1; : : : ; zN ) turns into a

functional Seff [�], given by

Seff [�] =

ˆ
C

d2z �(z)V (z)��
ˆ
C�C

d2z d2z0 �(z) �(z0) lnjz � z0j; (7-14)

in which the potential is

V (z) = 2�
ˆ
C

d2z0 �(z0) lnjz � z0j: (7-15)

Finding the saddle point configuration which minimizes the effective action func-

tional (7-14), together with the constraint (7-13), is one of the central objectives in

potential theory [81]. In fact, one has to solve the functional saddle point equation

�

��(z)

"ˆ
C

d2z0 �(z0)V (z0)��
ˆ
C�C

d2z0 d2z00 �(z0) �(z00) lnjz0 � z00j

+ c

�ˆ
C

d2z0 �(z0)� 1

�#
= 0; (7-16)

where c 2 R is a constant. Taking the functional derivative in (7-16), one has:

ˆ
C

d2z0
�
��(z0)
��(z)

V (z0) + �(z0)
�V (z0)
��(z)

�
��
ˆ
C�C

d2z0 d2z00
�
��(z0)
��(z)

�(z00) + �(z0)
��(z00)
��(z)

�
lnjz0 � z00j+ c

ˆ
C

d2z0
��(z0)
��(z)

= 0;

(7-17)

or
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ˆ
C

d2z0�(2)(z � z0)V (z0)

��
ˆ
C�C

d2z0 d2z00
�
�(2)(z � z0) �(z00) + �(z0) �(2)(z � z00)

�
lnjz0 � z00j

+ c

ˆ
C

d2z0 �(2)(z0 � z00) = 0; (7-18)

which yields

V (z)��
ˆ
C

d2z00 �(z00) lnjz � z00j � �
ˆ
C

d2z0�(z0) lnjz � z0j+ c = 0: (7-19)

This, in turn, simplifies to

V (z) = 2�
ˆ
C

d2z0 �(z0) lnjz � z0j � c: (7-20)

Taking derivative of both sides of (7-20) with respect to z, we get

@ V (z)

@z
= 2�
ˆ
C

d2z0
�(z0)
z � z0

: (7-21)

By applying @=@z0 to both sides of (7-21), the above equation can be solved in terms

of the density of eigenvalues (c.f. (6-6)):

�(z) =

8<:
1
�
@2V (z)
@z @z ; z 2 D;

0; z 2 C nD;
(7-22)

in which the domain D is determined by the condition [82]
˛
@D

d2z0
@ V (z0)=@z0

z � z0
= 0; (7-23)

which can be derived from (7-21) with the help of the Cauchy integral formula. For

a potential with radial symmetry V = V (r), provided that the following constraints

are satisfied:2

lim
r!1

�
V (r)� ln r2

�
=1; (7-24)

and

r V 0(r) increasing in R+; or V 0(r) > 0 and V convex in R+; (7-25)

this equation gives (see the footnote at page 86)

�(r) =
1

4�r

d

dr

�
r V 0(r)

�
Ifc��r�c+g: (7-26)

2This result can be obtained by the theory of harmonic analysis [81]. The first condition
guarantees that the eigenvalue density has a compact support. Second condition will be
derived later in Ch. 9 (see (9-60) and (9-61)).
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Figure 7.1: Left: Distribution of eigenvalues of a 1000 � 1000 Ginibre
matrix equivalent to a Coulomb gas with Gaussian potential V (r) = r2.
The eigenvalues density is given by the circular law. Right: Distribution
of eigenvalues of a 1000 � 1000 normal random matrix with potential
V (r) = r2 � r obtained using Monte-Carlo methods. The eigenvalue density
has support on a ring.

Therefore, the eigenvalue density inherits the radial symmetry and is supported, in

general, in a connected domain D � C [83]:

D := fz 2 C : c� � r � c+g; (7-27)

in which the inner and outer radii of the support, c� and c+, satisfy the following

equations [81, 83]:

V 0(c�) = 0; (7-28)

c+ V
0(c+) = 2: (7-29)

As an example, we consider the one-parameter family of potentials

V (r; s) = r2 + sr: (7-30)

Then, the endpoints of the eigenvalue support are

c�(s) = max f�s=2; 0g; c+(s) =
1

4

�p
s2 + 16� s

�
: (7-31)

The first of these equations, tells us that the domain over which the eigenvalues

spread, undergoes a change of topology, depending on the value of s: the eigenvalue

density is supported on a disk for s � 0 (see Fig. 7.1 left), and on an annulus for

s < 0 (see Fig. 7.1 right). Furthermore, we notice that in the case of Gaussian

potential, i.e., when s = 0, one retrieves the circular law for the Ginibre ensemble:

�(z) =

8<:
1
� ; jzj � 1;

0; jzj > 1:
(7-32)
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This means that the eigenvalues spread uniformly over the unit disk in the complex

z plane.

7.3
Orthogonal Polynomials Method

As previous section, our main objective is to obtain the eigenvalue density. First,

we define and construct the integral kernel in terms of orthogonal polynomials.

Next, we show how one can obtain the eigenvalue density from the integral kernel.

Based on the eigenvalue representation of the partition function, (7-8), we

can employ the method of orthogonal polynomials to re-express the Vandermonde

determinant in (7-8) in terms of them. In order to do this, we define an inner product

h�j�i� with respect to the measure � as

hf jgi� :=

ˆ
D
d�(z) f(z) g(z); D � C: (7-33)

Then, we denote the orthogonal polynomials associated with the measure (7-9) and

with leading coefficients one by Pn(z) which satisfy

hPnjPmi� :=

ˆ
D
d�(z)Pn(z)Pm(z) = �nm hn; hn 2 R+; (7-34)

where hn’s are the normalization constants. Obviously, Polynomials �(z) defined as

�n(z) :=
Pn(z)p
hn

; (7-35)

are orthonormal with respect to the measure (7-9), i.e.,
ˆ
D
d�(z)�n(z)�m(z) = �nm: (7-36)

As an example, we consider Gaussian potential V (z) � V (jzj) = jzj2. In

order to obtain the orthonormal polynomials in this case, first we notice that for

any rotationally symmetric potential V = V (r), where r � jzj, and rotationally

symmetric domain D, the monomials zn; n = 0; 1; 2; : : : are orthogonal. Therefore,

we just need to calculate the normalization constants hn. In the Gaussian case we

are considering, we can find them as follows:

hn = hznjzni� =

ˆ
C

d�(z) zn zn =

ˆ
C

d2z e�N jzj2 jzj2n

=

ˆ 2�

0
d�

ˆ 1

0
dr e�Nr2 r2n+1

= 2�

ˆ 1

0
dr e�Nr2 r2n+1

= � n!N�(n+1): (7-37)
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Therefore, the orthonormal polynomials are

�n(z) =

s
Nn+1

� n!
zn: (7-38)

More generally, for a potential V with radial symmetry, one can calculate the inner

product hznjzmi�, for D = C:

hznjzmi� =

ˆ
C

d� zn zm

=

ˆ
C

d2z e�N V (z) zn zm

=

ˆ 2�

0
d� ei�(n�m)

ˆ 1

0
dr rn+m+1 e�N V (r)

= 2� �nm

ˆ 1

0
dr r2n+1 e�N V (r) = �nmhn: (7-39)

Consequently, the orthonormal polynomials �k(z) are

�k(z) =
zkp
hk

; k = 0; 1; 2; : : : : (7-40)

From the orthonormal polynomials �k(z) for the potential V and D � C, we can

construct the unnormalized reproducing integral kernel eKN :

eKN (z;w) :=
N�1X
k=0

�k(z)�k(w); z; w 2 D; (7-41)

which satisfies the following identity [84]
ˆ
D
d2z e�N V (z) eKN (z; z) = N: (7-42)

One can also define the normalized reproducing kernel KN :

KN (z;w) := e�
N
2
(V (z)+V (w)) eKN (z;w)

= e�
N
2
(V (z)+V (w))

N�1X
k=0

�k(z)�k(w); z; w 2 D: (7-43)

From the above definition, one immediately concludes3

KN (z;w) = KN (w; z): (7-44)

Besides, one has

3When the potential V is real, i.e., V (z) = V (z); 8z 2 D, this identity becomes
KN (z;w) = KN (z;w).
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ˆ
D
d2z KN (z; z) =

ˆ
D
d2z e�N V (z)

N�1X
k=0

j�k(z)j2

=
N�1X
k=0

ˆ
D
d2z e�N V (z) j�k(z)j2

=
N�1X
k=0

�kk = N; (7-45)

where in the last line we have used the orthonormality of the polynomials �k(z)

with respect to the measure e�N V (z) d2z. Furthermore, from the orthonormality of

�k(z)’s, we can derive the reproducing property of the integral kernel KN (z;w):

ˆ
D
d2wKN (w; z)KN (w;u) = e�

N
2
(V (z)+V (u))

N�1X
k;l=0

�l(z)�k(z)�
ˆ
D
d2w e�N V (w)�l(w)�k(w)| {z }

�kl

= e�
N
2
(V (z)+V (u))

N�1X
k=0

�k(z)�k(u) = KN (z; u): (7-46)

As an example, for the Gaussian potential V (z) = jzj2, one has:

KN (z;w) = e�
N
2
(jzj2+jwj2)

N�1X
k=0

0@sNk+1

� k!
zk

s
Nk+1

� k!
wk

1A
=

N

�
e�

N
2
(jzj2+jwj2)

N�1X
k=0

(Nzw)k

k!
: (7-47)

More generally, for an arbitrary potential with radial symmetry, one has

KN (z;w) = e�
N
2
(V (jzj)+V (jwj))

N�1X
k=0

�k(z)�k(w)

= e�
N
2
(V (jzj)+V (jwj))

N�1X
k=0

(zw)k

2� Ik
: (7-48)

where Ik is defined in (7-39).

Knowing the integral kernel, one can obtain the eigenvalue density. In fact, ne

can express the density of eigenvalues in terms of the integral kernel as

�N (z) =
KN (z; z)

N
: (7-49)
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Then, it immediately follows from (7-45) that the eigenvalue density is normalized:

o ˆ
D
d2z �(z) = 1: (7-50)

Therefore, in the limit N !1, the eigenvalue density is obtained as

�(z) = lim
N!1

�N (z) = lim
N!1

KN (z; z)

N
: (7-51)

Let’s consider the Gaussian potential V (z) = jzj2 as an example. From (7-47) we

get

�N (z) =
1

�
e�N jzj

2
N�1X
k=0

Nk jzj2k
k!

; (7-52)

and in the limit N !1,

�(z) =
1

�
lim
N!1

NN+1

N !

ˆ 1

jzj2
d� �N�1 e�N� (7-53)

Now, we can use the Stirling’s approximation for the factorial:

N ! �
p
2�NN+1=2 e�N ; N !1: (7-54)

Substituting (7-54) in (7-53), we get

�(z) =
1

�
lim
N!1

q
N=2�

ˆ 1

jzj2
d�

e�N(��1�ln�)

�
: (7-55)

SinceN !1, we can apply the saddle point method. Then, changing the integration

variable as � � 1 =: � yields

�(z) =
1

�
lim
N!1

q
N=2�

ˆ 1

jzj2�1
d�

e�N�2=2

� + 1
: (7-56)

This last integral can be obtained by contour integration in the complex � plane.

The result is [84]

�(�) =

8>>><>>>:
1
� ; jzj < 1;
1
2� ; jzj = 1;

0; jzj > 1:

(7-57)
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8
Extreme Value Statistics of GUE

In this chapter, we first review the Tracy-Widom law for the EVS of three classical

Gaussian ensembles. Then we follow the approach of [14] by which non-Gaussian

potential can be considered too, via Lax method. This method lets us avoid the

complicated formalism of Fredholm determinant of Airy kernel.

8.1
Tracy-Widom Law for the Classical Gaussian Ensembles

We recall that the eigenvalue representation of the partition function of GUE with

potential V (M) = M2 is (see (5-9))

ZN =
1

N !

ˆ 1

�1

NY
i=1

d�i e
�N �2i

Y
1�j<k�N

(�k � �j)
2: (8-1)

We would like to study the statistics of the extreme eigenvalue

�max := max f�1; : : : ; �Ng: (8-2)

In the absence of the Vandermonde determinant in (8-1), the partition func-

tion would factorize and the eigenvalues would be independent Gaussian random

variables. As we already studied in Ch. 3, for such independent and identically dis-

tributed random variables f�igNi=1, the extreme value statistics is fully understood

and depending on the tail of the distribution of individual �i, the distribution of the

maximum eigenvalue, when properly rescaled, belongs to one of the three families

of Gumbel, Fréchet and Weibull.

However, due to the presence of the Vandermonde determinant in (8-1), the

eigenvalues are strongly correlated and there is no general theory for the distribution

of the maximum of strongly correlated variables. However, in the case of Gaussian

random matrices, the distribution of �max was derived in the seminal work by Tracy

and Widom [85, 86] (see also [87] for a short review). The original derivation of

the Tracy-Widom law for the scaled distribution of the largest eigenvalue of �max

of a large complex Hermitian random matrix with Gaussian entries was based on

nontrivial asymptotic analysis of the Fredholm determinant of the Airy Kernel.
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⇢(�)

�

Tracy-Widom

right tailleft tail

�
p

2 +
p

2

O(N�2/3)

Figure 8.1: The average eigenvalue density of a Gaussian random matrix
ensemble �(�) with a compact support [�p2;

p
2]. The eigenvalue with the

largest modulus has an expectation value E[�max] =
p
2 and its distribution

close to this expectation value has, over a scale O(N�2=3), obeys Tracy-
Widom law (red solid line). However, over a scale O(1), the distribution has
large deviation tails shown by solid green (left large deviations) and solid
blue (right large deviations) lines.

Several alternative derivations of the Tracy-Widom distribution exist which

avoid Fredholm determinant formalism; e.g., orthogonal polynomials method [60]

and loop equations approach [88, 89]. In the former approach, the probability that

there is no eigenvalue in the interval (y;1) is calculated directly in terms of the

norms of orthogonal polynomials on the complement interval (�1; y] for a Gaussian

potential.

Here, we follow the approach of [14] by which non-Gaussian potential can be

considered too, via Lax method (see also [90]). But before, let us recall some known

properties of the random variable �max. Its average can be easily obtained from

the outer edge of the eigenvalue support. For a N � N Hermitian random matrix

with Gaussian potential V (M) = M2, the eigenvalue density is given by the Wigner

semi-circle law, in the large N limit:

�(�) =
1

�

p
2� �2; (8-3)

which is supported on [�p2;
p
2]. It follows then, that the average value of the

maximal eigenvalue �max is given, in the limit N ! 1, by the outer edge of the

eigenvalue support:

lim
N!1

E[�max] =
p
2: (8-4)

However, �max fluctuates around this average value, and has a distribution around

its mean value
p
2. The question is what the probability distribution of �max is, or

in other words, the question is how PN (�max � y) behaves for large N . It turns out

that the fluctuations of �max around its mean, have two scales for large N [60, 91, 92]:
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Figure 8.2: Largest eigenvalue densities f�(Y ) � dF�(Y )=dY for � = 1; 2; 4.

typical small fluctuations, where �max = O(N�2=3), and atypical large fluctuations,

where �max = O(1) (see Fig. 8.1). Typical fluctuations of the maximum eigenvalue

�max � y for the three Gaussian ensembles can be written as

y =
p
2 + a� N

�2=3 Y; � = 1; 2; 4; (8-5)

where Y is the new scaled random variable which characterizes the typical fluctua-

tions of the maximum eigenvalue. a1;2 = 1=
p
2 for GOE and GUE, and a4 = 2�7=6

for GSE. In [85, 86] it was shown that in the large N limit, the distribution of Y is

independent of N , and depends explicitly on �:

lim
N!1

PN

�
�max �

p
2 + a� N

�2=3 Y
�
=: F�(Y ): (8-6)

F�(Y ) is the cdf of the scaled random variable Y and is called the Tracy-Widom

distribution. For � = 2, it is given by

F2(Y ) = exp

�
�
ˆ 1

Y
dz (z � Y ) q2(z)

�
; (8-7)

where q(z) is the Hasting-MacLeod solution to the Painlevé II equation

q00(z) = 2q3(z) + z q(z) + � (8-8)

with � = 0, which is uniquely determined by specifying the boundary condition

q(z) � Ai(z), where Ai(z) is the Airy function satisfying the differential equation

Ai00(z)� zAi(z) = 0 (8-9)

with asymptotic behaviour

Ai(z) � 1

2
p
� z1=4

e�
2
3
z3=2 ; (z !1): (8-10)

Furthermore, for � = 2; 4 one has

F1(Y ) = F
1=2
2 (Y ) exp

�
1

2

ˆ 1

Y
dz q(z)

�
(8-11)
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and

F4(Y ) = F
1=2
2 (Y ) cosh

�
1

2

ˆ 1

Y
dz q(z)

�
: (8-12)

Corresponding largest eigenvalue densities are depicted in Fig. 8.2.

8.2
Orthogonal Polynomials Approach to the EVS of GUE

We are interested in the statistics of the largest eigenvalue �max. The basic idea

underlying this approach is simple. Let us define a partition function ZN (y) as

ZN (y) :=
1

N !

ˆ y

�1

NY
i=1

d�i e
�N V (�i)

Y
1�j<k�N

(�k � �j)
2: (8-13)

This cut-off partition function ZN (y) is, in fact, the cdf of �max and can be

interpreted as a partition function of a Coulomb gas in the presence of a hard

wall at y. Then, ZN (1) � ZN , i.e., when integrating over the entire real line, we

recover the conventional partition function. It follows that cdf of the eigenvalue with

the largest modulus is given by

FN (y) := PN (�max � y) = P(�1 � y; : : : ; �N � y) =
ZN (y)

ZN (1)
: (8-14)

One possible way to determine the probability in (8-14) is to study the asymptotic

behaviour of the orthogonal polynomials for the partition function ZN (1) in a

proper scaling limit. However, we follow the approach of [14, 60] by introducing

orthogonal polynomials for the cut-off partition function ZN (y).

We introduce a set of monic polynomials fPn(�)gNn=1 of degree n that are

orthogonal with respect to the measure d�(�) := e�N V (�) d�:

hPnjPmi :=
ˆ y

�1
d� e�N V (�) Pn(�)Pm(�) = �nmhn; (8-15)

in which hn � hn(y) > 0. Hence, Pn = Pn(�; y) depends on y. For example, in the

Gaussian case, when V (�) = �2, the first two polynomials are given by [60]

P0(�) = 1

P1(�) = �+
e�N y2

p
�N

�
1 + erf

�p
N y

�� : (8-16)

Thus we get, for instance [60],
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h0 =

p
�

2
p
N

�
1 + erf

�p
N y

��
; (8-17)

h1 =

�2pN y e�N y2 +
p
�
�
1 + erf(

p
N y)

�� 2e�2N y2

p
�
�
1+erf(

p
N y)

�
4

: (8-18)

In the limit y ! 1, the Hermite polynomials are recovered (see Ch. 5). Next, we

introduce the set of orthonormal polynomials �n(�) with the leading coefficient

1=
p
hn

�n(�) =
1p
hn

�n +O(�n�1); (8-19)

which satisfy

h�nj�mi :=
ˆ y

�1
d� e�N V (�)�n(�)�m(�) = �nm: (8-20)

Using orthonormality of �n’s and following the analogous approach in Ch. 5, one

can show that

ZN (y) =
N�1Y
k=0

hk(y) = hN0

N�1Y
k=1

�
rk(y)

�N�k
; (8-21)

where we have defined the ratios

rn :=
hn
hn�1

; n = 1; 2; : : : ; (8-22)

that will help us to determine the distribution of the largest eigenvalue.

In order to determine rk’s in a general setting that includes the case of the

cut-off integral in (8-13), we also introduce differentiation with respect to the cut-off

y, denoted by C as

Cnm�m(�) := @y �n(�): (8-23)

or equivalently

Cnm = h�mj@y �ni: (8-24)

Since the coefficient of the leading order term in (8-19) is dependent on y, the

polynomial on the right hand side of (8-23) is at most of degree n, which means he

matrix representing C is lower triangular including the diagonal:

Cn;n+k = 0; k > 0; (8-25)

with diagonal elements

Cnn =

ˆ y

�1
d� e�N V (�)�n(�) @y

�
1p
hn

+O(�n�1)

�
= �1

2
@y
�
lnhn

�
: (8-26)
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The commutation relation satisfied by B (already introduced in Ch. 5) and C can

be derived easily:

(BC � CB)nm�m = Bnl @y �l � @y(��n)

= Bnl @y �l � @y(Bnl�l)

= ��l @y Bnl = ��m @y Bnm; (8-27)

where in the second line we have used the definition of the operator B and in the

third line we have used the fact that the summation index l is a dummy index and

can be replaced by m. Equation (8-27) can be written in operator form as

[B;C] = �@yB: (8-28)

8.3
The String Equation in the Presence of a cut-off

One can introduce an operator H which leads to an algebraic equation in the

coefficients of the recursion relation (5-78), rn and sn, in the presence of a cut-

off at y [14]:

Hnm :=
�
A (B � y)

�
nm

� N

2

�
V 0(B) (B � y)

�
nm

+
1

2
�nm

=

ˆ y

�1
d� e�N V (�)�m(�)

 
(�� y)

�
@� � N

2
V 0(�)

�
+

1

2

!
�n(�): (8-29)

One can check that H is antisymmetric, i.e.,

H = �HT; (8-30)

by expanding the derivative in the following identity:
ˆ y

�1
d� @�

�
(�� y) e�N V (�)�n(�)�m(�)

�
= 0; (8-31)

which gives

Hnm +Hmn = 0: (8-32)

Since A is strictly lower triangular and B is tridiagonal, their product appearing in

the first term on the right hand side of (8-29) has no contribution in the + part of

H. Therefore, Hn;n+k = �N
2

�
V 0(B) (B�y)

�
n;n+k

for all k > 0. This result together

with the antisymmetry of H let us to write

H = �N
2

�
V 0(B) (B � y)+ � V 0(B) (B � y)�

�
; (8-33)
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which implies that H has a finite number of non-zero off-diagonal elements. For

example, in the Gaussian case, it reads

HGausss
nm = �N�

�p
rn+1 rn+2 �n+2;m +

p
rn+1 (sn+1 + sn � y) �n+1;m

�
+N�

�p
rn (sn + sn�1 � y) �n�1;m +

p
rn�1 rn �n�2;m

�
: (8-34)

Furthermore, upon the definition of H in (8-29), and the commutation relations

(5-86) and (8-28), we can derive the following commutation relation:1

[B � y;H] = B � y; (8-35)

which will be referred to as string equation, and provides algebraic relations between

the recurrence coefficients, i.e., it do not contain derivatives. We can again consider

the Gaussian potential as an example. Inserting (5-80) and (8-34) into the string

equation (8-35), we obtain five equations, two of which are identically satisfied for

m = n � 2. The equations for m = n � 1 are the same and we are left with two

equations for m = n and m = n+ 1:

s2n+1 � s2n + rn+2 � rn � y (sn+1 � sn) =
1

N
; (8-36)

and

rn+1 (sn+1 + sn � y)� rn (sn + sn+1 � y) =
1

2N
(sn � y): (8-37)

8.4
Double Scaling Limit of the String Equation

Now, we are going to study the large N limit behaviour of (8-14), in which the

partition function is given by (8-21). Hence, we have to determine the asymptotics

of the recurrence coefficients in (5-80). As we recall, in the case of Gaussian potential

and in the absence of a hard wall, i.e., when y ! 1, the eigenvalue density �(�)

is given by the Wigner semi-circle law that vanishes as a square root at the edges

of its support. By taking the limit N ! 1 and simultaneously letting y approach

the outer edge of the support - and hence, the name double scaling limit - the

distribution of the largest eigenvalue can be found.

For the Gaussian potential, a non-trivial limit can be taken if we make the

following scaling ansatz [93–95]:

1We have added a trivial zero 0 = [�y;H].
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� = 1� 1

N
X;

y = yc +
c

N
Y; (8-38)

where � := n=N 2 [0; 1] is a continuous variable in the limit N !1. Furthermore,

yc � E[ymax] = c+, and c is an arbitrary constant which will be determined later.

In addition, we make the following ansatz for the recurrence coefficients rn and sn,

which now become functions of the continuous variables � an y:

r(�; y) = rc
�
1 +

1

N
�(X;Y ) +O(N�3=2)

�
;

s(�; y) =
p
rc
�
sc +

1

N
�(X;Y ) +O(N�3=2)

�
: (8-39)

it will also be useful to define new functions u and v as

u := �+ �; v := �� �: (8-40)

Following [60], we can insert (8-38) and (8-39) into the string equation (8-35), and

then Taylor expand to derive the differential equations for the scaling functions

u and v. However, following [90], the string equation (8-35) can be solved using

pseudo-differential equations [96, 97]. For example, in the case y =1, one can solve

the string equation either by substituting the above ansatz in it, or using pseudo-

differential operators. The latter approach yields the following equations for the

Gaussian potential [90]:

L1[u(X;1)] = X=2; (8-41)

L1[v(X;1)] = 0: (8-42)

in which Lk is the Lenard differential operator defined in (8-50).

In the large N double scaling limit, the matrices B and H which all have only

a finite number non-zero off diagonals, scale to differential operators of finite order.

The commutation relations derived in the previous section, then allow us to directly

obtain a differential equation for the scaling function. First, we consider the scaling

limit of the matrix B. Using general scaling ansatz (8-38), it scales to [90, 96]

B !
 
Bc +

1

N

p
rc B +O�N�2�!; (8-43)

where we have defined the operators Bc :=
p
rc (2 + sc) and B := d2 + u(X), in

which d � d=dX. For Gaussian potential, the operator H also scales to a differential
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operator of a fixed degree m as follows [90]:

H ! N�(m�3)=2 c c0 (dm+� � � )+O
�
N�1�(m�3)=2

�
=: N�(m�3)=2H+O

�
N�1�(m�3)=2

�
;

(8-44)
where c0 is a constant. Hence, we can write (8-35) as

1

N

 
N�(m�3)=2 [B;H] +O

�
N�1�(m�3)=2

�!
=

1

N
(d2 + u� Y ) +O(N�2); (8-45)

in which c is fixed as c =
p
rc for convenience. Furthermore, defining H as

H =: H+
1

4
fX; dg; (8-46)

in which f ; g denotes the anti-commutator, one can show that

[B;H] =
1

2
X u0(X) + u(X)� Y; (8-47)

In the case of Gaussian potential, the most general form of H for which the above

equation is satisfied is [90]

H = c c0
 �
B3=2

�
+
� Y

�
B3=2

�
�

!
: (8-48)

Furthermore, one can use the fact that [90, 97]�
B;
�
B(2k�1)=2

�
+

�
= �41�k L0k[u]; (0� d); (8-49)

where Lk is Lenard differential operator, defined by the following recursion relation

L0k+1[f ] � dLk+1[f ] = (d3 + 4fd + 2f 0)L[f ]; (L0 = 1=2); (8-50)

with the condition Lk[0] = 0 for all k. Now, under a proper rescaling of X and u,

the equation (8-47) becomes [90]:

L02[u]� 4Y L01[u] = X u0(X) + 2u(X)� 2Y; (8-51)

which is the differential equation that the scaling function u has to satisfy for the

Gaussian potential.

Now, we write the equation (8-21) as

ln
�
ZN (y)

�
= N lnh0 +N

N�1X
i=1

�
1� 1

N

�
ln ri: (8-52)

In order to consider the double scaling limit of the above formula, we take the limit

N !1 at first, which using Euler-McLaurin formula reads (see App. A):

ln
�
ZN (y)

�
= N2

ˆ 1

0
d� (1� �) ln

�
r(�; y)

�
+O(N�1); (8-53)

which after substituting the scaling ansatz takes the form

DBD
PUC-Rio - Certificação Digital Nº 1222486/CA



Chapter 8. Extreme Value Statistics of GUE 102

ln
�
Z(Y )

�
= �
ˆ 0

�1
dX

X

2

�
u(X;Y )� v(X;Y )

�
: (8-54)

On the other hand, one can show that v still satisfies (8-42) for finite y. therefore,

by imposing the same boundary conditions on v as the case of y ! 1, we obtain

for the double scaling limit of probability distribution of the eigenvalue with largest

modulus

ln
�
P(Y )

�
= �
ˆ 0

�1
dX

X

2

�
u(X;Y )� u(X;1)

�
: (8-55)

Equation (8-55) together with the equation (8-51) provide an expression for the

probability distribution of the eigenvalue with largest modulus. In fact, for the pdf

of the largest eigenvalue we have

d

dY
ln
�
P(Y )

�
= �

ˆ 0

�1
dX

X

2
@Y u(X;Y ); (8-56)

which using @Y u(X;Y ) = @X (X � 2L1[u]) [90] becomes2

d

dY
ln
�
P(Y )

�
= �

ˆ 0

�1
dX

�
L1[u]� 1

2

�
: (8-57)

We recall that u satisfies the equation (8-41), hence,

U(X;1) =
X

2
: (8-58)

u(X;Y ) also satisfies (8-51), which reads

u(3) + 6uu0 � (X + 4Y )u0 � 2u+ 2Y = 0: (8-59)

If we perform the following rescaling

u(X;Y ) =: 
2 u(
 X; 
�2 Y ); 
 = �2�1=3; (8-60)

then (8-59) becomes

u(3) + 2u (2 + 3u0) + 2(X � 2Y )u0 � 4Y = 0: (8-61)

Now if we let �2q2(X;Y ) := u(X;Y )+X, and substitutue it into the above equation,

we find that q(X;Y ) = q(X + Y; 0) � q(X + Y ) satisfies

q(X)W 0(X) = �3q0(X)W (X); (8-62)

whereW (X) � q00(X)�2q3(X)�X q(X). Integrating this equation shows that q(X)

satisfies the Painlevé II equation with � = 0. Now we can write (8-55) as

ln
�
P(Y )

�
= �

ˆ 0

�1
dX

X

2

�
u(X;Y )� X

2

�
= �

ˆ 0

�1
dX

X

2

�

2 u(
 X; 
�2 Y )� X

2

�
: (8-63)

2The boundary term vanishes due to the boundary conditions on u.
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After changing the integration variable as X := 
 X, we have

ln
�
P(Y )

�
=

ˆ 1

0
dX

X

2

�
u(X; 
�2Y ) +X

�
= �

ˆ 1

0
dXX q2(X + 
�2 Y ): (8-64)

One therefore has

ln
�
P(Y )

�
=

ˆ 1

Y
dX (Y �X) q2(X); (8-65)

which is the celebrated Tracy-Widom distribution.
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9
Extreme Value Statistics of Random Normal Matrices

We introduced and studied random normal matrices in Ch. 7. The extreme value

statistics of GUE was also discussed in the previous chapter. The next natural step

is to study the extreme value statistics of random normal matrices.

In this chapter, after a brief review to normal normal matrices and their

relation to 2D Coulomb gases, we extend the orthogonal polynomials approach

to extreme value statistics of random matrices from the Hermitian case [60] to

non-Hermitian random matrices. Then we use this approach to show convergence of

probability distribution of the rescaled eigenvalue with largest modulus of normal

random matrices to Gumbel distribution, as well as universality of this result. This

provides a simplified, alternative derivation of result in [98] and [99] for Coulomb

gases. Next, we show that this approach can also be used to show convergence and

universality of the distribution of the eigenvalue with smallest modulus at the inner

edge of a ring distribution. We also discuss how the here presented approach can

be used to obtain finite N corrections of such extreme value statistics of normal

random matrices and 2D Coulomb gases. At various places the analytical results

are complemented with numerical results.

This chapter is based on the following article:

“On the extreme value statistics of normal random matrice” , R.

Ebrahimi, S. Zohren, [arXiv: 1704.07488v1].

9.1
EVS of Gaussian Random Normal Matrices at the Outer Edge

In contrast to GUE, the eigenvalues of normal matrices are complex. As the

eigenvalues can spread over the complex plane (within the support), they are less

correlated than in the unitary case. This is reflected by the extreme value statistics.

In the above example, considering the distribution of the eigenvalue with the largest

modulus, it is known [98, 99] that the rescaled distribution is given by a Gumbel

distribution. Recall that the Gumbel distribution is one of three families which

describe the extreme value statistics of iid random variables (Weilbull, Gumbel,
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Fŕechet). Thus the behaviour is quite different to the GUE where the distribution

of the largest eigenvalue is given by the Tracy-Widom distribution.

We recall that normal random matrices are defined through the measure1

P(M) dM =
1

ZN
e�

N
t
trV (M) dM; t 2 R+; (9-1)

where M ’s are complex N � N matrices satisfying the constraint [M;My] = 0 and

ZN is the partition function. They are in many senses similar to Wigner matrices

with iid entries and in particular in the case of a Gaussian potential, yield the

same eigenvalue density. However, for normal random matrices there exist a unitary

matrix which simultaneously diagonalizesM andMy. Thus we can employ Coulomb

gas technique. In particular, the joint probability measure of the complex eigenvalues

is given by

PN (z1; : : : ; zN ) =
1

ZN

Y
1�j<k�N

(zj � zk)
2 e�

N
t

PN

i=1
V (zi); t 2 R+: (9-2)

For radially symmetric potentials

V (z) � V (r); z = r ei�; (9-3)

we obtained the useful result in Ch. 7 that the monomials (zn)n2N0 form a set of

orthogonal polynomials with respect to inner product h�j�i� with measure �, i.e.,

hPnjPmi� :=

ˆ
d�(z)Pn(z)Pm(z) = hn �nm (9-4)

in which d�(z) � e�
N
t
V (jzj) d2z, or more generally, d�(z; y) � e�

N
t
V (jzj) IfjzjQyg, in

which case, hn = hn(y).

For the Gaussian normal matrix ensemble, we know that the extreme value statistics

is given by the Gumbel distribution. Therefore, we introduce monomials

Pn(z; y) := zn�1 (9-5)

for which the following orthogonality relation holds:
ˆ

d2z e�
N
t
jzj2 Ifjzj�yg Pn(z; y)Pm(z; y) = hn(y) �nm: (9-6)

As the joint distribution of eigenvalues is given by (9-2), the cdf of eigenvalue with

the largest modulus jzmaxj reads (c.f. Sec. 8.1 and (8-14))

FN (y) := PN (jzmaxj � y) =
ZN (y)

ZN (1)
; (9-7)

1The factor t is usually introduced in order to consider multi critical potentials (see, e.g.,
[90]). Here, t is merely introducet to simplify calculations. Later, in this chapter we will
choose t = 2.
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where the partition function

ZN (y) =
1

N !

NY
i=1

ˆ y

�1
dzi

Y
1�j<k�N

(zj � zk)
2 e�

N
t

PN

i=1
z2i (9-8)

can be written as a product of the normalization constants hn:

ZN (y) =
N�1Y
n=0

hn(y); (9-9)

in which

hn(y) = 2�

ˆ y

0
dr r2n+1 e�

N
t
r2 : (9-10)

Therefore,

FN (y) =
N�1Y
n=0

hn(y)

hn(1)
: (9-11)

We want to evaluate the above expression and scale it around the outer edge of

the support which is at jzj = p
t. In fact, once N becomes large, the probability

density fN (y) = F 0N (y) will be more and more centered around the edge of the

support, c+ =
p
t. More precisely, one expects (jzmaxj � c+) � N�1=2, thus to

obtain convergence to a limiting distribution one has to rescale y to a “continuum”

variable Y ,
y = c+ + C N�1=2

h
	(N) + �(N)Y

i
; (9-12)

where C is a constant and 	(N) and �(N) are slowly varying functions (see App.

A). The constant C is chosen merely for convenience and could equally be absorbed

in 	(N) and �(N). Since y � 0, we have Y � �	(N)=�(N). For the limiting

distribution, to have support on Y 2 (�1;+1), we thus require 	(N)=�(N)!1
as N ! 1. This is enough to obtain the extreme value statistics related to the

eigenvalue with the largest modulus for the Gaussian potential. We are going to

do this in the next two sections, using two slightly different approaches. Both

approaches are based on the saddle point method. However, the first approach

uses the asymptotics of regularized incomplete gamma function, while the second

approach uses the asymptotics of error function.

9.1.1
First Approach Using Asymptotics of Regularized Incomplete Gamma
Function

The starting point of this approach is to notice that in (9-11) one can write2

hn(y)

hn(1)
=

´ y
0 dr r2n+1 e�Nr2=2´1
0 dr r2n+1 e�Nr2=2

=

(n+ 1; Ny2=2)

�(n+ 1)
; (9-13)

in which
2Here, we have chosen t = 2.
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�(a) :=

ˆ 1

0
du e�u ua�1; <(a) > 0 (9-14)

is the gamma function, and


(a; z) :=

ˆ z

0
du e�u ua�1; <(a) > 0 (9-15)

is the lower incomplete gamma function. Inserting (9-13) into (9-11) and taking

logarithm of both sides, we have

ln
�
FN (y)

�
=

N�1X
n=0

ln

�
hn(y)

hn(1)

�
=

N�1X
n=0

ln

 

(n+ 1; Ny2=2)

�(n+ 1)

!

=
NX
n=1

ln

 

(n;Ny2=2)

�(n)

!
: (9-16)

Therefore, in the large N limit one has

lim
N!1

ln
�
FN (y)

�
= lim

N!1

NX
n=1

ln
�
P (n;Ny2=2)

�
(9-17)

in which P (a; z) := 
(a;z)
�(a) is the regularized lower incomplete gamma function. Next,

we consider the scaling relation (9-12). We know that 	(N) is a slowly varying

function which diverges for N ! 1. Furthermore, we require 	(N)=�(N) ! 1
as N ! 1. It will become clear later that we will have to choose �(N) � 1=	(N)

and moreover, that it will be convenient to choose �(N) = 1
2	(N) . The factor of 2

is merely a rescaling of Y which could otherwise be determined at the end of the

calculation. We thus have the scaling

y = c+ + (Nb)�1=2
�
	(N) +

1

2	(N)
Y

�
; (9-18)

where c+ =
p
2, which yields

Ny2

2
= N +

	2(N)

2
+
p
2N 	(N) +

 p
N=2

	(N)
+

1

2

!
Y +O

��
	(N)

��2
�
: (9-19)

Since the slowly varying function satisfies limN!1	(N) = +1, one concludes that

for all y of the form given by (9-18), the following inequality holds:

n < Ny2=2: (9-20)

Besides, one observes that3

lim
N!1

ln
�
P (n;Ny2=2)

�
= 0; for n� Ny2=2: (9-21)

Thus we can replace the summand in (9-17) by its asymptotics when both N and n

are large. In fact, the asymptotic expansion of P (a; z) for a > 0 and z � 0 is given

3This has practical importance in the numerical simulations.
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by (see App. B):

P (a; z) � 1

2
erfc

h
�sgn(�� 1)

p
a q(�)

i
; (uniformly for z � 0) (9-22)

as a!1 and jarg (a)j < �. q(�) is given by

q(�) :=
p
�� 1� ln� ; (9-23)

with � = z=a. Thus one can write (9-17) as

lim
N!1

ln
�
FN (y)

�
= lim

N!1

NX
n=1

ln

�
1

2
erfc

h
� sgn(Ny2=2n� 1)

p
n q(Ny2=2n)

i�
:

(9-24)

Next, according to (9-20), the sign of the argument of the error function in (9-24)

is easily determined:

sgn(Ny2=2n� 1) = +1: (9-25)

Using this fact, (9-24) simplifies to

lim
N!1

ln
�
FN (y)

�
= lim

N!1

NX
n=1

ln

�
1

2
erfc

h
�pn q(Ny2=2n)

i�
: (9-26)

When both n and N are large while n=N =: � 2 [0; 1], we can obtain the first two

leading order terms in (9-26) using Euler-MacLaurin summation formula (see App.

C):

lim
N!1

ln
�
FN (y)

�
= lim

N!1
N

ˆ 1

0
d� g(�; y) +

1

2

�
g(1; y)� g(0; y)

�
+O(N�1); (9-27)

in which

g(�; y) � ln

�
1

2
erfc

h
�pN� q(y2=2�)

i�
: (9-28)

For the argument of the error function in (9-28), one has

p
N� q(y2=2�) =

8<:O
�p

N
�
; � 2 [0; 1);

O�p	(N)
�
; � = 1:

(9-29)

Therefore, in the limit N !1, one can use the asymptotics of the complementary

error function for large negative values of its argument:

erfc(z) � 2p
�

ˆ 1

z
du e�u

2 � 2 +
e�z2p
�z

; z !1 (<(z) < 0) : (9-30)

Hence, one obtains
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g(�; y) � ln

(
1

2

"
2� e�N� q2(y2=2�)

p
�
p
N� q(y2=2�)

#)
; N !1:

� � 1

2
p
�

e�N� q2(y2=2�)

p
N� q(y2=2�)

; N !1: (9-31)

Therefore, the leading order in (9-27) reads

lim
N!1

ln
�
FN (y)

�
= lim

N!1
� N

2
p
�

ˆ 1

0
d�

e�N� q2(y2=2�)

p
N� q(y2=2�)

: (9-32)

Now, we can apply the saddle point method to the last integral: the function q(�)

attains its minimum at �0 = 1, for which

q2(�0) = 0;
d

d�
q2(�)

���
�=�0

= 0;

d2

d�2
q2(�)

���
�=�0

= 1: (9-33)

Thus the expansion of q2(�) around its minimum takes the form

q2(�) =
1

2

 
d2

d�2
q2(�)

���
�=�0

!
(�� �0)

2 +O�(�� �0)
3�

=
1

2
(�� 1)2 +O�(�� 1)3

�
: (9-34)

Inserting this result into (9-32), we obtain

lim
N!1

ln
�
FN (y)

�
= lim

N!1
� N

2
p
�

ˆ 1

0
d�

e
� N

2�
(y2=2��)2q

N
2� (y

2=2� �)
: (9-35)

The main contribution to the integral in (9-35) comes from the terms with � close

to one. this is equivalent to the fact that according to (9-21), only those terms

with n � N make significant contribution to the summation in (9-17). Hence, we

introduce the following change of variable in the integration in (9-35):

� =: 1� (2N)�1=2

	(N)
X: (9-36)

Now, we apply the scaling (9-18) and change the integration variable as given in

(9-36). Then using

��1=2 =

"
1� (2N)�1=2

	(N)
X

#�1=2

= 1� (2N)�1=2

2	(N)
X +O

�
N�1 �	(N)

��2
�
; (9-37)

one can show
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-� -� � �

���

���

���

���

���

Figure 9.1: Shown is the function FN(Y ) for increasing values of N , as well as
the limiting case F (Y ) = exp

�
� exp(�Y )

�
. The function FN(Y ) is obtained

by numerically evaluating (9-11) with y replaced with its scaling relation
(9-18).

s
N

2�

 
y2

2
� �

!
= 	(N) +

1

2	(N)
(X + Y ) +O

�
N�1=2 �	(N)

��2
�
: (9-38)

This relation also justifies the above choices of scalings. In particular, we notice that

N

2�

 
y2

2
� �

!2

= 	2(N) + (X + Y ) +O
�
N�1=2 �	(N)

��1
�

(9-39)

is a slowly varying function plus a finite term. To get this, it was necessary to choose

�(N) � 1=	(N). Putting everything together, we get

lim
N!1

ln
�
FN (Y )

�
= lim

N!1
�
p
N e�	2(N)

2
p
2�	2(N)

 ˆ 	(N)
p
2N

0
dX e�X

!
e�Y

= lim
N!1

�
p
N e�	2(N)

2
p
2�	2(N)

e�Y : (9-40)

Now, if we make the following choice for the slowly varying function 	(N):

	2(N) =
1

2

�
lnN � 2 ln(lnN)� ln

�
2�)

�
; (9-41)

we arrive at

N

ˆ 1

0
d� g(�; y) = �e�Y +O�ln(lnN)=lnN

�
: (9-42)

Furthermore, under this choice, for the subleading term on the right hand side of

(9-27) we have

1

2

�
g(1; y)� g(0; y)

�
= O

��
	(N)

��1
e�	2(N)

�
= O

�q
lnN=N

�
: (9-43)

The final result is thus given by
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Figure 9.2: Comparison of the finite N expression FN(Y ) as given in (9-13)
with the empirical cumulative probability function obtained from sampling
1000 Ginibre matrices of size N = 200 and N = 1000 respectively.

F (Y ) := lim
N!1

FN (Y )

= lim
N!1

PN

�
jzmaxj � c+ + (Nb)�1=2

�
	(N) +

Y

2	(N)

��
= e�e

�Y
;(9-44)

which is precisely the Gumbel distribution. This provides an alternative derivation

of the results in [98].

One strength of the here presented approach is that it is particu-

larly suited for calculating finte N corrections of the limiting distribution

limN!1 FN (Y ) = F (Y ) = exp
� � exp(�Y )�. This can be important in prac-

tice, since the convergence to the Gumbel distribution is very slow as can be seen

from the order of the subleading term in (9-42).

Figure 9.1 shows FN (Y ) evaluated for increasing values of N . It is clear that

for any practical applications, the limiting distribution is not a good approximation.

However, the result presented in (9-16), provides a closed expression for FN (Y ) for

finite N , which can easily be evaluated numerically by inserting the slowly varying

function (9-41) into (9-16), as had been done in Figure 9.1. For large values of

N , one can benefit from the fact that the sum in (9-16) is dominated by n � N .

We can also verify the correctness of this expression by comparing the result of

FN (Y ) with the empirical cumulative probability function obtained from sampling

m representations of a Ginibre matrix of size N . This is shown in Figure 9.2 for

m = 1000, with N = 200 and N = 1000 respectively.

Note that in principle the here presented techniques can also be used to

compute the next-to-leading order term in (9-42) and (9-44).
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9.1.2
Second Approach Using Asymptotics of Error Function

The starting point of this approach is applying saddle point evaluation from the

beginning in (9-10). In fact, we can write (9-10) as

hn(y) = 2�

ˆ y

0
dr eNf(r) (9-45)

with f(r) = (2n + 1)=N lnr � r2=t. Then, we expand f around its maximum at

r0 =
p
(2n+ 1)t=2N as

f(r) = f(r0)� 1

2

��f 00(r0)�� (r � r0)
2 +O�(r � r0)

3�: (9-46)

The integration in (9-10) then reduces to Gaussian integrals over finite intervals,

yielding error functions:

hn(y)

hn(1)
=

erf
�p

Nb r0
�
+ erf

�p
Nb (y � r0)

�
1 + erf

�p
Nb r0

� ; (9-47)

where b � ��f 00(r0)=2�� = 2=t. Now using Euler-Maclaurin summation formula, one

has

ln
�
FN (y)

�
= N

ˆ 1

0
d� g(�; y) +

1

2

�
g(1; y)� g(0; y)

�
+O(N�1); (9-48)

where

g(�; y) � ln

0B@erf
�p

Nb r0(�)
�
+ erf

�p
Nb

�
y � r0(�)

��
1 + erf

�p
Nb r0(�)

�
1CA (9-49)

in which r0(�) =
p
t� +O �N�1

�
.

Note that the argument of the first error function in the denominator of (9-49)

is not necessarily large if � is close to zero. However, the asymptotics of (9-49) is

dominated by the second term. One then can use the asymptotic expansion of the

error function

erf(z) � 2p
�

ˆ z

0
du e�u

2 � 1� e�z2p
�z

; z !1 (<(z) > 0) ; (9-50)

to show

g(�; y) � � 1p
�

e�Nb (y�r0(�))2
p
Nb

�
y � r0(�)

��
1 + erf

�p
Nb r0(�)

�� ; N !1: (9-51)

Now, since limN!1	(N) =1, the scaling (9-18) ensures that the argument of the

second error function,
p
Nb

�
y � r0(�)

�
, tends to infinity as N ! 1. Furthermore,

since r0(�)! c+ as � ! 1, the dominant contribution in (9-51) comes from � close
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to one, in which case we have

g(�; y) � � 1

2
p
�

e�Nb (y�r0(�))2
p
Nb

�
y � r0(�)

� ; N !1: (9-52)

Therefore, for the leading term in the right hand sight of (9-48) we have

N

ˆ 1

0
d� g(�; y) � � N

2
p
�

ˆ 1

0
d�

e�Nb (y�r0(�))2
p
Nb

�
y � r0(�)

� : (9-53)

Next, by applying (9-18) and (9-36) in the above expression, we obtain

N

ˆ 1

0
d� g(�; y) = �

p
N

2
p
2�	2(N)

ˆ p
2N 	(N)

0
dX e�[	

2(N)+(X+Y )]

= �
p
N e�	2(N)

2
p
2�	2(N)

e�Y : (9-54)

Then by choosing the form given in (9-41) for slowly varying function 	(N), we

retrieve the Gumbel distribution:

lim
N!1

PN

�
jzmaxj � c+ + (Nb)�1=2

�
	(N) +

Y

2	(N)

��
= e�e

�Y
: (9-55)

9.2
Universality of Extreme Value Statistics

In the following next two sections, we discuss the universality of EVS obtained

for the Gaussian random normal matrices, for an arbitrary potential with radial

symmetry satisfying (7-24), together with another condition which will be derived

in he next section, at finite inner and outer edges. It turns out that the same general

procedure used for the Gaussian potential can be applied with a slight modification.

9.2.1
Universality of EVS at Finite Outer Edge

Next, we consider generalisation of the Gaussian potential to an arbitrary potential

V with radial symmetry, V � V (r). We then have

hn(y) = 2�

ˆ y

0
dr r2n+1 e�

N
t
V (r) =

ˆ y

0
dr eNf(r); (9-56)

where f(r) = (2n + 1)=N log r � V (r)=t with a maximum at r0 = r0(�) which is

solution to following equation

r0(�)V
0�r0(�)� = 2n+ 1

N
t = 2t� +O(N�1): (9-57)
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Comparing (7-29) with (9-57) mplies that in the large N limit, the outer edge and

r0 coincide, i.e., r0(1) = c+.

Next, we expand f around its maximum at r0:

f(r) = f(r0) +
f 00(r0)

2
(r � r0)

2 +O�(r � r0)
3�; (9-58)

in which in the large N limit

f 00(r0) = �2�=r20 + V 00(r0)=t

= �1

t

�
V 0(r0)
r0

+ V 00(r0)
�

= �
�
1

tr

d

dr

�
r V 0(r)

�� �����
r=r0

; (9-59)

where in going from the second line to the third line, we have used (9-57). Therefore

f 00(r0) < 0, if the condition

r V 0(r) increasing in R+ (9-60)

or equivalently

V 0(r) > 0 and V convex in R+ (9-61)

holds for the potential V (r). Hence, as in the case of Gaussian potential, we have

(see (9-47))

hn(y)

hn(1)
=

erf
�p

Nb r0
�
+ erf

�p
Nb (y � r0)

�
1 + erf

�p
Nb r0

� ; (9-62)

where b � ��f 00(r0)=2��. Therefore, the leading order term in the probability distribu-

tion of the eigenvalue with the largest modulus is given by

N

ˆ 1

0
d� g(�; y) � � N

2
p
�

ˆ 1

0
d�

e�Nb (y�r0(�))2
p
Nb

�
y � r0(�)

� ; N !1: (9-63)

In (9-63) we scale y at the outer edge of the support as before (see (9-18)). We also

change the integration variable � in (9-63) as

� = 1� 
+
(Nb)�1=2

2	(N)
X: (9-64)

The value of 
+ will be determined in the following. We expand r0(�) around � = 1:
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r0(�) = r0(1) + dr0(�)=d�
��
�=1

(� � 1) +O�(� � 1)2
�

= c+ + �+ (� � 1) +O�(� � 1)2
�
; (9-65)

where �+ is given by

�+ � dr0(�)=d�
��
�=1

=
2t

V 0(c+) + c+V 00(c+)

= 2t

�
d

dr

�
rV 0(r)

����
r=c+

��1

: (9-66)

Hence, according to the constraint already imposed in (9-60), we have �+ > 0. We

therefore obtain

p
Nb

�
y � r0(�)

�
= 	(N) +

1

2	(N)
(
+�+X + Y ) +O

�
N�1=2 �	(N)

��2
�

(9-67)

which by choosing


+ =
1

�+
=
V 0(c+) + c+ V

00(c+)
2t

=
1

2t

d

dr

�
r V 0(r)

� ���
r=c+

; (9-68)

reduces to

p
Nb

�
y � r0(�)

�
= 	(N) +

1

2	(N)
(X + Y ) +O

�
N�1=2 �	(N)

��2
�
: (9-69)

The rest of the derivation is identical to the Gaussian case presented in

the previous section. We have thus shown universality of the distribution of the

eigenvalue with the largest modulus when rescaled around the outer edge of a generic

potential V (r) satisfying the condition given in (9-60) or (9-61), where the limiting

probability distribution is the Gumbel distribution; i.e., the probability distribution

is a Gumbel distribution:

lim
N!1

PN

�
jzmaxj � c+ + (Nb)�1=2

�
	(N) +

Y

2	(N)

��
= e�e

�Y
: (9-70)

9.2.2
Universality of EVS at Finite Inner Edge

Now we study the extreme value statistics of a normal matrix ensemble with

potential V = V (r) at the inner edge. Again we can define monomials

Pn(z; y) := zn�1 (9-71)

which satisfy the following orthogonality condition
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ˆ
d2z e�

N
t
V (jzj) Ifjzj�yg pn(z; y) pm(z; y) = hn(y) �nm; t 2 R+: (9-72)

The probability distribution for the eigenvalue with the smallest modulus jzminj is
then given by

FN (y) := P(jzminj � y) =
ZN (y)

ZN (0)
=

N�1Y
n=0

hn(y)

hn(0)
: (9-73)

We want to evaluate the above expression and scale it around the finite inner edge

of the support at jzj = c� > 0. We have

hn(y) = 2�

ˆ 1

y
dr r2n+1 e�

N
t
V (r) = 2�

ˆ 1

y
dr eNf(r) (9-74)

with f(r) = (2n+ 1)=N log r � V (r)=t. Then expanding f around its maximum at

r0 as (9-57), results in

hn(y)

hn(0)
=

1 + erf
�p

Nb (r0 � y)
�

1 + erf
�p

Nb r0
� ; (9-75)

where b � ��f 00(r0)=2��. Thus in the large N limit one has

ln
�
FN (y)

�
= N

ˆ 1

0
d� g(�; y) +

1

2

�
g(1; y)� g(0; y)

�
+O(N�1); (9-76)

where

g(�; y) � ln

0B@1 + erf
�p

Nb
�
r0(�)� y

��
1 + erf

�p
Nb r0(�)

�
1CA : (9-77)

Since both r0 and r0�y are positive and become large when N is large, by recalling

the asymptotic behaviour of the error function (see (9-50)), we obtain4

N

ˆ 1

0
d� g(�; y) � � N

2
p
�

ˆ 1

0
d�

e�Nb (r0(�)�y)2
p
Nb

�
r0(�)� y

� ; N !1: (9-78)

Now, we scale y around the inner edge of the support, c�, as

y = c� � (Nb)�1=2
�
	(N) +

1

2	(N)
Y

�
; Y 2 (�1;1): (9-79)

Note that as N becomes large, y approaches c�. Moreover, r0(�) with � = 0 also

approaches c� as N becomes large, as is clear when comparing (7-28) with (9-57).

This implies that the leading order contribution of (9-78) now comes from � = 0.

This suggests the following change of variables in (9-78)

� = 
�
(Nb)�1=2

2	(N)
X: (9-80)

4In fact, the argument is now even simpler since r0(�) stays finite and does not go to
zero as � goes to zero. This is assured by the requirement that c� > 0.
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Now, expanding r0(�) around � = 0 gives

r0(�) = r0(0) + dr0(�)=d�
��
�=0

� +O(�2)

= c� + �� � +O(�2); (9-81)

where

�� � dr0(�)=d�
��
�=0

=
2t

c�V 00(c�)
: (9-82)

We notice that since c� is finite and the potential V is convex, we have �� > 0. We

therefore obtain

p
Nb

�
r0(�)� y

�
= 	(N) +

1

2	(N)
(
���X + Y ) +O

�
N�1=2 �	(N)

��2
�
; (9-83)

which by choosing


� =
1

��
=
c� V 00(c�)

2t
(9-84)

becomes

p
Nb

�
r0(�)� y

�
= 	(N) +

1

2	(N)
(X + Y ) +O

�
N�1=2 �	(N)

��2
�
: (9-85)

Following the reasoning from the previous section we thus get

lim
N!1

PN

�
jzminj � c� � (Nb)�1=2

�
	(N) +

Y

2	(N)

��
= e�e

�Y
: (9-86)

where 	(N) is given in (9-41). This shows universality by proving convergence

of the rescaled distribution of the eigenvalue with smallest modulus to a Gumbel

distribution. The derivation assumes that the potential fulfills the condition (9-60)

or (9-61) and that the inner radius c� > 0, i.e., the support of the eigenvalue density

has topology of a ring.

As a final point, important to be emphasized, is the fact that although the

(complex) eigenvalues of a normal matrix ensemble with arbitrary potential V (r)

are correlated, due to the presence of the Vandermonde determinant in the jpdf of

eigenvalues in (9-2), the EVS of the eigenvalue with the smallest or largest modulus

is still given by Gumbel distribution. This implies that unlike the case of Hermitian

random matrices, where the eigenvalues are strongly correlated, the eigenvalues of

a random normal matrix ensemble are weakly correlated.
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10
Outlook and Conclusion

In this thesis, we discussed the EVS of random normal matrices. In the

first part, we reviewed the necessary probabilistic aspects upon which the rest of

this thesis was founded. While the first chapter began by briefly introducing the

basics of probability theory, the second chapter dealt with the asymptotic models

of classical EVS: first, we gave the motivation how these models of a sample of iid

random variables naturally arise in parallel with the classical statistics, i.e., the

central limit theory. The basic result of this chapter was mainly on the extermal

types theorem according which there exist only three different universal classes of

extreme value distributions for a sequence of iid random variables, under specific

conditions. The necessary and sufficient conditions were then mentioned without

proof.

The foundations of RMT were reviewd in part II. This was done basically by

first, motivating RMT as a powerful phenomenological models in a variety areas

of physics and mathematics. Then, the three classical ensembles of RMT, i.e.,

GUE, GOE and GSE were introduced. Next, the reason why random matrices are

omnipresent in many fields of mathematics and physics, namely universality, was

explained briefly. Then level spacing distribution as an example of such universal

quantities was discussed.

In the final part of this thesis, our focus was on the applications of extreme

value statistics in the context of RMT. In Ch. 8 we showed how one can derive the

celebrated Tracty-Widom law for the extreme value statistics of GUE using Lax

method which makes connection to integrable systems. Ch. 9 contained the new

result of this thesis on the extreme value statistics of random normal matrices. For

non-Hermitian matrices the situation is somewhat easier as eigenvalues are only

weakly correlated and the extreme value statistics is given by the much simpler

Gumbel distribution. However, due to the lack of symmetries, non-Hermitian ran-

dom matrices are in general harder to deal with. A special case are normal random

matrices which are non-Hermitian and at the same time allow for a Coulomb gas

formulation for a generic potential.
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The novel contribution in this thesis was presented in Ch. 9, where we inves-

tigated the extreme value statistics of normal random matrices and 2D Coulomb

gases for general radially symmetric potentials. This was done by extending the

orthogonal polynomial approach, introduced in [60] for Hermitian matrices, to

normal random matrices and 2D Coulomb gases. We first analysed the simplest

case of Gaussian normal random matrices and showed convergence of the eigenvalue

with largest modulus, rescaled around the outer edge of the eigenvalue support,

to a Gumbel distribution. One strength of this approach lies in the fact that it

immediately generalises to an arbitrary potential V = V (r) with radial symmetry

which meets some conditions. We used this to show universality of the distribution

of the eigenvalue with largest modulus when rescaled around the outer edge of the

eigenvalue support. This provides an alternative, simplified derivation of results

presented in [98, 99]. In addition, it was shown that the approach presented here

also generalised to compute convergence of the distribution of the eigenvalue with

smallest modulus rescaled around the inner edge of the eigenvalue support, with

topology of an annulus.

The here presented approach can also be used to obtain finite N results.

Firstly, for Ginibre matrices, the expression (9-17) can easily be evaluated numeri-

cally for finite N . This was done in the comparison presented in Figure 9.2, where

we plotted the numerically evaluated cumulative probability function (9-17) against

the empirical cumulative probability function obtained from samples of Ginibre

matrices for finite N . Secondly, the expansion (9-48), and the analogous expression

for general potential can, in principle, be used to obtain an analytical expression of

the next-to-leading-order term. We leave the details of such an analysis for future

work. Note that this calculation follows closely the standard finite N expansion of

the free energy of Hermitian random matrices using orthogonal polynomials (see

for example Section 2.3 of [53]).

Another interesting direction of future research is to explore the extreme

value statistics of the eigenvalue with smallest modulus at the the transition, when

the inner radius of the eigenvalue support goes to zero as N goes to infinity. This

transition was analysed in [83] in the context of the mean radial displacement. It

would be interesting to see whether the extreme value statistics can be tuned to

a different universality class in this transition by using a double scaling limit in

which a� goes to zero as N becomes large. In fact, one can show that in this case,

the expression (9-73) can be expressed in terms of regularized upper incomplete

gamma function. Then by applying the asymptotic expansion of the regularized

upper incomplete gamma function, given in App. B, one may find the EVS of a
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normal matrix ensemble when inner edge is zero.

The other interesting case is when the outer edge of the support is not finite.

An example is Cauchy distribution with potential V (r) = ln(1+ r2) which does not

satisfy the condition (7-24). In this case, one can easily check that the expression

(9-7) can be written in terms of regularized incomplete beta function. Hence, by

applying suitable asymptotic expansion of beta function, one can, in principle, find

the EVS of Cauchy normal ensemble at the infinite outer edge.
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A
Regularly and Slowly Varying Functions

Regular variation is one of the basic concepts which appears in a natural way in

different contexts of applied probability theory. The concept of regularly varying

function was proposed by Jovan Karamata [100], and roughly speaking, are those

functions which behave asymptotically like power functions. In this appendix,

we briefly review the basic definitions and theorems of Karamata’s theory. Some

references are [17, 37, 101, 102].

Suppose x0 2 R+ and let f : [x0;1) �! R+ be a measurable function,1 such

that the limit

lim
x!1

f(tx)

f(x)
(A-1)

exists for all t 2 R+. Then there exists � 2 R such that

lim
x!1

f(tx)

f(x)
= t� (A-2)

for all t 2 R+. Then depending on the value of �, we distinguish the following classes

of functions:2

� If � 6= 0, the function f is said to be regularly varying at infinity with

index �, denoted f 2 RV1(�).

� If � = 0, the function f is said to be slowly varying at infinity, denoted

f 2 RV1(0).

As a result of this classification, we have Karamata’s characterization

theorem :

Let � 6= 0 and f 2 RV1(�); then there exists a slowly varying function 	, such

that f(x) = x�	(x).

The properties of regularly varying functions are thus deduced from those of slowly

varying functions and vice versa.

1The measurability assumption is essential.
2A third class of rapidly varying functions can be considered if we let � 2 R; i.e., if

� = �1. In this way, the class of regularly varying functions “fills the gap” between the
class of slowly varying functions and the class of rapidly varying functions.
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Finally, we state the Karamata representation theorem :

A function 	 is slowly varying iff there exists x0 > 0 such that the function 	 can

be written in the form

	(x) = exp

 
�(x) +

ˆ x

x0

dt
�(t)

t

!
; 8x � x0; (A-3)

where �(x) and �(x) are bounded measurable functions of a real variable x, such

that

lim
x!1 �(x) <1; and lim

x!1 �(x) = 0: (A-4)

It follows immediately by Karamata’s characterization theorem that f 2 RV1(�),

iff there exists x0 > 0 such that the function f can be written in the form

f(x) = x� exp

 
�(x) +

ˆ x

x0

dt
�(t)

t

!
; 8x � x0; (A-5)

in which � and � satisfy (A-4).

Examples of slowly varying functions are lnx and itterated logarithm ln lnx;

while for � 6= 0, x� and x� lnx are regularly varying functions of index �.
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B
Asymptotic Expansions of Regularized Incomplete Gamma
Functions

The asymptotic expansion of regularized gamma functions defined as

Q(a; z) :=
�(a; z)

�(a)
;

P (a; z) :=

(a; z)

�(a)
; (B-1)

holding uniformly in � := z=a > 0, for a!1 and/or z !1, is followed from the

representations [103–105]:

Q(a; z) =
1

2
erfc(�

q
a=2) +Ra(�);

P (a; z) =
1

2
erfc(��

q
a=2)�Ra(�); (B-2)

with

Ra(�) � e�
1
2
a�2

p
2�a

1X
k=0

ck(�) a
�k; a!1; jarg (a)j < �; (uniformly for� � 0):

(B-3)
Here, 1

2�
2 = � � 1 � ln� with sgn(�) = sgn(� � 1). The coefficients ck in (B-3) are

given by

c0(�) =
1

�
� 1

�
; (B-4)

� ck(�) =
d

d�
ck�1(�) + (�1)kgk �

�� 1
; k = 1; 2; :::; (B-5)

where gk’s are the coefficients that appear in the asymptotic expansion of gamma

function

�(z) �
p
2� e�z zz+1=2

1X
k=0

gk z
�k; z !1: (B-6)

When � 6= 1, the error functions are dominant terms in (B-2) as a tends to infinity.

Thus,
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Q(a; z) =
�(a; z)

�(a)
� 1

2
erfc

�
sgn(�� 1)

q
a(�� 1� ln�)

�
; a!1: (B-7)

(Hint: We notice that � � ln� � 1 � 0; 8� 2 R+, therefore the argument of the

error function in (B-7) is real.)

When � = 1, we have � = 0 and

Q(a; a) =
�(a; a)

�(a)
� 1

2
+

1p
2�a

1X
k=0

ck(0)a
�k; a!1: (B-8)
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C
Euler-MacLaurin Summation Formula

Euler-Maclaurin formula provides a powerful connection between integrals and sums.

It can be used to approximate integrals by finite sums, or conversely, to evaluate

finite sums and infinite series using integrals. In particular, many asymptotic

expansions are derived from this formula. In the most general form, for a M times

continuously differentiable function f in the interval [a; b] (f 2 CM [a; b]), this

formula can be written as [106, 107]

bX
n=a

g(n) =

ˆ b

a
d� g(�) +

1

2

�
g(a) + g(b)

�
+

MX
k=1

B2k

(2k)!

h
g(2k�1)(b)� g(2k�1)(a)

i
+RM :

(C-1)
The level of approximation in the Euler-Maclaurin formula largely depends on the

asymptotic behavior of the remainder term, given by Poisson formula:

RM =
1

(2M + 1)!

ˆ b

a
d� B2M+1(f�g) f (2M+1)(�); (C-2)

in which f�g is the fractional part of �, defined as

f�g := � � b�c

and the periodic Bernoulli functions eBn(�) � Bn(f�g) have the following Fourier

series representation, due to Hurwitz:

eBn(�) = � n!

(2�i)n

1X0

k=�1

e2�ik�

kn
:

For a = 1, b = N and g(n) =: f(n=N) this formula yields:

1

N

NX
n=1

f(n=N) =

ˆ 1

1=N
d� f(�) +

1

2N

�
f(1=N) + f(1)

�
+

1X
k=1

B2k

(2k)!N2k

h
f (2k�1)(1)� f (2k�1)(1=N)

i
; (C-3)

which in the limit N !1 reduces to the well-known formula

lim
N!1

1

N

NX
n=1

f(n=N) =

ˆ 1

0
d� f(�): (C-4)
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Appendix C. Euler-MacLaurin Summation Formula 127

in elementary calculus.1 When N is large, but finite, the remaining terms in (C-3)

are finite-N corrections to the corresponding summation.

The Mathematica manual [108] reveals that it actually uses Euler-Maclaurin

summation formula to do summs like (9-17).

1In the limit N !1, the lower limit of the integral in the right hand side of (C-3) can
be replaced by zero, provided that the integral exists.
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