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de Janeiro, Departamento de Engenharia Elétrica, 2017.

Inclui bibliografia

1. Engenharia Elétrica – Teses. 2. Leilões de Enve-
lope Fechado e Preço Uniforme. 3. Ofertas Estratégicas. 4.
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Abstract

Fânzeres dos Santos, Bruno; Street de Aguiar, Alexandre (Advisor).
Robust Strategic Bidding in Auction-Based Markets. Rio de
Janeiro, 2017. 68p. Tese de Doutorado — Departamento de Engenharia
Elétrica, Pontif́ıcia Universidade Católica do Rio de Janeiro.

We propose an alternative methodology to devise profit-maximizing stra-

tegic bids under uncertainty in markets endowed with a sealed-bid uniform-

price auction with multiple divisible products. The optimal strategic bid of a

price maker agent largely depends on the knowledge (information) of the rivals’

bidding strategy. By recognizing that the bid of rival competitors may devi-

ate from the equilibrium and are of difficult probabilistic characterization, we

proposed a two-stage robust optimization model with equilibrium constraints

to devise an risk-averse strategic bid in the auction. The proposed model is

a trilevel optimization problem that can be recast as a particular instance

of a bilevel program with equilibrium constraints. Reformulation procedures

are proposed to construct a single-level-equivalent formulation suitable for co-

lumn and constraint generation (CCG) algorithm. Differently from previously

reported works on two-stage robust optimization, our solution methodology

does not employ the CCG algorithm to iteratively identify violated scenarios

for the uncertain factors, which in this thesis are obtained through continuous

variables. In the proposed solution methodology, the CCG is applied to iden-

tify a small subset of optimality conditions for the third-level model capable

of representing the auction equilibrium constraints at the optimum solution

of the master (bidding) problem. A numerical case study based on short-term

electricity markets is presented to illustrate the applicability of the proposed

robust model. Results show that even for the case where an impression of 1%

on the rivals’ offer at the Nash equilibrium is observed, the robust solution

provides a non-negligible risk reduction in out-of-sample analysis.

Keywords
Sealed-Bid Uniform-Price Auction; Strategic Bidding; Mathematical

Programming with Equilibrium Constraints; Column-and-Contraint Genera-

tion; Day-Ahead Electricity Markets.
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Resumo

Fânzeres dos Santos, Bruno; Street de Aguiar, Alexandre . Estratégia
de Ofertas Robusta em Mercados Baseados em Leilão. Rio de
Janeiro, 2017. 68p. Tese de Doutorado — Departamento de Engenharia
Elétrica, Pontif́ıcia Universidade Católica do Rio de Janeiro.

Nesta de tese de doutorado é proposta uma metodologia alternativa para

obter estratégias ótimas de oferta sob incerteza que maximizam o lucro de

um agente em mercados dotados de um leilão de preço uniforme e envelope

fechado com multiplos produtos diviśıveis. A estratégia ótima de um agente

price maker depende amplamente da informação conhecida dos agentes rivais.

Reconhecendo que a oferta dos agentes rivais pode desviar do equiĺıbrio de

mercado e é de dif́ıcil caracterização probabiĺıstica, nós propomos um modelo

de otimização robusta dois estágios com restrições de equiĺıbrio para obter

estratégias de oferta ótimas avessas a risco. O modelo proposto é um modelo

de otimização de três ńıveis pasśıvel de ser reescrito como uma instância

particular de um programa bińıvel com restrições de equiĺıbrio. Um conjunto

de procedimentos é proposto a fim de construir uma formulação equivalente de

de ńıvel único adequado para aplicação de algoritmos de Geração de Coluna

e Restrição (GCC). Diferentemente de trabalhos publicados anteriormente em

modelos de otimização dois estágios, nossa metodologia de solução não aplica

o método de GCC para iterativamente identificar os cenários mais violados

dos fatores de incerteza, variáveis que são identificadas através de variáveis

cont́ınuas. Na metodologia de solução proposta, o algoŕıtmo GCC é aplicado

para identificar um pequeno subconjunto de condições de otimalidade para o

modelo de terceiro ńıvel capaz de representar as restrições de equiĺıbrio do

leilão na solução ótima do problema master (problema de oferta). Um estudo

de caso numérico baseado em mercados de energia de curto prazo é apresentado

para ilustrar a aplicabilidade do modelo robusto proposto. Resultados indicam

que mesmo em um caso em que é observada uma imprecissão de 1% na oferta

de equiĺıbrio de Nash dos agentes rivais, a solução robusta provê uma redução

significativa de risco em uma análise fora da amostra.

Palavras–chave
Leilões de Envelope Fechado e Preço Uniforme; Ofertas Es-

tratégicas; Programação Matemática com Restrições de Equiĺıbrio; Geração

de Coluna e Restrição; Mercados de Energia de Curto Prazo.

DBD
PUC-Rio - Certificação Digital Nº 1412778/CA



– What is jazz, Mr. Armstrong?
– My dear lady, as long as you have to ask
that question, you will never know it.

Louis Armstrong, Musician.
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1
Introduction

A key challenge of the majority of economy sectors is to determine how to
trade goods efficiently. Desirable transaction designs seek for fair trading prices
with maximum overall welfare. With the aim of achieving such efficiency, auctions
have been studied since antiquity and have been used in a variety of industrial ap-
plications [1, 2]. A substantial portion of the GDP of most countries comes from
transactions using some form of auction. The products auctioned are spread over
public and private sectors and vary over a wide range, from flowers and art objects
to financial products and various categories of commodities such as electricity and
gold. More recently, auctions have also become the main mechanism for online
trading.

Auctions are an economic resource allocation mechanism that aim to meet
supply and demand through a competitive bidding process. Auction processes are
generally recognized as transparent schemes and, because of that, are one of the
main mechanisms used to induce competitive markets. By publicly setting the auc-
tion rules, agents are not only able to derive their strategy based on common (avail-
able) information, but also to reproduce the auction process. In addition, by foster-
ing competition, products are typically more fairly valued, thus reducing unilateral
discrepancies and increasing overall welfare [3].

Since the seminal works [4, 5], the auction theory has been broadly stud-
ied in technical literature from various angles. An important area of the research
consists of analyses of the behavior of agents within auction-based markets. The
extensive literature in this area can be divided into two main groups, specifically,
game theory and decision theory. Roughly speaking, game theory aims at identi-
fying a set of bids for all competitors, which results in some form of equilibrium
in the auction (e.g., Nash equilibrium [6]). It largely relies on a set of assumptions
regarding the rationality of competing agents. In addition, computing equilibriums
are usually NP-hard problems [7, 8, 9, 10], with several strong requirements such
as the full knowledge regarding the operational, financial, and risk-averse structure
of all agents and stable market conditions with full information availability of the
system that the bidders are embedded in. Therefore, equilibrium strategies are, in
general, used for market monitoring, as a tool for assessing market power opportu-
nities rather than for strategic bidding in practical applications [11]. In this thesis,
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1. INTRODUCTION 12

we concentrate on assessing optimal bidding strategies using a decision theory per-
spective. The decision theory approach focuses on devising optimal strategic bids
with the ultimate goal of maximizing some measure of value for a particular set of
agents, which is hereinafter called strategic player.

The extensive literature on optimal bidding under the decision theory frame-
work dates back to Friedmand [5]. In his pioneering work, the author analyzes a
competitive bidding environment for government contracts in which each competi-
tor submits a single price bid for each contract. Under uncertainty regarding the
“true” cost for fulfilling the contracts and the number of rival competitors, a profit-
maximizing strategic bidding methodology is discussed. Following Friedmand’s
ideas, [12, 13, 14] proposed extensions to the profit-maximizing model for address-
ing various aspects such as workforce, money, material constraints, and contract
size. More recently, [15] presented a more “practical” approach for estimating cost
uncertainty and evaluating the probability of winning for various levels of bids. In
addition, [16] presented a cost-minimization model for optimizing resource utiliza-
tion and devising optimal bidding strategies in highway projects. In electronic mar-
kets, [17] constructed a profit-maximizing strategic bid method for pay-per-click
auctions, and [18] proposed a bidding procedure that combines integer and approx-
imate dynamic programming to devise strategic bids in online auctions.

In this thesis, we focus on sealed-bid uniform-price auctions with multiple
divisible products [3]. A direct application of the framework proposed is to de-
vise bidding strategies in short-term electricity markets (usually called day-ahead
market). As part of the restructuring process that took place in most power sys-
tems globally in the 1980s [19], competitive electricity markets were profoundly
fostered and a daily auction, in the format of a sealed-bid uniform-price auction
[20, 21] became the main cash flow stream for generating companies. Since then, a
multitude of technical works have devoted special attention to the problem of opti-
mal electricity trading in day-ahead markets [22, 23]. Closely related to the general
idea explored in this thesis, we highlight [24], which makes use of binary expan-
sion techniques to construct a mixed-integer linear programming (MILP) problem
for assessing a profit-maximizing strategy in day-ahead markets under uncertainty
regarding rival bids. Similarly, [25] proposed an extension in the solution technique
by fixing the quantity bids as the power producer generation capacity.

A deeply relevant issue for practical implementation of any bidding method
is how to represent the behavior of rival competitors. For instance, in [24, 25], a set
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1. INTRODUCTION 13

of scenarios is assumed to be available and the standard risk-neutral stochastic pro-
gramming approach is applied. However, a poor probability description of the states
of nature (e.g., sampled scenarios) may result in a poor or even meaningless deci-
sion policy, consequently exposing the agent to unforeseen and undesirable risks
[26]. This issue is of particular relevance in constructing the probability description
that drives the bidding behavior of a group of agents owing to its complex nature.
For instance, historical records may not accurately describe the future behavior of
rival competitors (e.g., changes in economic status quo of rival companies certainly
alter their aversion towards to risk). This situation is worsened when new players
enter the business, as no information is usually available to provide a reliable evalu-
ation of their strategies. In addition, even in a business in which auctions take place
frequently and periodically, the auction rules/designs and business conditions may
constantly change over time, thus altering the competitors’ strategy. Therefore, we
argue that estimating the underlying stochastic process that drives rival behavior
is a difficult task, which, combined with a scarcity of risk-averse bidding models
existing in technical literature, challenges the practical application of current state-
of-the-art methods.

In this context, robust optimization [27] emerges as an alternative tool for
addressing general decision-making problems involving uncertain parameters the
true probability distribution of which is difficult to evaluate/estimate. In this the-
sis, we leverage on robust optimization techniques to characterize the uncertainty
regarding rival competitors’ behavior and estimation imprecision. On exploring the
modeling of a general polyhedral uncertainty set, a two-stage robust optimization
model with second-state variables representing the auction equilibrium conditions,
such as clearing prices and accepted offers, is proposed for devising a revenue-
maximizing strategic offer under uncertainty in sealed-bid uniform-price auctions.
Structurally, the proposed mathematical model is a trilevel optimization problem. In
the first level, a unique bidding strategy — in the form of price and quantity bids for
each auctioned product — is defined. The second-level problem identifies, within
a pre-specified polyhedral set, a vector of bids for the rival players that creates the
worst adversity for the strategic player’s net revenue. The auction process, modeled
as a third-level optimization problem, is then evaluated to determine the optimal
allocation of products among competitors and the corresponding clearing (uniform)
prices.

It should be noted that the hierarchical structure of the robust optimization
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1. INTRODUCTION 14

problem proposed in this thesis is slightly different from the “standard” trilevel op-
timization problem widely studied in technical literature [28, 29, 30, 31]. In general,
two-stage robust optimization models follow a hierarchical “min-max-min” system
of optimization problems. However, in this thesis, only first- and second-level prob-
lems are linked through the objective function. The third-level problem (solution of
the auction-clearing problem) affects the two upper-level problems by means of its
primal and dual optimal decision variables. Therefore, the mathematical formula-
tion proposed in this thesis can be seen as a particular instance of a bilevel program
with equilibrium constraints (BPEC) [32, 33]. The decision process, however, fol-
lows a two-stage robust optimization rationale. As a result, the proposed formula-
tion can be classified as a two-stage robust mathematical programming with equi-
librium constraints (TSR-MPEC) that differs structurally from previously reported
classical two-stage robust models in the manner in which the third-level solution
affects second- and first-level problems. As a consequence, the current state-of-the-
art literature on theory and algorithms developed for two-stage robust optimization
models cannot be directly applied to the model proposed in this thesis. A solution
methodology based on a set of reformulation procedures and column-and-constraint
generation (CCG) algorithms is thus proposed, allowing practitioners for the use
of commercial MILP solvers to find near-global optimal solutions for the robust-
bidding problem. In the proposed solution methodology, the CCG is applied to
identify a small set of optimality conditions for the third-level problem capable to
represent the auction equilibrium constraints at the optimum solution of the master
(bidding) problem. In the next section, the objectives and contributions of this thesis
are summarized.

1.1 Objectives and Contributions Regarding Existing Literature

The objective of this Ph.D. thesis is to present an alternative methodology to
devise optimal strategic bids in markets endowed with a sealed-bid uniform-price
auction of multiple divisible products. A key source of uncertainty inherent to this
problem is the behavior of rival competitors in the auction. We recognize that a
broad range of uncertainty factors of difficult probabilistic characterization largely
affect the strategies of rival players, thus challenging the estimation of a precise
distribution for rival behavior. In this context, we make use of robust optimization
with polyhedral uncertainty set to tackle this modeling issue.
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1. INTRODUCTION 15

As an example of a practical application of the general framework proposed
in this thesis is the optimal strategic bidding is short-term electricity markets (com-
monly referred to as day-ahead electricity market). Since the beginning of the
deregulation process that took place in most power systems globally in mid 80s,
a vast number of technical works on optimal bidding in day ahead electricity mar-
kets appeared in literature. The contents of research widely spread from a modeling
point-of view to efficient algorithms to solve the problem.

One important stream of research concerns how the strategic player is mod-
eled within the day-ahead electricity auction. Although it is recognized that all
players has an impact in the auction solution, the magnitude of such impact varies
depending on the “size” of the player. More specifically, small-scale power gen-
erators usually have a marginal or even an absent power to alter market solution
towards their own good. Such players are usually called price takers in the litera-
ture. An important result under the assumption that the market is composed only
by price taker agents (e.g., small-scale power generators) is due to Gross and Finlay
[34]. They showed that an optimal bid strategy of a price taker agent is to bid the
unit capacity (as quantity bid) at the marginal cost (price bid). In general, the key
challenge faced by a price taker agent is how to characterize the market price uncer-
tainty and obtain an optimal self-scheduling solution [35]. Among the multitude of
research devoted to this particular modeling framework, we highlight [36, 37, 38]
which applied robust optimization techniques to characterize the market price un-
certainty. On the opposite direction of the price-taker agent hypothesis, we classify
agents that have enough power (ability) to manipulate the market solution as price

makers. Since these players have the possibility to alter the market result towards
their own good, the key challenge faced by price-maker agents is how to model
and obtain an optimal bidding strategy taking into account the impact of their own
offer into the auction solution. Due to this intrinsic difficulty, technical literature
has devoted much less attention to this problem. Two main lines of research ad-
dress the price maker optimal bidding problem. The first one assumes available a
price-responsive function (also referred to as price/quota curve) that links the mar-
ket price to the amount offered by the strategic player. Such approach has been
studied in [39, 40, 41, 42] and represents a simplification of the auction solution
in order to be computationally feasible to assess an optimal bid of a price maker
agent. The other main line of research directly embeds the auction solution into the
optimal bidding problem, representing thus a more realistic modeling approach. We
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1. INTRODUCTION 16

refer to [24, 25, 43] as some of the few works on this modeling structure. In this
thesis, we consider a price maker strategic player in latter modeling approach, i.e.,
we directly embed the auction solution into the optimal bidding problem.

In this modeling context, an important source of uncertainty comes from the
rival player’s behavior in the auction. The standard modeling framework to repre-
sent this uncertainty in the optimal bidding problem is the scenario-based two-stage
stochastic programming [44, 45], as applied in [24, 25, 43]. However, we recog-
nize that the bid of rival competitors are of difficult probabilistic characterization
owing to its complex nature. Therefore, instead of a scenario-based approach, we
leverage on robust optimization techniques. As far as this author is aware, robust
optimization has been applied to the optimal bidding problem only in the context of
a price-taker agent to characterize the market price uncertainty (e.g., [36, 37, 38]).
In a price maker context with the auction dynamics mathematically embedded into
the bidding problem, we identify a gap in the literature and this thesis aims at ad-
dressing this gap.

From a mathematical point-of-view, the structure of the previously reported
optimal bidding strategy models [24, 25, 43] that is close-related to this thesis falls
into the class of mathematical programming with equilibrium constraints (MPEC)
[32]. Many techniques has been studied to handle this type of optimization prob-
lems (see, for instance, [33, 46, 47, 48, 49] and references therein). However, be-
cause of the inclusion of the worst-case metric into the MPEC problem, a new class
of optimization problems emerges in this thesis: the two-stage robust mathemat-
ical programming with equilibrium constraints (TSR-MPEC). As a consequence,
the current state-of-the-art literature on theory and algorithms cannot be directly
applied to address the model proposed in this thesis. Therefore, we construct a so-
lution approach for this new class of problems based on reformulation procedures
and column-and-constraint generation (CCG) algorithms.

In summary, the main objectives and contributions of this thesis are threefold:

1. To provide a novel risk-averse model, based on robust optimization, to devise
the optimal bidding strategy under uncertainty on rivals’ offer in sealed-bid
uniform-price auctions with multiple divisible products. The model considers
an infinite set of scenarios for the rivals’ bid through a user-defined polyhe-
dral uncertainty set. Within this modeling framework, the decision maker is
allowed to control its conservativeness level by means of the uncertainty set
topology without the need of specifying the full probability distribution for
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1. INTRODUCTION 17

the rivals’ bidding strategy.

2. To provide a single-level-equivalent formulation suitable for decomposition
techniques based on available commercial solvers. The complementarity con-
ditions used to ensure auction equilibrium constraints are expressed through
binary relations between dual and slack variables of the third-level problem.
After a series of transformations on the trilevel model and enumeration of
the binary complementarity relations, a single-level-equivalent formulation
with an exponential number of constraints, hereinafter, named single-level-
equivalent exponential formulation, is devised.

3. To develop an efficient solution methodology for the robust bidding model
based on column-and-constraint generation (CCG) algorithm applied to the
single-level-equivalent exponential formulation. The CCG explores the bi-
nary nature identified for the complementarity conditions to avoid the full
enumeration of the exponential set of constraints. In this methodology, a
reduced set of binary relations, sufficient to represent the complementarity
conditions that ensure the auction equilibrium constraints at the optimal bid-
ding strategy, is identified by an oracle and added to a relaxed version of the
problem that can be solved through off-the-shelf commercial solvers.

It is worth stressing that, differently from previously reported works on two-stage
robust optimization, our solution methodology does not employ the CCG algorithm
to iteratively find violated scenarios for the uncertainty factors, which in this thesis
are obtained through continuous variables. In the proposed solution methodology,
the CCG is applied to identify a small subset of optimality conditions for the third-
level model capable to represent the auction equilibrium constraints at the optimum
solution of the master (bidding) problem.

1.2 Organization of this Ph.D. Thesis

This thesis is laid out as follows. Chapter 2 introduces the problem tackled
in this thesis. We begin by introducing the general mathematical formulation of
the auction problem. Then, an optimal bidding strategy model under perfect infor-
mation (full knowledge regarding the uncertain values) is presented and its disad-
vantages for practical implementation is highlighted. To conclude the chapter, we
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1. INTRODUCTION 18

extend the perfect information model to consider uncertainty on rival behavior and
introduce the robust strategic bidding model proposed in this thesis as an instance
of the TSR-MPEC framework.

By recognizing the computational difficulty and non-tractability of the pro-
posed robust bidding model, in Chapter 3, a solution methodology is discussed.
Taking advantage of the particular properties of the auction problem, the trilevel
program is recast as a two-level system of non-linear optimization problems using
Karush-Kuhn-Tucker (KKT) optimality conditions. The sources of non-linearity
existent in the model are handled by combining a set of equations of the KKT sys-
tem and with an exact relaxation of the complementarity conditions using binary
variables. Then, taking advantages of the strong duality theorem, an exponentially-
large single-level optimization problem is derived by enumerating all binary vari-
ables associated with the complementarity conditions of the KKT system. We con-
clude this chapter discussing a CCG-based solution methodology, in witch a suffi-
cient subset of the binary variables are iteratively identified, avoiding thus the full
enumeration of the exponential set of constraints.

In Chapter 4, a numerical study based on electricity trading in day-ahead mar-
kets is presented to highlight the applicability of the proposed robust model. We be-
gin by exploring the particular characteristics of the day ahead trading problem and
present a detailed outline of the proposed algorithm. Then, we assume a particular
format for the rivals’ bid uncertainty set in which a reference bid is considered avail-
able and deviations from this reference are allowed towards the worst-case strategic
player’s net revenue. Such deviations are controlled by an a priori defined conser-
vativeness parameter, measuring the uncertainty observed by the strategic player.
As the reference rival bids, we consider a widely-discussed bidding strategy, the
Nash equilibrium. Within this modeling framework, two case studies are presented.
In the first one, we recognize the difficulty on precisely assess the Nash equilibrium
solution and assume the existence of an imprecision on the equilibrium estimation.
Finally, to conclude the chapter, the second study assumes that the rival players may
not bid the Nash equilibrium and act strategically.

Chapter 5 concludes this thesis and discusses extensions and future research.
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2
Bidding Problem in Auction-Based Markets

Roughly speaking, auctions are constructed under three basic pillars [3]. The
first pillar is its bidding rule. It defines the format of the bids (e.g., open or closed/
sealed bids [50]) and how agents submit them (for example, a single price bid per
product [5] or a general curve linking price to quantity [51, 52]). The second pil-
lar is the definition of a clearing mechanism. Fundamentally, it is specified how the
bids are compared with each other in order to determine the auction winners and the
resource allocation among competitors. In most auction designs, this comparison
is performed by simply ordering the price bids and the most “cheap” players win
the auction. However, in some complex businesses, such as short-term electricity
markets, some constraints may be included in the auction mechanism (e.g., mini-
mum profit requirement, power plant characteristics, or the system topology), thus
distorting the price comparison, which may lead to more “expensive” players win-
ning the auction [19]. Finally, the third pillar is related to the pricing scheme to be
adopted. It establishes the rule to obtain the price that settles the auction (commonly
used schemes are pay-as-bid/discriminatory or uniform price [3, 53, 54]).

In this thesis, the foundation of the business environment is a competitive
market endowed with a sealed-bid uniform-price auction of multiple divisible prod-
ucts. In this environment, agents compete to buy/sell a set of products in a given
market through an auction procedure that settles the bids by defining both the (uni-
form/marginal) price of each product and the corresponding amount due to each
participant. Structurally, each auction participant submits a price and quantity bid
for one of the products to a central agent (known as the auctioneer), and the auction
rules are then applied to settle the bids. Typically, such procedures are aimed at
realizing the optimal distribution of products among competitors, which results in
the greatest social welfare, and are generally implemented through the solution of
optimization problems or supply and demand matching rules [55].

Let (pD, qD) ∈ RND
+ × RND

+ be the price and quantity bids for each of
the ND buyer competitors for a given product, (pS, qS) ∈ RNS

+ × RNS
+ the NS

price and quantity bids from the set of strategic players for various products, and
(pR, qR) ∈ RNR

+ × RNR
+ the price and quantity bids from the rest of the sellers,

hereinafter called rivals, for related products. It is important to clarify that in this
framework, each of the entries of the aforementioned offer vectors is associated
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2. BIDDING PROBLEM IN AUCTION-BASED MARKETS 20

with a specific bid of a given agent for a given product that is being auctioned. Be-
cause the focus of this thesis is to devise an optimal bidding strategy for the strate-
gic player, such an agent is explicitly allowed to make different bids for various
products through different entries of vectors (pS, qS). Nevertheless, the proposed
framework is also capable of considering multi-product bids for rivals and buyers
by choosing appropriated dimensions for the decision vectors and coefficients for
the constraints (2-1)–(2-6). Therefore, the proposed framework comprises a simul-
taneous multi-product auction.

The auction format considered in this thesis follows the social welfare maxi-
mization problem presented in (2-1)–(2-6).

max
xD,xS ,xR,y

p>DxD − p>SxS − p>RxR + p>y y (2-1)

subject to:

ASxS +ARxR −ADxD +Ayy = 0 : λ (2-2)

hS ≤ ISxS ≤HSqS + hS :
(
λS,λS

)
(2-3)

hR ≤ IRxR ≤HRqR + hR :
(
λR,λR

)
(2-4)

hD ≤ IDxD ≤HDqD + hD :
(
λD,λD

)
(2-5)

hy ≤ Iyy ≤ hy :
(
λy,λy

)
(2-6)

In (2-1)–(2-6), the decision vectors xD, xS , and xR represent the number of
products effectively purchased by each buyer (elements of vector xD), as a com-
posite of the sellers’ strategic and rival accepted bids (elements of vectors xS and
xR, respectively). For the sake of generality, we introduce an auxiliary variable
y ∈ RNy to account for all the extra variables required to model the various types of
auction formats, e.g., an item’s deliverability through a constrained network can be
accounted for through such auxiliary variables and related constraints. Moreover,
for clarity and future reference, the Lagrange multipliers of each set of constraints
are specified after colons.

The objective function (2-1) comprises social welfare maximization and is
defined as the difference between the buyer (p>DxD) and seller (strategic (p>SxS)

plus rival (p>RxR)) surpluses [55]. Equation (2-2) represents the products’ balance
constraint. Roughly speaking, constraint (2-2) establishes a relation between the
sold and bought volume of each product in the auction. For instance, as usually
considered in most auction designs, all products sold through the auction process
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2. BIDDING PROBLEM IN AUCTION-BASED MARKETS 21

by strategic and rival players must be bought by a subset of the buyers, i.e., the offer
must meet the demand. Therefore, the matrices AS , AR, and AD are of particular
importance as they link each product (rows) to the corresponding quantity cleared
(columns) by the strategic, rivals, and buyers, respectively. In this context, the La-
grange multipliers (λ ∈ RM) of each balance constraint (2-2) represent the clear-
ing uniform prices (or marginal prices) of each product in the auction1. The three
blocks of constraints (2-3)–(2-5) define the bounds on the buyers’/sellers’ auctioned
amounts. When considering the strategic player constraint (2-3) as an example, it
should be noted that the auctioned amounts effectively sold xS are bounded by the
submitted quantity bid vector qS . Lastly, the constraints (2-6) describe the feasible
region of the auxiliary variable y.

Figure 2.1 depicts the auction process considered in this thesis. Buyers and
sellers submit a set of price and quantity sealed bids to a central auctioneer, which
runs an algorithm to solve the linear programming problem (2-1)–(2-6). The amount
effectively bought and sold by each participant as well as the uniform clearing price
of each product auctioned is then defined and reported back to each participant.

Auction – Market Clearing  
Social Welfare Maximization 

Strategic Player Rival Players 

Auction Equilibrium 

𝐱𝑆 , 𝝀  

Strategic Bid Offer 

𝒑𝑆 , 𝒒𝑆  

Rival Bid Offer 

(𝒑𝑅 , 𝒒𝑅) 
Auction Equilibrium 

𝐱𝑅 , 𝝀  

Buyer Competitors 

Auction Equilibrium 

𝐱𝐷 , 𝝀  

Buyer Bid Offer 

𝒑𝐷, 𝒒𝐷  

Fig. 2.1: Auction scheme considered in this thesis. Buyers and sellers submit a sealed price
and quantity bid to a central agent (auctioneer) that defines the cleared amounts
and a uniform clearing price for each product.

Example 1. An example of an auction structure that fits the general framework

presented in (2-1)–(2-6) is a single inflexible buyer (ND = 1) willing to purchase a

1 We refer to [3, 57, 58] for a general theory on uniform-price auctions.
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given amount d of a single product (M = 1). A set of NS = {1, . . . , NS} strategic

sellers and NR = {1, . . . , NR} rivals compete to supply the buyer’s demand. The

auction process can thus be formulated as follows.

min
xS ,xR,xD

∑
j∈NS

pS,jxS,j +
∑
i∈NR

pR,ixR,i (2-7)

subject to:∑
j∈NS

xS,j +
∑
i∈NR

xR,i − xD = 0; : λ (2-8)

0 ≤ xS,j ≤ qS,j, : (λS,j, λS,j) ∀ j ∈ NS; (2-9)

0 ≤ xR,i ≤ qR,i, : (λR,i, λR,i) ∀ i ∈ NR; (2-10)

xD = d. : λD (2-11)

Structurally, (2-7)–(2-11) represent a standard supply and demand matching prob-

lem (equation (2-8)) where the cleared amounts {xS,j}j∈NS
and {xR,i}i∈NR

are

limited to the respective quantity offers {qS,j}j∈NS
and {qR,i}i∈NR

, respectively —

equations (2-9) and (2-10). Because the buyer declares inflexibility, which would

be equivalent to a very high bidding price, the social welfare maximization is cast

as a total cost minimization problem, where {pS,j}j∈NS
and {pR,i}i∈NR

respectively

represent the price bids of the strategic player and its rivals.

The auction structure presented in (2-7)–(2-11) has been widely used in tech-

nical literature to formulate the short-term electricity economic dispatch problem

in several power systems globally [59, 60]. We will explore this particular auction

format later in this thesis. �

2.1 Optimal Bidding with Perfect Information

The objective of this thesis is to propose an alternative bidding model for
determining an optimal strategy under the uncertainty of a seller competing in a
sealed-bid uniform-price auction with multiple divisible products. Firstly, for any
company to construct an optimal bidding method, it is essential that its objectives
be clearly defined. Several objective measures appear in technical literature, each of
which naturally result in different bidding policies. In practice, private companies
generally seek for profit-maximizing decisions, although other objectives such as in-
creasing market share or total cost reduction are also commonly used. Accordingly,
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assuming a profit-maximizing strategic player, for a given set of price/quantity bids(
pS, qS,pR, qR

)
of both strategic and rival players, let M

(
pS, qS,pR, qR

)
be a

non-empty2 set of optimal points xS and the respective Lagrange multipliers λ of
the auction problem (2-1)–(2-6). More precisely,

M
(
pS, qS,pR, qR

)
=
{

(xS,λ) ∈ RNS × RM
∣∣∣ (xS,λ) solves (2-1)–(2-6)

}
.

(2-12)

Thus, assuming perfect information (a priori known information) regarding the ri-
vals’ and buyer’s strategies, the optimal bidding problem of a profit-maximizing
strategic player can be formulated as follows.

ϕOp(pR, qR) = max
(pS ,qS)∈OS ,

xS ,λ

λ>ASxS − c>SxS − fS(pS, qS) (2-13)

subject to:

(xS,λ) ∈M
(
pS, qS,pR, qR

)
(2-14)

We refer to (2-13)–(2-14) as an optimistic approach. Problem (2-13)–(2-14)
identifies a feasible bid that maximizes the strategic player profit while taking into
account that the amount effectively sold and the respective uniform clearing price
are solutions of the auction problem (2-1)–(2-6). The strategic player profit is com-
posed of three components: (i) the first term is the revenue from the sale of products
on auction; (ii) the second term is a linear production cost term; and (iii) in the third
term, fS translates an additional cost related to the bid (pS, qS). For instance, fS
can represent the cost of participating in the auction (entry fee), some deposit of
guarantees required by the auctioneer, or a cash flow source from various financial
instruments (such as long-term contracts or hedging operations). We highlight that
asAS is a matrix that links an auctioned product to its sold amount, it appears in the
first term of the strategic player revenue. Finally, constraint (2-14) mathematically
embeds the auction results into the optimal bidding problem, and OS defines the
feasible region of the strategic bids. It may comprise budget constraints or logic
relations among products that must be satisfied.

Problem (2-13)–(2-14) lies in the class of mathematical programming with
equilibrium constraints (MPEC) [32, 33]. Although highly intuitive, the bidding

2 In this thesis, for convenience, we will assume that the auction problem (2-1)–(2-6) is always
feasible.
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problem (2-13)–(2-14) may be inadequate for practical implementation owing to its
strong assumption of complete knowledge on competitors’ strategies. Therefore,
next, we present an extension for incorporating uncertainty regarding rival players
bidding strategies.

2.2 Optimal Bidding with Imperfect Information: A Robust Ap-
proach

A key issue with the practical implementation of the optimistic approach
(2-13)–(2-14) is that it is unlikely that an agent would possess perfect informa-
tion regarding the strategic action of its rivals. In practice, bidding decisions are
made under uncertainty. Even in rare cases where market conditions are close to
equilibrium, rivals’ bidding strategies are subject to uncertainty. Parameters such as
fuel prices and opportunity costs are difficult to predict.

In this context, let (p̃R, q̃R) represent the vector of the rivals’ uncertain price/
quantity bids. Thus, an extension of the bidding problem (2-13)–(2-14) to incorpo-
rate the uncertainty regarding rivals’ strategies is presented in (2-15)–(2-16).

max
(pS ,qS)∈OS ,

x̃S ,λ̃

Φ
(
λ̃
>
ASx̃S − c>S x̃S − fS(pS, qS)

)
(2-15)

subject to:

(x̃S, λ̃) ∈M
(
pS, qS, p̃R, q̃R

)
(2-16)

The bidding problem (2-15)–(2-16) is a two-stage nonlinear optimization model
under uncertainty. In this framework, Φ is a functional that measures the certainty
equivalent for the strategic player. Hence, an optimal bidding policy is a point in the
feasible bidding set OS that maximizes the certainty equivalent of the net revenue
obtained in the auction.

Figure 2.2 illustrates the uncertain two-stage bidding environment for a fi-
nite sample space Ω, the elements of which are called scenarios for nomenclature
purposes. For a given bid (pS, qS) ∈ OS of the strategic player, each scenario of
the rivals’ bid (p

(ω)
R , q

(ω)
R ) implies in an auction outcome (market equilibrium), i.e.,

a uniform price and amount sold by the strategic player (λ(ω),x
(ω)
S ). The uncer-

tainty regarding the rivals’ actions is then translated into an uncertain net revenue(
λ̃
>
ASx̃S − c>S x̃S − fS(pS, qS)

)
measured using Φ.
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Uncertain Rival Bidding 

Evaluation of 
Uncertain 
Revenue  

 
Φ ⋅  

Scenario 𝜔1 

Scenario 𝜔2 

Scenario 𝜔 Ω  
Market Clearing 

Scenario 𝜔 Ω  

Market Clearing 

Scenario 𝜔2 

Market Clearing 

Scenario 𝜔1 

𝒑𝑅
𝜔1 , 𝒒𝑅

𝜔1  

𝒑𝑅
𝜔2 , 𝒒𝑅

𝜔2  

𝒑𝑅

𝜔 Ω , 𝒒𝑅

𝜔 Ω  

Strategic Bidding 

Risk-adjusted revenue maximization 

𝐱𝑆

𝜔 Ω , 𝝀 𝜔 Ω  

𝐱𝑆
𝜔2 , 𝝀 𝜔2  

𝐱𝑆
𝜔1 , 𝝀 𝜔1  

Φ 𝝀 𝑇𝑨𝑆𝐱 𝑆 − 𝒄𝑆
𝑇𝐱 𝑆 − 𝑓 𝒑𝑆, 𝒒𝑆  

⋮ ⋮ ⋮ 
⋮ 

𝒑𝑆, 𝒒𝑆 ∈ 𝒪𝑆 

⋮ 

Fig. 2.2: Uncertain two-stage bidding environment with |Ω| probable scenarios of rival
bids.

As is generally the case in two-stage stochastic problems, a joint probability
distribution function is assumed to be available for the uncertain parameters, in this
case, (p̃R, q̃R). However, an adequate probabilistic description of the bidding be-
havior of a set of competing agents involves the characterization of the stochastic
behavior of several variables that are difficult to estimate. Owing to this modeling
difficulty, we propose an alternative approach that makes use of a set-based uncer-
tainty representation for the rivals’ bid, namely, robust optimization [27]. A worst-
case analysis for assessing the optimal bidding strategy is thus performed with the
aim of improving the robustness of the strategic player bid against unexpected ri-
vals’ strategies and estimation imprecision.

LetOR denote a polyhedral uncertainty set. In the robust-optimization frame-
work, the uncertainty set comprises all scenarios that the decision maker requires to
protect against. The proposed robust bidding model is thus presented as follows:

ϕ∗ = max
(pS ,qS)∈OS

−fS(pS, qS) +

{
min

(pR,qR)∈OR
xS ,λ

λ>ASxS − c>SxS

subject to:

(xS,λ) ∈M
(
pS, qS,pR, qR

)}
. (2-17)

Problem (2-17) is a trilevel optimization problem. Structurally, the first level
(outer maximization problem) defines, within a set of feasible bids, the bid that
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maximizes the worst-case net revenue of the strategic player in the auction. The
second-level problem (inner minimization model) then finds, within the set of feasi-
ble bids for the rivals ((pR, qR) ∈ OR), the scenario that creates the worst adversity
for the strategic player’s net revenue. Finally, the worst-case scenario for the net rev-
enue comprises auction equilibrium outcomes such as clearing prices and auctioned
quantities, which are obtained by using the optimum set of the third-level problem
(2-1)–(2-6), represented by M

(
pS, qS,pR, qR

)
. In this context, an optimal solu-

tion to (2-17) is a bidding strategy that maximizes the worst-case net revenue in the
auction.

Figure 2.3 depicts the trilevel model proposed in this thesis. It should be noted
that, in general, the optimal setM

(
pS, qS,pR, qR

)
comprises multiple points (see

[61, 62]). Therefore, by virtue, a robust bidding strategy should consider a pes-
simistic equilibrium point withinM

(
pS, qS,pR, qR

)
in order to impose a certain

level of robustness against degenerated clearing prices. In contrast to previously
reported works, the model (2-17) identifies the worst-case auction result (clearing
price and auctioned quantities) when evaluating the net revenue for the strategic
player.

Optimal Strategic Bidding 

Net Revenue Maximization 

Uncertainty – Rival Bidding 

Worst-Case Bid 

𝒑𝑆, 𝒒𝑆  

Auction – Market Clearing 

Equilibrium Constraints 

1st Level 

𝒑𝑅 , 𝒒𝑅  

𝝀𝑇𝑨𝑆𝐱𝑆 − 𝒄𝑆
𝑇𝐱𝑆 

min
 

 𝝀𝑇𝑨𝑆𝐱𝑆 − 𝒄𝑆
𝑇𝐱𝑆  

2nd Level 

3rd Level 

Fig. 2.3: Hierarchical structure of the proposed robust (three-level) bidding problem.

Following its mathematical structure, (2-17) is a particular instance of the
TSR-MPEC that cannot be directly solved through available commercial solvers.
To overcome this issue, in the next section, we present a reformulation procedure
that transforms (2-17) into a large-scale single-level mathematical programming
problem and an efficient solution approach based on a CCG algorithm.
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3
Solution Approach: A Column and Constraint
Generation Algorithm

The proposed robust bidding problem (2-17) presented in Section 2.2 is a
three-level system of optimization problems not suitable for direct implementa-
tion on commercial solvers. The main goals of this chapter are thus twofold: 1)
to present a single-level equivalent exponential formulation for the robust bidding
problem (2-17), and 2) to develop a CCG-based algorithm capable of efficiently
identifying a reduced set of complementarity conditions that are sufficient for rep-
resenting equilibrium constraints at the optimal bidding strategy.

3.1 Single-level Equivalent Formulation with Exponential Num-
ber of Constraints

The auction problem (2-1)–(2-6) is a linear and continuous programming
problem. Thus, we can conveniently represent the setM

(
pS, qS,pR, qR

)
of the so-

lution points using its Karush–Kuhn–Tucker (KKT) optimality conditions1. There-
fore, the trilevel problem (2-17) can be recast as a bilevel programming problem as
follows:

ϕ∗ = max
(pS ,qS)∈OS

−fS(pS, qS) +

{
min

(pR,qR)∈OR,
xS ,xR,xD,y,λ,
λS ,λS ,λR,λR,

λD,λD,λy,λy

λ>ASxS − c>SxS (3-1)

subject to:

ASxS +ARxR −ADxD +Ayy = 0 (3-2)

hS ≤ ISxS ≤HSqS + hS (3-3)

hR ≤ IRxR ≤HRqR + hR (3-4)

hD ≤ IDxD ≤HDqD + hD (3-5)

hy ≤ Iyy ≤ hy (3-6)

1 We refer to [63] and [64] for a complete discussion and mathematical properties regarding this
transformation.
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p>D − λ>AD − λ
>
DID + λ>DID = 0> (3-7)

− p>S + λ>AS − λ
>
S IS + λ>S IS = 0> (3-8)

− p>R + λ>AR − λ
>
RIR + λ>RIR = 0> (3-9)

p>y + λ>Ay − λ
>
y Iy + λ>y Iy = 0> (3-10)

λ
>
S

(
HSqS + hS − ISxS

)
= 0 (3-11)

λ>S

(
ISxS − hS

)
= 0 (3-12)

λ
>
R

(
HRqR + hR − IRxR

)
= 0 (3-13)

λ>R

(
IRxR − hR

)
= 0 (3-14)

λ
>
D

(
HDqD + hD − IDxD

)
= 0 (3-15)

λ>D

(
IDxD − hD

)
= 0 (3-16)

λ
>
y

(
hy − Iyy

)
= 0 (3-17)

λ>y

(
Iyy − hy

)
= 0 (3-18)

λS,λS,λR,λR,λD,λD,λy,λy ≥ 0

}
.

(3-19)

Problem (3-1)–(3-19) is a two-level system of optimization problems with comple-
mentarity constraints [46] in the inner-level problem. Owing to a bilinear product of
continuous variables (λ>ASxS) in the second-level objective function (3-1) and the
complementarity constraints (3-11)–(3-18), the second-level problem is a nonlinear
optimization model.

To address the bilinear product of continuous variablesλ>ASxS in the second-
level objective function (3-1), we follow a procedure similar to that discussed in
[25]. The first step is to multiply xS to the right expression (3-8), which results in

λ>ASxS = p>SxS + λ
>
S ISxS − λ>S ISxS. (3-20)

Then, note that from equation (3-11),

λ
>
S ISxS = λ

>
SHSqS + λ

>
ShS. (3-21)
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Also, from equation (3-12),

λ>S ISxS = λ>ShS. (3-22)

Finally, combining (3-20) with (3-21) and (3-22), we have

λ>ASxS = p>SxS + λ
>
SHSqS + λ

>
ShS − λ>ShS. (3-23)

Therefore, for a given set of first-level variables (pS, qS), the objective function
(3-1) can be written as a linear function of the second-level decision variables.

Another source of nonconvexity in the second-level problem (3-1)–(3-19) can
be found in the complementarity constraints (3-11)–(3-18) of the KKT conditions
of the problem (2-1)–(2-6). Several works in the technical literature discuss new
reformulations and algorithms for handling this type of constraint (see [46, 47, 48,
49] and references therein). In this thesis, we use the technique proposed in [47]
to replace the usual bilinear complementarity conditions by a set of mixed-integer
linear constraints.

Take, for instance, the complementarity condition (3-11); all other comple-
mentarity constraints (3-12)–(3-18) follow the same rationale. If µS ∈ {0, 1}NS is
a binary vector, the set of feasible primal and dual points defined by

A
(
HS, qS,hS, IS, US

)
,

{
(λS,xS) ∈ RNS × RNS

∣∣∣∣∣
λ
>
S

(
HSqS + hS − ISxS

)
= 0

ISxS ≤HSqS + hS

0 ≤ λS ≤ 1NS
US

}
, (3-24)

can be equivalently obtained as follows:

A
(
HS, qS,hS, IS, US

)
=

{
(λS,xS) ∈ RNS × RNS

∣∣∣∣∣ ∃ µS ∈ {0, 1}NS ;

0 ≤HSqS + hS − ISxS ≤ µSUS

0 ≤ λS ≤ (1NS
− µS)US

}
. (3-25)
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Essentially, the binary vector µS “chooses” if the primal or dual constraints
will be active, thus ensuring the complementarity condition. In (3-24), US is a
constant large enough to ensure relaxed primal constraints and to comprise all the
values of the Lagrangian multipliers. This requirement does not represent an issue
since problem (2-1)–(2-6) is assumed always feasible, i.e., the auction is assumed
to always have a solution. For instance, in practical applications, we can ensure
feasibility by means of deficit variables representing the auction imbalance between
supply and demand. This is a requirement for disjunctive constraints in (3-25).

By using this equivalence and the previously derived relation (3-23), the bid-
ding problem proposed in this thesis resumes to the following mixed-integer two-
level system of optimization problems:

ϕ∗ = max
(pS ,qS)∈OS

−fS(pS, qS) +

{
min

(pR,qR)∈OR,
xS ,xR,xD,y,λ,
λS ,λS ,λR,λR,

λD,λD,λy,λy,
µS ,µS

,µR,µR
,

µD,µD
,µy,µy

p>SxS + λ
>
SHSqS + λ

>
ShS −

λ>ShS − c>SxS

(3-26)

subject to:

ASxS +ARxR −ADxD +Ayy = 0 (3-27)

p>D − λ>AD − λ
>
DID + λ>DID = 0> (3-28)

− p>S + λ>AS − λ
>
S IS + λ>S IS = 0>

(3-29)

− p>R + λ>AR − λ
>
RIR + λ>RIR = 0>

(3-30)

p>y + λ>Ay − λ
>
y Iy + λ>y Iy = 0> (3-31)

(λS,xS) ∈ A(HS, qS,hS, IS, US) (3-32)

(λS,xS) ∈ A(0,0,−hS,−IS, US) (3-33)

(λR,xR) ∈ A(HR, qR,hR, IR, UR) (3-34)

(λR,xR) ∈ A(0,0,−hR,−IR, UR) (3-35)

(λD,xD) ∈ A(HD, qD,hD, ID, UD) (3-36)

(λD,xD) ∈ A(0,0,−hD,−ID, UD) (3-37)

(λy,y) ∈ A(0,0,hy, Iy, Uy) (3-38)
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(λy,y) ∈ A(0,0,−hy,−Iy, Uy)

}
. (3-39)

Problem (3-26)–(3-39) is a BPEC and is, thereby, not suitable for off-the-
shelf commercial solvers. To complete the development and achieve a single-level
equivalent formulation, (3-26)–(3-39) is presented in its compact form as follows:

ϕ∗ = max
zU∈OS

−fS(zU) + min
zL≥0
u∈B

{
g>zL + z>UBzL

∣∣∣ LzL ≥ EzU + Fu+ b
}
.

(3-40)

The set of first-level decision variables of (3-26)–(3-39) is denoted by zU in (3-40),
and the set of binary and continuous variables of the second-level problem are de-
noted by u and zL, respectively. If we let B denote the set of all binary vectors with
the dimension of vector u, i.e., u ∈ B = {0, 1}2NS+2NR+2ND+2Ny , then problem
(3-26)–(3-39) can be manipulated as follows:

ϕ∗ = max
zU∈OS

−fS(zU) + min
zL≥0
u∈B

{
g>zL + z>UBzL

∣∣∣ LzL ≥ EzU + Fu+ b
}

(3-41)

= max
zU∈OS

−fS(zU) + min
u∈B

min
zL≥0

{
g>zL + z>UBzL

∣∣∣ LzL ≥ EzU + Fu+ b
}

(3-42)

= max
zU∈OS

−fS(zU) + min
u∈B

max
θ≥0

{
θ>
(
EzU + Fu+ b

) ∣∣∣ L>θ ≤ g +B>zU

}
(3-43)

= max
η,zU

−fS(zU) + η (3-44)

subject to:

η ≤ min
u∈B

max
θ≥0

{
θ>
(
EzU + Fu+ b

) ∣∣∣ L>θ ≤ g +B>zU

}
; (3-45)

zU ∈ OS, (3-46)

where θ is the dual variable associated with the constraint LzL ≥ EzU + Fu+ b

in (3-42).
Because B is a binary set, the minimization problem in (3-45) can be replaced

by an explicit enumeration of all the possible values of u ∈ B as follows:
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ϕ∗ = max
η,zU

−fS(zU) + η (3-47)

subject to:

η ≤ max
θu≥0

{
θ>u

(
EzU + Fu+ b

) ∣∣∣ L>θu ≤ g +B>zU

}
, ∀ u ∈ B;

(3-48)

zU ∈ OS. (3-49)

In (3-47)–(3-49), we explicitly identify θ with its corresponding binary vector u
using the notation θu. In other words, for each u ∈ B, a different θu results from
solving the linear programming problem maxθu≥0

{
θ>u

(
EzU+Fu+b

) ∣∣∣L>θu ≤
g +B>zU

}
.

Finally, because the maximization problems in (3-48) are all independent of
each other, the variables θu can be jointly coordinated at the upper maximiza-
tion problem, thus resulting in the following single-level equivalent formulation
for problem (3-40):

ϕ∗ = max
η,zU ,θu

−fS(zU) + η (3-50)

subject to:

η ≤ θ>u
(
EzU + Fu+ b

)
, ∀ u ∈ B; (3-51)

L>θu ≤ g +B>zU , ∀ u ∈ B; (3-52)

θu ≥ 0, ∀ u ∈ B; (3-53)

zU ∈ OS. (3-54)

Problem (3-50)–(3-54) is a single-level optimization problem with an expo-
nential set of constraints. In the next section, a decomposition algorithm based on
CCG is developed to circumvent the dimensionality course present in the combina-
torial nature of (3-50)–(3-54) owing to the cardinality of B.

Remark 1. We recognize that problem (3-50)–(3-54) is non-convex owing to the

bilinear product in equation (3-51). Nevertheless, in practice, most bidding rules

impose a discrete set of bids. For instance, price bids are subject to cents precision

and quantities are usually discretized in lots. Therefore, a binary expansion scheme

can be employed to represent the strategic bidding, and the bilinear terms can be
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recast into linear expressions using disjunctive constraints (see [24] for an applica-

tion in energy). Within a linear framework, off-the-shelf commercial mixed-integer

linear programming (MILP) solvers, e.g., Xpress, Cplex, and Gurobi, can be used

to solve the master problem.

Nonetheless, we also highlight that bilinear programming has been widely

studied in technical literature. Several efficient reformulations and algorithms have

been proposed for tackling this issue (see, for instance, [65, 66, 67, 68] and the

references therein). Furthermore, several commercial solvers, e.g., Xpress, Knitro,

and Mosek, have efficient implementations for different classes of mathematical

problems with bilinear terms that can be used in practical applications. Therefore,

there exists a wide range of available algorithms that can be used to solve problem

(3-50)–(3-54).

3.2 Column-and-Constraint Generation Algorithm

Problem (3-50)–(3-54) is a large-scale optimization problem because of the
combinatorial nature of B. Nevertheless, the structure of this problem precisely
matches the structure suitable for the CCG algorithm. More specifically, let z∗U be
the optimal value for zU in (3-50)–(3-54). For future reference, we refer to (3-50)–
(3-54) as the full problem. We then consider any subset Bk ⊂ B and present the
following optimization problem:

ϕk = max
η,zU ,θu

−fS(zU) + η (3-55)

subject to:

η ≤ θ>u
(
EzU + Fu+ b

)
, ∀ u ∈ Bk; (3-56)

L>θu ≤ g +B>zU , ∀ u ∈ Bk; (3-57)

θu ≥ 0, ∀ u ∈ Bk; (3-58)

zU ∈ OS. (3-59)

Because Bk ⊂ B, we known that ϕk ≥ ϕ∗, thereby, an upper bound for the
full problem. Hereinafter, we refer to problem (3-55)–(3-59) as the master problem

and zU,(k) as the respective optimal value for zU in this problem. In addition, we

DBD
PUC-Rio - Certificação Digital Nº 1412778/CA



3. SOLUTION APPROACH: A COLUMN AND CONSTRAINT
GENERATION ALGORITHM 34

consider the following mixed integer linear programming problem:

ϕ
k

= −fS(zU,(k)) + min
zL≥0,u∈B

{
g>zL + z>U,(k)BzL

∣∣∣ LzL ≥ EzU,(k) + Fu+ b
}
.

(3-60)

Because zU,(k) ∈ OS and may not be the optimal solution for the full problem,
ϕ
k
≤ ϕ∗ holds. Thus, ϕ

k
is a lower bound for the full problem. Moreover, problem

(3-60) identifies uk, namely the optimal value of u, which minimizes the second
term of the expression (3-50) for a fixed vector zU,(k). Therefore, henceforth, such
a problem is called an oracle.

The CCG algorithm proposed in this thesis is summarized in algorithm 1.

Algorithm 1 Column-and-Constraint Generation Algorithm

1: Initialization: UB ← +∞, LB ← −∞, k ← 1 and ε(> 0).
2: Choose an initial subset Bk ⊂ B.
3: while UB − LB ≥ ε do
4: Solve master problem (3-55)–(3-59) with Bk. Store zU,(k) and set UB ←
ϕk;

5: Solve oracle problem (3-60) using zU,(k). Store uk and set LB ← ϕ
k
;

6: Make Bk+1 ← Bk ∪ {uk}. Set k ← k + 1;
7: end-do
8: Return zU,(k−1).
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4
Case Study: Bidding in Day-Ahead Markets

One of the main applications of the methodology constructed in this thesis is
to devise optimal bidding strategies in electricity markets. Since the 1980s, electric-
ity markets have been widely fostered in most countries around the globe. Vertical
and government-owned companies were unbundled aiming at designing a new in-
dustry structure with significant level of competition. Although the features and reg-
ulatory properties vary in each country, its backbone comprises a short-term market
(usually called day-ahead market) in which energy is traded through a sealed-bid
uniform-price auction of (multiple) divisible products.

In this chapter, we analyze the effectiveness of the proposed bidding strategy
in a day-ahead electricity market context. We highlight that auction designs for
electricity products have been significantly studied since the 1980s reforms. Nev-
ertheless, a common representation is a single inelastic/inflexible demand, playing
the role of a buyer competitor, purchasing electricity from a group of power com-
panies in a single-node network. In this context, the mathematical formulation of
the day-ahead auction follows (2-7)–(2-11) in Example 1 and the proposed bidding
model can be stated as

ϕ∗ = max
(pS ,qS)∈OS

−fS(pS, qS) +

{
min

(pR,qR)∈OR
xS ,λ

∑
j∈NS

(λ− cS,j)xS,j

subject to:

(xS, λ) ∈M
(
pS, qS,pR, qR

)}
, (4-1)

whereM
(
pS, qS,pR, qR

)
=
{

(xS, λ) ∈ RNS × R
∣∣∣ (xS, λ) solves (2-7)–(2-11)

}
.

We will assume throughout this section that fS(pS, qS) = 0, ∀ (pS, qS) ∈ OS , for
convenience. In this case study, we consider the following integer box-constrained
set of feasible bids for the strategic player.

OS =

{
(pS, qS) ∈ ZNS × ZNS

∣∣∣∣∣ 0 ≤ pS,j ≤ p̄S,j, ∀ j ∈ NS;

0 ≤ qS,j ≤ q̄S,j, ∀ j ∈ NS;

}
, (4-2)

with {p̄S,j}j∈NS
denoting a cap on price bids and {q̄S,j}j∈NS

the unit’s capacity.
We highlight that under this integrality assumption, the bilinear product dis-
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cussed on Remark 1 can be recast as a mixed-integer linear programming problem
using exact linearization schemes via disjunctive inequalities [24, 68]. For com-
pleteness, in Appendix A, we carefully adapt the solution methodology presented
in Chapter 3 to this particular instance of strategic bidding in day-ahead electricity
markets.

Next, we present a set of numerical studies to illustrate the applicability of
the proposed robust model. All numerical results derived in this chapter were ob-
tained using the formulation in Appendix A, using a Dell Precision R© T7600 Xeon R©

E5-2687W 3.10 GHz with 128 GB of RAM machine, with Xpress-MP 7.9 under
MOSEL.

4.1 Algorithm Outline

This section is devoted to apply the iterative algorithm presented in Section
3.2 to the day-ahead bidding problem (4-1). We assume three power producers (one
strategic and two rivals) competing to meed a single demand offer. With the purpose
to avoid infeasibility in the auction process, i.e., to ensure that exists enough offer
to cover demand, a fourth generator, hereinafter called deficit generator, bidding the
highest price among all competitors and offering enough power capacity to cover
demand is also considered. For simplicity, we will assume perfect information on
rival bids and the a priori known vector of rival bids will be denoted by (p̂R, q̂R).
In this framework, the proposed bidding model resumes to:

max
(pS ,qS)∈OS

{
min
xS ,λ

∑
j∈NS

(λ− cS,j)xS,j

∣∣∣∣∣ (xS, λ) ∈M
(
pS, qS, p̂R, q̂R

)}
. (4-3)

Table 4.1 resumes the a priori known price and quantity bids of rival players
in this 3-player competition example. For expository purposes, the strategic player
can bid at most q̄S = 100 MWh with p̄S = cS = 0 $/MWh. A demand of d = 100

MWh is assumed on the buyer counterpart.
The net revenue of the strategic player as a function of its quantity bid is de-

picted on Figure 4.1. Note that it is a non-convex discontinuous piece-wise function.
By inspection, the optimal bid is to offer 19 MWh of energy into the auction with a
total revenue of $19000. Intuitively, this solution can be interpreted by noting that
19 MWh is the largest quantity bid that makes the deficit generator the marginal one.

DBD
PUC-Rio - Certificação Digital Nº 1412778/CA



4. CASE STUDY: BIDDING IN DAY-AHEAD MARKETS 37

Tab. 4.1: A priori known price and quantity bids of rival players.

p̂R q̂R
($/MWh) (MWh)

Rival #1 50.00 40

Rival #2 100.00 40

Deficit 1000.00 100

Thereby, the uniform settling price is precisely the deficit price bid, i.e., λ = 1000

$/MWh.

Fig. 4.1: Net revenue of the strategic player as a function of quantity bid.

To follow the algorithm’s intuition it is essential to first understand the par-
ticular pattern of the net revenue function – specifically the correspondence among
each piece-wise linear component and the auction solution. Fundamentally, each
linear component recovers a different solution of the auction problem. For in-
stance, the first linear piece, the steepest one, corresponds to an auction solution
in which the deficit price bid defines the uniform settling price. Indeed, take the
point qS = 10 MWh as an example. Then, by solving the problem (2-7)–(2-11), the
strategic player is fully dispatched, i.e., xS = 10 MWh. Moreover, the other rivals
are also fully dispatched with xR,1 = xR,2 = 40 MWh. However, a total demand
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of 10 MWh still remain unmet, thus covered by the deficit generator. In this con-
text, the dual variable of the supply-demand equation (2-8) of the day-ahead auction
problem is exactly the deficit’s bidding price 1000 $/MWh. In Fig. 4.2, an usual
pictorial representation of the auction solution is presented in the format of supply-
demand aggregate function [3] for the case where qS = 10. A similar rationale can
be applied for the other linear components. Second and third parts are associated
to, respectively, rival #2 and rival #1 as marginal producers.

Energy (MWh)

Price ($/MWh) Demand (MWh)

Supply (MWh)

1000

100

50

10 50 90 100

Fig. 4.2: Aggregated supply-demand function for a strategic player bid of qS = 10 MWh.

Following this rationale, the algorithm iteratively “recovers” each piece of
the strategic player net revenue function. More specifically, the master problem
obtains a new feasible bid from a linear component that had not been accessed
in previous iterations. Then, the oracle finds the (worst-case) auction equilibrium
correspondent to the given strategic bidding. Such information is summarized in
the binary variables µ that translate the status of the complementarity constraints
in the reformulation procedure. By introducing the set of constraints in the master
problem with fixed values of µ, the correspondent linear piece is recovered and
the search for a new piece resumes. The algorithm then converges when all linear
components are retrieved.
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For expository purposes, next we present a numerical step-by-step solution
considering the competing environment of Table 4.1. Following the algorithm de-
scription, for the first iteration k = 1, we begin with an empty binary subset B1 = ∅
for convenience. In this case, the “recovered” strategic player net revenue function
is empty (see the first picture of Fig. 4.3 – in the northwest side). Solving the master
problem with B1 gives a strategic bid of qS = 0 MWh. Then, running the oracle,
we identify the deficit generator as the marginal player, defining thus the uniform
settling price λ = 1000 $/MWh. The optimal binary variables for the first iteration
are shown in the second line of Table 4.2, columns 3–10. Since both rival #1 and ri-
val #2 are fully dispatched, the respective dual variables λR,1 and λR,2 may assume
values different from zero as indicated by µR,1 = µR,1 = 0. On the other hand,
λR,1 = λR,2 = 0 and µ

R,1
= µ

R,1
= 1. Additionally, the deficit generator is par-

tially dispatched. Thereby, λR,def = λR,def = 0 and µR,def = µ
R,def

= 1. Finally, it is
important to highlight that the solution for the strategic player is clearly degenerate.
All binary combinations for µ

S
and µS are optimal. However, the particular choice

of µ
S

= µS = 0 outcomes an interesting result with respect to the strategic player
net revenue construction. Basically, this solution implies that the only feasible bid
and dispatch for the strategic player in the master problem are qS = xS = 0. Thus,
after one iteration, the recovered net profit function is a single point at qS = 0 (see
the second graph of Fig. 4.3 – in the northeast side).

Carrying on with the algorithm, we make B2 = ∅ ∪ {[0, 0, 0, 1, 0, 1, 1, 1]}.
Running the master problem with B2, the correspondent optimal solution is qS =

100 MWh. Solving the oracle with qS = 100, the marginal producer is exactly the
strategic player, since it offers enough energy to cover demand at the lowest price
among all competitors. Thus λ = 0 $/MWh. The optimal binary vector is presented
in the third line of Table 4.2, columns 3–10. Performing a similar analysis done for
the first iteration regarding the binary variables, we conclude that, along with the
single point recovered in the first iteration, a new point is added to the net revenue
function at qS = 100 MWh (see the third graph of Fig. 4.3 – in the center-west
side).

In the third iteration, the strategic bid obtained from solving the master prob-
lem is qS = 50 MWh. Consequently, the marginal producer is rival #2 with λ = 100

$/MWh. In this context, a full range of bids qS ∈ [20, 60] MWh is recovered from
the same complementarity conditions and a linear component, as presented in the
center-east side of Figure 4.3, is obtained. Moving on with the algorithm, the other
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two linear pieces are recovered in the following two iterations (see the two graphs
in the bottom of Figure 4.3). Finally, in the sixth iteration, the algorithm converges
since the net revenue function is completely constructed, resulting in an optimal bid
of q∗S = 19 MWh.

Tab. 4.2: Step by step solutions of the proposed algorithm applied to the day-ahead bidding
problem.

Iteration qS µS µ
S

µR,1 µ
R,1

µR,2 µ
R,2

µR,def µ
R,def

λ

1 0 0 0 0 1 0 1 1 1 1000

2 100 0 1 1 0 1 0 1 0 0

3 50 0 1 0 1 1 1 1 0 100

4 80 0 1 1 1 1 0 1 0 50

5 10 0 1 0 1 0 1 1 1 1000

6 19 0 1 0 1 0 1 1 1 1000

It is important to mention that, although we outline the algorithm under a
perfect competition environment, the idea of iteratively recover the net revenue
function remains when we assume uncertainty on rivals bids. Furthermore, from
a computational point-of-view, note that a total of 28 = 256 potential iterations may
be performed by the enumeration of all complementarity constraints. However,
only six of them were indeed needed. This pattern were observed in all numerical
studies analyzed in this thesis and is also an intrinsic characteristic of the proposed
algorithm.
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 Fig. 4.3: Construction of the strategic player net revenue function.

4.2 Bidding under Imperfect Information

In this second numerical experiment, we analyze the performance of the pro-
posed robust model under uncertainty on rival bids. We assume a strategic player
owning two power units (NS = 2) whose characteristics are presented on Table 4.3.

Tab. 4.3: Characteristics (marginal costs cS ($/MWh); capacity q̄S (MWh); and price cap
p̄S ($/MWh)) of the units owned by the strategic player.

Cost Capacity Price Cap
($/MWh) (MWh) ($/MWh)

Unit #1 10.00 50 60.00

Unit #2 30.00 20 60.00
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To characterize the uncertainty on rival behavior, we start by assuming avail-
able an estimative of the rival bids – hereinafter referred to as a nominal value. In
this section, we make use of Nash equilibrium1 as a nominal value. However, since
an accurate estimation of a joint probability distribution of market conditions that
induce the equilibrium is a hard task, especially in a time-varying setting where de-
mand, generators, fuel prices and availability, economical and climate conditions,
etc., are constantly changing, deviations from the nominal equilibrium point are
very likely to be observed [9, 69]. That being so, we explore two sources of devia-
tion: (i) an imprecision over the equilibrium point evaluation and (ii) an uncertainty
related to the rival players’ strategic action.

Regardless of the deviation nature, the rival players’ uncertainty set can be
formulated as follows:

OR =

{
(pR, qR) ∈ RNR

+ × RNR
+

∣∣∣ (4-4)

∃ (v+,v−,w+,w−) ∈ R4·NR ; (4-5)

pR,i = p̂R,i + ∆+
pi
v+
i −∆−piv

−
i , ∀ i ∈ NR; (4-6)

qR,i = q̂R,i + ∆+
qi
w+
i −∆−qiw

−
i , ∀ i ∈ NR; (4-7)∑

i∈NR

(v+
i + v−i + w+

i + w−i ) ≤ Γ; (4-8)

0 ≤ v+
i , v

−
i , w

+
i , w

−
i ≤ 1 ∀ i ∈ NR;

}
. (4-9)

In (4-4)–(4-9), (p̂R, q̂R) represents nominal rivals’ bid. Deviations around these
values are controlled by a user-defined conservativeness (or risk-averseness) pa-
rameter Γ, that defines a joint budget for total deviation. The magnitude of positive
and negative price deviation is given by ∆+

p and ∆−p , respectively. A similar struc-
ture is carried out for quantity bids. We highlight that (4-4)–(4-9) is a polyhedral
set in (pR, qR), thus suitable for the solution approach devised in section 3.

In this case study, we consider 14 rival players (NR = 14) and a total demand
of d = 195 MWh on the buyer counterpart. As usual, the set of rival players is
divided into price makers and price takers [70]. We assume 4 price makers and 10
price takers. For nomenclature purposes, the set of price makers will be denoted as
N (PM)
R and the set of price takers as N (PT)

R , with NR = N (PM)
R ∪N (PT)

R .
Typically, the influence of price maker agents on market prices is achieved by

1 A set of bids is said to be a Nash equilibrium if no agent can improve its profits by modifying
unilaterally its own bid while the remaining agents offer the equilibrium [6].

DBD
PUC-Rio - Certificação Digital Nº 1412778/CA



4. CASE STUDY: BIDDING IN DAY-AHEAD MARKETS 43

strategically defining the quantity being offered. Therefore, a widely studied format
of Nash equilibrium is the so-called Nash-Cournot equilibrium [70, 71], i.e., a Nash
equilibrium in which the set of strategies is composed only by quantity bids and the
price bids are fixed on marginal costs (Cournot competition). Formally, the set of
strategies (Π) to characterize the Nash-Cournot equilibrium considered in this case
study is presented in (4-10)–(4-13).

Π =

{(
q(eq)
S , q(eq)

R

)
∈ ZNS × ZNR

∣∣∣∣ (4-10)

0 ≤ q(eq)
S,j ≤ q̄S,j, ∀ j ∈ NS; (4-11)

q
R,i
≤ q(eq)

R,i ≤ q̄R,i, ∀ i ∈ N (PM)
R ; (4-12)

q(eq)
R,i = q̄R,i, ∀ i ∈ N (PT)

R ;

}
, (4-13)

with q
R

denoting a minimum required generation. We highlight that, for the set
of price taker agents, since the price bids are fixed on the respective marginal cost
and the quantity bid is also fixed on the capacity, the resulting Nash equilibrium is
an optimal bid. A similar method described in [10] is used to evaluate the equilib-
rium. Table 4.4 presents the characteristics of each rival player considered in this
numerical study.

Tab. 4.4: Characteristics of each rival player: minimum generation q
R

(MWh); capacity
q̄R (MWh); and marginal cost cR ($/MWh).

Price q
R

q̄R cR Price q
R

q̄R cR

Maker (MWh) (MWh) ($/MWh) Taker (MWh) (MWh) ($/MWh)
#1 10 40 60.00 #1 0 2 26.00
#2 20 60 40.00 #2 0 3 48.00
#3 5 40 45.00 #3 0 2 28.00
#4 10 50 15.00 #4 0 3 35.00

#5 0 2 39.00
#6 0 2 32.00
#7 0 2 49.00
#8 0 3 54.00
#9 0 3 29.00
#10 0 3 28.00
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4.2.1 Imprecision on Nominal Bids Estimation

This first case study is inspired by the main discussion in [72]. The authors
justify the value of a robust model by indicating a high infeasibility level if small de-
viations on data entry occur. In this section, we follow the same idea and analyze the
impact, on the strategic player’s net revenue, of an imprecision on the Nash equilib-
rium evaluation. Such imprecision may arise from many sources, e.g., uncertainty
on the assessment of rivals’ marginal cost due to fuel market prices fluctuations and
opportunity costs due to technological constraints.

Formally, let δ > 0 quantify the level of imprecision on the Nash equilib-
rium evaluation. Then, we can define the rival players’ uncertainty set parame-
ters as follows: (i) ∀ i ∈ NR,

(
p̂R,i,∆

+
pi
,∆−pi

)
=
(
cR,i, δcR,i, δcR,i

)
; (ii) ∀ i ∈

N (PM)
R ,

(
q̂R,i,∆

+
qi
,∆−qi

)
=
(
q(eq)
R,i , δq

(eq)
R,i , δq

(eq)
R,i

)
and ∀ i ∈ N (PT)

R ,
(
q̂R,i,∆

+
qi
,∆−qi

)
=(

q(eq)
R,i , 0, 0

)
.

Figure 4.4 presents, for different levels of imprecision, the worst-case strate-
gic player net revenue as a function of Γ in percentage of the net revenue under the
equilibrium solution, i.e., for Γ = 0. Note that as expected, the strategic player net
revenue is a non-increasing function of δ and Γ. We highlight however that a small
imprecision on the equilibrium evaluation (e.g. δ = 0.01) can create a significant
impact on the strategic player net revenue, even for modest values of conservative-
ness level Γ. For instance, a net revenue reduction of approximately 5% is observed
for Γ = 3. Furthermore, under an imprecision of δ = 0.10, a non-negligible net
revenue reduction of more than 20% can occur.

To better evaluate the proposed model benefits, a (sample) distribution of
the strategic player net revenue is constructed assuming that the rival bids follow
a Normal distribution around the nominal (equilibrium) bid with standard devia-
tion equal to the level of imprecision. More specifically, we assume that p̃R,i ∼
N
(
p̂R,i, (∆

+
pi

)2
)

and q̃R,i ∼ N
(
q̂R,i, (∆

+
qi

)2
)
, ∀ i ∈ NR. For simplicity, the ran-

dom vector (p̃R, q̃R) is also considered pairwise independent. Under this modeling
framework, a set of 1000 market conditions were simulated and the strategic player
net revenue distribution is evaluated for the bids associated to various conservative-
ness levels Γ.

Figure 4.5 depicts an efficient frontier varying the conservativeness level Γ

from 0 to 4 on a 0.25 step basis. The vertical axis represents the expected net
revenue (sample average) and the horizontal axis a measure of risk evaluated as the
distance between the expected net revenue and the Conditional Value-at-Risk [73]
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Fig. 4.4: Worst-case strategic player net revenue as a function of Γ for different levels of
imprecision (δ ∈ {0.01, 0.05, 0.10}) in percentage of the net revenue under the
equilibrium solution, i.e. for Γ = 0.

at a confidence level of 95%
(
CVaR95%

)
. Roughly speaking, the CVaR95% can be

understood as the average of the worst 5% sampled scenarios. We refer to [74] and
[75] for a further discussion on this measure of risk.

We first highlight that the equilibrium bid (Γ = 0) is a dominated strategy
under δ ∈ {0.05, 0.10}. This result can be interpreted by observing that the Nash
equilibrium net revenue is a highly nonlinear function of the uncertainty factors and
that using (Γ = 0) is equivalent to a deterministic solution for the biding problem
using average, or nominal, values for the rivals’ offer. Hence, this result suggests
a positive value for the stochastic solution [44, 45] made under uncertainty. There-
fore, this methodology fails to capture optimal risk-neutral strategy. This seemingly
drawback notwithstanding, it is worth stressing that we are assuming that in prac-
tical situations the distribution used to assess out-of-sample results, such as those
found in Figure 4.5, are not available for the strategic player. Then, the robust ap-
proach provides a interesting way to capture the imprecision in the optimal bidding
strategy.

Furthermore, it is interesting to note the significant risk reduction, 77.9%,
observed when raising the conservativeness level from zero to one when a 1%-
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Fig. 4.5: Efficient frontier for different levels of imprecision (δ ∈ {0.01, 0.05, 0.10}) vary-
ing the budget Γ from 0 to 4 on a 0.25 step basis.

standard-deviation imprecision affects the rivals’ bid. This provides a important
insight: even in very low imprecision environments and stable market situations,
the optimal bid should not be made through a deterministic approach (Γ = 0). To
better illustrate this effect, Figure 4.6 depicts the histogram for budget levels of
Γ ∈ {0, 1}. Note the existence of a mass of measure (approximately) 5% under
the equilibrium solution (Γ = 0), which substantially increases the risk observed in
the deterministic approach. On the other hand, by introducing a level of robustness
in the bidding problem, although the whole distribution is slightly shifted to the
left, thus decreasing the expect net revenue, the risk is significantly reduced since
the distance between the expected value and the expected value in the worst-case
market conditions (CVaR) is much lower. In this situation, if the strategic player
has a fixed cost of, say, 2700$, the deterministic strategy produces a 5% probability
of observing a negative net revenue.

4.2.2 Uncertainty on Rival Bids

In this case study, we assume that rivals’ market behavior is uncertain and
rivals’ quantity bid may deviate from the nominal Nash equilibrium bid towards a
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~5% 

Fig. 4.6: Histogram of the sample net revenue for an level of imprecision δ = 0.01 under
Γ ∈ {0, 1}.

maximum capacity quantity bid (price taker optimal bid). An imprecision of 30%

(δ = 0.3) on rivals’ marginal cost evaluation is also considered. In mathematical
terms, let ζ > 0 define a measure of uncertainty on the quantity bids. In this frame-
work, we define the uncertainty set parameters for the rivals’ bid as follows: (i) ∀ i ∈
NR,

(
p̂R,i,∆

+
pi
,∆−pi

)
=
(
cR,i, δcR,i, δcR,i

)
; (ii) ∀ i ∈ N (PM)

R ,
(
q̂R,i,∆

+
qi
,∆−qi

)
=(

q(eq)
R,i , ζ(q̄R,i − q(eq)

R,i ), 0
)

and ∀ i ∈ N (PT)
R ,

(
q̂R,i,∆

+
qi
,∆−qi

)
=
(
q(eq)
R,i , 0, 0

)
.

Regarding the optimal price bids, in all experiments performed in this case,
the solutions found for the two strategic player generators are equal to their marginal
cost. This is because the only way to manipulate the spot price through price bids
is being the marginal player, which is a risky situation since small deviations from
nominal bids of the rivals may prevent a generator from clearing in the auction. It
is worth emphasizing that this is a salient virtue of the proposed model, which by
maximizing the worst-case metric mitigates the strategic player risk of failing to
clear the auction.

Figure 4.7 shows the total quantity bid for the strategic player as a function of
Γ and various values of ζ . For small values of Γ, the optimal quantity bid follows
the same pattern for all levels of uncertainty. In order to keep the marginal price
at a high level, the strategic player reduces the total amount of energy offered in
the auction. However, we observe a pattern break, at Γ = 3 and 4, for the highest
uncertainty-level cases, namely, ζ ∈ {75%, 100%}. For such cases, when reaching
a given threshold of conservativeness level, the optimal strategy is to increase the
energy offered into the auction, bidding close to full capacity. This behavior results
from the fact that, by raising the value of Γ, the strategic player is considering higher
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levels of uncertainty, where more rivals may deviate from their nominal bid. As a
consequence, for a given uncertainty level, the worst case rivals’ bid shorten the
strategic player ability to manipulate the auction result towards its own good. In
such case, the best strategy against the worst-case rivals’ bid approaches the price
taker offer, full maximum capacity at marginal cost.

Fig. 4.7: Total quantity bid for different values of ζ ∈ {50%, 60%, 75%, 100%} as a func-
tion of Γ.

Next, we perform a similar out-of-sample simulation experiment carried out
in the previous section. In this case, price-maker rivals’ quantity bid follows a uni-
form distribution, taking values between the equilibrium and full capacity amounts,
while prices follow a normal distribution centered at marginal costs as follows:
p̃R,i ∼ N

(
p̂R,i, (∆

+
pi

)2
)
, ∀ i ∈ NR; q̃R,i ∼ U

(
q(eq)
R,i , q̄R,i

)
, ∀ i ∈ N (PM)

R ; and
q̃R,i = q(eq)

R,i , ∀ i ∈ N
(PT)
R . A sample of 1000 bids for the rivals participating

in the auction is simulated through a Monte Carlo procedure and the strategic
player net revenue is evaluated for different bidding strategies parameterized in the
conservativeness level Γ. In this simulation study, we analyze the solutions for
ζ ∈ {50%, 100%}.

Figure 4.8 depicts the expected net revenue (sample average) and CVaR95%

of the strategic player revenue for different values of Γ and Figure 4.9 presents the
same metrics in percentage of Γ = 0. For ζ = 100%, the CVaR95% shows an
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increasing pattern when the conservativeness level, Γ, is increased up to Γ = 3.0.
This pattern is accompanied with a reduction on the expected value. Nevertheless,
note that the CVaR95% increase surpasses the expected value loss in percentage
values (with respect to the expectation and CVaR95% values, respectively, for Γ = 0)
as shown in Figure 4.9. Above the threshold value Γ = 3.0, the CVaR95% decreases
and meet the value related to the solutions of the price-taker kind observed in Figure
4.7.

Fig. 4.8: Expected net revenue (sample average) and CVaR95% of the strategic player net
revenue per Γ for ζ ∈ {50%, 100%}.

On the other hand, because the optimal bid for ζ = 50% does not exhibits the
same pattern break as observed for ζ = 100%, the expected value decrease is not
interrupted for values of Γ ≥ 3.0. Furthermore, the CVaR95% metric also starts to
decrease.

To conclude this numerical study, we extend this simulation experiment to
include different assumptions over the rival’s bid distribution. We now assume that
the price maker quantity bids follow asymmetric distributions within the feasible
bid interval [q(eq)

R,i , q̄R,i]i∈N (PM)
R

. A positively and negatively skewed Beta(2,5) Dis-
tribution are assumed (see Figure 4.10 for a pictorial representation). Under both
assumptions, a set of 1000 bids for the rivals is simulated through a Monte Carlo
procedure and the strategic player net revenue is evaluated for different bidding
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Fig. 4.9: Expected net revenue (sample average) and CVaR95% of the strategic player net
revenue per Γ for ζ ∈ {50%, 100%} in percentage of the respective values for
Γ = 0 (equilibrium bid).

strategies parameterized in the conservativeness level Γ and ζ ∈ {50%, 100%}.

𝑞𝑅
eq

 𝑞 𝑅 

Fig. 4.10: Positive and negative skewed Beta(2,5) distribution.

In Figure 4.11, the expected net revenue (sample average) and CVaR95% of
the strategic player revenue for different values of Γ is presented assuming that all
price-maker quantity bids follow the positively skewed distribution (red continuous
curve in Figure 4.10). Note that under this assumption, the significant portion of
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probability mass is close to the Nash equilibrium. Nevertheless, we observe for
Γ ≤ 3.0 an increase in the expected value and CVaR95% metrics, with respect to the
equilibrium bid (Γ = 0). This result is in line with Section 4.2.1 since this market
structure can be viewed as an imprecision over the equilibrium assessment. On
the other hand, since for Γ > 3.0 the uncertainty observed by the strategic player
(summarized in the conservativeness level Γ) induces a pattern break towards a
price taker solution, a decrease in these metrics is observed. For these cases, the
magnitude of the real market deviation is much lower than the one observed by the
strategic player. As a consequence, the bid strategy for Γ > 3.0 is too conservative
for the real market context, impacting negatively the metrics.

Fig. 4.11: Expected net revenue (sample average) and CVaR95% per Γ for ζ ∈
{50%, 100%} assuming a positively skewed Beta(2,5) distribution for the quan-
tity of all price maker agents.

An interesting result is observed for the opposite case. Figure 4.12 presents
the expected net revenue (sample average) and CVaR95% of the strategic player rev-
enue for different values of Γ, assuming that all price-maker quantity bids follow
the negatively skewed distribution (blue dotted curve in Figure 4.10). In this con-
text, we represent a market structure in which all rival bids are distant from the Nash
equilibrium, but close to price-taker offers, inducing thus a structural equilibrium
in the market [34]. We observe in this case that the CVaR95% metric is constant for
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all values of Γ and the expected value pattern is inverted compared to the previous
case. We can interpret this result by noting that the structural equilibrium (all play-
ers acting as price takers) is more stable than the Nash equilibrium [34]. Therefore,
the robust policies that act strategically (Γ ≤ 3.0) — deviating from the structural
equilibrium, does not perform well due to this stability [34]. Consequently, the op-
timal bids with Γ > 3.0 perform much better. We can also interpret this result by
noting that the magnitude of deviation from Nash equilibrium in this second mar-
ket context is very high. Therefore, higher levels of conservativeness (Γ) tend to
perform better than lower levels, as is observed in Figure 4.12.

Fig. 4.12: Expected net revenue (sample average) and CVaR95% per Γ for ζ ∈
{50%, 100%} assuming a negatively skewed Beta(2,5) distribution for the quan-
tity of all price maker agents.
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5
Conclusions

In this thesis, we propose an alternative methodology for devising profit-
maximizing strategic bids in markets endowed with a sealed-bid uniform-price auc-
tion of multiple divisible products. Such a model is constructed to assess the opti-
mal bidding policies for a subgroup of seller competitors, referred to as the strategic
player, under uncertainty in the bidding behavior of its rival competitors. The stan-
dard modeling approach for this optimal bidding problem leverages on stochastic
programming techniques while assuming that a probability distribution that repre-
sents the uncertain rival behavior is available. On recognizing that the characteriza-
tion of such probability distributions is difficult, we propose a robust optimization
model, under a polyhedral uncertainty set, in which decision makers are allowed to
control their conservativeness level without the need for specifying the full proba-
bility distribution for the rivals’ bidding strategy.

The proposed trilevel optimization problem can be regarded as a particular in-
stance of the TSR-MPEC for which no algorithm is available. We present a single-
level equivalent formulation with an exponential number of constraints suitable for
decomposition techniques. A solution methodology based on the CCG algorithm
is proposed while allowing for the use of commercial MILP solvers to obtain near-
global optimal solutions for the robust-bidding problem. In contrast to previously
reported works on two-stage robust optimization, our proposed model is not suit-
able for standard CCG algorithms, which iteratively include identified worst-case
violated scenarios of the uncertainty factors in a master problem. Instead, in the
proposed solution methodology, CCG is applied to identify a small set of optimal-
ity conditions for the third-level problem that can represent the auction equilibrium
constraints at the optimum solution of the master (bidding) problem.

We illustrate the features and applicability of the proposed methodology in
a numerical study based on short-term electricity markets. We make use of a par-
ticular polyhedral uncertainty set structure in which a reference bid, regarded as a
Nash–Cournot equilibrium, is assumed to be known, and possible deviations around
this reference may take place. Two sources of deviations were explored: (i) impreci-
sion in the equilibrium estimation of the rivals’ bid, and (ii) uncertainty in the rivals’
behavior. In the former, we show that the impact on the net revenue of a determinis-
tic (unprotected) Nash–Cournot equilibrium bidding strategy is non-negligible even
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if the imprecision in the equilibrium evaluation is considered as small as 1%. We
also show that, in the former case, the use of a robust bidding strategy provides a sig-
nificant risk reduction in out-of-sample tests. In the latter case, we find that when
reaching a given threshold of uncertainty level considered in the robust-bidding
strategy, the worst-case rivals’ bid shortens the strategic player’s ability to manipu-
late the auction result towards its own good. Therefore, the strategic player’s best
strategy against high levels of uncertainty turns out to be close to a price taker bid,
i.e., the maximum capacity at marginal cost.

Ongoing research related to this thesis involves the development of a solution
algorithm for different uncertainty set topologies, such as cones and ellipsoids. We
also consider the extension of the robust formulation to account for distributionally
robustness, i.e., the uncertainty on rivals’ bid is modeled by a set of probability dis-
tributions with given properties. From an application point-of-view, the extension
of the day-ahead problem to account for transmission constraints and its impact on
the robust solution is a possible line of research.
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A
Robust Bidding Model in Day-Ahead Markets

For completeness, in this appendix, we carefully adapt the robust strategic
bidding model for the day-ahead market (4-1) under the uncertainty set (4-4)–(4-9)
and strategic player feasible bidding set (4-2). Without loss of generality, we dis-
card constraint (2-11) and directly replace xD by d in (2-8). Applying the set of
reformulation procedures described in Section 3.1, the robust bidding model pro-
posed in this thesis resumes to the following two-level mixed-integer optimization
problem.

max
pS ,qS ,ψ,β

{
min

pR,qR,xS ,xR,
µS ,µS

,µR,µR
,

v+,v−,w+,w−,
λ,λS ,λS ,λR,λR

∑
j∈NS

pS,jxS,j + λS,jqS,j − cS,jxS,j (A-1)

subject to:

pR,i = p̂R,i + ∆+
pi
v+
i −∆−piv

−
i , : κpi ∀ i ∈ NR; (A-2)

qR,i = q̂R,i + ∆+
qi
w+
i −∆−qiw

−
i , : κqi ∀ i ∈ NR; (A-3)∑

i∈NR

(v+
i + v−i + w+

i + w−i ) ≤ Γ; : ρ (A-4)

0 ≤ v+
i ≤ 1, : σv+i ∀ i ∈ NR; (A-5)

0 ≤ v−i ≤ 1, : σv−i ∀ i ∈ NR; (A-6)

0 ≤ w+
i ≤ 1, : σw+

i
∀ i ∈ NR; (A-7)

0 ≤ w−i ≤ 1, : σw−
i
∀ i ∈ NR; (A-8)

pS,j − λ+ λS,j − λS,j = 0, : αS,j ∀ j ∈ NS; (A-9)

pR,i − λ+ λR,i − λR,i = 0, : αR,i ∀ i ∈ NR; (A-10)∑
j∈NS

xS,j +
∑
i∈NR

xR,i = d; : γ (A-11)

0 ≤ xS,j ≤ qS,j, : θS,j ∀ j ∈ NS; (A-12)

0 ≤ xR,i ≤ qR,i, : θR,i ∀ i ∈ NR; (A-13)

qS,j − xS,j ≤ USµS,j, : θS,j ∀ j ∈ NS; (A-14)

λS,j ≤ US(1− µS,j), : ψS,j ∀ j ∈ NS; (A-15)

xS,j ≤ USµS,j, : ηS,j ∀ j ∈ NS; (A-16)
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λS,j ≤ US(1− µ
S,j

), : δS,j ∀ j ∈ NS; (A-17)

qR,i − xR,i ≤ URµR,i, : θR,i ∀ i ∈ NR; (A-18)

λR,i ≤ UR(1− µR,i), : ψR,i ∀ i ∈ NR; (A-19)

xR,i ≤ URµR,i, : ηR,i ∀ i ∈ NR; (A-20)

λR,i ≤ UR(1− µ
R,i

), : δR,i ∀ i ∈ NR; (A-21)

µS,j, µS,j, µR,i, µR,i ∈ {0, 1}, ∀ j ∈ NS, i ∈ NR; (A-22)

λS,j, λS,j, λR,i, λR,i ≥ 0, ∀ j ∈ NS, i ∈ NR;

}
(A-23)

subject to:

pS,j =

⌊
log2(p̄S,j)

⌋
+1∑

k=1

2k−1βk,j, ∀ j ∈ NS; (A-24)

pS,j ≤ p̄S,j, ∀ j ∈ NS; (A-25)

qS,j =

⌊
log2(q̄S,j)

⌋
+1∑

k=1

2k−1χk,j, ∀ j ∈ NS; (A-26)

qS,j ≤ q̄S,j, ∀ j ∈ NS; (A-27)

βk,j ∈ {0, 1}, ∀ k ∈
{

1, . . . ,
⌊
log2(p̄S,j)

⌋
+ 1
}
, j ∈ NS; (A-28)

χk,j ∈ {0, 1} ∀ k ∈
{

1, . . . ,
⌊
log2(q̄S,j)

⌋
+ 1
}
, j ∈ NS. (A-29)

The objective function (A-1) represents the strategic player net outcome re-
formulated following equation (3-23). The set of constraints (A-2)–(A-8) depict
the feasible set of rival bids, following (4-4)–(4-9). The KKT system of the day-
ahead market problem (2-7)–(2-11) is presented in equations (A-9)–(A-23). More
specifically, constraints (A-9)–(A-10) stands for stationarity conditions; equations
(A-11)–(A-13) are primal constraints; equations (A-14)–(A-22) represents comple-
mentarity constraints reformulated using the Fortuny-Amat linearization procedure
described in (3-25); and constraint (A-23) ensures dual feasibility. Finally, the set
of constraints (A-24)–(A-29) represent the integer box-constrained set of feasible
bids for the strategic player. Equations (A-24) and (A-26), along with the binary
vectors β and χ, models the integrability assumption of price and quantity bidding,
respectively1. Next, in Section A.1, we demonstrate how to construct the Master

1 We recognize that this binary expansion representation is imprecise. If p̄S,j = 0 or q̄S,j = 0 for
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Problem from (A-1)–(A-29).

A.1 Master Problem: Day-Ahead Market

Let u = [−µS,j−,−µS,j−,−µR,i−,−µR,i−]> denote the binary vector of
the inner-problem (A-1)–(A-23). Thus, for a given feasible strategic player bid
(pS, qS) ∈ OS , the dual problem of (A-1)–(A-23) is

max
α

(u)
S ,α

(u)
R ,γ(u),θ

(u)
S ,

θ
(u)
S ,ψ

(u)
S ,η

(u)
S ,δ

(u)
S ,

θ
(u)
R ,θ

(u)
R ,ψ

(u)
R ,η

(u)
R ,

δ
(u)
R ,κ

(u)
p ,κ

(u)
q ,ρ(u),

σ
(u)

v+
,σ

(u)

v+
,σ

(u)

w+ ,σ
(u)

w−

∑
j∈NS

[
pS,jα

(u)
S,j + (qS,j − USµS,j)θ

(u)

S,j − qS,jθ
(u)
S,j −

US(1− µS,j)ψ
(u)
S,j − USµS,jη

(u)
S,j − US(1− µ

S,j
)δ

(u)
S,j

]
+∑

i∈NR

[
p̂R,iκ

(u)
pi

+ q̂R,iκ
(u)
qi
− URµR,iθ

(u)

R,i−

UR(1− µR,i)ψ
(u)
R,i − URµR,iη

(u)
R,i − UR(1− µR,i)δ

(u)
R,i−

σ
(u)

v+i
− σ(u)

v−i
− σ(u)

w+
i

− σ(u)

w+
i

]
+ dγ(u) − Γρ(u) (A-30)

subject to:

γ(u) + θ
(u)

S,j − θ
(u)

S,j − η
(u)
S,j ≤ pS,j − cS,j, ∀ j ∈ NS; (A-31)

γ(u) + θ
(u)

R,i − θ
(u)
R,i − η

(u)
R,i ≤ 0, ∀ i ∈ NR; (A-32)

α
(u)
R,i + κ(u)

pi
≤ 0, ∀ i ∈ NR; (A-33)

θ
(u)
R,i − θ

(u)

R,i + κ(u)
qi
≤ 0, ∀ i ∈ NR; (A-34)

− α(u)
S,j − ψ

(u)
S,j ≤ qS,j, ∀ j ∈ NS; (A-35)

α
(u)
S,j − δ

(u)
S,j ≤ 0, ∀ j ∈ NS; (A-36)

α
(u)
R,i − ψ

(u)
R,i ≤ 0, ∀ i ∈ NR; (A-37)

− α(u)
R,i − δ

(u)
R,i ≤ 0, ∀ i ∈ NR; (A-38)∑

j∈NS

α
(u)
S,j −

∑
i∈NR

α
(u)
R,i = 0; (A-39)

−∆+
pi
κ(u)
pi
− ρ(u) − σ(u)

v+i
≤ 0, ∀ i ∈ NR; (A-40)

∆−piκ
(u)
pi
− ρ(u) − σ(u)

v−i
≤ 0, ∀ i ∈ NR; (A-41)

−∆+
qi
κ

(u)
R,i − ρ

(u) − σ(u)

w+
i

≤ 0, ∀ i ∈ NR; (A-42)

some j ∈ {1, . . . , NS}, then log2 is not defined. However, we argue that the simply exclusion of
appropriate constraints overcomes this imprecision when this particular case happens.
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∆−qiκ
(u)
qi
− ρ(u) − σ(u)

wR
i
≤ 0, ∀ i ∈ NR; (A-43)

θ
(u)

S,j , θ
(u)
S,j , ψ

(u)
S,j , η

(u)
S,j , δ

(u)
S,j ≥ 0, ∀ j ∈ NS; (A-44)

θ
(u)

R,i , θ
(u)
R,i , ψ

(u)
R,i , η

(u)
R,i , δ

(u)
R,i , σ

(u)

v+i
, σ

(u)

v−i
, σ

(u)

w+
i

, σ
(u)

w−
i

≥ 0, ∀ i ∈ NR; (A-45)

ρ(u) ≥ 0. (A-46)

Then, for a given set Bk ⊂ B, we can write the Master Problem as the following
bilinear optimization problem.

max
pS ,qS ,β,χ,ϕ

α
(u)
S ,α

(u)
R ,γ(u),θ

(u)
S ,

θ
(u)
S ,ψ

(u)
S ,η

(u)
S ,δ

(u)
S ,

θ
(u)
R ,θ

(u)
R ,ψ

(u)
R ,η

(u)
R ,

δ
(u)
R ,κ

(u)
p ,κ

(u)
q ,ρ(u),

σ
(u)

v+
,σ

(u)

v+
,σ

(u)

w+ ,σ
(u)

w−

ϕ (A-47)

subject to:

ϕ ≤
∑
j∈NS

[
pS,jα

(u)
S,j + (qS,j − USµS,j)θ

(u)

S,j − qS,jθ
(u)
S,j −

US(1− µS,j)ψ
(u)
S,j − USµS,jη

(u)
S,j − US(1− µ

S,j
)δ

(u)
S,j

]
+∑

i∈NR

[
p̂R,iκ

(u)
pi

+ q̂R,iκ
(u)
qi
− URµR,iθ

(u)

R,i − UR(1− µR,i)ψ
(u)
R,i−

URµR,iη
(u)
R,i − UR(1− µR,i)δ

(u)
R,i − σ

(u)

v+i
− σ(u)

v−i
− σ(u)

w+
i

− σ(u)

w+
i

]
+

dγ(u) − Γρ(u), ∀ u ∈ Bk; (A-48)

Constraints (A-31)–(A-46), ∀ u ∈ Bk; (A-49)

Constraints (A-24)–(A-29). (A-50)

Problem (A-47)–(A-50) is a non-convex optimization problem due to the bi-
linear products in equation (A-48). More specifically, we have the set of decision
variable products pS,jα

(u)
S,j and qS,j(θ

(u)

S,j − θ
(u)
S,j ) for each j ∈ NS . In this context,

since (pS, qS) are integer vectors, we can recast these bilinear terms into linear
equations using well-known algebra results. Beginning with the first product, for
a given j ∈ NS , we can identify pS,jα

(u)
S,j ↔ τ

(u)
S,j . Thereby, we can construct the
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following set equivalence.

E (p)
(
U
α
(u)
S,j

)
,

{
τ

(u)
S,j ∈ R

∣∣∣∣∣
∃ (α

(u)
S,j ,βj) feasible in (A-49)–(A-50) and Λ

(u)
j ∈ R

⌊
log2(p̄S,j)

⌋
+1;

τ
(u)
S,j =

⌊
log2(p̄S,j)

⌋
+1∑

k=1

2k−1Λ
(u)
k,j ;

− U
α
(u)
S,j
βk,j ≤ Λ

(u)
k,j ≤ U

α
(u)
S,j
βk,j, ∀ k ∈

{
1, . . . ,

⌊
log2(p̄S,j)

⌋
+ 1
}

;

− U
α
(u)
S,j

(1− βk,j) ≤ Λ
(u)
k,j − α

(u)
S,j ≤ U

α
(u)
S,j

(1− βk,j),

∀ k ∈
{

1, . . . ,
⌊
log2(p̄S,j)

⌋
+ 1
}

;

}

=

{
τ

(u)
S,j ∈ R

∣∣∣∣∣ τ (u)
S,j = α

(u)
S,j pS,j,∀ (α

(u)
S,j , pS,j) feasible

in (A-49)–(A-50)

}
. (A-51)

where U
α
(u)
S,j

is an upper-bound on |α(u)
S,j |. Note that E

(
U
α
(u)
S,j

)
is a set with linear

equations, thus suitable for linear programming problems. Analogously, a similar
set can be derived for the second bilinear product. For expository purposes, let
θ

(u)
S = θ

(u)

S − θ(u)
S . Thus, we can identify qS,jθ

(u)
S,j ↔ ζ

(u)
S,j , ∀ j ∈ NS and derive

the following set equivalence:

E (q)
(
U
θ
(u)
S,j

)
,

{
ζ

(u)
S,j ∈ R

∣∣∣∣∣
∃ (θ

(u)

S,j , θ
(u)
S,j ,χj) feasible in (A-49)–(A-50) and Θ

(u)
j ∈ R

⌊
log2(q̄S,j)

⌋
+1;

ζ
(u)
S,j =

⌊
log2(q̄S,j)

⌋
+1∑

k=1

2k−1Θ
(u)
k,j ;

− U
θ
(u)
S,j
χk,j ≤ Θ

(u)
k,j ≤ U

θ
(u)
S,j
χk,j, ∀ k ∈

{
1, . . . ,

⌊
log2(q̄S,j)

⌋
+ 1
}

;

− U
θ
(u)
S,j

(1− χk,j) ≤ Θ
(u)
k,j − θ

(u)
S,j ≤ U

θ
(u)
S,j

(1− χk,j),
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∀ k ∈
{

1, . . . ,
⌊
log2(q̄S,j)

⌋
+ 1
}

;

θ
(u)
S,j = θ

(u)

S,j − θ
(u)
S,j

}
;

=

ζ(u)
S,j ∈ R

∣∣∣∣∣∣ ζ
(u)
S,j = θ

(u)
S,j qS,j, θ

(u)
S,j = θ

(u)

S,j − θ
(u)
S,j ,

∀ (θ
(u)

S,j , θ
(u)
S,j , qS,j) feasible in (A-49)–(A-50)

 . (A-52)

Again, U
θ
(u)
S,j

is an upper-bound on |θ(u)
S,j |. The master problem (A-47)–(A-50) can

be suitably written as a mixed-integer linear programming problem.

max
pS ,qS ,β,χ,ϕ

α
(u)
S ,α

(u)
R ,γ(u),θ

(u)
S ,

θ
(u)
S ,ψ

(u)
S ,η

(u)
S ,δ

(u)
S ,

θ
(u)
R ,θ

(u)
R ,ψ

(u)
R ,η

(u)
R ,

δ
(u)
R ,κ

(u)
p ,κ

(u)
q ,ρ(u),

σ
(u)

v+
,σ

(u)

v+
,σ

(u)

w+ ,σ
(u)

w− ,

τ ,Λ,θS ,ζ,Θ

ϕ (A-53)

subject to:

ϕ ≤
∑
j∈NS

[
τ

(u)
S,j − USµS,jθ

(u)

S,j + ζ
(u)
S,j −

US(1− µS,j)ψ
(u)
S,j − USµS,jη

(u)
S,j − US(1− µ

S,j
)δ

(u)
S,j

]
+∑

i∈NR

[
p̂R,iκ

(u)
pi

+ q̂R,iκ
(u)
qi
− URµR,iθ

(u)

R,i − UR(1− µR,i)ψ
(u)
R,i −

URµR,iη
(u)
R,i − UR(1− µR,i)δ

(u)
R,i − σ

(u)

v+i
− σ(u)

v−i
− σ(u)

w+
i

− σ(u)

w+
i

]
+

dγ(u) − Γρ(u), ∀ u ∈ Bk; (A-54)

Constraints (A-31)–(A-46), ∀ u ∈ Bk; (A-55)

Constraints (A-24)–(A-29); (A-56)

τ
(u)
S,j ∈ E

(p)
(
U
α
(u)
S,j

)
, ∀ u ∈ Bk, j ∈ NS; (A-57)

ζ
(u)
S,j ∈ E

(q)
(
U
θ
(u)
S,j

)
, ∀ u ∈ Bk, j ∈ NS; (A-58)

θ
(u)
S,j = θ

(u)

S,j − θ
(u)
S,j , ∀ u ∈ Bk, j ∈ NS. (A-59)

We highlight that problem (A-53)–(A-59) is an implementable version of
(A-47)–(A-50), suitable for commercial solvers.
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