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Abstract 

Diz, Gustavo Souto dos Santos; Hamacher, Silvio (advisor); Oliveira, 

Fabrício (co-advisor). Maritime inventory routing: a practical asessment 

and robust optimization approach. Rio de Janeiro, 2017. 115p. Tese de 

Doutorado – Departamento de Engenharia Industrial, Pontifícia 

Universidade Católica do Rio de Janeiro. 

Maritime inventory routing (MIR) problem is an academic name for a 

practical logistic problem that represents the routing or scheduling of vessels to 

carry product(s) between ports. Meanwhile, the product(s) inventory levels in these 

ports must remain between operational bounds during the entire planning horizon. 

This thesis focus on how to support decision on a real-life MIR problem faced by a 

Brazilian petroleum company. To do so, we structure a set of tests to compare 

different formulation from literature and identify which is more adherent to real 

problem. Due to computational complexity of the problem, we present an heuristic 

approach that provides reasonably good solutions when compared to deterministic 

mixed integer linear programming (MILP) formulations and reduces considerably 

the computational time of solving real-life instances. However, uncertainty events 

have great impact in the ship scheduling planning. Therefore, we propose a robust 

optimization approach that considers uncertainty in the time spent at ports in each 

ship visit. Our approach is able to determine the probability of infeasibility and the 

impact in the objective function for each level of robustness, helping to measure the 

uncertain aversion of the decision maker. Our experiments identified that, for a 

certain instance, varying the level of robustness one may reduce the probability of 

infeasibility from 87% (of deterministic solution) to 2% and it represents an 

increase in the transportation costs of about 13%. 

Keywords 

maritime inventory routing; mixed-integer linear programming; valid 

inequalities; relax-and-fix; fix-and-optimize; and robust optimization  
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Resumo 

Diz, Gustavo Souto dos Santos; Hamacher, Silvio; Oliveira, Fabrício. 

Roteamento de navios com gestão de estoques: Uma avaliação prática e 

uma abordagem robusta. Rio de Janeiro, 2017. 115p. Tese de Doutorado 

– Departamento de Engenharia Industrial, Pontifícia Universidade Católica

do Rio de Janeiro. 

O problema de roteamento de navios com gestão de estoques (conhecido 

pelo termo em inglês Maritime inventory routing ou MIR) representa um problema 

prático de logística onde o transportador da carga também é responsável pela 

manutenção dos estoques do produto transportado nos portos de carga e descarga. 

Esta tese estuda um caso real do problema MIR. Um conjunto de testes é 

apresentado de modo a comparar diferentes formulações matemáticas da literatura, 

a fim de encontrar aquela mais aderente ao problema real. Em função da 

complexidade computacional do problema, é apresentada uma abordagem 

heurística que consegue encontrar soluções similares e reduz consideravelmente o 

tempo computacional quando comparadas com as formulações baseadas em PLIM. 

No entanto, problemas reais são muito influenciados por aspectos incertos. Sendo 

assim, é apresentada uma abordagem robusta para a otimização do problema MIR, 

que considera incerteza no tempo de estadia do navio nos portos. A abordagem 

apresentada produz soluções para diferentes níveis de robustez. Em outras palavras, 

considera o risco de variação no tempo de estadia do navio em um porto durante 

uma operação de carga ou descarga. Assim, é capaz de determinar a probabilidade 

de inviabilidade da solução encontrada para cada nível de robustez oferecido, além 

do impacto no custo de transporte à medida que soluções mais robustas são 

apresentadas. Esta abordagem oferece ao tomador de decisão a medida do trade-off 

entre robustez e custo de transporte. Desta forma, o mesmo pode determinar qual o 

nível de conservadorismo irá adotar em sua programação de navios e quanto isto 

irá impactar o custo de transporte. Os experimentos apresentados identificaram que, 

aumentos sutís no nível de robustez (com pequeno impacto no custo de transporte) 

podem reduzir consideravelmente a probabilidade de inviabilidade de uma solução. 

Palavra-chave 

maritime inventory routing; programação linear inteira mista; inequações 

válidas; relax-and-fix; fix-and-optimize; e otimização robusta  
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1. Introduction

Maritime transportation is one of the most important mode for global trading. 

UNCTAD (2015) reports that approximately 80% of the total volume traded around 

the world is carried by sea. In 2014, 9.8 billion tons of goods were loaded at ports 

worldwide, and tanker trade (crude oil, petroleum products, and gas) contributed to 

nearly 40% of this total. Logistics problems involving maritime transportation have 

received increased attention from industry and academia over the past few years 

(Fagerholt, 2004; Christiansen, Fagerholt, and Ronen 2004; Christiansen et al. 

2013). In particular, the petroleum industry and crude oil transportation problems 

have receiving considerable attention (Bausch, Brown, and Ronen 1998; Perakis 

and Bremer 1992; Bremer and Perakis 1992; Furman et al. 2011; Rocha et al. 2013). 

This thesis focus on a maritime transportation problem known as maritime 

inventory routing (MIR). In problems like MIR, the player responsible for carrying 

the products from supplier ports to consumer ports is also in charge of managing 

the inventory level at these ports. Some authors also named this problem inventory-

constrained maritime routing problem (Al-Khayyal and Hwang, 2007 and Stanzani, 

2017), as inventory costs are not included in objective function and the model is 

required to maintain inventory levels between certain limits at the ports. 

Nevertheless, hereinafter we will use the name MIR. 

MIR problems feature the supply chain of many bulk product industries, such as 

grain, coal, iron ore, and petrochemicals. In particular, the petroleum industry offers 

an interesting inventory-routing environment for maritime transportation due to the 

need for transportation of huge volumes combined with limited storage capacities 

at consumer and production sites.  

We study the case of a vertically integrated Brazilian petroleum company. In this 

case, the company needs to carry its crude oil production from production sites to 

onshore terminals, where the crude oil will be consumed by refineries. In addition, 

it is vital to maintain crude oil inventory levels between certain operational limits 

at production and consumption ports to avoid interruption of production processes 
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because of storage capacity (at production sites) and/or inventory (at onshore 

terminals) shortages. 

This practical MIR problem has some important characteristics that motivate our 

study. It is highly capital intensive, greatly influenced by uncertain events, and 

computationally complex to solve, offering a wide range of improvement 

opportunities through academic research. As an illustration of these characteristics, 

in the case we study, the company spends approximately US$ 1.2 million per day 

on fuel. The average crude oil inventory level along the entire supply chain is 

approximately 40 million barrels, which is responsible for high inventory costs. The 

violation of inventory physical limits at ports can represent interruptions in the 

crude oil production or disruptions in the refining process. A single day of 

interruption of average crude oil production may represent more than US$ 5.0 

million (using US$ 60.00 as the price of a crude oil barrel), which is more than four 

times the daily fuel expense of the company’s entire fleet. Despite the great 

potential of monetary benefits related to the optimization of MIR problems, 

researchers recognize how complex is to solve this type of problem for real-life 

instances (Furman et al., 2011; Agra et al., 2013; and Papageorgiou et al., 2014). 

Some authors reported that the use of heuristics to overcome the computational 

complexity of real-life MIR problems have resulted good results (Dauzère-Pérès et 

al., 2007, Christiansen et al., 2011, Rodrigues et al., 2016 and Uggen et al., 2016). 

Besides the enormous opportunity of reducing maritime transportation costs and 

the computational complexness of solving such problems, another important issue 

that influences MIR problems decision making is uncertainty. Uncertain events are 

responsible for a great part of transportation costs. In order to be protected against 

uncertainty and ensure that all crude oil production will be streamlined, the fleet is 

slightly oversized, in order to prevent against the worst occurrences of some 

uncertainty events. Some examples of uncertainty parameters that influence ship-

scheduling decisions are bad weather, vessel degradation, bureaucracy, variations 

in production and consumption rates, and delays in time spent at port. Uncertainty 

increases inefficiency of the fleet, raises maritime transportation costs, and makes 

ship scheduling decisions even harder, pushing inventory levels to the limits and 

raising the risk of violating inventory bounds.   
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1.1. Objectives and contributions 

In front of such a challenging problem, which involves high transportation costs, 

uncertainty events and computational complexity, this thesis has the following 

objectives: 

 Examine the academic literature and identify the mathematical formulations 

that is more adherent to a real-life MIR problem; 

 Propose a heuristic approach to improve solution quality and reduce 

computational time; 

 Propose a robust approach to solve MIR problems considering uncertain 

parameters in the time spent by vessels at port; and 

 Demonstrate how a robust approach can leverage fleet efficiency, reducing 

the risk of violating inventory limits, while keeping maritime transportation 

costs controlled. 

The main contributions of this research provides are: 

 Propose a set of real-life instances that are more difficult than the ones found 

in literature; 

 For the first time in literature, a structured framework that compares 

continuous time and discrete time formulations for MIR problems is 

presented, indicating which is the most appropriate for real-life MIR 

problems; 

 Propose a constructive and improvement heuristic approach based on relax-

and-fix and fix-and-optimize heuristics to solve MIR problems that reduces 

computational time considerably and reaches similar solutions that the ones 

obtained using conventional MILP formulations; 

 Compare different ways of selecting variables to fix and relax during the 

heuristic execution and demonstrate which combination is the best 

performing for a real-life MIR problem; 

 Quantify the risks of failing service level (infeasible solutions) and impacts 

of level of conservativeness admitted in transportation costs, considering 
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uncertainty in the time spent by vessels at ports. As far as we know, this is 

the first time in literature that such trade-off assessment is presented in 

literature; and 

 Provide a decision support tool that helps the decision maker on scheduling 

decisions based on the risk of failing level of service and, at the same time, 

minimize transportation costs. Such contribution is of great value to the 

company once, they did not count with any decision support system to ship 

scheduling decisions that considers uncertainty. 

1.2. Thesis organization 

In the second Chapter, we describe the real-life MIR problem we used as case of 

study here, the assets involved and ship scheduling decision-making process. We 

also focus on uncertain aspects that influence the ship scheduling decision-making 

process. 

In Chapter 3, we review literature about MIR problem and present the three 

deterministic formulations found in literature that we consider that are more 

adherent to the real-life MIR problem we study here. We also present valid 

inequalities found in literature that were used to strengthen the formulations. 

Moreover, we propose some reformulations in order to make them meaningfully 

comparable among themselves. 

In Chapter 4, we present an experimental framework that compares the 

formulations of literature. We also describe how to use lower bounds of the 

continuous time model to close the optimality gap of some instances and present 

some conclusions draw from the tests we performed. 

In Chapter 5, we propose a heuristic approach based on relax-and-fix and fix-and-

optimize in order to improve quality of solution and reduce computational time. 

In Chapter 6, we describe the robust optimization approach to solve a MIR problem 

considering uncertainty in the time spent by vessels at ports. 

In Chapter 7, we discuss the computational experiments and the results of the robust 

optimization approach implementation in a practical case. 

Finally, in Chapter 8 we present main conclusions of this study and future research.  
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2. A practical MIR problem 

 

 

To support numerical experiments throughout this thesis, we use a real-life MIR 

problem as a case of study based PETROBRAS, a Brazilian petroleum company. 

PETROBRAS is the largest Brazilian petroleum company. Most of its production 

is offshore with the use of a vessel called Floating Production Storage and 

Offloading (FPSO), making the company highly dependent on maritime 

transportation to offload its production. As a vertically integrated company, 

PETROBRAS is responsible for every step of its supply chain, from the exploration 

and production of the crude oil, including transportation, storing, refining, and 

distribution of refined products to customer. Such supply chain offers an important 

MIR problem that we will use as a case of study here. 

2.1. MIR problem: Brazilian case 

PETROBRAS crude oil supply chain involves a great effort to store, manage 

inventory, transport, assure its quality and deliver the crude oil in time at the right 

place. Managing all these tasks without relying on a decision support system is 

prone to inefficiency and waste of economic resources. Figure 1 gives an overview 

in the crude oil flow, from production to refining.  

After the production in the FPSOs, the oil flows to onshore terminals. A fleet of 

dedicated vessels carries most of the crude oil, but a small part is pumped through 

Figure 1: Crude oil flow in the company's supply chain. 
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pipelines directly to onshore terminals. From the onshore terminals, the crude oil 

either follows to refineries through pipelines, or is exported to foreign customers. 

It is also necessary to import light-weight oil to complement the ideal oil blend of 

refineries. 

We focus our attention on the part of the process immediately from the production 

of crude oil in the FPSOs to the supply of onshore terminals. The transportation of 

oil through pipelines is not considered in the problem under study, neither from the 

FPSOs to the terminals nor from terminals to refineries. Therefore, the problem 

consists of managing crude oil inventory level in the FPSOs, transporting it by a 

heterogeneous fleet of vessels from FPSOs to the onshore terminals while ensuring 

that inventory level at terminals will not fall under a minimum stock limit. 

Next, we present the PETROBRAS MIR problem in terms of ship scheduling 

activity, planning horizon, number of assets (FPSOs, vessels and terminals) and the 

loading and discharging operations. 

2.1.1. Ship scheduling and planning horizon 

The ship scheduling activity at PETROBRAS is a short-term activity responsible to 

define on a daily basis which ship will carry the crude oil from FPSOs to refineries. 

Usually the schedulers decide the voyages for the next day and the offloading 

operations that must occur at the most 5 days ahead. Every day, the schedule of the 

previous day is updated and incremented with those vessels that will be available 

for a new voyage in the next day. When a ship schedule order is sent, it is important 

to define some aspects: which FPSO(s) the vessel will visit (vessel can offload up 

to two FPSO in sequence); the amount of crude oil must be loaded at each FPSO; 

and which onshore terminal(s) the vessel must follow to discharge its load (up to 

two terminals in sequence). Voyages from FPSOs to onshore terminals takes from 

1 to 3 days of sailing time, while the time spent in the FPSOs and in the terminals 

to load and discharge operations can varies from 1 to 5 days, or even longer, 

depending on where the ship is operating. We can split time spent at ports in two 

parts: waiting and operating time. Waiting time depends on berth congestion at 

onshore terminals, on the onshore tank availability to receive a new load, bad 

weather, crude oil quality and many other unexpected situations. Operating time is 

proportional to the quantity to be (un)loaded and the discharge rate used in the 
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operation plus berthing and unberthing time. It also has some variation depending 

on the loading or discharging rates of the terminal’s or vessel’s pump, respectively. 

The planning horizon is short due to the times involved in each round voyage for 

each vessel (about 7 days, on average) and to increase the accuracy of forth-coming 

vessels activities estimative. Maritime transportation is subject to a great number of 

unforeseen occurrences that can cause delays in the operations or sailing times (see 

Diz et al., 2014). To increase the chance of success in their voyage plans and to 

reduce the risk of facing these unexpected events, schedulers wait until the last 

moment to release a ship scheduling. They also must check every day the position 

of its vessels and the inventory levels at FPSOs and onshore terminals. If necessary, 

the scheduler can always change a preview schedule to ensure that inventory levels 

stay inside operational range, to overcome unexpected occurrences or to reduce 

transportation costs. 

2.1.2. FPSOs 

In 2016, PETROBRAS was producing oil using about 32 FPSO vessels. Most of 

them are located in Brazilian waters in the Atlantic Ocean, about 100 miles from 

the coast of southeast region of country. Each of them have a specific storage 

capacity, a minimum stock level that works as a ballast volume1 and a production 

rate. In real life, all of these three parameters can suffer variations along the time, 

mainly the production rate. 

2.1.3. Vessels (or Ships) 

PETROBRAS counts on a fleet of more than 35 vessels dedicated to the offloading 

and supply operation. This number may vary according to vessel availability for 

each planning horizon. As the Brazilian shore is long and PETROBRAS have 

production sites and onshore terminals all over the cost, the fleet is divided in 

groups to serve each sub system. Each group of ships can be re-sized according to 

transportation demand of each subsystem, but physical and operational 

characteristics of the fleet, onshore terminals and production sites may restrict 

interchanging vessels between subsystems. Additionally, some voyages between 

subsystems may take several days, what further limits these interchanges. 

1 Ballast volume is the volume of crude oil used to keep the vessel’s balance in the sea. In other 

words, the ballast volume of crude oil helps to maintain stability of the vessel. 
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The vessels are classified according to three classes depending on its storage 

capacity: Suezmax, Aframax and MR. On average, Suezmax vessels load up to 1.0 

million barrels of crude oil, Aframax vessels usually load up to 650 thousand barrels 

and MR has the capacity to transport about 350 thousand barrels. However, it does 

not mean that vessels from the same class have exactly the same storage capacity, 

as it varies from ship to ship. Each vessel has its own bunker consumption rate for 

each type of operation: sailing loaded, sailing in ballast, discharging, loading and 

on standby mode. Bunker consumption represents the biggest part of the variable 

transportation cost and another important parcel is given by port fees. The fixed 

part of maritime transportation cost is hiring costs. This is known in shipping 

industry as hire, which is a daily fee payed monthly to vessel’s owners for every 

day of the time chartered party agreed between PETROBRAS and vessel’s owner. 

As the fleet is time-chartered, there are no demurrage costs incurred when the vessel 

experience delays at a port. However, as waiting time is considered an inefficiency, 

it may be penalized. We estimate such penalty using the hiring fee of the vessel and 

bunker consumption costs. 

2.1.4. Onshore terminals 

There are 8 onshore terminals that send oil through pipeline to 12 refineries located 

from the south to the north of Brazil, as it can be seen in Figure 2.  

Each terminal has a tank farm capacity, a consumption rate and a minimum stock 

level that guarantees the continuous oil supply to the refinery(ies). Tank farm 

capacity was projected to guarantee an inventory able to supply refineries 

continually. The consumption rate is given by the sum of processing rates of the 

Figure 2: Map of Brazilian onshore terminals, refineries and FPSOs. 
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refineries linked to each terminal, while the minimum stock level defines the 

inventory level before refineries reduce their processing loads. For example, São 

Sebastião Terminal supplies 4 refineries, and therefore its consumption rate is equal 

to the sum of the processing rates of these 4 refineries. If the inventory level at São 

Sebastião Terminal reaches a total under the minimum level, one or more refineries 

fed by this terminal will have to reduce their processing rate or, even worse, stop 

their process due to a lack of crude oil inventory. Although it is not a frequent 

occurrence, parameters like consumption rate, storage capacity and minimum stock 

level can suffer variation along the time. A refinery can increase or reduce its 

consumption rate, a tank can stop for maintenance or repairing or other unforeseen 

events can happen anytime. 

2.1.5. Loading and discharging operations 

The main aspects of loading and discharging operations are the quantity of oil to be 

loaded/discharged and the moment in time when these operations occur. The 

moment to offload a FPSO or to supply an onshore terminal is determined based on 

inventory levels at the ports and vessel arrival times. The operation must occur such 

that the inventory levels do not exceed its maximum limit at FPSOs or its minimum 

limit at onshore terminals. The quantity to be loaded or discharged must respect 

ship and FPSO capacities and must be such that minimize transportation costs. 

Notice that in most parts of the crude oil supply chain we have mentioned some 

type of uncertainty aspect that influences the scheduling activity. Besides the usual 

complexity of MIR problems, the uncertainty aspects and the quantity of assets in 

PETROBRAS supply chain make the problem more complex. In the next section, 

we describe in more details some of the main uncertainty aspects involved in the 

MIR problem faced by PETROBRAS. 

2.2. Uncertainty aspects 

Uncertainty events are something inherent to any real life problem. In maritime 

transportation, they are very frequent and much of them are related to environment 

conditions, bad weather, currency, wind and waves are just some of conditions that 

may delay, interrupt or even abort some operation. 

In MIR problems such as the one described above, most of uncertainty events will 

have some impact in the time spent by the vessel in some activity (sailing, loading 
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or discharging). The time aspect is vital for an efficient ship scheduling. A precise 

prediction of the time that a vessel will spend in each activity of the current voyage 

is fundamental for the scheduling of the next voyage of each ship. In addition, a 

good prediction of production and consumption rates, in FPSOs and onshore 

terminals, respectively, will determine the moment in time of the next offloading or 

discharging operation, as discussed in Section 2.1. 

Due to the characteristics of the MIR problem faced by PETROBRAS, the time 

spent by the fleet on sailing is about 25% of the total available time of the fleet. 

While sailing, vessels may be fully loaded, partially loaded or in ballast condition 

(when it is empty). In this case, most voyages are short, and then variation of speed 

has a little impact in total sailing time. Hence, unexpected event also has little 

impact in prediction of sailing time for each vessel. Meanwhile, the time spent by 

the vessels at ports (FPSO or an onshore terminal) represents the remaining 75% of 

available time. During the time spent at ports, a vessel may be waiting for berthing, 

performing berthing or unberthing operation, loading or discharging, or even 

waiting for the next voyage. As the time spent by vessels at ports represents a much 

larger fraction of the available time of the fleet, we will focus our attention in the 

uncertainty events the impact this parcel of time. 

The time spent at ports may be divided in three parts: pre-operation (from the time 

vessel arrives at port until it starts berthing; operation (from the start of berthing 

until unberthing, including the time spent during loading or discharging operation); 

and post-operation (from end of unberthing until the time vessel leaves the port for 

a new voyage). Next, we analyze each part of the time spent by vessels at port and 

the uncertain events that influence them. 

 Pre-operation time 

Theoretically, when the vessel arrives at a port, it should immediately start berthing 

operation. However, it often does not happen in practice. The delay between the 

arrival of a vessel and the start of berthing operation may happen due to a diverse 

range of causes. At a production site, it may occur due to bad weather, vessel or 

FPSO unreliability, waiting for a batch formation to load and many other reasons. 

At onshore terminals, where the vessels discharge the crude oil, besides bad weather 

and equipment degradation, the waiting time before start of berthing operation must 
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happen due to berth congestion, lack of tank capacity, bureaucracy reasons (vessel 

clearance) and pilot delays, for example. 

Operation time 

Operational time should be equal to maneuvering time (berthing and unberthing 

operations) plus the time spent to load or discharge product on the vessel. 

Nevertheless, in real-life, operation time is usually increased by many sorts of 

events, such as vessel’s or port’s pump unreliability, vessel clearance, lack of tank 

capacity, lack of crude oil inventory, bad weather (that might interrupt or delay a 

pumping operation), and many other unexpected reasons.  

Post-operation time 

The post-operation time is the time spent by the vessel at port after the end of 

unberthing operation. At this point, the vessel has finished loading or discharging 

operation, and is ready to follow to another port or start a new voyage and thus, has 

no reason for remaining at port. Nevertheless, in the MIR problem we are studying, 

there is a previously sized and dedicated fleet to carry all the crude oil production. 

Sometimes a vessel is free to start a new voyage, but there is no available cargo to 

load. When it happens, the vessel remains idle, on standby mode, waiting for a new 

voyage. Hence, the post-operation time is an idle time and should not exist in a 

hypothetically ideal world. However, as the fleet is fixed and previously 

dimensioned, the post-operation time is inherent to activity. In other words, post-

operation time is related to the availability of vessels (fleet dimension) and 

transportation demand. In real-life, vessel’s owners usually take advantage of this 

stand by time to perform some little maintenance, provisions supplying, crew 

changing or some other support work that must happen at ports. 

Shortly, unforeseen occurrences influence directly to the time spent by the vessels 

in their operations, causing delays in sailing, discharging and/or loading operations. 

They provoke some undesirable effects: an inefficient use of the fleet; higher 

transportation costs; a higher risk of violating inventory bounds and, consequently, 

causing interruption in crude oil production or refining processes. 

With exception to the post-operation time, which is inherent to the ship scheduling 

activity, the pre-operation time and operation time are highly impacted by 
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unforeseen occurrences. In Section 8.1, we present some historical data that we use 

to estimate this parameter and a robust approach that addresses the uncertainty in 

the time vessels spent at ports. 
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3. Literature review 

 

 

In this Chapter, we examine the literature to review the most recent practice related 

to MIR problem, how researchers approached uncertainty in MIR problems and 

deterministic mathematic formulations to solve MIR problems. 

3.1. Literature review in maritime inventory routing 

According to Christiansen (1999), MIR problem combine an inventory 

management problem and a routing problem. In her pioneering study, a fleet of 

ships transports a single product between production and consumption harbors, 

while the inventory level at these harbors should be kept between maximum and 

minimum levels. The objective function of her model minimizes transportation 

costs. Flatberg et al. (2000) studied the same problem, but made use of an iterative 

improvement heuristic combined with an LP solver for finding arrival times and 

quantities for given routes. These were the two pioneer studies concerning MIR 

problems. 

Since these pioneer studies, researchers have been struggling to overcome the 

challenges posed by MIR problems. According to Furman et al. (2011), Agra et al. 

(2013) and Papageorgiou et al. (2014), MIR problems are very hard to solve to 

optimality for real-life instances. Usually, this kind of problem has weak linear 

relaxation bounds, what makes it harder for commercial solvers (that uses branch-

and-bound algorithm) to find optimal solutions. To overcome the challenges of 

solving MIR problems to optimality, researchers have developed and implemented 

several approaches, most of them based on mixed-integer linear programming 

(MILP), although heuristics and hybrid models can also be found in literature.  

3.1.1. Heuristics and hybrid methods for MIR problems 

Dauzère-Pérès et al. (2007) presents the implementation of a decision support 

system (DSS) applied to a calcium carbonate slurry maritime supply chain for 

European paper manufactures. The proposed DSS is based on a meta-heuristic 

called memetic algorithm (also known as a genetic local search or hybrid genetic 

algorithm). Authors claimed its implementation has saved about US$ 7 million.in 
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production and transportation costs during a year. Christiansen et al. (2011) presents 

a heuristic based on genetic algorithm to deal with the cement transportation 

problem. A heterogeneous fleet of bulk ships is assigned to transport multiple non-

mixable cement products from producing factories to regional silo stations along 

the coast of Norway, while, inventory levels must remain between upper and lower 

levels at all factories and silos. Siswanto et al. (2011) treated a variation of MIR 

problem that they called ship inventory routing and scheduling problem with 

undedicated compartments. They based their tests in a real-world problem of oil 

products transportation in the South East of Asia. In this specific problem, a 

heterogeneous fleet is scheduled and ships compartments are considered in the 

loading and discharging decisions. They identified four sub-problems (route 

selection, ship selection, loading and discharging activities), proposed a set of 

heuristics to deal with these sub-problems, and choose one heuristic to solve each 

one of them.  

The studies cited herein are based on heuristic methods and hybrid approaches, 

which are very useful for solving real-life MIR problems. As real-life MIR 

problems usually involves large sized instances, with many vessels, ports and/or 

longer planning horizon, heuristics and hybrid approaches are one alternative to 

find good solutions. Nevertheless, it is important to highlight that these methods 

usually cannot guarantee optimality.  

3.1.2. MILP approach for MIR problems 

When it comes to MILP approaches, Christiansen (1999) based her model on a 

continuous-time planning horizon and the concept of harbor arrival. Every time a 

ship arrives in a harbor, it is called harbor arrival (also known as port visit). A ship 

may visit a port how many times it is necessary. Al-Khayyal and Hwang (2007) 

studied a multi-product MIR problem, where the products require dedicated 

compartments in the ship. They formulated the problem as a MILP. Christiansen et 

al. (2007) also presented a MILP to model a multi-product MIR problem. In the 

multi-product MIR problem, they assumed that the shipper (cargo owner) does not 

control and operate the fleet of ships. Transportation is carried out by ships that are 

chartered for performing single voyages from a loading to a discharging port at 

known cost (spot charters). This means that the focus of the problem is to determine 

the quantity and timing of shipments to be shipped, while the routing of the ships is 
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not an important part of the problem. Furman et al. (2011) reported one of the few 

successful implementations in industry of the use of MILP to model a real-life MIR 

problem. In their problem, a major petroleum company had to plan the 

transportation of significant volumes of vacuum gas oil (VGO) from supply points 

in Europe to refineries in the United States. As a real problem, they included 

important aspects, such as draft restrictions, and complex transportation costs, such 

as fixed-leg cost, variable overage rates2, and demurrage rates. 

As the problems became more complex, Song and Furman (2013) claimed that their 

model and algorithm framework is flexible and effective enough to be a choice of 

model and solution method for practical inventory routing problems. Papageorgiou 

et al. (2014) also proposed a general formulation that incorporates assumptions and 

families of constraints that are most prevalent in practice. They claim that their 

model is a core model that can features many practical situations found in real-life 

problems.  Papageorgiou et al. (2014) also presented a review of MIR problems and 

the first library of MIR problems of literature. 

3.1.3. Improving MILP formulations 

According to Papageorgiou et al. (2014), most of studies found in literature succeed 

with small instances. According to Dauzère-Pérès et al. (2007), one well-known 

difficulty encountered when solving MIR problems is the combination of large 

continuous decision variables (shipment quantities and inventory levels) and 

discrete decision variables (choice of routes and ships). As consequence, one 

obtains poor bounds with linear relaxation of the mixed-linear programming model. 

Moreover, general cutting planes in the standards solvers are not effective for this 

type of problem. To enhance modeling of the MIR problem, Christiansen (1999) 

propose to decompose it in two subproblems: ship routing and inventory 

management. For this approach, the author used a Dantzig-Wolfe decomposition 

technique. Rocha et al. (2013) also considered a crude oil offloading and supply 

problem, but in a tactical perspective, showing that the natural formulation of the 

problem has weak lower bounds. To strengths their formulation, they proposed a 

reformulation of the model with some valid inequalities that they called Cascading 

Knapsack inequalities. In order to tighten linear relaxation bounds, Agra et al. 

                                                           
2 Overage rate is an extra fee payed to vessel’s owner when the vessel loads more cargo then it was 

contracted in a voyage charter party. 
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(2013) propose a reformulation of a discrete time MIR model that they called Fixed 

Charge Network Flow (FCNF) formulation and implement some important valid 

inequalities that make the model formulation stronger. Apart from these studies, 

many authors propose valid inequalities to improve their models (Persson and 

Gothe-Lundgren, 2005, Al-Kayyal and Hwang, 2007, Gronhaug et al., 2010, 

Engineer et al. 2012, Song and Furman, 2013, Agra et al., 2013b and Papageorgiou 

et al. 2014). 

Solving large instances of MIR problems using MILP is still a challenge. Hence, in 

next chapter we present three different formulations and some valid inequalities that 

model MIR problems and help to strength the formulation, respectively. 
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4. Deterministic maritime inventory routing problem 

 

 

One of the main characteristic that differentiate MIR formulations concerns how to 

model the time dimension, either using continuous or discrete time representation. 

Continuous-time models treat time as a continuum and do not restrict events to take 

place at fixed time points, providing more accuracy in the time-lapse representation 

(Agra et al., 2013). In contrast, discrete-time models consider that the planning 

horizon is discretized into time periods that are uniform in length and assume that 

events (e.g., loading product onto vessels) can only take place at these fixed points 

in time (Papageorgiou et al., 2014). This implies that waiting and sailing times must 

be an integer number multiple of the time period length, which often leads to 

rounding-caused simplifications. 

Although the cost parameters of both types of formulations are identical, such 

simplifications in the aspect time may eventually lead to slight differences between 

objective function values of both types of formulation for the same instance. The 

difference between objective function values, if it happens, is associated to the 

discretization of planning horizon in time periods that limits the occurrence of 

events in fixed points in time and simplifies parameters as sailing, waiting and 

operation times. 

According to Christiansen et al. (2013), Agra et al. (2013) and Papageorgiou et al. 

(2014) continuous time is usually used when consumption and/or production rates 

are given and fixed over the planning horizon and discrete formulations are used to 

overcome the complicating factors associated with variable consumption and 

production rates. 

Next, we present three basic formulations to model a MIR problem, namely a 

continuous-time model, a discrete-time model and an extension of the discrete-time 

model named Fixed Charge Network Flow (FCNF) model. The continuous-time 

formulation is similar to those first presented in Christiansen (1999), Christiansen 

et al. (2007), and Christiansen and Fagerholt (2009). In order to make the 

continuous time model meaningfully comparable to other discrete time models, we 

implemented some reformulations on it. These reformulations comprehend multi-
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berthing operations at the same port, proposed by Stanzani (2017), and waiting 

costs at objective function. The discrete-time model is encountered in Dauzère-

Pérès et al. (2007), Christiansen et al. (2013), and Agra et al. (2013). Moreover, the 

third one is the FCNF model that Agra et al. (2013) claimed that it provides better 

linear relaxation bounds for the integer programming problem. For the sake of 

completeness, next we describe these three formulations. 

4.1. Continuous time model 

In continuous time models, the time representation of the planning horizon is 

continuous and the events (loading or discharging operations, or ship arrival at a 

port, for example) may occur at any time. These events determine the movements 

and activities of the ships and they only happen at nodes. A node represents the pair 

(port, visit), which means the port where the operation occurs and the visit is a 

counter of how many times each port is visited. 

Figure 3 exemplifies the movements of two vessels. In this example, Ship A starts 

operating at node (1,1) (port 1, visit number 1) at the beginning of planning horizon, 

when the vessel loads 40.000m3 of product. It sails directly to node (3,1), where it 

arrives at moment 2.5 (2.5 days after the beginning of the time horizon) to discharge 

20,000m3 of product. After discharging, Ship A sails half-loaded to node (4,1) to 

load more 20,000m3 of product that will be discharge at node (3,3), starting at 

moment 15.7 days. Note that this is the third visit at port 3. Meanwhile, Ship B 

starts at a point in the sea and arrives at node (2,1) at moment 2.3, where it loads 

30,000m3 of product. After that, it sails to node (5,1) to discharge all cargo on board 

at moment 4.3. Later, Ship B sails to port 2 for the second visit (2,2) to load 

60,000m3. Finally, Ship B sails to node (3,2) to discharge the remaining of the 

cargo. 

Figure 3: Possible routes example. 
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Next, we present the notation used in the formulation of continuous time model. 

Sets: 

𝑁  set of ports, indexed by 𝑖 and 𝑗, 

𝑉  set of available ships (or vessels) indexed by 𝑣, 

𝑀𝑇𝑖  set of possible visits at port 𝑖, indexed by 𝑚, 𝑛 and τ. It represents 

the number of possible visits for each port. 

𝐻𝑣  set of ports that can be visited by ship 𝑣 

𝑀𝑖𝑣  set of arrivals at 𝑖 that can be made by ship 𝑣 

𝐼  set of internal ports, which are the ones that the inventory level must 

be controlled during the entire planning horizon, 𝐼  𝑁 

Parameters: 

𝐴𝑣𝑖𝑚𝑗𝑛  1 if the ship 𝑣 can be scheduled in the route that leads from the node 

(𝑖, 𝑚) to the node (𝑗, 𝑛), where 𝑖, 𝑗  𝑁 and 𝑚, 𝑛  𝑀𝑇𝑖,𝑗, 0 otherwise. 

𝐶𝑖𝑗𝑣
𝑇   sailing cost from port 𝑖 to port 𝑗 using ship 𝑣.  

𝐶𝑖𝑣
𝑃   port fee at port i when visited by ship v. 

𝑊𝐶𝑜𝑠𝑡𝑣 waiting costs of ship 𝑣, correspond to hire costs plus bunker 

consumption at standby mode per time-period. 

𝑂𝑅𝐼𝐺𝑣  represents an artificial origin port of the ship 𝑣. 

𝐿0𝑣  cargo on board ship 𝑣 at the beginning of the planning period, 

𝑄𝑀𝑋𝑖𝑣𝑚 maximum load limit of each ship 𝑣 in the port visit (𝑖, 𝑚), 

𝑄𝑀𝑁𝑖𝑚 minimum load limit for each port visit (𝑖, 𝑚), 

𝐶𝐴𝑃𝑣  ship capacity, 

𝐽𝑖  equal to 1 if it is a load ports, -1 if it is a discharge port, and 0 if port 

is 𝑂𝑅𝐼𝐺𝑣 , 

𝑇𝑄𝑖  the time required to load a unit of product at port 𝑖, 
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𝑇𝑆𝑖𝑗𝑣  sailing time from port 𝑖 to port 𝑗 with the ship 𝑣, 

𝑇𝐵𝑖  minimum time required after every berthing at port 𝑖 (correspond to 

maneuver time), 

𝑇𝐼𝑀𝐸  represents the length of the planning period, 

𝑇0𝑣  time ship 𝑣 leaves the artificial origin port 

𝑅𝑖  the product production/consumption rate. It is positive if is a 

production port and negative if is a consumption port, 

𝑆𝑀𝑁𝑖  lower bound for stock level at port 𝑖, 

𝑆𝑀𝑋𝑖  upper bound for stock level at port 𝑖, 

𝑆𝐼𝑖  initial stock level at port 𝑖, 

𝑀𝑀𝑋𝑖  maximum number of visits at port 𝐼 during the planning horizon, 

𝐵𝑖  number of berths in port i. 

Variables: 

𝑥𝑖𝑚𝑗𝑛𝑣  where 𝑥𝑖𝑚𝑗𝑛𝑣    {0,1}, 𝑣  𝑉 and 𝐴𝑣𝑖𝑚𝑗𝑛  =  1; 

1 if the ship 𝑣 sails directly from node (𝑖,𝑚) to node (𝑗, 𝑛); 0 otherwise. 

𝑦𝑖𝑚  where 𝑦𝑖𝑚 {0,1}, 𝑖  𝐼 and 𝑚  𝑀𝑇𝑖  

1 if no ship visits node (𝑖,𝑚); 0 otherwise. 

𝑧𝑖𝑚𝑣  where 𝑧𝑖𝑚𝑣 {0,1}, 𝑣  𝑉, 𝑖  𝐻𝑣 and 𝑚  𝑀𝑇𝑖  

indicates the last operation of vessel v during planning horizon; is equal to 1, if the 

ship 𝑣 ends its route at port 𝑖 and during visit 𝑚; 0, otherwise.  

𝑞𝑖𝑚𝑣  where 𝑞𝑖𝑚𝑣  𝑅+ \ {𝑂𝑅𝐼𝐺𝑣} 

represents the quantity loaded or discharged in each node (𝑖,𝑚) for each ship 𝑣. 

𝑙𝑖𝑚𝑣  where 𝑙𝑖𝑚𝑣  𝑅+ , 𝑙(𝑂𝑅𝐼𝐺𝑣,1,𝑣)  =  𝐿0𝑣 

represents the load on board the ship 𝑣 after leaving the node (𝑖,𝑚). 

𝑡𝑖𝑚  where 𝑡𝑖𝑚  𝑅  
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the start time at node (𝑖,𝑚). 

𝑡𝑒𝑖𝑚  where 𝑡𝑒𝑖𝑚  𝑅, 𝑡𝑒(𝑂𝑅𝐼𝐺𝑣,1) = 𝑇0𝑣 

the end time at node (i,m). 

𝑤𝑖𝑚𝑗𝑛𝑣  where 𝑤𝑖𝑚𝑗𝑛𝑣 ∈ 𝑅, 

the time vessel 𝑣 waits at port, visit (𝑗, 𝑛) after leaving port, visit (𝑖, 𝑚) from it 

arrival to beginning of loading or discharging operation. It may correspond to 

waiting time in queue in case of berth congestion, for example.  

𝑠𝑖𝑚  where 𝑠𝑖𝑚 𝑅 

represents the stock level at the port when the service starts at node (𝑖,𝑚). 

𝑠𝑒𝑡𝑚  where 𝑠𝑒𝑖𝑚  𝑅 

represents the stock level at the port at the end of service at node (𝑖, 𝑚). 

𝜎𝑖𝑚𝜏 where 𝜎𝑖𝑚𝜏  ∈ {0,1} 

  0 if visit m superposes previous visit τ, 1 otherwise. 

Objective function: 

min 𝑧 =  ∑ ∑ (𝐶𝑖𝑗𝑣
𝑇 + 𝐶𝑖𝑣

𝑃 )𝑥𝑖𝑚𝑗𝑛𝑣(𝑖,𝑚,𝑗,𝑛)|𝐴𝑣𝑖𝑚𝑗𝑛=1𝑣∈𝑉  + 𝑊𝐶𝑜𝑠𝑡𝑣𝑤𝑖𝑚𝑗𝑛𝑣 (1) 

The minimization function (1) contains transportation costs and port fee (contained 

in the parameter 𝐶𝑖𝑗𝑣) and the variable 𝑥𝑖𝑚𝑗𝑛𝑣 indicates ships movements through 

nodes (port, visit). It also minimizes waiting costs at ports. 

Constraints: 

∑ ∑ 𝑥𝑗𝑛𝑖𝑚𝑣 − ∑ ∑ 𝑥𝑖𝑚𝑗𝑛𝑣 − 𝑧𝑖𝑚𝑣 = 0,𝑛∈𝑀𝑗𝑣𝑗∈𝐻𝑣𝑛∈𝑀𝑗𝑣𝑗∈𝐻𝑣   

∀𝑣 ∈ 𝑉, ∀𝑖 ∈ 𝐻𝑣\{𝑂𝑅𝐼𝐺𝑣},𝑚 ∈ 𝑀𝑖𝑣      (2) 

∑ ∑ 𝑥𝑂𝑅𝐼𝐺𝑣,1,𝑗𝑛𝑣 + 𝑧𝑂𝑅𝐼𝐺𝑣,1,𝑣 = 1,𝑛  ∀𝑣V𝑗      (3) 

∑ ∑ 𝑧𝑖𝑚𝑣 = 1,𝑚                                     ∀𝑣V𝑖      (4) 

∑ ∑ ∑ 𝑥𝑗𝑛𝑖𝑚𝑣 + 𝑦𝑖𝑚 = 1, ∀𝑖N{𝑂𝑅𝐼𝐺𝑣},𝑚𝑀𝑇𝑖 𝑛∈𝑀𝑗𝑣𝑗∈𝐻𝑣𝑣V   (5) 

𝑦𝑖𝑚 − 𝑦𝑖(𝑚−1) ≥ 0,                                   ∀𝑖𝐼,𝑚𝑀𝑇𝑖   (6) 
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Constraints (2) ensure that the ship 𝑣 that arrives at port 𝑖 leaves the same port 

towards another port 𝑗 or to its route end. Constraints (3) ensure that a ship can be 

idle during the planning horizon. Constraints (4) ensure route ending. Constraints 

(5) ensure that each (port, visit) node must be visited either by a real ship or a 

dummy ship and (6) ensure that after been visited by a dummy ship, a node cannot 

be visited for real ships anymore. 

𝑥𝑖𝑚𝑗𝑛𝑣[𝑙𝑖𝑚𝑣 + 𝐽𝑗𝑞𝑗𝑛𝑣 − 𝑙𝑗𝑛𝑣] = 0,   ∀𝑣 ∈ 𝑉, ∀𝑖,𝑚, 𝑗, 𝑛| 𝐴𝑣𝑖𝑚𝑗𝑛 = 1   (7) 

Constraints (7) state the relationship between the binary flow variable and the ship 

load/discharge at each node. These constraints are linearized as in (7’) and (7’’). 

The ship capacity 𝐶𝐴𝑃(𝑣) is the largest value that (𝑙𝑖𝑚𝑣 + 𝐽𝑗𝑞𝑗𝑛𝑣 − 𝑙𝑗𝑛𝑣) can take, 

so constraints (7) are redundant if 𝑥𝑖𝑚𝑗𝑛𝑣 is equal to 0. Similarly, (𝑙𝑖𝑚𝑣 + 𝐽𝑗𝑞𝑗𝑛𝑣 −

𝑙𝑗𝑛𝑣)  will never be less than − 𝐶𝐴𝑃(𝑣) (for details, please refer to Christiansen, 

1999). 

𝑙𝑖𝑚𝑣 + 𝐽𝑗𝑞𝑗𝑛𝑣 − 𝑙𝑗𝑛𝑣 + 𝐶𝐴𝑃𝑣𝑥𝑖𝑚𝑗𝑛𝑣 ≤ 𝐶𝐴𝑃𝑣 , ∀𝑣 ∈ 𝑉, ∀𝑖,𝑚, 𝑗, 𝑛| 𝐴𝑣𝑖𝑚𝑗𝑛 = 1     

          (7’) 

𝑙𝑖𝑚𝑣 + 𝐽𝑗𝑞𝑗𝑛𝑣 − 𝑙𝑗𝑛𝑣 − 𝐶𝐴𝑃𝑣𝑥𝑖𝑚𝑗𝑛𝑣 ≥ −𝐶𝐴𝑃𝑣, ∀𝑣 ∈ 𝑉, ∀𝑖, 𝑚, 𝑗, 𝑛| 𝐴𝑣𝑖𝑚𝑗𝑛 = 1  

          (7’’) 

0 ≤ 𝑙𝑖𝑚𝑣 ≤ ∑ ∑ 𝐶𝐴𝑃𝑣𝑥𝑗𝑛𝑖𝑚𝑣 ,𝑛∈𝑀𝑗𝑣𝑗∈𝐻𝑣   ∀𝑣 ∈ 𝑉, ∀𝑖 ∈ 𝐻𝑣, ∀𝑚 ∈ 𝑀𝑖𝑣 (8) 

 𝑞𝑖𝑚𝑣 − ∑ ∑ 𝑄𝑀𝑋𝑖𝑚𝑣𝑥𝑗𝑛𝑖𝑚𝑣 ≤ 0,𝑛∈𝑀𝑗𝑣𝑗∈𝐻𝑣  ∀𝑣 ∈ 𝑉, ∀𝑖 ∈ 𝐻𝑣, ∀𝑚 ∈ 𝑀𝑖𝑣   (9) 

∑ 𝑞𝑖𝑚𝑣 + 𝑄𝑀𝑁𝑖𝑚𝑦𝑖𝑚 ≥𝑣∈𝑉 𝑄𝑀𝑁𝑖𝑚,    ∀𝑖 ∈ 𝐻𝑣, 𝑚 ∈ 𝑀𝑖𝑣 (10) 

Constraints (8) give the bounds for the product amount on board a vessel. 

Constraints (9) and (10) give the limits for loading/discharging quantity. 

𝑡𝑖𝑚 ≥ 𝑡𝑖𝑚−1    ∀𝑖 ∈ 𝐻𝑣, ∀𝑚 ∈ 𝑀𝑇𝑖, 𝑚 ≠ 1  (11) 

𝑡𝑖𝑚 + ∑ 𝑇𝑄𝑖𝑞𝑖𝑚𝑣 + 𝑇𝐵𝑖 − 𝑡𝑒𝑖𝑚 = 0,𝑣∈𝑉   ∀𝑖 ∈ 𝐻𝑣, ∀𝑚 ∈ 𝑀𝑇𝑖  (12) 

(𝑡𝑒𝑖𝑚 + 𝑇𝑆𝑖𝑗𝑣 − 𝑡𝑗𝑛) + 𝑇𝐼𝑀𝐸𝑥𝑖𝑚𝑗𝑛𝑣 ≤ 𝑇𝐼𝑀𝐸, ∀𝑣 ∈ 𝑉, ∀(𝑖, 𝑚, 𝑗, 𝑛)|𝐴𝑣𝑖𝑚𝑗𝑛 = 1   

          (13) 

𝑡𝑖𝑚 − 𝑡𝑒𝑖𝜏 ≥ (𝜎𝑖𝑚𝜏 − 1)𝑇𝐼𝑀𝐸, ∀𝑖 ∈ 𝐻𝑣, ∀𝑚 ∈ 𝑀𝑇𝑖, 𝜏 = 1,… ,𝑚 − 1 (14) 
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𝑡𝑖𝑚 − 𝑡𝑒𝑖𝜏 ≤ (𝜎𝑖𝑚𝜏)𝑇𝐼𝑀𝐸, ∀𝑖 ∈ 𝐻𝑣, ∀𝑚 ∈ 𝑀𝑇𝑖, 𝜏 = 1,… ,𝑚 − 1 (15) 

1 + ∑ (1 − 𝜎𝑖𝑚𝜏) ≤ 𝐵𝑖𝜏=1,…,𝑚−1 ∀𝑖 ∈ 𝐻𝑣, ∀𝑚 ∈ 𝑀𝑇𝑖   (16) 

(𝑡𝑗𝑛 − 𝑡𝑒𝑖𝑚 − 𝑇𝑆𝑖𝑗𝑣) + 𝑇𝐼𝑀𝐸𝑥𝑖𝑚𝑗𝑛𝑣 ≤ 𝑤𝑖𝑚𝑗𝑛𝑣 + 𝑇𝐼𝑀𝐸    

    ∀𝑣 ∈ 𝑉, ∀𝑖,𝑚, 𝑗, 𝑛| 𝐴𝑣𝑖𝑚𝑗𝑛 = 1  (17) 

Constraints (11) impose that start time at visit 𝑚 cannot occurs earlier than start 

time at visit 𝑚 − 1; additionally, they allow the overlapping of visit in a port 𝑖. with 

more than one berth. Constraints (12) define the relationship between the operating 

start time 𝑡𝑖𝑚 and the operating ending time 𝑡𝑒𝑖𝑚 at the same port 𝑖. Constraints 

(13) give the time relationship between subsequent ports. Start time 𝑡(𝑗,𝑛)at port 𝑗 

must be greater than or equal to the end time 𝑡𝑒(𝑖,𝑚) on the previews port 𝑖 plus the 

sailing time between ports 𝑖 and 𝑗. Note that the ship may arrive before 𝑡(𝑗,𝑛) in node 

j for visit n. In this case, it waits until 𝑡(𝑗,𝑛) to start service. It may happen due to 

berth congestion at the port.  Constraints (14) and (15) define the relationship 

between variables 𝜎𝑖𝑚𝜏 and variables 𝑡𝑖𝑚 and 𝑡𝑒𝑖𝜏. Note that they correctly ensure 

that 𝜎𝑖𝑚𝜏 = 0 if the 𝑚th visit to port 𝑖 superposes a previous visit 𝜏 (𝑡𝑖𝑚 ≤ 𝑡𝑒𝑖𝜏) in 

(15), and that 𝜎𝑖𝑚𝜏 = 1  otherwise (𝑡𝑖𝑚 ≥ 𝑡𝑒𝑖𝜏) in (14). Constraints (16) limits the 

number of overlapping operations in a port 𝑖 to the number of berths of such port. 

Constraints (17) define waiting time for every visit 𝑖 of a vessel 𝑣 to a port 𝑗. 

𝑠𝑖𝑚 − ∑ 𝐽𝑖𝑞𝑖𝑚𝑣 + 𝑅𝑖𝑡𝑒𝑖𝑚 − 𝑅𝑖𝑡𝑖𝑚 − 𝑠𝑒𝑖𝑚 = 0,𝑣∈𝑉   ∀𝑖 ∈ 𝐼, ∀𝑚 ∈ 𝑀𝑇𝑖 (18) 

𝑠𝑒𝑖(𝑚−1) + 𝑅𝑖𝑡𝑖𝑚 − 𝑅𝑖𝑡𝑒𝑖(𝑚−1) − 𝑠𝑖𝑚 = 0,   ∀𝑖 ∈ 𝐼, ∀𝑚 ∈ 𝑀𝑇𝑖 (19) 

𝑆𝐼𝑖 + 𝑅𝑖𝑡𝑖𝑚 − 𝑠𝑖𝑚 = 0,    ∀𝑖 ∈ 𝐼,𝑚 = 1  (20) 

𝑆𝑀𝑁𝑖 ≤ 𝑠𝑖𝑚 ≤ 𝑆𝑀𝑋𝑖    ∀𝑖 ∈ 𝐼, ∀𝑚 ∈ 𝑀𝑇𝑖  (21) 

𝑆𝑀𝑁𝑖 ≤ 𝑠𝑒𝑖𝑚 ≤ 𝑆𝑀𝑋𝑖    ∀𝑖 ∈ 𝐼, ∀𝑚 ∈ 𝑀𝑇𝑖 (22) 

𝑆𝑀𝑁𝑖 ≤ 𝑠𝑒𝑖𝑚 + 𝑅𝑖(𝑇𝐼𝑀𝐸 − 𝑡𝑒𝑖𝑚) ≤ 𝑆𝑀𝑋𝑖        ∀𝑖 ∈ 𝐼,𝑚 = 𝑀𝑀𝑋𝑖 (23) 

Constraints (18) calculate the stocks at the end of a visit in an internal port and (19) 

give the inventory level between visits for each port. Constraints (20) give the 

inventory level at the beginning of the first visit for each port. Constraints (21), (22) 

and (23) give the inventory level bounds for the stock at the beginning of the 

service, after the service and at the end of planning horizon, respectively. 
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4.2. Discrete time model 

Differently from the continuous time model, in the discrete time model the planning 

horizon is divided into uniform time periods, which becomes an index of the model. 

The events (loading or discharging operations, or ship arrival at a port for example) 

must occur in one of these defined time periods. Sailing, operating and waiting time 

of each ship also must start and end at one time period. We defined one time period 

as one day based on the scheduling team recommendation. They considered that 

one day represents most vessel activities. 

 Figure 4 presents a time-space network diagram that describes the movements of a 

vessel between ports along the planning horizon. Ships navigate through nodes that 

represent pairs of time periods and ports. At each of these nodes, the inventory is 

controlled and the vessel performs one of the following activities: waiting, 

operating or leaving a port. Usually, there is at least one variable to represent vessel 

activity at each node. In this example, the vessel leaves an artificial origin port (Or) 

and sail (S) to port 1, where it arrives during time period 1 and operates (O) for 2 

periods. Thereafter, the vessel sails to port 3 where it arrives during time period 6, 

waits (W) for 1 time period and operates for 2 more time periods. Finally, during 

time period 9, the ship sails to port 2, waits for 1 time period, operates for another 

period, and finishes its voyage at an artificial destination port (D).  

The artificial origin and destination nodes have different roles in the mathematical 

formulation. The origin node defines where the vessel is positioned in the beginning 

of the planning horizon. It represents the point in which the ship is ready to start its 

first voyage in the planning horizon. This point may be a onshore terminal or a 

Figure 4: Time-space network representing a movement of a ship in an artificial 

problem. 
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production site, for example. On the other hand, the artificial destination port is 

used to indicate that a vessel finished its last voyage during that planning horizon. 

It does not denote any actual location, simply denoting the end of its tasks for that 

planning horizon. From the moment the vessel enters its destination port, it will not 

perform any other service during that planning horizon. The sailing time from the 

last real port visited to artificial destination port is zero and it does not add any cost 

to objective function either. 

Next, we present the notation used in the discrete time formulation. 

Sets: 

𝑁  set of all ports indexed by 𝑖 and 𝑗 

𝑇  set of time periods indexed by 𝑡 

𝑉  set of vessels indexed by 𝑣 

𝑁𝑃  set of loading ports indexed by 𝑖 and 𝑗 

𝑁𝐷  set of discharge ports indexed by 𝑖 and 𝑗 

Parameters: 

𝐶𝑖𝑗𝑣
𝑇   sailing cost of vessel 𝑣 between ports 𝑖 and 𝑗 

𝐶𝑣
𝑊  waiting cost of vessel 𝑣 for each time period 

𝐶𝑖𝑣
𝑃   port cost of port 𝑖 for vessel 𝑣 

𝑂𝑣  position of vessel 𝑖 in the beginning of planning horizon 

𝐷𝐸𝑣  artificial end node for each vessel 𝑣 

𝑇𝑖𝑗𝑣  sailing time of vessel 𝑣 between ports 𝑖 and 𝑗 

𝐵𝑖𝑡  number of berths available in port 𝑖 during time period 𝑡 

𝑄𝑣  maximum amount of product to be (un)loaded at one time period of 

ship 𝑣 

𝐿0𝑣  inventory on board of vessel 𝑣 in the beginning of the planning 

horizon 
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𝐾𝑣  vessel capacity 

𝐷𝑖𝑡  demand rate in the discharge port 𝑖 for each time period 

𝑃𝑖𝑡  production rate in the load port 𝑖 for each time period 

𝑆𝑀𝑋𝑖𝑡  upper bound of inventory level in port 𝑖 for each time period 

𝑆𝑀𝑁𝑖𝑡  lower bound of inventory level in port 𝑖 for each time period 

𝑆0𝑖  inventory level at port 𝑖 in the beginning of the planning horizon 

Variables: 

𝑜𝑖𝑣𝑡  where 𝑜𝑖𝑣𝑡  {0,1} 

equal to 1 if vessel is operating (loading/discharging) in port during time period 𝑡 

and 0 otherwise, 

𝑥𝑖𝑗𝑣𝑡  where 𝑥𝑖𝑗𝑣𝑡 {0,1} 

equal to 1 if vessel 𝑣 left port 𝑖 to port 𝑗 during time period 𝑡 and 0 otherwise, 

𝑤𝑖𝑣𝑡  where 𝑤𝑖𝑣𝑡  {0,1} 

equal to 1 if vessel 𝑣 is waiting outside berth in port 𝑖 during time period 𝑡 and 0 

otherwise, 

𝑙𝑣𝑡  where 𝑙𝑣𝑡  R 

inventory level on board vessel 𝑣 during time period 𝑡, 

𝑞𝑖𝑣𝑡  where 𝑞𝑖𝑣𝑡  R 

quantity (un)load from/to vessel 𝑣 in port 𝑖 during time period 𝑡, 

𝑠𝑖𝑡  where 𝑠𝑖𝑡 R 

inventory level at port 𝑖 during time period 𝑡. 

Objective function: 

𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝐶𝑖𝑗𝑣
𝑇 𝑥𝑖𝑗𝑣𝑡 + 𝑡∈𝑇𝑗∈𝑁∪{𝐷𝐸𝑣}𝑖∈𝑁{𝑂𝑣}𝑣∈𝑉 ∑ ∑ ∑ 𝐶𝑖𝑣

𝑃𝑥𝑖𝑗𝑣𝑡 +𝑡∈𝑇𝑖∈𝑁𝑣∈𝑉

                                                   ∑ ∑ ∑ 𝐶𝑣
𝑊𝑤𝑖𝑣𝑡 𝑡∈𝑇𝑖∈𝑁𝑣∈𝑉    (24) 

The minimization function (24) contains transportation costs, operation costs and 
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waiting costs. 

Constraints 

∑ ∑ 𝑥𝑂𝑣𝑗𝑣𝑡 = 1, ∀𝑣 ∈ 𝑉,𝑡∈𝑇𝑗∈𝑁∪{𝐷𝐸𝑣}      (25) 

∑ ∑ 𝑥𝑖𝐷𝐸𝑣𝑣𝑡 = 1,   ∀𝑣 ∈ 𝑉,𝑡∈𝑇𝑖∈𝑁∪{𝑂𝑣}      (26) 

𝑜𝑖𝑣,𝑡−1  ≤   ∑ 𝑥𝑖𝑗𝑣𝑡 + 𝑜𝑖𝑣𝑡𝑗∈𝑁∪{𝐷𝐸𝑣}  , ∀𝑣 ∈ 𝑉, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇,    (27) 

𝑜𝑖𝑣,𝑡−1  ≥   ∑ 𝑥𝑖𝑗𝑣𝑡𝑗∈𝑁∪{𝐷𝐸𝑣}  ,   ∀𝑣 ∈ 𝑉, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇,    (28) 

Constraints (25) and (26) guarantee that every ship leaves from its artificial origin 

port and finishes the voyage at its artificial destination port. Constraints (27) 

determine that after an operation period, a vessel can continue to operate or sail the 

port in the next period and constraints (28) ensure that before leaving a port, the 

vessel must have operated there in the time period immediately before. 

∑ 𝑥𝑗𝑖𝑣,𝑡−𝑇𝑗𝑖𝑣 + 𝑤𝑖𝑣,𝑡−1  +  𝑜𝑖𝑣,𝑡−1𝑗∈𝑁∪{𝑂𝑣} = ∑ 𝑥𝑖𝑗𝑣𝑡 + 𝑤𝑖𝑣𝑡  + 𝑜𝑖𝑣𝑡  ,𝑗∈𝑁∪{𝐷𝐸𝑣}   

                  ∀𝑣 ∈ 𝑉, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇,   (29) 

∑ 𝑥𝑖𝑗𝑣𝑡 + 𝑤𝑖𝑣𝑡  +  𝑜𝑖𝑣𝑡𝑗 ≤ 1, ∀𝑣 ∈  𝑉,   𝑖 ∈  𝑁,   𝑡 ∈  𝑇   (29’) 

∑ 𝑜𝑖𝑣𝑡  ≤  𝐵𝑖𝑡 ,   ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇,   𝑣∈𝑉       (30) 

Constraints (29) represent vessel’s movement along the time-space network 

structure. At every time period, the vessel must be leaving a port, waiting to operate 

or operating at a port. These constraints also connect the time when a vessel leaves 

one port 𝑗 to the time when the same vessel arrives at a port 𝑖. However, constraints 

(29) allow both sides of the equality to be equal to 2 or 3, for example, which is an 

unexpected solution. Then, we add constraints (29’) that works as a valid inequality, 

removing unexpected solutions from the feasible solution space and strengthening 

lower bounds. However, preliminary tests were inconclusive about the 

effectiveness of constraints (29’) in improving computational performance. 

Constraints (30) give berth restriction at each node and consequently waiting time. 

0 ≤  𝑞𝑖𝑣𝑡  ≤  𝑄𝑣𝑜𝑖𝑣𝑡 , ∀𝑣 ∈ 𝑉, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇,       (31) 

𝑙𝑣,𝑡−1 + ∑ 𝑞𝑖𝑣𝑡𝑖∈𝑁𝑃 − ∑ 𝑞𝑖𝑣𝑡𝑖∈𝑁𝐷 − 𝑙𝑣𝑡 = 0 , ∀𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇,  (32) 
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0 ≤  𝑙𝑣𝑡  ≤  𝐾𝑣 , ∀𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇,      (33) 

𝑙𝑣0 = 𝐿0𝑣  , ∀𝑣 ∈ 𝑉,          (34) 

The quantity to be (un)loaded (𝑞𝑖𝑣𝑡) must be less than the maximum amount of 

product to be loaded to or discharged from ship v (constraints 31). The load onboard 

the vessel onboard is controlled in constraints (32) and it must always observe 

ship’s capacity (constraints 33). Initial inventory level onboard the vessel is given 

in constraints (34). 

𝑠𝑖,𝑡−1 + ∑ 𝑞𝑖𝑣𝑡𝑣∈𝑉 = 𝐷𝑖𝑡 + 𝑠𝑖𝑡 , ∀𝑖 ∈ 𝑁𝐷, 𝑡 ∈ 𝑇,       (35) 

𝑠𝑖,𝑡−1 + 𝑃𝑖𝑡 = ∑ 𝑞𝑖𝑣𝑡𝑣∈𝑉 + 𝑠𝑖𝑡 , ∀𝑖 ∈ 𝑁𝑃, 𝑡 ∈ 𝑇,     (36) 

𝑆𝑀𝑁𝑖𝑡  ≤  𝑠𝑖𝑡  ≤  𝑆𝑀𝑋𝑖𝑡 , ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇,      (37) 

𝑠𝑖0 = 𝑆0𝑖  , ∀𝑖 ∈ 𝑁,         (38) 

𝑥𝑖𝑗𝑣𝑡 ∈ {0,1}, ∀𝑣 ∈ 𝑉, 𝑖 ∈ 𝑁 ∪ {𝑂𝑣}, 𝑗 ∈ 𝑁 ∪ {𝐷𝐸𝑣}, 𝑡 ∈ 𝑇,    (39) 

𝑜𝑖𝑣𝑡 , 𝑤𝑖𝑣𝑡  ∈ {0,1},   ∀𝑣 ∈ 𝑉, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇,      (40) 

𝑙𝑣𝑡,  𝑠𝑖𝑡, 𝑞𝑖𝑣𝑡  ∈ ℝ   ∀𝑣 ∈ 𝑉, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇.      (41) 

In the discrete time model, the inventory level at each port is controlled during every 

time period of the planning horizon at load and discharge ports (constraints 35 and 

36). Constraints (37) give the operational range for inventory levels and constraints 

(38) define initial inventory levels at each port. Constraints (39), (40) and (41) 

define variable domains.  

4.3. Fixed charge network flow formulation (FCNF) 

The third formulation considered in this study is the FCNF. It is an extension of the 

discrete time model presented in 3.2.2. According to Agra et al. (2013), FCNF 

provides linear relaxation bounds that are better than those obtained using the 

discrete time model. They model the problem as a single-commodity FCNF 

problem, which allows us to take advantage of known inequalities for such 

problems (Agra et al., 2013). As the FCNF model is an extension of the discrete 

time model, we have used the same notation of the previews model. In this sense, 

we state only the additional variables needed to complete this formulation. 
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In an extended network, the variables 𝑜𝑖𝑣𝑡 are split into two variables 𝑜𝑖𝑣𝑡 
𝐴  and 𝑜𝑖𝑣𝑡

𝐵 . 

The first indicates the start of an operation in a port and the second variable 

indicates the continuation of an operation in the same port. Figure 5 represents a 

discharge operation at port 𝑖 by ship 𝑣 in an extended network, considering two 

layers, one for the beginning of the operation (variable 𝑜𝑖𝑣𝑡
𝐴 ) and a second one for 

an eventual continuation of the operation in the same port (variable 𝑜𝑖𝑣𝑡
𝐵 ). The ship 

arrived at port 𝑖 at time period 2, waits for one period, starts operating (discharging) 

in period 3, continues operating in period 4, and then leaves for port 𝑘 in period 5. 

Variables: 

𝑜𝑖𝑣𝑡
𝐴   where 𝑜𝑖𝑣𝑡

𝐴   {0,1} 

  indicates whether ship 𝑣 starts to operate at port 𝑖 in period 𝑡 

𝑜𝑖𝑣𝑡
𝐵   where 𝑜𝑖𝑣𝑡

𝐵   {0,1} 

  indicates whether ship 𝑣 continue to operate at port 𝑖 in period 𝑡 

With these new variables, the ship flow-conservation constraints (29) can now be 

reformulated as: 

∑ 𝑥𝑗𝑖𝑣,𝑡−𝑇𝑗𝑖𝑣  + 𝑤𝑖𝑣,𝑡−1 = 𝑤𝑖𝑣𝑡 + 𝑜𝑖𝑣𝑡 
𝐴 , ∀𝑣 ∈  𝑉,   𝑖 ∈  𝑁,   𝑡 ∈  𝑇,𝑗∈𝑁∪{𝑂𝑣}  

          (42) 

Figure 5: Discharging operation of ship 𝑣 at port 𝑖 in the extended network structure. 

Source: Agra et al. 2013 

DBD
PUC-Rio - Certificação Digital Nº 1312443/CA



43 
 

∑ 𝑥𝑖𝑗𝑣𝑡  +  𝑤𝑖𝑣𝑡 + 𝑜𝑖𝑣𝑡 
𝐴 + 𝑜𝑖𝑣𝑡 

𝐵 ≤ 1       ∀𝑣 ∈  𝑉,   𝑖 ∈  𝑁,   𝑡 ∈  𝑇,𝑗  (42’) 

𝑜𝑖𝑣𝑡−1
𝐴 + 𝑜𝑖𝑣𝑡−1

𝐵 = 𝑜𝑖𝑣𝑡
𝐵 + ∑ 𝑥𝑖𝑗𝑣𝑡𝑗∈𝑁∪{𝐷𝐸𝑣} , ∀𝑣 ∈  𝑉,   𝑖 ∈  𝑁,   𝑡 ∈  𝑇,  (43) 

𝑜𝑖𝑣𝑡
𝐴 , 𝑜𝑖𝑣𝑡

𝐵  ∈ {0,1}, ∀𝑣 ∈  𝑉,   𝑖 ∈  𝑁,   𝑡 ∈  𝑇,     (44) 

Constraints (42) indicate the ship arrival at one port and (42’) is a disaggregation of 

(42) following the same reasoning of (29). Constraints (43) show when the ship 

sailing from one port. Constraints (44) indicate the variables 𝑜𝑖𝑣𝑡
𝐴  and 𝑜𝑖𝑣𝑡

𝐵  are 

binary. 

𝑜𝑖𝑣𝑡
𝐴 + 𝑜𝑖𝑣𝑡

𝐵 = 𝑜𝑖𝑣𝑡,       ∀𝑣 ∈  𝑉,   𝑖 ∈  𝑁,   𝑡 ∈  𝑇,    (45) 

Constraints (45) provide the coordination between the path of the ships and the 

loading or discharging of crude oil in a port. 

To complete the FCNF formulation, variable 𝑙𝑣𝑡 must be replaced with the 

following variables. They represent the flow amount of product for each arc in the 

extended network presented in Figure 5. 

Variables: 

𝑓𝑖𝑗𝑣𝑡
𝑋

 that indicates the load on board ship 𝑣 when traveling from port 𝑖 to port 𝑗, 

leaving port 𝑖 in period 𝑡, 

𝑓𝑖𝑣𝑡
𝑂𝐴

 that indicates the load on board ship 𝑣 when starting to operate at port 𝑖 in 

period 𝑡 and has not operated in period 𝑡 − 1, 

𝑓𝑖𝑣𝑡
𝑂𝐵 that indicates the load on board ship 𝑣 before continuing to operate at port 𝑖 

in period 𝑡 after having operated in time period 𝑡 − 1, 

𝑓𝑖𝑣𝑡
𝑊

  that indicates the load on board ship 𝑣 while waiting during time 

period 𝑡 at port 𝑖. 

Hence, constraints (32) – (34) that represent the ship’s onboard quantity are 

replaced with the flow conservation constraints below (46) – (49): 

∑ 𝑓𝑗𝑖𝑣,𝑡−𝑇𝑗𝑖𝑣
𝑋 + 𝑓𝑖𝑣,𝑡−1

𝑊 = 𝑓𝑖𝑣𝑡
𝑊 + 𝑓𝑖𝑣𝑡

𝑂𝐴 𝑗∈𝑁∪{𝑂𝑣} ,  ∀𝑣 ∈  𝑉,   𝑖 ∈  𝑁,   𝑡 ∈  𝑇, (46) 

𝑓𝑖𝑣,𝑡−1
𝑂𝐴 + 𝑓𝑖𝑣,𝑡−1

𝑂𝐵 + 𝑞𝑖𝑣,𝑡−1 = 𝑓𝑖𝑣𝑡
𝑂𝐵 + ∑ 𝑓𝑖𝑗𝑣𝑡

𝑋 ,𝑗∈𝑁∪{𝐷𝐸𝑣}   

 ∀𝑣 ∈  𝑉,   𝑖 ∈  𝑁𝑃 ∪ {𝑂𝑣},   𝑡 ∈  𝑇,    (47) 
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𝑓𝑖𝑣,𝑡−1
𝑂𝐴 + 𝑓𝑖𝑣,𝑡−1

𝑂𝐵 − 𝑞𝑖𝑣,𝑡−1 = 𝑓𝑖𝑣𝑡
𝑂𝐵 + ∑ 𝑓𝑖𝑗𝑣𝑡

𝑋 ,𝑗∈𝑁∪{𝐷𝐸𝑣}     

   ∀𝑣 ∈  𝑉,   𝑖 ∈  𝑁𝐷 ∪ {𝑂𝑣},   𝑡 ∈  𝑇,   (48) 

𝑓𝑂𝑣𝑗𝑣𝑡
𝑋 = 𝐿0𝑣 𝑥𝑂𝑣𝑗𝑣𝑡,    ∀𝑣 ∈  𝑉,   𝑗 ∈  𝑁 ∪ {𝐷𝐸𝑣},   𝑡 ∈  𝑇  (49) 

The variables upper bounds and non-negativity constraints are expressed in (50) – 

(54): 

0 ≤  𝑓𝑖𝑗𝑣𝑡
𝑋  ≤  𝐾𝑣𝑥𝑖𝑗𝑣𝑡 ,   ∀𝑣 ∈  𝑉, 𝑖 ∈ 𝑁 ∪ {𝑂𝑣}, 𝑗 ∈  𝑁 ∪ {𝐷𝐸𝑣},   𝑡 ∈  𝑇 (50) 

0 ≤  𝑓𝑖𝑣𝑡
𝑂𝐴  ≤  𝐾𝑣𝑜𝑖𝑣𝑡

𝐴 ,   ∀𝑣 ∈  𝑉, 𝑖 ∈ 𝑁,   𝑡 ∈  𝑇,    (51) 

0 ≤  𝑓𝑖𝑣𝑡
𝑂𝐵  ≤  𝐾𝑣𝑜𝑖𝑣𝑡

𝐵 ,   ∀𝑣 ∈  𝑉, 𝑖 ∈ 𝑁,   𝑡 ∈  𝑇,    (52) 

0 ≤  𝑞𝑖𝑣𝑡  ≤  𝑄𝑣𝑜𝑖𝑣𝑡,   ∀𝑣 ∈  𝑉, 𝑖 ∈ 𝑁,   𝑡 ∈  𝑇,    (53) 

0 ≤  𝑓𝑖𝑣𝑡
𝑊  ≤  𝐾𝑣𝑤𝑖𝑣𝑡, ∀𝑣 ∈  𝑉, 𝑖 ∈ 𝑁,   𝑡 ∈  𝑇.    (54) 

Finally, the FCNF formulation is defined by (24) – (26), (30) – (31), (35) – (38) 

from the discrete time formulation and the additional constraints (42) – (54). 

Additionally, to further strengthen the FCNF formulation, we have considered some 

valid inequalities proposed in Agra et al. (2013). Using the names proposed in Agra 

et al. (2013), we have implemented: 

 Knapsack inequalities; 

 Mixed Integer rounding inequalities; 

 Wagner-Whitin constant capacity lot-sizing reformulations; and 

 Inequalities for lot-sizing with start-up relaxations. 

For a complete demonstration about such valid inequalities, see Agra et al. (2013). 

In next chapter, we present computational experiments to compare the 

formulations presented here using a set of real-life instances. 
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5. Computational experiments 

 

 

As MIR problems are known as hard to solve, especially for real-life instances, and 

there are different formulations available in literature, we developed a test bed to 

compare their computational performance. However, it is important to highlight 

that there are a few differences between the formulations. The discrete time 

formulations allow variation in production and/or consumption rates along planning 

horizon, while these rates are fixed in the continuous time formulation. On the other 

hand, in discrete time formulations the time required for each operation (sailing, 

loading or discharging) is always multiple of one time period, while the continuous 

time formulation provides more accuracy to model regarding the time spent at each 

operation. The continuous time formulation enables one to consider time between 

berthing (maneuvering time), for example, and the operation times is calculated 

according to loading rates and vessel speed. 

To overcome the differences between the formulations and make them 

meaningfully comparable, we have created instances with fixed production and 

consumption rates. Maneuvering time were set to zero in every port, sailing time 

were rounded to be multiple of one time period, and loading and discharging rates 

were set such that the load/discharge of a typical cargo quantity would last one time 

period. 

To compare the different formulations found in literature and presented in the 

previous Chapter, we structured some computational tests. We implemented all 

models using AIMMS 3.13 and solved them using the GUROBI 5.5. The 

computational experiments were performed on an Intel Core i7 CPU with 8.0 GB 

RAM. The advantages of the developed test bed are that we use the same 

computational recourses and the same set of instances, which ultimately means that 

the results, as well as he model performance, are comparable 

We performed the experiments in two phases. First, we compared the computational 

performance of three formulations presented and the FCNF formulation associated 

with the valid inequalities proposed in Agra et al. (2013). The four groups of valid 
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inequalities are denoted hereinafter as:  Knapsack inequalities (K), Mixed-integer 

rounding inequalities (M), Wagner-Whitin constant capacity lot-sizing 

reformulation (W), and the Lot-sizing with start-up relaxation (D). 

The FCNF formulation is compared in 5 different forms: without any valid 

inequality and associating one valid inequality at time (FCNF + K; FCNF + K + M; 

FCNF + K + M + W; and FCNF + K + M + W + D). In this phase, we used a set of 

ten instances based on the real-life problem of the Brazilian petroleum company. 

The instances were named according to the number of assets considered. For 

example, 4fpso3term4ves15days means that there are 4 FPSOs, 3 onshore terminals 

and 4 vessels during a 15 day-long planning horizon. As the complete problem is 

large in terms of assets (40 production sites, 40 ships and 9 onshore terminals) and 

we did not find any record in the academic literature that solves a MIR problem of 

such size, we have segregated a sub-system of the whole problem to create our 

instances. We elect the southeast region of Brazilian coast, where most part of 

Brazilian crude oil production and refineries are located. We started with smaller 

instances and gradually added new FPSOs, terminals and ships in order the increase 

the complexity of the problem. We followed this procedure up to the computational 

performance limit of the models.  

In the second phase of experiments, we enlarged some of these instances with a 

longer planning horizon in order to stress the performance of the best formulations 

of the first phase. For all experiments, it was set a time limit of 3600 seconds as 

stop criterion. 

5.1. First phase 

In Table 1, we summarize for each formulation the computational time to reach 

optimality (when it was reached) and the optimality gap when the optimization 

stopped due to time limit. When the solver was not capable of finding any integer 

solution within the time limit, we reported the gap as “not applicable” (N/A).  
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Table 1: Minimum gap obtained and time required for each formulation at each 

instance. 

Table 1 provides us some insights about the comparison between formulation. Note 

that, even for the smallest instance, the discrete time model takes considerably more 

time to reach optimality than continuous time model and FCNF. It suggests that this 

is the weakest of the formulations tested. This behavior is repeated for the other 

instances, in which the discrete time formulation provides worst integrality gaps or 

takes more time to reach optimality. We can also observe that for the easier 

instances (the first 6 instances), the continuous time model presented significantly 

better performance, reaching the optimal solution faster than discrete time and 

FCNF models. However, even for these easier instances, the continuous time model 

performs worse than the FCNF plus valid inequalities, in accordance with the 

findings of Agra et al. (2013). They claim that the use of valid inequalities would 

improve computational performance of the FCNF model. With the addition of the 

valid inequalities to the FCNF formulation, the computational performance 

increased. Note that when the instances become larger (for example, in the last 3 

instances), the addition of valid inequalities to the FCNF formulation were essential 

to find feasible solutions or reach optimality. It is important to highlight that we did 

not develop or implement any valid inequality to improve the computational 

performance of the continuous time formulation. The reformulations we 

implemented in the continuous time model were made in order to represent 

operational aspects such as multi-berth port (Stanzani, 2017), waiting time before 

start operation and waiting costs at objective function. Such reformulations let 

formulations (discrete time, FCNF and continuous time) comparable.  

Table 2 presents a summary of the computational results. In the first column, we 

list the formulations tested, the second presents how many times each formulation 

provided at least one integer solution. Third column presents how many times each 

gap Time(s) gap Time(s) gap Time(s) gap Time(s) gap Time(s) gap Time(s) gap Time(s) gap Time(s)

1.01 03fpso2term3ves15days 0.0% 1 0.0% 9 0.0% 1 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0

1.02 03fpso3term3ves15days 0.0% 2 0.0% 50 0.0% 6 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0

1.03 04fpso2term4ves15days 0.0% 95 39.0% 3600 6.9% 3600 0.0% 28 0.0% 15 0.0% 1 0.0% 1 0.0% 24

1.04 04fpso3term4ves15days 0.0% 2 0.0% 154 0.0% 102 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0

1.05 05fpso2term5ves15days 0.0% 176 60.8% 3600 29.9% 3600 18.9% 3600 18.5% 3600 7.9% 3600 0.0% 1607 14.7% 3600

1.06 06fpso3term6ves15days 0.0% 210 63.8% 3600 18.9% 3600 16.6% 3600 15.2% 3600 8.7% 3600 0.0% 1594 8.0% 3600

1.07 07fpso3term6ves15days 7.5% 3600 71.1% 3600 24.7% 3600 18.3% 3600 21.5% 3600 4.7% 3600 7.1% 3600 21.4% 3600

1.08 08fpso4term6ves15days N/A 3600 74.9% 3600 34.0% 3600 21.4% 3600 20.4% 3600 12.7% 3600 12.6% 3600 21.8% 3600

1.09 09fpso5term6ves15days N/A 3600 N/A 3600 N/A 3600 N/A 3600 N/A 3600 0.0% 2875 4.9% 3600 32.0% 3600

1.10 10fpso5term7ves15days N/A 3600 N/A 3600 N/A 3600 N/A 3600 N/A 3600 14.1% 3600 14.1% 3600 N/A 3600

No
Continuous time Discrete time FCNF FCNF + K FCNF + K + M

FCNF + K + M + 

W

FCNF + K + M + 

W + D

FCNF + K + D + Br 

OaInstances
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formulation reached the best solution among the other formulations (by “best 

solution” we refer to the formulation that encountered the solution with minimum 

objective function value). The last column shows how many times each formulation 

proved optimality. 

 

Table 2: Computational results summary table 

Notice that the continuous model and the FCNF+K+M+W+D were the models that 

proved optimality more times. In six of them, the optimality gap was closed. On the 

other hand, only formulations FCNF+K+M+W and FCNF+K+M+W+D could find 

feasible solutions for all instances within the time limit of 3600 seconds. The 

continuous time and discrete time models did not find feasible solutions in 3 and 2 

of the instances, respectively. The formulations that reached the best solutions more 

times were FCNF+K+M+W and FCNF+K+M+W+D, 7 times for each of them. 

We have calculated the average optimality gap only for those formulations that 

could find feasible solutions for all instances (FCNF+K+M+W and 

FCNF+K+M+W+D). The average optimality gap using FCNF+K+M+W+D was 

3.9% against 4.8% obtained with the FCNF+K+M+W formulation. 

5.2. Second phase 

From the results of the first phase of experiments, the continuous time, 

FCNF+K+M+W+D, and FCNF+K+M+W formulations were the ones that 

presented best performance. Therefore, they were tested further considering larger 

(and presumably harder) instances. The first 6 instances used in the previews phase 

were used again but considering a longer planning horizon of 30 days. It should  

force an increasing number of cargoes transported due to a longer period of crude 

oil production and refining, which makes instances much harder (as the numerical 

results suggests) to be solved to optimality. 

Formulations
Integer Solution 

up to time limit
Best Solution Proved Optimality

Continuous time 7 6 6

Discrete time 8 4 3

FCNF 8 4 3

FCNF + K 8 4 4

FCNF + K + M 8 4 4

FCNF + K + M + W 10 7 5

FCNF + K + M + W + D 10 7 6
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Table 3 gives the optimality gap and time required by each formulation for each 

instance tested. Notice that the continuous time model did not find any feasible 

solution in any of the instances tested, while the other formulations could reach 

feasible solutions in 4 of the 6 instances tested. 

 

Table 3: Minimum gap obtained in the second phase of tests 

Table 4 is similar to Table 2 with an additional column informing the average gap. 

It suggests that the performance of formulations FCNF+K+M+W and 

FCNF+K+M+W+D are very similar. The first one has a slight advantage in the 

average gap, while continuous time formulation was not able to solve any of the 

instances tested. 

 

Table 4: Computational results summary table in the second phase of tests 

5.3. Using the Lower bound of continuous time model 

We observed a noteworthy aspect regarding the lower bounds provided by the linear 

relaxation problem. However, prior to go into this subject, it is important to 

highlight an important relation between continuous time and discrete time 

formulations (including the FCNF). As discrete time formulations divide the 

planning horizon in time periods, they only provide solutions where the events (e.g. 

load or discharge operations, port arrivals or leavings) are constrained to happen in 

fixed points in time. This requirement does not exist in the continuous formulation. 

As the MIR problem at hand considers fixed production/consumption rates, the 

continuous time formulation can be seen as a relaxation of the discrete time 

formulations. This perception becomes important once the continuous time 

formulation has obtained, in several instances strong lower bounds. 

gap Time (s) gap Time (s) gap Time (s)

2.01 03fpso2term3ves30days N/A 3600 0.0% 1525 0.0% 1317

2.02 03fpso3term3ves30days N/A 3600 14.9% 3600 16.2% 3600

2.03 04fpso2term4ves30days N/A 3600 10.4% 3600 10.4% 3600

2.04 04fpso3term4ves30days N/A 3600 14.3% 3600 18.3% 3600

2.05 05fpso2term5ves30days N/A 3600 N/A 3600 N/A 3600

2.06 06fpso3term6ves30days N/A 3600 N/A 3600 N/A 3600

No
Continuous time FCNF + K + M + W FCNF + K + M + W + D

Instances

Formulations
Integer solution 

up to time limit
Best solution Optimality proved Average gap

Continuous time 0 0 0 N/A

FCNF + K + M + W 4 2 1 9.9%

FCNF + K + M + W + D 4 2 1 11.2%
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In 13 instances, the lower bound obtained for the continuous time model was equal 

to or better than  the ones obtained in the discrete time models. It means that, with 

exception of the cases where optimality gap was completely closed, the lower 

bound of the continuous time model can be used to reduce the optimality gap 

obtained for the other models. Table 5 presents the best solution and (best lower 

bound) obtained for the formulations: continuous time, FCNF+K+M+W and 

FCNF+K+M+W+D for each of the instances. The lower bound in bold caption in 

the column of the continuous time model identifies the ones equal to or better 

(higher) than the ones obtained using the FCNF plus inequalities models. Note that 

in 6 of them, the lower bound proved the optimality of the integer solution and in 

the other 7 they were better (i.e., presented higher values) than the bounds obtained 

in the discrete time model. 

 

Table 5: Best solutions and (linear relaxation lower bounds) obtained for each 

formulation. 

Observing Table 5, among the 16 instances tested, in 6 of them we found feasible 

solutions but the optimality gap was not completely closed (instances 1.07, 1.08, 

1.10, 2.02, 2.03, and 2.04). We used the lower bound of the continuous time model 

to calculate the optimality gap of this group of 6 instances. As the continuous time 

model is a relaxation of the FCNF model, its lower bound is also a lower bound for 

the FCNF model. Using this insight, we can recalculate the optimality gap in 5 of 6 

instances of this group. Only for instance 1.07 we could not reduce the gap obtained 

by the branch-and-bound algorithm. We summarize these results in Table 6. In this 

No Instances Continuous time FCNF + K + M + W FCNF + K + M + W + D

1.01 03fpso2term3ves15days 726,045 (726,045) 726,045 (726,045) 726,045 (726,045)

1.02 03fpso3term3ves15days 913,260 (913,260) 913,260 (913,260) 913,260 (913,260)

1.03 04fpso2term4ves15days 1,535,460 (1,535,460) 1,535,460 (1,535,460) 1,535,460 (1,535,460)

1.04 04fpso3term4ves15days 1,030,730 (1,030,730) 1,030,730 (1,030,730) 1,030,730 (1,030,730)

1.05 05fpso2term5ves15days 2,232,730 (2,232,730) 2,233,560 (2,056,130) 2,233,560 (2,233,560)

1.06 06fpso3term6ves15days 2,309,635 (2,309,635) 2,309,635 (2,109,235) 2,309,635 (2,309,635)

1.07 07fpso3term6ves15days 2,589,810 (2,394,780) 2,569,010 (2,448,525) 2,642,900 (2,455,680)

1.08 08fpso4term6ves15days N/A (2,879,985) 2,915,410 (2,544,910) 2,915,410 (2,547,520)

1.09 09fpso5term6ves15days N/A (3,590,145) 3,893,375 (3,893,375) 3,893,375 (3,701,415)

1.10 10fpso5term7ves15days N/A (3,224,380) 3,226,085 (2,769,945) 3,225,905 (2,769,895)

2.01 03fpso2term3ves30days N/A (3,396,145) 3,397,100 (3,397,100) 3,397,100 (3,397,100)

2.02 03fpso3term3ves30days N/A (3,557,830) 3,832,185 (3,259,290) 3,832,185 (3,210,790)

2.03 04fpso2term4ves30days N/A (5,297,655) 5,502,695 (4,930,830) 5,501,730 (4,929,685)

2.04 04fpso3term4ves30days N/A (4,504,095) 4,908,275 (4,205,935) 5,168,900 (4,223,280)

2.05 05fpso2term5ves30days N/A (6,292,870) N/A (5,931,880) N/A (5,922,875)

2.06 06fpso3term6ves15days N/A (7,017,010) N/A (6,990,465) N/A (6,991,035)
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set of instances, we reduced the average gap in 65%. It went from 13.6% to 4.8%. 

In practice, this procedure allows one to verify if the solution obtained using the 

FCNF model is closer to optimum or not. 

 

Table 6: Reducing optimality gap, using continuous time model lower bound. 

It is interesting to note how fast the lower bound of the continuous time model 

evolves. It takes little time for the solver to obtain a lower bound that overcome 

those obtained using discrete time (FCNC) models. Figure 6 shows the evolution 

of the lower bound of the continuous time model in the first 300 seconds of the 

solver execution. We used the same group of 6 instances described in Table 6. The 

cross mark in the diagram represents the moment when the lower bound of the 

continuous time model overcomes the best lower bound obtained among the FCNF 

plus valid inequalities models. It means that from this moment on the continuous 

time model started to reduce the optimality gap proved for the branch-and-bound 

algorithm. Notice that this moment happened before the end of the first 2 minutes 

in 5 of the 6 instances evaluated. Only in the instance 1.07 the lower bound of the 

1.07 07fpso3term6ves15days FCNF + K + M + W 2,569,010                 2,448,525                 4.9% 2,394,780         7.3%

1.08 08fpso4term6ves15days FCNF + K + M + W + D 2,915,410                 2,547,520                 14.4% 2,879,985         1.2%

1.10 10fpso5term7ves15days FCNF + K + M + W + D 3,225,905                 2,769,895                 16.5% 3,224,380         0.0%

2.02 03fpso3term3ves30days FCNF + K + M + W 3,832,185                 3,259,290                 17.6% 3,557,830         7.7%

2.03 04fpso2term4ves30days FCNF + K + M + W + D 5,501,730                 4,929,685                 11.6% 5,297,655         3.9%

2.04 04fpso3term4ves30days FCNF + K + M + W 4,908,275                 4,205,935                 16.7% 4,504,095         9.0%

No Formulation Best Solution

Continuous 

time lower 

bound

Combined 

gap
Instance

Discrete time 

lower bound
Discrete gap

Figure 6: Lower bound evolution per instance in the continuous time model. 
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continuous time model did not improved the optimality gap. For these instances, 

the linear relaxation bound of the continuous time model was lower (i.e., worse) 

than the one obtained in the FCNF+K+M+W and FCNF+K+M+W+D 

formulations. 

5.4. Computational tests conclusion 

In this Chapter, we proposed an experimental framework to assess several 

mathematic MIR formulations when solving a set of real-life based instances of a 

MIR problem. We tested three formulations, namely, continuous-time, discrete-

time, and FCNF formulations. Additionally, we have also considered valid 

inequalities proposed in Agra et al. (2013), creating four additional formulations. 

The first conclusions of the tests were that the FCNF formulation associated with 

the valid inequalities obtained the best results in terms of computational 

performance. These formulations, especially FCNF+K+M+W and 

FCNF+K+M+W+D, were capable to solve more instances (14 instances solved in 

the 16 tested). However, they are still far from solving instances that could represent 

a complete problem such as the one we discuss in this study, involving tens of ports 

and ships, for example. 

The second conclusion of the tests is that, even though the continuous time 

formulation did not achieve good results in terms of computational performance, 

we identified that it could be used to provide strong linear relaxation bounds (lower 

bounds). In 13 of the 16 instances, these lower bounds were equal or better than the 

ones obtained for the discrete-time formulations (including de FCNF plus valid 

inequalities). Once continuous time formulation is a relaxation of the discrete time 

formulation, we were able to reduce the optimality gap provided for the branch-

and-bound algorithm. In a set of 6 instances, we reduced the optimality gap in 5 of 

them, reducing the average gap in 65%, from 13.6% to 4.8%. 

In practice, this approach allows one to assess how good a solution provided for the 

FCNF plus valid inequalities is when it does not reach optimality. In our case, we 

found out that the group of 6 instances was at least 65% closer to optimum then the 

branch-and-bound encountered. It means the analysts could implement these 

solutions with confidence that they were doing an efficient scheduling. 
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Despite the results obtained using MILP formulations, MIR problems are still a 

wide source of opportunities for improvement, especially regarding its computation 

complexity. In next Chapter, we present a heuristic approach that intends to improve 

quality of solution and reduce computational time. 
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6. Heuristic approach for MIR problems 

 

 

In order to improve the computational performance and quality of the solutions 

obtained, we implemented an approach that combines the relax-and-fix and fix-and-

optimize heuristics in a two-phase setting. The relax-and-fix phase aims to find 

feasible solutions while the fix-and-optimize phase seeks to improve the solution 

obtained.  

Dillenberger et al. (1994) first presented the relax-and-fix heuristic. Since then, it 

has been widely applied, most notably in production planning, in particular lot-

sizing and scheduling problems. Examples are Dillenberger et al. (1994), Stadtler 

(2003), Kelly and Mann (2004), Beraldi et al. (2006, 2008), Absi and Kedad- 

Sidhoum (2007), Federgruen et al. (2007), De Araujo et al. (2007, 2008), Akartunali 

and Miller (2009), Pochet and Warichet (2008), Mohammadi et al. (2008), Ferreira 

et al. (2009). 

We found few studies that applied relax-and-fix heuristic to MIR problems. Uggen 

et al. (2013) extended a relax-and-fix heuristic and implemented to solve a general 

MIR problem. Their results indicate that the computational time was considerably 

reduced while objective function value was only slightly worse when compared to 

a general MILP solver. Rodrigues et al. (2016) also implemented relax-and-fix 

heuristic to a ship scheduling in a maritime oil transportation problem. They claim 

that the method finds reasonable good solutions for instances of moderate size in a 

relatively small computational time. Our implementation differentiates itself from 

Uggen et al. (2013), Rodrigues et al. (2016) due to the modifications implemented 

in relax-and-fix heuristic in order to avoid infeasible solutions, and the use of fix-

and-optimize heuristic associated to improve quality of solution. Additionally, both 

Uggen et al. (2013) and Rodrigues et al. (2016) used the index time t to select 

variables in the relax-and-fix heuristc. We implemented two alternative versions of 

the heuristic, one using the index time t and other using index ports i. In this 

Chapter, we present how this implementation contributes to find good solutions for 
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MIR problems instances and reduces the computation time when compared to 

conventional MIP solving. 

6.1. Relax-and-fix heuristic 

The basic idea of the relax-and-fix heuristic is to divide the planning horizon into a 

finite number of time intervals n, as illustrated in Figure 7. The problem is then 

decomposed into n-sub-problems, and solved in iterations corresponding to the time 

intervals. 

 

In the first iteration, the iteration counter it is set to 1 and the problem is solved 

considering integer variables in the first interval (named Integer Block), while 

integrality constraints are relaxed for remaining intervals. The block of intervals 

where integer variables are relaxed is named Continuous Block. 

In the next iteration, it is increased by 1. From the second iteration on, we have an 

additional block, named Fixed Block, in which integer variables from interval it – 

1 are fixed at the solution values obtained in the previous iteration. Integrality 

constraints are reintroduced for the integer variables in the interval it (it = 2), while 

all other variables are kept non-fixed and continuous. Figure 8 illustrate the 

intervals in the planning horizon in the second iteration.  

 

The heuristic finishes when Integer Block reaches the end of planning horizon. At 

Interval 1 Interval 2 Interval 3 Interval n ... 

Integer 
variables 

LP relaxad 
integer 

variables 

Figure 7: Relax-and-fix iteration one. 

Interval 1 Interval 2 Interval 3 Interval n ... 

Fixed Block: 
Fixed integer 

variables 

Continuous Block: 
LP relaxad integer 

variables 

Integer Block: 
Integer 

variables 

Figure 8: Relax-and-fix: iteration two. 
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this point, the Continuous Block is suppressed, the planning horizon is divided in 

two blocks, Fixed Block and Integer Block, and all integer variables have their 

integrality constraint preserved. A pseudocode for the relax-and-fix heuristic is 

given in Algorithm 1. Here P represents the complete problem defined over t := {0, 

. . . , Horizon } time periods with integer variables x and continuous variables y; n 

is the number of intervals that the planning horizon is divided into and it is at the 

same time an iteration counter and an interval counter (it={1, …, n}). 

 

Algorithm 1: Relax-and-fix pseudo code. 

However, a basic implementation of the relax-and-fix heuristic, as described in 

Algorithm 1, may fail to return feasible solution, even when such a solution is 

guaranteed to exist. This will be the case whenever the fixed portion of the solution 

leads to an infeasible sub-problem, which does not necessarily mean that the 

original problem is infeasible. Several proposals have been made to mitigate or 

eliminate this issue. Dillenberg et al. (1994) fixed the second best solution of the 

previous iteration in case a sub-problem (with exception of the first) is infeasible. 

Stadler (2003) used overlapping between the intervals so that some variables with 

integrality requirement in the previous iteration are kept unfixed, and Escudero and 

Salmeron (2005) unfix the variables of previous intervals and re-optimise it until 

the problem becomes feasible. 

In order to avoid the occurrence of infeasibility, we implemented two modifications 

in the basic relax-and-fix heuristic. First, we follow Stadler (2003) and used 

overlapping between the intervals so that not every integer variable of the Integer 

Block have their values fixed in the next iteration. The second modification is based 

on Escudero and Salmeron (2005). When an infeasible solution is obtained during 

Algorithm 1: Relax-and-fix (P(x(t), y(t)), n, it)

RelaxIntegralityCondition (x(t));

it=1;

while it <= n do

RestoreIntegralityCondition (x(t|t ϵ it));

SolveMIP P(x(t), y(t));

FixIntegerVariables (x(t| t ϵ {1, ..., it));

it:= it + 1;

endwhile;

GetLastSolution of P
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an iteration of the heuristic (with exception of the first), we unfix part of the integer 

variables of the Fixed Block and re-optimize until it finds a feasible solution. Next, 

we present the proposed version of the relax-and-fix heuristic and the mechanisms 

implemented to avoid infeasible solutions. 

6.2. Modified relax-and-fix heuristic 

The first strategy we adopt to avoid infeasibility is using overlapping between 

Integer Blocks of successive iterations. A pseudocode for this mechanism is given 

in Algorithm 2. Here, IB represents Integer Block, FB is the Fixed Block (both are 

subsets of set TIME), iIB is the first time period of IB, fIB is the last time period of 

IB, sizeIB defines how many time periods compose IB and pace determines the 

displacement of IB towards the end of the planning horizon. 

 

Algorithm 2: Pseudo code of relax-and-fix heuristic with overlap procedure. 

The first step of Algorithm 2 relaxes integrality condition of all integer variables, 

and then IB and FB are defined. After restoring integrality condition of variables in 

the subset IB, problem P is solved using MIP. After the first iteration, IB and FB 

are modified according to the pace defined, integer variables in the subset FB are 

fixed to the values obtained in the previous iteration, integrality restrictions of the 

Algorithm 2: Relax-and-fix with overlapping procedure (P(x(t), y(t)),  iIB, fIB, sizeIB pace, it)

RelaxIntegralityCondition (x(t));

iIB:=1;

fIB:=iIB + sizeIB -1;

IB = {iIB, ..., fIB}

FB = { }

it=1;

RestoreIntegralityCondition (x(t|t ϵ IB));

SolveMIP P(x(t), y(t));

while fIB<= Horizon and P(x(t), y(t)) is feasible do

iIB:=iIB + pace;

fIB:=fIB + pace;

IB = {iIB, ..., fIB}

FB = {1, ..., iIB - 1}

FixIntegerVariables (x(t| t ϵ FB);

RestoreIntegralityCondition (x(t|t ϵ IB));

SolveMIP P(x(t), y(t));

it:= it + 1;

endwhile;

GetLastSolution of P
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variables in subset IB is restored, and P is solved using MIP. This procedure is 

repeated while feasible solutions are successively obtained and the last time period 

of IB does not reach the end of planning horizon. 

According to Stadler (2003), the overlapping mechanism described reduces the 

chance of reaching infeasible subproblems. However, it does not assure that the 

heuristic will return a feasible solution (even when the problem is guaranteed to 

have at least one feasible solution). Hence, we have implemented another 

mechanism based on Escudero and Salmeron (2005) to make sure that, if a feasible 

solution exists, the heuristic will be able to find it (unless it stops due to time limit). 

We name this phase of the algorithm the return phase.  

A pseudocode of the complete heuristic (relax-and-fix with overlapping procedure 

and the return phase) is presented in Algorithm 3. An auxiliary parameter return is 

added in order to modify the FB, unfixing some integer variables and solving P 

repeatedly until a feasible solution is found. The part between brackets in Algorithm 

3 represents the return phase of the heuristic. With exception of the first iteration, 

after every call to SolveMIP, we check the feasibility of solution. If the solution is 

infeasible, the return parameter modifies IB and FB, unfixing some integer 

variables from FB and including them to IB, which reduces the size of FB and 

increases IB. The variables in the subset FB remain fixed to values obtained before, 

the integrality condition of variables in the subset IB (now modified) are restored, 

and problem P is solved again. This procedure is then repeated until a feasible 

solution is found or the beginning of IB reaches the beginning of planning horizon. 

If a feasible solution is found during this phase, the heuristic returns to the 

overlapping procedure. If the solution of P is still infeasible after the beginning of 

IB reaches the beginning of planning horizon, then P is infeasible. 
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Algorithm 3: Pseudo code of relax-and-fix heuristic with overlap procedure and 

return phase. 

In the extreme case, the return phase might lead to the original problem. It may 

happen when the last time period of IB reaches the end of planning horizon and the 

solution found is infeasible. After the heuristic entering in the return phase trying 

to find a feasible solution, if it remains in this phase until the beginning of IB 

coincides with the beginning of planning horizon, then the last iteration of the 

heuristic would be equivalent to solving the original problem (IB is equal to 

planning horizon).  

The relax-and-fix heuristic and the modifications implemented we described above 

were based on the index t (time) just for illustration purposes. One may use the 

same rationale but using another index to choose the integer variables that will 

RelaxIntegralityCondition (x(t));

iIB:=1;

fIB:=iIB + sizeIB -1;

IB = {iIB, ..., fIB}

FB = { }

it=1;

RestoreIntegralityCondition (x(t|t ϵ IB));

SolveMIP P(x(t), y(t));

while fIB<= Horizon and P(x(t), y(t)) is feasible do

iIB:=iIB + pace;

fIB:=fIB + pace;

IB = {iIB, ..., fIB}

FB = {1, ..., iIB - 1}

FixIntegerVariables (x(t| t ϵ FB);

RestoreIntegralityCondition (x(t|t ϵ IB));

SolveMIP P(x(t), y(t));

[if P(x(t), y(t)) is infeasible then

while P(x(t), y(t)) is infeasible and iIB>1 do

iIB:= iIB -return;

IB = {iIB, ..., fIB}

FB = {1, ..., iIB - 1}

FixIntegerVariables (x(t| t ϵ FB);

RestoreIntegralityCondition (x(t|t ϵ IB));

SolveMIP P(x(t), y(t));

endwhile;

endif;]

it:= it + 1;

endwhile;

GetLastSolution of P

Algorithm 3: Relax-and-fix with overlapping and return phase 

procedures (P(x(t), y(t)),  iIB, fIB, pace, sizeIB, return, it)
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compose the Integer Block, Fixed Block and Continuous Block, such as ports i or 

vessels v. We have implemented and tested the heuristic using the index time t and 

using index ports i. Next, we present some preliminary tests to compare different 

ways of selecting variables to fix and relax during the relax-and-fix heuristic. 

6.2.1. Different ways of selecting variables in the relax-and-fix 

heuristic 

In order to check whichever index is more efficient when selecting variables to fix 

and relax during the heuristic approach, we decided to perform some comparison 

tests. For these tests, we used an instance based on the Coari-Manaus sub-system, 

when the crude oil is produced in Coari terminal and Manaus is the consumer port. 

There are 5 vessels available to transport the crude oil during a planning horizon of 

20 days. We consider uncertainty in the time spent at both ports and create 25 

different levels of robustness. It means that for each level of robustness, we allow 

a deviation in time spent at ports happens more often in both ports (details about 

robust optimization approach are in Chapter 6). However, by this point, we are not 

interested in assess the uncertainty aspect of the model. We used the levels of 

robustness just to differentiate the instances among them and increase the number 

of tests. 

In these tests, we compare the relax-and-fix heuristic using indexes time t and ports 

i for selecting variables with the robust optimization FCNF formulation. We 

execute 25 instances, one for each level of robustness. We describe in Figure 9 the 

objective function value obtained using the robust optimization FCNF formulation 

(blue line), and the deviation of the objective function using the relax-and-fix 

heuristic with index t (red bar) and index i (blue bar) for selecting variables to fix 

and relax during the heuristic. When we use the index i to select variables, the 

objective function values obtained by the relax-and-fix heuristic are much lower 

than when using the index t. 

On average, the use of index i in the relax-and fix heuristic provide solutions 3.5% 

higher than the objective function of the RO-FCNF, while the average deviation of 

the heuristic using index t is 14.1%. The maximum deviation from RO-FCNF 

objective function obtained by the heuristic using index i is 11.2% while when we 
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use index t, the maximum deviation is 46.8%. 

 

Figure 9: Deviation in the objective function from relax-and-fix heuristic to RO-

FCNF formulation, using different indexes to select variables. 

Regarding computational time, Figure 10 presents computational time of RO-FCNF 

(grey bar) formulation against, relax-and-fix using index i (orange bar) and using 

index t (blue bar). The reduction in computational time from RO-FCNF formulation 

to the relax-and-fix heuristic using index i is of 96% and using index t is of 98%. 

 

Figure 10: Computational time of RO-FCNF and relax-and-fix heuristic using 
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different indexes to select variables. 

Considering the large difference in the objective function value between both ways 

of selecting variables in the relax-and-fix heuristics and the considerable reduction 

in computational time obtained by both of them, we decided to use the index i to 

select variables in the relax-and-fix heuristic. 

The relax-and-fix heuristic was adopted to find feasible solutions faster than using 

only the MIP solver. However, according to Uggen et al. (2013), the solution found 

by the relax-and-fix heuristic is often worse than the one obtained using an MIP 

solver. Once the relax-and-fix heuristic finds a feasible solution, we adopt a fix-

and-optimize heuristic to improve the quality of the solution obtained. 

6.3. Fix-and-optimize heuristic 

The fix-and-optimize heuristic was proposed independently by Gintner et al. (2005) 

and Pochet and Wolsey (2006). In the latter, the method was called exchange, 

designed to improve the relax-and-fix heuristic. However, the name fix-and-

optimize used by the former was adopted in the literature. After these first studies, 

Helber and Sahling (2008), Seeanner et al. (2013), Dorneles et al. (2014) and 

Toledo et al. (2015) adopted fix-an-optimize for solving multi-level lot-sizing and 

scheduling problems. We have not found any register in literature of the use fix-

and-optimize heuristic in MIR problems. The basic idea of fix-and-optimize 

heuristic is very similar to relax-and-fix, where several MIP problems need to be 

solved iteratively. At each iteration, some integer variables are fixed to an initial 

value and the problem is solved using an MIP solver This process is repeated aiming 

to improve the initial solution until a stop condition is reached. 

Following Pochet and Wolsey (2006), we first use the relax-and-fix heuristic to 

build an initial solution. Then, we further improve it by applying the fix-and-

optimize heuristic. We define two blocks: a Fixed Block and a Free Block. The 

Fixed Block is a subset of integer variables, where they are set to the values of the 

initial solution. All other variables compose the complementary subset Free Block. 

In the Free Block, variables are only constrained by their original domains (integer 

or continuous). Then, we solve this MIP sub-problem and compare the value of its 

objective function with the value of the best objective function obtained up to that 

moment (in the first iteration, it is the objective function obtained by the relax-and-
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fix heuristic). If a better solution is obtained, we set this solution as the new best 

solution. If it is worse, then we discard this solution. This process is then repeated, 

changing the variables of the Fixed Block at each iteration and always comparing 

the value of the objective function with the best solution obtained before. As the 

number of different Fixed Blocks may be enormous due to the combinatorial 

characteristic of the variables, we define a stop criterion that halts execution if, after 

n successive iterations, the best solution is not improved.  

Algorithm 4 gives a pseudocode of the fix-and-optimize heuristic described. Here, 

P represents the total problem defined over t := {0, . . . , Horizon } time periods 

with integer variables x and continuous variables y. FB is the Fixed Block, IS is the 

initial solution provided by the relax-and-fix heuristic and BS registers the best 

solution obtained during the heuristic. The auxiliary parameter rep_it counts the 

number of iterations without any improvement in the objective function and n is the 

maximum number of consecutive iterations allowed without improvement in the 

objective function.  

 

Algorithm 4: Pseudo code for fix-and-optimize heuristic. 

Just as in the relax-and-fix heuristic, one may use different forms to define which 

variables will compose the Fixed Block. We implemented the heuristic defining the 

Algorithm 4: Fix-and-optimize heuristic (P(x(t), y(t)),FB, IS, BS, n, rep_it)

Define FB;

Define n;

IS:= RF Solution;

BS:= Obj. Func. of Initial Solution;

FixIntegerVariables (x(t| t ϵ FB);

rep_it:=1;

while rep_it <= n do

Solve P(x(t), y(t));

If Obj. func. of P < BS then

BS:= Obj. Func. of P;

rep_it:=1

else

rep_it:=it+1;

endif;

Redefine Fixed Block;

endwhile;

GetLastSolution BS
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Fixed Block selecting integer variables according indexes time t and vessels v. Next, 

we compare both ways of selecting variables to be fixed during fix-and-optimize 

heuristic. 

6.3.1. Different ways of selecting variables in the fix-and-

optimize heuristic 

In this phase of the test, we compare the use of index t and v for selecting the 

variables that will be fixed during the fix-and-optimize heuristic. We set the same 

initial solution for both alternatives and execute the heuristic for the same 25 

instances of the tests of Section 6.2.1. Figure 11 describes the initial solution for all 

instances (grey line) and the objective function obtained by the fix-and-optimize 

heuristic using two different ways of selecting variables: using index t (red line) 

and index v (blue line). Note that the fix-and-optimize heuristic improved the 

objective function of almost every instance. However, the improvement obtained 

when the fix-and-optimize used index v is clearly greater than the improvement 

provided by the heuristic when using index t. On average, the use of index v 

provided a reduction of 11.0% of the objective function and the use of index t 4.6%. 

The maximum improvement in one instance was 31.9% and 21.9% for index v and 

index t, respectively. 

 

Figure 11: Comparison of different ways of selecting variables in the fix-and-

optimize heuristic. 

Concluding these preliminary tests, we decided to use the index v in the fix-and-
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optimize heuristic. At each iteration, we choose a group of m vessels and all the 

integer variables related to those vessels were set to the Fixed Block. At next 

iteration, we change the vessels of such group and solve the problem again until the 

stop condition interrupts this routine. 

In order to check the performance of the heuristic presented here, we test them using 

the same set of instances of Chapter 4. In next section, we present the computational 

results obtained. 

6.4. Computational experiments 

In this section, we repeat some tests of Chapter 4 but using the approach based on 

the heuristics relax-and-fix and fix-and-optimize, which we refer to as the “heuristic 

approach” hereinafter. We implemented this approach using AIMMS 3.13 and 

solved the problems using the GUROBI 5.5. The computational experiments were 

performed on an Intel Core i7 CPU with 8.0 GB RAM. 

Prior to presenting the results, we highlight that some of the heuristic parameters 

(the size of the Fixed Block, the pace and return parameters and the number of 

iterations in the fix-and-optimize heuristic) can be adjusted according to the instance 

being solved. Depending on the adjustment of these parameters, the results or 

computational time of the approach may vary. In these tests, we select integer 

variables to compose the Fixed, Integer and Continuous Block using the index ports 

i (in the relax-and-fix phase). The size of Integer Block varied according to the 

number of ports of each instance, the pace and return parameters are set as 2 and 1 

port, respectively. For each iteration of the relax-and-fix phase, we established a 

time limit of 1000 seconds or a relative optimality gap of 20%, whichever occurs 

first. The relax-and-fix procedure finishes when a feasible solution is obtained. Note 

that the main purpose of the relax-and-fix heuristic is to find a feasible solution, not 

necessarily reaching optimality. In the fix-and-optimize heuristic, we fixed the 

values of the integer variables according to the index v (of vessels). At each 

iteration, the size of Fixed Block is defined according to the number of available 

vessels at each instance. The fix-and-optimize heuristic finishes after 10 iterations 

without any improvement in the objective function. We established a time limit of 

200 seconds for each iteration of the fix-and-optimize procedure. 

To check the performance of the heuristic approach, we first compare its results to 
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the results obtained using the MIP solver. As we implemented the heuristic 

approach over the FCNF + K + M + W formulation, then we compare its results 

with the results obtained by the same formulation in Chapter 4. In Table 7, the 

results displayed in the columns FCNF + K + M + W Objective function, FCNF + 

K + M + W lower bound, Optimality gap and Computational time refer to results 

obtained for this formulation during the tests conducted in Chapter 4. In the last 

four columns of Table 7, we display: the results obtained using the heuristic 

approach, the optimality gap (calculated over the FCNF + K + M + W lower bound), 

the relative distance to the best solution obtained in Chapter 4 and the computational 

time. 

 

Table 7: Results from relax-and-fix and fix-and-optimize approach compared to 

FCNF+K+M+W results. 

Notice that the heuristic approach reached optimality in the 8 of the 16 instances 

(the same instances for which optimality was proved in Chapter 4). It is important 

to highlight that optimality was not proved during the execution of the heuristic 

approach, but comparing to the best lower bounds obtained in Chapter 4. It is not 

possible to calculate optimality gap during execution of heuristic approach as we 

are always solving sub-problems of the original problem. Therefore, we cannot 

guarantee that the lower bound obtained in each sub-problem is a valid bound for 

the original problem. In 10 of the 16 instances, the heuristic approach reached or 

reduced the best solution found by FCNF + K + M + W formulation. In one 

instance, the heuristic approach obtained a feasible solution that any of the exact 

Instances
FCNF + K + 

M + W 

FCNF + K + 

M + W 

Lower 

Bound

Optimality 

gap

Computational 

time

Heuristic 

Approach 

solution

Optimality 

gap*

Δ% 

Distance to 

best 

solution

Computational 

time

03fpso2term3ves15days 726,045     726,045     0.0% 0 726,045        0.0% 0.000% 2                        

03fpso3term3ves15days 913,260     913,260     0.0% 0 913,260        0.0% 0.000% 3                        

04fpso2term4ves15days 1,535,460 1,535,460  0.0% 1 1,535,460     0.0% 0.000% 9                        

04fpso3term4ves15days 1,030,730 1,030,730  0.0% 0 1,030,730     0.0% 0.000% 7                        

05fpso2term5ves15days 2,233,560 2,056,130  7.9% 3600 2,233,560     7.9% 0.000% 1,556                 

06fpso3term6ves15days 2,309,635 2,109,235  8.7% 3600 2,309,635     8.7% 0.000% 764                    

07fpso3term6ves15days 2,569,010 2,448,525  4.7% 3600 2,650,110     7.6% 3.060% 2,451                 

08fpso4term6ves15days 2,915,410 2,544,910  12.7% 3600 2,943,280     13.5% 0.947% 3,511                 

09fpso5term6ves15days 3,893,375 3,893,375  0.0% 2875 3,893,375     0.0% 0.000% 3,324                 

10fpso5term7ves15days 3,226,085 2,769,895  14.1% 3600 3,225,995     14.1% -0.003% 5,862                 

03fpso2term3ves30days 3,397,100 3,397,100  0.0% 1525 3,397,235     0.0% 0.004% 279                    

03fpso3term3ves30days 3,832,185 3,259,290  14.9% 3600 3,857,420     15.5% 0.654% 1,070                 

04fpso2term4ves30days 5,502,695 4,930,830  10.4% 3600 5,502,985     10.4% 0.005% 2,613                 

04fpso3term4ves30days 4,908,275 4,205,935  14.3% 3600 5,211,085     19.3% 5.811% 6,515                 

05fpso2term5ves30days NA 5,931,880  NA 7200 6,903,710     14.1% NA 6,020                 

06fpso3term6ves30days NA 6,990,465  NA 7200 NA NA NA  - 

* calculated over the FCNF + K + M + W ower bound
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formulations used in Chapter 4 could find. In other 6 instances where the heuristic 

approach could not reach the best solution obtained in Chapter 4, the average 

increase on optimality gap was 1.74%. For the last instance, neither the heuristic 

approach nor the exact methods could find a feasible solution. Table 8 summarizes 

the tests presented in Table 7. Notice that the main advantage of the heuristic 

approach is associated with computational time, as it reduces total computational 

time in 24% when compared to the time spent during FCNF + K + M + W tests. 

 

Table 8: Heuristic approach tests summary. 

After comparing the heuristic approach performance with the results of FCNF + K 

+ M + W, we decided to check how each phase of the approach (relax-and-fix and 

fix-and-optimize heuristics) contribute to the results obtained. Table 9 presents the 

results and computational time obtained in each phase and compare how much each 

phase contribute for the final result. Nearly 40% of total computational time was 

spent during the relax-and-fix phase. However, despite having spent more time, the 

fix-and-optimize phase improved the result obtained by the relax-and-fix phase in 

almost every instance (except for the first, where the relax-and-fix phase had 

already reached optimality). On average, the fix-and-optimize phase improved the 

solution of the first phase in 7.8% (with a maximum improvement of 24.1%). The 

last column of Table 9 presents the contribution of fix-and-optimize heuristic in total 

computational time of the heuristic approach. As mentioned before, this phase of 

the heuristic approach usually consumes more computational time, on average 54% 

of total computational time of the heuristic approach. 

Heuristic Approach

Reduce obj. func. Value 2

Reach obj. func. Value 8

Increase obj. func. value 6

Average relative increase in Obj. Func* 1.74%

Total reduction in computational time 24%

*Considering only the 6 instances where objective function increases 
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Table 9: Results and computational time obtained in the heuristic approach. 

We conclude that the heuristic approach has demonstrated to be an efficient method 

for solving MIR problems. Although it cannot prove optimality, whenever we 

compare its results with the solutions obtained using an exact method (FCNF + K 

+ M + W), we found positive evidences concerning the quality of these solutions. 

The heuristic approach reached the FCNF + K + M + W objective function value in 

8 instances, reduces its value twice and it performed slightly worse in other 6 

instances (1.74% worse on average). Moreover, the total computational time spent 

during the tests was 24% smaller, which consists of a considerable decrease in 

computation time. 

We also note that the two phases of the heuristic approach were important to reach 

the solutions obtained. While the relax-and-fix phase constructs initial solutions, 

the fix-and-optimize phase improves them. Therefore, we believe that this approach 

is a good alternative for solving MIR problems, especially for larger instances, 

where conventional formulations could not return feasible solutions. 

We have discussed the best deterministic approach to deal with MIR problems and 

an alternative heuristic approach. However, as we presented in Section 2.2, the 

uncertainty aspect is vital for MIR real-life problems. In next Chapter, we present 

a brief review of literature regarding MIR problems considering uncertainty 

parameters, robust optimization and a robust approach for MIR problems. 

Instances
Relax-and-fix 

solution

Computational 

time (relax-and-

fix)

Fix-and-

optimize 

solution

Computational 

time (fix-and-

optimize)

∆ % 

solution 

value

∆% 

computational 

time

03fpso2term3ves15days 726,045           2                       726,045          -                  0.0% 0.0%

03fpso3term3ves15days 925,280           2                       913,260          1                      -1.3% 33.3%

04fpso2term4ves15days 1,592,120        4                       1,535,460       5                      -3.6% 55.6%

04fpso3term4ves15days 1,122,135        5                       1,030,730       2                      -8.1% 28.6%

05fpso2term5ves15days 2,343,125        137                   2,233,560       1,419               -4.7% 91.2%

06fpso3term6ves15days 2,339,495        178                   2,309,635       586                  -1.3% 76.7%

07fpso3term6ves15days 2,848,385        744                   2,650,110       1,707               -7.0% 69.6%

08fpso4term6ves15days 3,214,130        1,528                2,943,280       1,983               -8.4% 56.5%

09fpso5term6ves15days 4,557,080        1,570                3,893,375       1,754               -14.6% 52.8%

10fpso5term7ves15days 4,252,750        1,854                3,225,995       4,008               -24.1% 68.4%

03fpso2term3ves30days 3,930,110        175                   3,397,235       104                  -13.6% 37.3%

03fpso3term3ves30days 4,113,575        409                   3,857,420       661                  -6.2% 61.8%

04fpso2term4ves30days 5,773,435        817                   5,502,985       1,796               -4.7% 68.7%

04fpso3term4ves30days 5,663,165        4,513                5,211,085       2,002               -8.0% 30.7%

05fpso2term5ves30days 7,833,050        1,524                6,903,710       4,496               -11.9% 74.7%

06fpso3term6ves30days NA NA NA NA
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7. A robust approach for maritime inventory routing 

optimization 

 

 

There are few studies in literature that features uncertainty in MIR problems. Most 

of them deal with uncertainty in production/consumption rates or in travel time 

through adoption of inventory safety levels in the inventory planning (Halvorsen-

Weare et al., 2013; Agra et al., 2105; Assis and Campnogara, 2016). If a ship arrives 

late at a loading port, production in that port may stop due to shortage in storage 

capacity. To mitigate the possibility of such situations, Christiansen and Nygreen 

(2005), Christiansen et al. (2007) and Papageourgious et al. (2014) proposed to set 

an upper safety stock level that is below the storage capacity, and a lower safety 

stock level that is above a specified lower storage capacity. Any diversion of the 

inventory from this range of safety stock limits was penalized. 

In order to address the uncertainty aspect in sailing time and production level, 

Halvorsen-Weare et al. (2013) proposed a solution method adopting several robust 

strategies and a simulation model to evaluated solutions. They claimed that robust 

strategies added value to the solutions with lower expected costs. Agra et al. (2105) 

presented a computational study based on real-life instances where a stochastic MIR 

problem with uncertain sailing times and unpredictable waiting times at ports. A 

two-stage stochastic programming model with recourse was presented where the 

first-stage decisions consisted of routing, loading and discharging decisions and the 

second-stage decisions consisted of scheduling and inventory decisions. Assis and 

Campnogara (2016) presented a MILP model for planning the trips of dynamic 

positioned tankers with variable travel time in a problem of crude oil transportation 

from offshore production sites to onshore terminals. To address large-sized 

instances, they proposed a combination of a MILP formulation and heuristics such 

as relax-and-fix and rolling-horizon. 

As mentioned before, in the MIR problem we considered in this study, the time 

spent at ports represents about 75% of the fleet available time, while travel time is 

about 25%. Additionally, travel distances are short (taking 1 to 3 days on average) 

and variations in vessel’s speed have little impact in travel time. Therefore, we 
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decided to consider uncertainty in the time spent at ports. Hence, the problem at 

hand is to minimize transportation costs of carrying crude oil from offshore 

production sites to onshore terminals and keep inventory levels within operational 

bounds at ports, without knowing exactly how long each vessel will stay at each 

port due to delays in the total time spent at ports. 

In next Section, we present a brief overview about optimization under uncertainty. 

7.1. Modeling uncertainty – a brief review 

Sahinidis (2004) claims that a key difficulty in optimization under uncertainty is 

dealing with a large variety of uncertain possibilities that frequently leads to 

prohibitively large-scale optimization models. Decision-making under uncertainty 

is often further complicated by the presence of integer decision variables that model 

logical and other discrete decisions in multi-period settings. Approaches to 

optimization under uncertainty have followed a variety of modeling philosophies, 

including minimization of expected values, deviations from goals, maximum costs, 

and optimization of soft constraints. According to Sahinidis (2004), the main 

approaches reported in literature are stochastic programming (recourse models, 

robust stochastic programming, and probabilistic models), robust optimization, 

fuzzy programming (flexible and probabilistic programming) and stochastic 

dynamic programming. 

According to Sahinidis (2004), the objective of stochastic programming is to 

minimize the first-stage variable costs and the expected value of the random second-

stage costs. Gorissen et al. (2015) claims that two important aspects have to be noted 

prior to the adoption of stochastic programming approach are that it assumes that 

the true probabilistic distribution of uncertain data is known or is possible to be 

estimated, and its reformulation usually increases the complexity of the problem. 

Another approach to deal with uncertainty is the probabilistic programming (or 

chance constraints). According to Sahinidis (2004), the philosophy of this approach 

is that infeasibilities are allowed up to a certain extent. In this case, the focus is on 

the reliability of the system and it is expressed as a minimum requirement on the 

probability of satisfying constraints. However, Prékopa (1971) has shown that 

unless the cases where the right-hand uncertain vector has a log-concave 
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multivariate probability density function, in general, the probability constraints 

leads to a non-convex feasible set. Pangoncelli et al. (2009) claims that even for 

simple functions (e.g, linear problems), chance constrained problems may be 

extremely difficult to solve numerically and their feasible sets can be non-convex. 

Techniques to convert the non-convex feasible set into a convex-set approximation 

usually require the generation of scenarios, which leads to increase computational 

complexity. 

On the other hand, Gorissen et al. (2015) claims that robust optimization is popular 

because it does not rely on previous knowledge of probability distribution and 

because of its computational tractability for many classes of problems. A drawback 

of the robust optimization approach is that it usually leads to very conservative 

solutions. Ben-Tal and Nemirovski (2000) and Bertsimas and Sim (2004) proposed 

different methodologies to deal with the level of conservativeness of the solution. 

Although we have access to a historical data of time spent at ports, we decided to 

adopt a robust optimization approach for two main reasons. First, MIR problems 

are very complex, especially for real-life instances as we have seen in Section 3.1 

and in the results of computational experiments in Section 5.1 and 5.2, and 

computational tractability is an advantage of robust optimization. The second 

reason is that stochastic optimization provides an optimal solution considering the 

expected value for a set of possible scenarios and their probability of realization. In 

MIR problems, this might lead to infeasible plans for the real problem, thus 

compromising the usefulness of the model. As feasibility is crucial for MIR 

problems and computational performance is also an important issue, we decided to 

adopt a robust optimization technique to address uncertainty in MIR problem. In 

next section, we present a brief review on robust optimization. 

7.2. Robust optimization literature review 

According to Gorissen et al. (2015), robust optimization (RO) is a relatively young 

and active research field, and has mainly developed in the last 15 years.  Its concepts 

and techniques are very useful in practice, since they are tailored to information at 

hand and typically lead to tractable formulations. However, few works have been 

published for real-life applications and there are still much more potential than what 

has been exploited hitherto. 
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According to Gabrel et al. (2014), uncertainty impacts the solution feasibility in 

many problems. In these cases, robust optimization seeks to obtain a solution that 

will be feasible for a given realization taken by the unknown coefficients. However, 

complete protection from adverse realizations often comes at the expense of a 

severe deterioration in the objective function. To make the robust methodology 

appealing to business practitioners, RO thus focuses on obtaining a solution that 

will be feasible for any realization taken by the unknown coefficients within a 

smaller “realistic” set, called the uncertainty set, which is centered on the nominal 

values of the uncertain parameters. The specific choice of the set plays an important 

role in ensuring computational tractability of the robust problem and limiting 

deterioration of the objective function. 

A pioneer in RO, Soyster (1973) proposes a linear optimization model to construct 

a solution that is feasible for all data that belong in a convex set. The resulting model 

produces solutions that are too conservative in the sense that it gives up too much 

of optimality for the nominal problem in order to ensure robustness. To address the 

issue of over conservatism, Ben-Tal and Nemirovski (2000) proposed a less 

conservative model by considering uncertain linear problems with ellipsoidal 

uncertainties, which involve solving the robust counterparts of the nominal 

problem in the form of conic quadratic problems. However, a practical drawback 

of such an approach is that it leads to nonlinear, although convex, models, which 

are more demanding computationally than the earlier linear models by Soyster 

(1973). Bertsimas and Sim (2004) propose an approach for robust linear 

optimization that retains the advantages of the linear framework of Soyster (1973) 

and offers full control on the degree of conservatism for every constraint. 

Additionally, unlike Ben-Tal and Nemirovski (2000), the robust counterparts 

proposed by Bertsimas and Sim (2004) are linear optimization problems, and thus 

their approach readily generalizes to discrete optimization problems. 

Bertsimas and Sim (2004) approach protects the model against violation of 

constraint i deterministically, when only a prespecified number Γi of the coefficients 

changes; in other words, it guarantees that the solution is feasible if up to Γi 

uncertain coefficients change. The parameter Γ is introduced in order to adjust the 

solution robustness against the decision-maker conservatism. It is also known as 

the budget of uncertainty, which reflects the decision-maker’s attitude towards 
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uncertainty. As this budget increases, the model is more protected against 

deviations in the uncertain parameter. 

According to Gabrel et al. (2014), in recent years a major area of research has been 

developed in robust optimization. In order to deal with the information revealed 

over time directly into the model, many theoretical works are incorporating two-

stage decision problems in robust optimization. In multiple-stage optimization, an 

important assumption of RO paradigm, i.e., the decisions are “here and now”, can 

be relaxed and “wait and see” decisions are incorporated into the modeling. Some 

decision variables can therefore be adjusted at a later moment in time according to 

a decision rule, which is a function of the uncertain data. According to Gorissen et 

al. (2015), adjustable robust optimization (ARO), as multi-stage robust 

optimization is known, is less conservative than the classic RO approach, since it 

yields more flexible decisions that can be adjusted according to the realized portion 

of data a given stage. Both Gabrel et al. (2014) and Gorissen et al. (2015) presented 

more details about ARO. 

7.3. Fleet fixed costs and robust optimization 

Prior to present the robust approach for MIR problem, it is important to elucidate 

some important changes in the MIR problem we adopted from now on in this study. 

Usually, MIR problems are planning problems of operational or tactical levels and 

they consider a given and fixed fleet of ships (which is also the case we presented 

here in Chapters 2 and 3 - real problems and deterministic formulations, 

respectively). As the fleet is given and fixed over the planning horizon then fixed 

costs of the fleet are commonly disregarded in the objective function. For example, 

if one has a fleet of 5 ships, there are no differences between using 1, 3 or all 5 ships 

in the planning horizon, in terms of fixed costs, because hiring costs will be paid 

regardless for the entire planning horizon. 

7.3.1. Fixed cost reformulation 

In robust optimization MIR problem (RO-MIR), the aim continues to be 

minimizing transportation costs, while finding a feasible solution that maintains 

inventory levels between operational bounds. However, in RO-MIR, when delays 

in time spent at ports happen, the proposed ship scheduling consumes more days of 

the fleet vessels. Thus, one way of protecting the solution against delays in time 
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spent at ports is “consuming” more vessels, that is, using vessels for a longer period 

for the same voyage. Thus, we considered important not to ignore fixed costs (hiring 

costs) in the RO-MIR problem. In this way, we include in the problem the fixed 

cost of the fleet in order to measure the impact of uncertainty in transportation costs.  

It might seen contradictory to consider the hire cost if the entire fleet was already 

hired as a time charter, i.e. for a long time horizon. However, PETROBRAS MIR 

problem is enormous in terms of number FPSOs, vessels and onshore terminals. 

Therefore, prior to scheduling the fleet, a planning team divide the vessels in groups 

and assign each group of vessels to a geographic region, where those vessels will 

transport crude oil from the FPSOs to onshore terminals. These geographic regions 

are named subsystem of the entire MIR problem and are presented in Figure 12. 

 

Figure 12: The fleet is divided in regions and assigned to each subsystems of 

PETROBRAS MIR problem.  

The scheduling team have flexibility to change vessels from one subsystem to 

another during the day-by-day activity, if necessary. However, it is important for 

the planning team to make sure that the number of vessels assigned to each 

subsystem is enough to offload the entire crude oil production, but not too large 

such that vessels become idle during the planning horizon. In other words, the 

planning team is responsible for fleet sizing decisions as well as for maintain service 

level (i.e., keep inventory levels at FPSOs and onshore terminals within operational 

range). 

Therefore, indicating the number of vessels for a specific subsystem during a 

DBD
PUC-Rio - Certificação Digital Nº 1312443/CA



75 
 

specific planning horizon does not mean hiring or delivering a new vessel, but 

reallocating a vessel from one subsystem to another. In practice, the main decision 

supported by this proposed robust methodology for MIR problems is sizing the fleet 

for each geographic subsystem for the next short-term planning horizon. While 

scheduling decisions indicated by the robust methodology will be important to 

ascertain feasibility of a given plan, the most important decision concerns the 

number of vessels dedicated to each subsystem for the next short-term planning 

horizon. Even though we have a historical data of the time spent at each port, we 

cannot know in advance when the deviation at time spent at port will occur. In other 

words, despite our ability to estimate how long vessels will stay at each port during 

the entire planning horizon (according to historical database), we cannot know 

exactly in which visit the time spent by a vessel at a port will deviate from its 

nominal value. Such information is vital for scheduling decisions. 

Next, we present some additional elements that will be used to model fixed costs. 

Parameters 

TIME The last time period of the planning horizon T, 

𝐻𝐼𝑅𝐸𝑣 The hire fee paid in a daily basis to vessels owner, 

Variables 

𝑛ℎ𝑣
𝑁𝑇 Binary variable that indicates whether a vessel stayed idle during the entire 

planning horizon or not. 

Objective function 

𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝐶𝑖𝑗𝑣
𝑇 𝑥𝑖𝑗𝑣𝑡 + 𝑡∈𝑇𝑗∈𝑁∪{𝐷𝐸𝑣}𝑖∈𝑁∪{𝑂𝑣}𝑣∈𝑉 ∑ ∑ ∑ 𝐶𝑖𝑣

𝑃𝑥𝑖𝑗𝑣𝑡 +𝑡∈𝑇𝑖∈𝑁𝑣∈𝑉

∑ ∑ ∑ 𝐶𝑣
𝑊𝑤𝑖𝑣𝑡 𝑡∈𝑇  + ∑ (1 − 𝑛ℎ𝑣

𝑁𝑇)𝐻𝐼𝑅𝐸𝑣𝑇𝐼𝑀𝐸𝑣∈𝑉𝑖∈𝑁𝑣∈𝑉        (69) 

Constraints 

𝑛ℎ𝑣
𝑁𝑇 = ∑ ∑ ∑ 𝑥𝑖𝑗𝑣𝑡𝑡∈𝑇           ∀𝑣 ∈ 𝑉𝑗=𝐷𝐸𝑣𝑖=𝑂𝑣         (70) 

In (69), we add to the original objective function the fixed cost for every vessel that 

is utilized during the planning horizon. Constraints (70) ensure that if a ship goes 

directly from the artificial origin node to the artificial destination node, then it is 

not utilized for that planning horizon. 
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Once we stablish the particularity of RO-MIR problems, we may present the robust 

optimization approach for dealing with RO-MIR problems. 

7.4. Methodology 

The proposed robust model is based on Bertsimas and Sim (2004) robust approach. 

As mentioned before, Bertsimas and Sim (2004) approach provides the possibility 

of controlling the level of robustness and a linear robust counterpart, which allows 

it to be generalized to discrete optimization problems.  

To quantify explicitly the relationship between the level of robustness of the 

solution and the probability of constraint violation, we associate Bertsimas and Sim 

(2004) approach with a Monte Carlo simulation process. Simulating the uncertain 

parameter time spent by vessels at port, one is able to estimate the probability of 

infeasibility for the solution of each level of robustness provided by the robust 

optimization model. 

Our robust optimization approach has three phases. First, we apply Bertsimas and 

Sim’s (2004) approach to the FCNF combined with valid inequalities (K+M+W) in 

order to obtain the robust optimization fixed charge network flow (RO-FCNF). In 

the second phase, we execute RO-FCNF model for each level of conservatism, 

varying the budget of uncertainty Γ (or level of robustness). For each level of Γ, we 

will obtain a robust solution that consists of a solution that will remain feasible even 

if the realization of the uncertain parameter occurs in its worst case in every visit of 

vessel v to port i (the maximum number of visits defined by Γ). In the third phase, 

we execute a Monte Carlo simulation process to estimate the probability of 

infeasibility for each level of Γ. We execute the deterministic FCNF model plus 

valid inequalities (K+M+W) 100 times, simulating the realization of the uncertain 

parameters according to a probabilistic distribution of historical data base; and 

fixing the number of vessel required and vessel availability (protection against 

infeasibility) provided by the RO-FCNF, for each level of Γ. Figure 13 illustrates 

the methodology we adopted. 
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Figure 13: Methodology flux of robust optimization approach. 

In the next three sub-sections, we describe the mathematical reformulation we apply 

to the FCNF model, the Bertsimas and Sim (2004) approach to obtain the RO-FCNF 

model and the simulation phase to identify the trade-off between infeasibility level 

and the impact on the objective function.  

7.4.1. Mathematical reformulation 

The proposed robust optimization model is an extension of the FCNF deterministic 

model presented in Section 4.3 defined by (24) – (26), (30) – (31), (35) – (38) and 

(42) – (54) and adjusted by (69)-(70) in section 7.3.1. However, before applying 

Bertsimas and Sim (2004) robust approach, we have to perform adjustments in the 

FCNF formulation. Next, we present some additional sets, parameters and variables 

included in this version. 

Additional sets: 

𝐾𝑖𝑣 Set of coefficients 𝑂𝐻𝑖𝑣 that are subject to parameter 

uncertainty.  

Additional parameters: 

𝑂𝐻𝑖𝑣 Nominal time spent by vessel v at port i, 
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𝑂𝐻𝐷𝑖𝑣 Maximum deviation observed for the time spent by vessel v at 

port i, 

𝑂�̃�𝑖𝑣 Random variable representing the time spent by vessel v at port 

i, 

𝛤𝑖𝑣 Represents the maximum number of coefficients parameters of 

constraints (i,v) that can deviate from their nominal value. It 

adjusts the robustness of the decision. The parameter 𝛤𝑖𝑣 ∈

[0, |𝐾𝑖𝑣|]. Hence, the parameter 𝛤𝑖𝑣 protects against deviations 

in up to ⌊𝛤𝑖𝑣⌋ of these coefficients. In other words, we stipulate 

that nature will be restricted in its behavior, in that only a subset 

of the coefficients will change in order to adversely affect the 

solution. 

Additional auxiliary variable: 

𝑘𝑖𝑗𝑣𝑡 Auxiliary variable representing the scaled deviation of time 

spent at port 𝑘𝑖𝑗𝑣𝑡 = (𝑂�̃�𝑖𝑣 − 𝑂𝐻𝑖𝑣)/𝑂𝐻𝐷𝑖𝑣, 

In order to model the time spent at ports properly, we add a new set of constraints. 

∑ 𝑜𝑖𝑣𝑡 ≥ ∑ 𝑂𝐻𝑖𝑣𝑥𝑖𝑗𝑣𝑡𝑡∈𝑇,𝑗∈𝑁 ,     ∀𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉,𝑡∈𝑇          (71) 

Constraints (71) determine that the number of time periods a vessel v spends at port 

i must be equal to or greater than the product of a nominal time spent at port 𝑂𝐻𝑖,𝑣 

and the number of visits of vessel v at port i. Note that constraints (71) control the 

total time spent at ports by vessel v during the entire planning horizon. For modeling 

purposes, it is sufficient to represent how many time periods each vessel will require 

to perform all assigned activities during the planning horizon. This information is 

then used to support the fleet sizing decision under uncertainty. The scheduling 

decision will be treated properly in the 3th phase of the methodology, in which we 

simulate realizations of parameter 𝑂𝐻𝑖,𝑣 to assess the performance of the solution 

obtained from the robust optimization model. 
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7.4.2. Bertsimas and Sim robust approach applied to FCNF 

formulation 

To consider uncertainty in parameter 𝑂𝐻𝑖𝑣, we reformulate constraints (71) in a 

stochastic version (71s), where 𝑂𝐻𝑖𝑣 may deviate up to its maximum deviation 

𝑂𝐻𝐷𝑖𝑣 according to its scalar deviation 𝑘𝑖𝑗𝑣𝑡:  

∑ 𝑜𝑖𝑣𝑡 ≥ ∑ 𝑂𝐻𝑖,𝑣𝑥𝑖𝑗𝑣𝑡𝑡∈𝑇,𝑗∈𝑁 + ∑ 𝑂𝐻𝐷𝑖𝑣𝑥𝑖𝑗𝑣𝑡𝑘𝑖𝑗𝑣𝑡𝑡∈𝑇,𝑗∈𝑁 , ∀𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉𝑡∈𝑇     (71s) 

In order to build the robust counterpart of the model, it is necessary to reformulate 

constraints (71s). First, we adopt the robust paradigm, which considers that 

uncertainty will behave as worse as possible. In other words, (71s) indicates that 

the solution would be feasible for every realization of the time spent at port.  

𝛷(𝑥, 𝛤) = 𝑀𝑎𝑥𝑘{∑ 𝑂𝐻𝐷𝑖𝑣𝑡∈𝑇,𝑗∈𝑁 𝑥𝑖𝑗𝑣𝑡𝑘𝑖𝑗𝑣𝑡| ∑ 𝑘𝑖𝑗𝑣𝑡 ≤ 𝛤𝑖𝑣, 𝑘𝑖𝑗𝑣𝑡 ≥ 0}𝑡∈𝑇,𝑗∈𝑁     (72) 

Note that (72) protects against the uncertainty for every visit of a vessel v at a port 

i and it is known as protection function. We disregard 𝑘𝑖𝑗𝑣𝑡 ∈ [−1,0], because we 

intend to protect only against the worst cases. Moreover, the parameter 𝛤𝑖𝑣, 

introduced to adjust the model robustness against the conservatism of the solution, 

can be understood as the maximum number of the uncertain parameters that can 

deviate from their nominal values. 𝛤𝑖𝑣 may take values in the interval [0,|K|], where 

| K| represents the maximum number of visits a port i may receive during the entire 

planning horizon. 

The robust counterpart of (71) is  

∑ 𝑜𝑖𝑣𝑡 ≥ ∑ 𝑂𝐻𝑖,𝑣𝑥𝑖𝑗𝑣𝑡𝑡∈𝑇,𝑗∈𝑁 +  𝛷(𝑥, 𝛤), ∀𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉𝑡∈𝑇          (73) 

Applying the robust optimization technique developed by Bertsimas and Sim 

(2004), we formulate an auxiliary problem (74-76). Its objective is to maximize the 

sum of all deviations over the set of all admissible realizations of the uncertain 

parameters. 

𝑀𝑎𝑥𝑘 ∑ 𝑂𝐻𝐷𝑖𝑣𝑡∈𝑇,𝑗∈𝑁 𝑥𝑖𝑗𝑣𝑡
∗ 𝑘𝑖𝑗𝑣𝑡            (74) 

Subject to: 

∑ 𝑘𝑖𝑗𝑣𝑡 ≤ Γ𝑖𝑣, ∀𝑖, 𝑣𝑗,𝑡               (75) 

0 ≤ 𝑘𝑖𝑗𝑣𝑡 ≤ 1, ∀𝑖, 𝑗, 𝑣, 𝑡             (76) 
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If Γ𝑖𝑣 = 0, the 𝑘𝑖𝑗𝑣𝑡 for all i,j,v,t, are forced to be 0, so that random variable 𝑂�̃�𝑖𝑣 

are equal to their mean value 𝑂𝐻𝑖,𝑣 and there is no protection against uncertainty. 

On the other hand, when Γ𝑖𝑣 = |K|, the 𝑘𝑖𝑗𝑣𝑡 for all i,j,v,t, are forced to be 1 (in this 

particular problem) and constraints (71s) is completely protected against 

uncertainty, which yields a very conservative solution. For values between 0 and 

|K|, the decision-maker can make a trade-off between the protection level and the 

degree of conservatism of the solution. 

Following the same rationale of Bertsimas and Sim (2004), the dual of model (74)-

(76) is stated as follows: 

𝑀𝑖𝑛𝜋,𝜌𝜋𝑖𝑣Γ𝑖𝑣 + ∑ 𝜌𝑖𝑗𝑣𝑡𝑡∈𝑇,𝑗∈𝑁             (77) 

Subject to: 

𝜋𝑖𝑣 + 𝜌𝑖𝑗𝑣𝑡 ≥ 𝑂𝐻𝐷𝑖𝑣𝑥𝑖𝑗𝑣𝑡 ,             (78) 

𝜌𝑖𝑗𝑣𝑡 ≥ 0, ∀𝑖, 𝑗, 𝑣, 𝑡              (79) 

𝜋𝑖𝑣 ≥ 0               (80) 

This dual problem has two dual variables (𝜋𝑖𝑣, 𝜌𝑖𝑗𝑣𝑡) that are associated to 

constraints (75) and (76), respectively. By strong duality, as model (74)-(76) is 

feasible and bounded for all Γ𝑖𝑣 ∈ [0,|Kiv|], then the dual problem (77)-(80) is also 

feasible and their objective function values coincide. 

Substituting (77)-(80) in constraints (73), the following robust linear set of 

constraints are obtained. 

∑ 𝑂𝐻𝑖𝑣𝑥𝑖𝑗𝑣𝑡 + 𝜋𝑖𝑣Γ𝑖𝑣 + ∑ 𝜌𝑖𝑗𝑣𝑡𝑡∈𝑇,𝑗∈𝑁 − ∑ 𝑜𝑖𝑣𝑡 ≤ 0,𝑡∈𝑇 ∀𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉,𝑡∈𝑇,𝑗∈𝑁    (81) 

𝜋𝑖𝑣 + 𝜌𝑖𝑗𝑣𝑡 ≥ 𝑂𝐻𝐷𝑖𝑣𝑥𝑖𝑗𝑣𝑡 ,              (82) 

𝜌𝑖𝑗𝑣𝑡 ≥ 0, ∀𝑖, 𝑗, 𝑣, 𝑡              (83) 

𝜋𝑖𝑣 ≥ 0               (84) 

Adding (81)-(84) to the original FCNF formulation, we have now the RO-FCNF 

formulation. This model minimizes transportation costs and ensure that up to Γ 

coefficients deviate their value from the mean time spent at port within the 

permitted interval ([𝑂𝐻𝑖𝑣−𝑂𝐻𝐷𝑖𝑣, 𝑂𝐻𝑖𝑣 + 𝑂𝐻𝐷𝑖𝑣]), then the solution of the robust 
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optimization model will remain feasible. In other words, the solution of this model 

is a robust solution. 

We present the complete RO-FCNF formulation in the Appendix 1. 

7.4.3. Probability of infeasibility 

The third phase of the framework consists of assessing the robust solutions in terms 

of their probability of infeasibility for each level of robustness. In other words, we 

evaluate the chances of a robust solution being infeasible (when inventory level 

violates a maximum or minimum level) when one implements the protection 

provided by such level of robustness (protection means the number of vessels and 

vessel availability provided in each level of robustness). We simulate the realization 

of the uncertain parameter 𝑂𝐻𝑖𝑣 100 times according to its historical data and count 

how many times the problem becomes infeasible due to higher time spent at port 

and a lack of protection. As 𝛤 = 0 leads to a deterministic solution and 𝛤 =  𝐾 

leads to a very conservative solution, we expect that the probability of infeasibility 

would be considerable for lower levels of robustness and that it would diminish as 

Γ increases. 

For each level of 𝛤, we obtain a distinct ship routing and scheduling for the fleet. 

However, ship-scheduling decisions are very dynamic, as they are influenced by 

day-by-day uncertain events and adjusted with short notice as these uncertain events 

unfold. Therefore, we decided to discard the robust ship scheduling decisions (i.e., 

the exact time period and port each vessel has visited) and only consider as fixed 

the vessel availability obtained for each level of Γ. We name such vessel availability 

the protection given by the RO-FCNF for each level of robustness against 

infeasibility. 

The vessel availability is given by the time between the time period in which a ship 

leaves the artificial origin node 𝑂𝑣 and the time period the same ship enters the 

artificial destination node 𝐷𝐸𝑣. For example, suppose that a vessel leaves its 

artificial origin node 𝑂𝑣 at time period 5 to start its first voyage in the planning 

horizon and, at the end of the planning horizon, arrives at its artificial destination 

node 𝐷𝐸𝑣 at time period 15. In our simulation, it means that its availability window 

is from time period 5 to time period 15. We use constraints (85) and (86) to set this 

availability period, making sure that this vessel will not starts a voyage before time 
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period 5 and it will have to finish its last voyage of the planning horizon until time 

period 15. 

Next, we present additional constraints in the deterministic FCNF model used to set 

vessel availability for each level of Γ. 

Sets 

UNB(v) Subset of T that comprehend the time periods in the beginning of the 

planning horizon when each vessel is unavailable 

UNE(v) Subset of T that comprehends the time periods at the end of planning 

horizon when each vessel is unavailable. 

Constraints 

∑ 𝑥𝑖𝑗𝑣𝑡𝑡∈𝑈𝑁𝐵𝑣 = 0             ∀𝑖, 𝑗 ∈ 𝑁 𝑎𝑛𝑑 ∀𝑣 ∈ 𝑉          (85) 

∑ 𝑥𝑖𝑗𝑣𝑡𝑡∈𝑈𝑁𝐸𝑣 = 0             ∀𝑖, 𝑗 ∈ 𝑁 𝑎𝑛𝑑 ∀𝑣 ∈ 𝑉          (86) 

Constraints (85) and (86) defines the period of vessel unavailability in the beginning 

and at the end of planning horizon, respectively. In other words, it fixes the 

availability period for each vessel of the fleet. It is important to highlight that 

constraints (85)-(86) are only used in the simulation phase of the robust 

optimization approach, because the unavailability periods (in the beginning and at 

the end of planning horizon) are only known after the model is solved for each level 

of Γ. 

The probabilistic distribution of the uncertain parameter 𝑂𝐻𝑖𝑣 used in the 3rd phase 

of the methodology is defined according to historical data obtained from 

PETROBRAS. Despite the parameter being indexed by the each port i and each 

vessel v, we consider that the time spent at port 𝑂𝐻𝑖𝑣 depends only on the port i. 

There is no statistical dependence between the ship and the port  

The aim of this phase is to support the decision by trading of level of robustness (or 

risk) and efficiency of the solution. One should seek for that solution that provides 

a good trade-off between probability of infeasibility and the impact on the objective 

function in terms of costs. Ideally, one should seek for solutions that provide high 

chances of feasibility and low impacts in the objective function (low increase in 

transportation costs. 
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8. Experimental results of robust approach 

 

 

In this Chapter, we present some tests using the robust optimization approach 

described in the preview Chapters. The aim of the tests is to verify how the model 

behaves against uncertain deviations of the time spent at ports. The main hard 

constraints of the model are related to maintaining inventory levels between 

predefined upper and lower bounds. Delays in (un)loading operations due to 

deviations in the time spent at ports may lead inventory level to the minimum limit, 

at onshore terminals, or to the maximum limit, at production sites. The violation of 

maximum and minimum inventory limits turns the solution infeasible. Thus, the 

decision maker must define a robustness level, where the ship scheduling is robust 

enough to avoid the infeasibility. At the same time, it cannot be too conservative 

such that it unnecessarily increases the objective function value. 

In Section 8.1, we present the instance used to assess the robust optimization 

approach and the probability distribution of the time spent at ports according 

historical data. In Section 8.2, we discuss the results of the numerical experiments 

performed, aiming at identifying which actions the model suggests in order to 

maintain feasibility of the problem while the level of robustness (Γ) increases. 

8.1. Instance and historical probability distribution 

We prepared an instance to represent the geographic south region of Brazil. In this 

subsystem there are 2 onshore terminals (Tedut and Tefran - that supplies one 

refinery each) and are supplied of crude oil from 4 different FPSOs, located in the 

southeast coast of Brazil. We allocate a potential fleet of 5 vessels of different sizes 

to supply these refineries during a planning horizon of 15 days. The model suggests 

how many vessels are required to supply such subsystem in each level of robustness. 

The uncertain parameter (time spent by vessels at each port) varies according to 

many reasons described in Section 2.2. We analyzed a two-year historical dataset 

to estimate the mean time spent at ports (𝑂𝐻𝑖) and the maximum deviation allowed 

in this mean time (𝑂𝐻𝐷𝑖). As operations in FPSOs are more scattered than in 

onshore terminals, we analyzed the time spent at FPSOs as if they were only one 
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and the time spent at each onshore terminal individually. 

For Tefran onshore terminal, we analyzed 240 operations; the minimum data value 

was 0.5 days, the maximum data value was 14.7 days; sample mean was 1.8 days, 

the medium value was 1.0 day and the standard deviation was 2.1 days. Figure 14 

presents the histogram for the data. We used the medium value to estimate the 

nominal time spent at Tefran onshore terminal (𝑂𝐻𝑇𝑒𝑓𝑟𝑎𝑛) and defined the 

maximum allowed deviation (𝑂𝐻𝐷𝑇𝑒𝑓𝑟𝑎𝑛) as 3 days. It means that our robust model 

protects against infeasibility for up to 93% of the cases, where the time spent at 

Tefran onshore terminal reaches up to 4 days (𝑂𝐻𝑇𝑒𝑓𝑟𝑎𝑛 + 𝑂𝐻𝐷𝑇𝑒𝑓𝑟𝑎𝑛). 

 

Figure 14: Two-year base Tefran onshore terminal port time histogram 

For Tedut onshore terminal, we analyzed 187 operations; the minimum data value 

was 0.7 days, the maximum data value was 11.7 days; sample mean was 2.6 days, 

the medium value was 1.9 days and the standard deviation was 2.0 days. Figure 15 

presents the histogram of the sample. We used the medium value to estimate the 

nominal time spent at Tedut onshore terminal (𝑂𝐻𝑇𝑒𝑑𝑢𝑡) and defined the maximum 

allowed deviation (𝑂𝐻𝐷𝑇𝑒𝑑𝑢𝑡) as 4 days. It means that our robust model protects 

against infeasibility for up to 94% of cases where the time spent at Tedut onshore 

terminal reaches up to 6 days (𝑂𝐻𝑇𝑒𝑑𝑢𝑡 + 𝑂𝐻𝐷𝑇𝑒𝑑𝑢𝑡). 
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Figure 15: Two year base Tedut onshore terminal port time histogram. 

For the FPSO, we analyzed 373 operations; the minimum data value was 0.5 days, 

the maximum data value was 7.5 days; sample mean was 1.1 days, the medium 

value was 0.9 day and the standard deviation was 0.9 days. Figure 16 presents the 

histogram of the sample. Note that operations at FPSOs suffers less variation in the 

total time spent by the vessels at port. We estimate the parameter 𝑂𝐻𝑖 =

1,where 𝑖 𝜖 𝑁𝑃 (NP is the set of production ports or FPSOs). As deviation in time 

spent at FPSOs is small (78% of operations last up to 1 day), we decided to consider 

deviation at FPSOs equal to zero (𝑂𝐻𝐷𝐹𝑃𝑆𝑂𝑠 = 0), which is the same of disregard 

uncertainty in time spent by vessels at FPSOs. 

 

Figure 16: Two year base FPSOs port time  histogram. 

Once we know the historical probabilistic behavior of the time spent at ports, we 

proceed to the robust optimization results in next section. 
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8.2. Computational results 

In the robust optimization approach, the decision maker needs to determine the level 

of conservativeness he/she wants to admit. In these experiments, we demonstrate 

different operation and costs aspects of the robust solution for the worst case of 

realizations in each level of robustness (Γ). However, as the uncertainty occurs 

differently for each port, there are one Γ for each onshore terminal (Tefran and 

Tedut). The value of Γ𝑖 may be interpreted as the maximum number of visits at a 

port i in which the time spent by the vessel may deviate from its mean value. For 

example, Γ𝑇𝑒𝑓𝑟𝑎𝑛 = 0 indicates that there is no deviation from the mean value of 

the port time in any operation at Tefran; and Γ𝑇𝑒𝑑𝑢𝑡 = 3 indicates that the time spent 

by a vessel at port will deviate from its nominal value to maximum deviation in up 

to 3 visits at Tedut port. According to consumption rates and initial inventory level 

at each onshore terminal, and loading capacity of the ships, we estimate the 

maximum number of visits at each port (the maximum Γ𝑖). The maximum Γ𝑖 must 

be enough to supply the onshore terminals continuously and without letting 

inventory levels violate minimum bounds. In the instance we have considered, the 

estimative for the maximum value is Γ𝑇𝑒𝑓𝑟𝑎𝑛 = 3 and Γ𝑇𝑒𝑑𝑢𝑡 = 4. As uncertainty 

in the time spent at each port follows their own historical probabilistic distribution, 

we have to combine both Γ (for Tefran and Tedut) to define each level of robustness. 

Then, we have 20 levels of robustness. Next, we present results for each level of 

robustness. 

We implemented the model using AIMMS 3.13 and solved them using the 

GUROBI 5.5. We used an Intel Core i7 CPU with 8.0 GB RAM. We implemented 

and tested the robust methodology using the FCNF+K+M+W formulation and 

using heuristic approach (also based on FCNF+K+M+W formulation). Subsection 

8.2.1 compares the use of conventional MIP solver with the heuristic approach for 

solving the proposed robust model. Once identifying the best method for running 

the robust methodology (conventional MIP solving or heuristic approach), 

Subsection 8.2.2 analyzes some operational and costs behavior of the model for 

each level of robustness and the trade-off between robustness and probability of 

infeasibility. 
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8.2.1. Robust methodology using conventional MILP solving 

and heuristic approach 

First, we executed the RO-FCNF model considering (K+M+W) valid inequalities 

using conventional MIP solving. We limited computational time in 3,600 seconds 

for each level of robustness. In Figure 17, we can assess the evolution of objective 

function value, lower bound value and optimality gap as we variate the level of Γ 

for (Tedut, Tefran). The bars represent the optimality gap for each level of 

robustness. The continuous line represents the best objective function for the worst 

case of realizations of time spent at port for each level Γ. The dashed line means 

the linear relaxed bound for each level of Γ. The chart is divided in 4 blocks, each 

block represents a level of Γ𝑇𝑒𝑓𝑟𝑎𝑛 (first block Γ𝑇𝑒𝑓𝑟𝑎𝑛 = 0, second block Γ𝑇𝑒𝑓𝑟𝑎𝑛 =

1, third block Γ𝑇𝑒𝑓𝑟𝑎𝑛 = 2 and fourth block Γ𝑇𝑒𝑓𝑟𝑎𝑛 = 3). For each level of Γ𝑇𝑒𝑓𝑟𝑎𝑛, 

we variate level of Γ𝑇𝑒𝑑𝑢𝑡 from 0 to 4. We use this block scheme in most charts of 

this section to represent the variation in the level of robustness. 

 

Figure 17: RO-FCNF using conventional MILP solving 

Note that we didn’t reach optimality in any level of robustness. Despite that, for 

each block the objective function value has a tendency of growth due to the increase 

in the robustness level. Such behavior indicates that the more robust is the solution 

(ship scheduling), the more expensive is the transportation cost (objective function 

value). 
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Although the behavior of the objective function was expected, the lower bound 

provided by the linear relaxation of the problem are very low when compared to the 

objective function value, providing high optimality gaps. Such a situation is very 

adverse for robust optimization modeling, because one cannot ensure that the 

increase in the objective function value indeed due to the increase in the level of 

robustness or if there is a better solution “hidden” in the optimality gap. 

This situation encourage us to solve the RO-FCNF using the heuristic approach 

presented in Chapter 5. For this test, the auxiliary parameters of the relax-and-fix 

heuristic were defined as follows: the size of Integer Block was 2 ports at the 

beginning of the heuristic, the pace and return parameters are set to 1 each. For each 

iteration of the relax-and-fix phase, we established a time limit of 1000 seconds or 

a relative optimality gap of 15%, whichever occurs first. The use of heuristic 

approach within the robust methodology aims to find lower objective function 

values and/or reduce total computational time expended during the second phase of 

the methodology. Figure 18 presents the evolution of objective function using 

conventional MIP solving (continuous blue line), the evolution of objective 

function using the first phase of the heuristic approach (green dotted line) and the 

bars represent the relative distance between then. 

 

Figure 18: Objective function evolution for each level of robustness using relax-

and-fix heuristic. 

DBD
PUC-Rio - Certificação Digital Nº 1312443/CA



89 
 

In general, the use of relax-and-fix heuristic (first phase of the heuristic approach) 

did not find better solutions than those obtained using the conventional MIP for 

almost every level of robustness (except by the level of robustness Γ𝑇𝑒𝑑𝑢𝑡,𝑇𝑒𝑓𝑟𝑎𝑛 =

(4,2)). On average, the objective function value using the relax-and-fix heuristic 

was 9% worse than when the problem was solved using conventional MIP. 

However, the relax-and-fix heuristic prove to be an efficient alternative for finding 

initial solutions. In the levels of robustness that it does not improved objective 

function value, computational time was considerably reduced.  The reduction in 

computational time, presented in Figure 19, was around 77%. 

 

Figure 19: Computational time using conventional MIP solving and using relax-

and-fix heuristic. 

Next, we improved the initial solution provided by the relax-and-fix phase using 

the fix-and-optimize heuristic. At this phase, we fixed the values of the integer 

variables according to the index v (of vessels). At each iteration, the Fixed Block 

composed by 2 different vessels. The fix-and-optimize heuristic finishes after 10 

iterations without any improvement in the objective function. We established a time 

limit of 250 seconds for each iteration of the fix-and-optimize procedure. Figure 20 

presents the evolution of objective function using conventional MIP solving 

(continuous blue line), the evolution of objective function improved by the second 

phase of the heuristic - fix-and-optimize heuristic -. (orange dotted line) and the 

bars represent the relative distance between then. 
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Figure 20: Fix-and-optimize improved objective function evolution for each level 

of robustness. 

The heuristic approach was able to improve the objective function in most levels of 

robustness. On average, the objective function was improved in 2.8% and only on 

3 levels of robustness the objective function value obtained was worse than using 

the conventional MIP. In addition to improve objective function, the total 

computational time of the heuristic approach solution was also reduced when 

compared to the conventional MIP solving. Figure 21 presents the total 

computational time using conventional MIP solving, and the two phases of the 

heuristic approach. The total reduction in computational time was about 33%. 

 

Figure 21: Computational time using conventional MIP solving, relax-and-fix and 

fix-and-optimize heuristics. 
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Even though the heuristic approach could not close the optimality gaps obtained 

using the conventional MIP solving (because we cannot consider the lower bounds 

obtained by the heuristic valid for the original problem), it provided better solutions 

for almost every level of robustness and reduced the total computational time. Thus, 

from now on we will consider the heuristic approach solution as a reference for all 

the analysis of the next section. 

8.2.2.  Operational and cost behavior in robust methodology 

The objective function of RO-FCNF model is composed by four cost components: 

port fee, hiring cost, bunker cost and demurrage cost. We divide Figure 22 in four 

quadrants and each of them demonstrates how each cost component of the objective 

function behaves as we modify the level of robustness (a. port fee, b. hiring cost, c. 

bunker cost and d. demurrage cost). 

In Figure 22.a, the port fee cost is represented by the blue area. We may note that 

it remains stable for every level of robustness, which means that the level of 

robustness has not much influence on this cost component. The number of visits on 

the onshore terminals do not suffer much oscillation. In Figure 22.b, note that hiring 

cost (represented by the dark blue area) is directly related to the number of vessel 

used. As the level of robustness increase, the use of vessels becomes more intensive 

(due to deviations in time spent at ports) and it is necessary more vessels to attend 

to the demand for transportation. However, after a certain level of robustness, 

increasing the number of vessel is no longer necessary. Note that in the last block 

(Γ𝑇𝑒𝑓𝑟𝑎𝑛 = 3), the evolution of the objective function value and number of vessels 

used are the same as in the third block (Γ𝑇𝑒𝑓𝑟𝑎𝑛 = 2). In Figure 22.c, we notice 

some variation in bunker cost (represented by the yellow area). Observe that the 

levels of robustness that presents the highest bunker costs are those where there 

were used only three vessels instead of four. It happens because using less vessels 

for the same number of voyages, they will need to perform more ballast sailing 

voyages (when the vessel sails empty after discharging at a consumption port to a 

production port, in order to start a new voyage). When a solution adopt more vessels 

for the same number of voyages, the number of ballast sailing trips is reduced and, 

consequently, bunker costs also decreases. 
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The last cost component, represented in grey area of Figure 22.d is the demurrage 

rate. We may observe that the demurrage cost is directly related to the level of 

robustness. As the level of robustness increase, the model admits that a vessel will 

spend more time at ports, and it results in more demurrage expenses. 

As the level of robustness represents a variation in the time spent at ports, Figure 

23 illustrates such a parameter. Note that as the level of robustness increases, the 

time spent at onshore ports (measured in days) also increases. However, the number 

of visits at both ports suffers little variation. An exception for this behavior is 

between levels Γ(3,0) and Γ(4,0). As we have the problem of large optimality gaps, 

the solution obtained in the level of robustness Γ(3,0) certainly could be improved. 

 

Figure 23: Total time spent at ports (in days) and number of visits at onshore 

terminals. 

The time spent at ports is directly related to the demurrage costs and has a strong 

influence on the number of vessel needed. Regarding the demurrage cost, operation 

at ports is programmed to last no longer than one day. Thus, any extra day spent by 

the vessel at a port is penalized by the demurrage rate. Regarding the number of 

vessels, as they spent more time in ports (when level of robustness increase), more 

vessels are required to offloading the FPSOs, supply onshore terminals, and ensure 

that inventory levels at ports will not violate inventory operational limits (maximum 

and minimum). 

The time spent at ports will also influence the vessel availability. It means that the 

total time vessel was used during planning horizon, independently if it was sailing, 
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waiting, operating at a FPSO or an onshore terminal. We measure vessel availability 

from the moment the vessel leaves its artificial origin node until the moment when 

the vessel enters its destination node. In Figure 24, we present a relation between 

the number of vessels (line) and total vessel availability (bars), which means the 

sum of vessel availability of the fleet. Note that as level of robustness increases, the 

vessel availability also tends to increase. This is a way of protection against 

infeasibility, as the model requires more vessels for a more robust solution. 

 

Figure 24: Number of vessels and total vessel availability. 

Once it was observed how the model gets protection against infeasibility while the 

level of robustness (Γ) increases and what are the consequences of such protection 

on the objective function, we proceeded to verify the probability of infeasibility of 

each solution on each level robustness.  

8.2.3.  Probability of infeasibility in robust methodology 

In order to verify the probability of infeasibility, we simulated 100 scenarios for the 

time spent at ports for each pair (port, vessel) according to the probability obtained 

by the historical data and presented in Section 8.1. For each scenario and each level 

of Γ, we execute the deterministic model FNCF+K+M+W fixing the fleet size and 

fleet availability defined for each level of Γ, as demonstrated in Section 7.3.3, 

constraints (82) – (83). The number of vessel required and the vessel availability 

represent the protection against infeasibility suggested by the RO-FCNF on each 
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level of robustness. Figure 25 presents an example of protection suggested by the 

RO-FCNF in the level of robustness Γ(𝑇𝑒𝑑𝑢𝑡,𝑇𝑒𝑓𝑟𝑎𝑛) = (0,1). In this example, 

vessels MT Navion Stanvanger and MT Fortaleza Knutsen were not required during 

the planning horizon, while MT Elka Leblon and MT Rio Grande started their first 

voyage at time period 1 and finish their last voyage at 15. The vessel MT Angra dos 

Reis start at time period 5 and finish at 15. Summing how many days these three 

vessels were available, we have 41 days of vessel availability. 

 

Figure 25: Vessel availability suggested by the RO-FCNF for the level of 

robustness 𝛤(𝑇𝑒𝑑𝑢𝑡,𝑇𝑒𝑓𝑟𝑎𝑛) = (0,1). 

Figure 26 presents a comparisson between the worst-case objective function (green 

continuous line) for each level of Γ (provided by RO-FCNF model), the average 

objective function (black dotted line) obtained from the simulation of time spent at 

ports and the probability of infeasibility of each level of protection given by the 

RO-FCNF model (red dashed line). It is important to mention that during simulation 

phase, the execution of the deterministic model FNCF+K+M+W with fleet size and 

fleet availability fixed for each level of robustness provided optimal (or near 

optimal) results for every feasible solution obtained. We set a relative optimality 

gap of 3% as the stopping criterion for each execution. 

Note that the more robust the solution, the higher is the chance of obtaining a 

feasible solution. We might also observe how conservative are the robust solutions 

proposed by the RO-FCNF model. When we observe the average objective function 

of simulated solutions, we note that they are almost ever lower than the objective 

function provided by the RO-FCNF. As the level of robustness increases, this 

difference also increases. As in the simulation phase we only fix the vessel 

availability and the number of vessels required, the only component of cost that is 

Number of vessels required 3

Time periods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MT Elka Leblon availability 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MT Rio Grande availability 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MT Angra dos Reis availability 11 1 1 1 1 1 1 1 1 1 1 1

MT Navion Stavanger availability 0

MT Fortaleza Knutsen availability 0

Total vessel availability 41 Time periods

Planning horizon

DBD
PUC-Rio - Certificação Digital Nº 1312443/CA



96 
 

fixed is the hiring cost. Vessels will be re-scheduled according to the simulated 

parameter 𝑂𝐻𝑖,𝑣. Consequently, the cost components of objective function port fee, 

bunker cost and demurrage rates will be recalculated according to each solution.  

 

Figure 26: Evolution of objective function of worst case, average objective function 

simulated and probability of infeasibility. 

Observing Figure 26, one may decide how much risk he/she is willing to accept. 

The only previous decision is how many vessels he/she will alocate to each 

subsystem and when each vessel must be available for that subsystem (vessel 

availability). The simulation phase represents the day-by-day scheduling decisions 

we present in Section 2.1.1. In practice, they are made on daily basis as uncertain 

parameters are revealed. 

Table 10 presents for each level of robustness, the values of the worst case objective 

function (obtained in the second phase of the metodology by the RO-FCNF model), 

the average objective function simulated and probability of infeasibility (obtained 

during simulation phase). The last two columns present, respectively, the absolute 

and relative difference from the average objective function of each level of 

robustness to the risk neutral level (Γ=(0,0)), the one that has no protection against 

uncertainty.  
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Table 10: Evolution of objective function and probability of infeasibility for each 

level of conservativeness. 

Note that for the nominal problem, where Γ=(0,0) for (Tedut, Tefran), 87% of the 

scenarios simulated are infeasible, although the objective function reaches the 

lowest value, around US$ 4.4 million. It means that in 87% of the simulated 

scenarios, the fleet availability indicated in the solution of the nominal problem is 

not enough to carry the entire crude oil production from production sites to onshore 

terminals without letting inventory levels violate minimum and/or maximum limits. 

In other words, 87% of scenarios are infeasible due to inventory levels violation. 

When one increases the level of robustness, for example Γ=(3,1), the probability of 

infeasibility reduces to 2% and the increase in the average objecive function is 

around US$ 641 thousand, which corresponds to about 13% of increase in the value 

of the nominal problem objective function.  

Regarding the trade-off decision between risk of infeasibility and transportation 

costs, Figure 27 plots an efficiency frontier for each level of robustness. The Y-axis 

represents the average objective function simulated, X-axis represents the 

probability of infeasibility and each dot represents a level of robustness. Analysing 

the efficiency frontier, one can easily identify the efficient solutions and the 

dominated solutions. The efficient solutions are those that for same probability of 

infeasibility has the lower transportation costs, and dominated solutions are the ones 

Worst case 

objective 

function

Average 

objective 

function

Probability of 

infeasibility

Δ Average obj. 

func. (average 

obj. func. - 

average obj. func. 

of Γ = (0,0)

Δ%  Average obj. 

func.

0 4,404,600         4,460,081         87%  -  - 

1 4,603,000         4,508,385         87% 48,304                  1.1%

2 4,954,780         5,089,379         20% 629,299                14.0%

3 5,596,530         5,510,351         11% 1,050,270             20.6%

4 5,527,290         5,013,689         9% 553,608                10.0%

0 4,625,200         4,445,756         91% 14,325-                  -0.3%

1 4,887,140         4,810,905         29% 350,824                7.9%

2 5,105,490         4,858,600         14% 398,520                8.3%

3 5,671,800         5,101,589         2% 641,509                13.2%

4 5,671,800         5,117,964         2% 657,883                12.9%

0 4,846,240         5,065,837         14% 605,757                11.8%

1 5,055,890         4,901,082         9% 441,001                8.7%

2 5,254,290         4,901,082         9% 441,001                9.0%

3 5,847,920         5,163,895         2% 703,814                14.4%

4 5,847,920         5,163,895         2% 703,814                13.6%

0 4,846,240         5,065,218         14% 605,137                11.7%

1 5,055,890         4,901,082         9% 441,001                8.7%

2 5,254,290         4,901,082         9% 441,001                9.0%

3 5,847,920         5,158,760         2% 698,679                14.3%

4 5,847,920         5,158,760         2% 698,679                13.5%

0

1

2

3
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that presents higher transportation costs for the same probability of infeasibility. 

Another important advantage of the efficient frontier chart is that independently of 

how many ports the uncertainty is considered (what represents the number of Γ 

indexes), one can plot the results in a two axis chart. It lets the result analysis much 

easier for the decision maker than Figure 26, for example, where the chart must be 

split in blocks according to the number of Γ indexes. 

 

Figure 27: Efficiency frontier for levels of robustness. 

Observing this chart, the decision maker may decide in advance which level of 

protection to give for a subsystem of the PETROBRAS MIR problem, considering 

two important aspects: probability of failing service (infeasibility) and increase in 

transportation costs (objective function). Such decision takes in consideration 

uncertainty in the time spent at ports. In this example, if one considers allowable 

about 10% of probability of infeasibility, than the levels of robustness (2,1), (1,2), 

(2,2), (1,3) and (2,3) are the ones that presents the lower transportation cost for such 

level of conservadorism. If one seeks for a more robust solution, it means, a solution 

with a lower probability of infeasibility, than the level of robustness (3,1) is 

definitly the best option. Such level is the one that associates the lower average 

transporation costs for the lower probability of infeasibility. In practice, such 

solution considers the use of 4 vessels, summing 54 time-periods of vessel 

availability. It also assumes that this level of protection is enough to accomplish 

98% of the cases, considering the historical uncertainty of time spent at onshore 

terminals. 
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An important contribution of such robust metodology is suporting the decision 

maker in the ship scheduling activity. Giving in advance the risk of failing service 

level and how much the level of conservative admitted would impact transportation 

costs. Such trade-off analysis is fundamental for an efficient management of ship 

scheduling activity in a real-life MIR problem, such as the one faced by 

PETROBRAS. 
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9. Conclusion 

 

 

We studied the special case of maritime transportation problem named maritime 

inventory routing and we described in detail a practical MIR problem faced by a 

Brazilian petroleum company. In order to find the most appropriate optimization 

model to support such a real problem decision-making, we research in the literature 

to identify a mathematical formulation that better models and optimize its ship-

scheduling decisions. 

As we found different formulations in literature, using different ways of using time 

aspect, we structured a framework that compares continuous time and discrete time 

and indicated which is the most appropriated for real-life MIR problems. As far as 

we known, this is the first time in literature that such a framework is presented in 

literature. Using a set of real-life instances (most of them harder than the ones found 

in literature), we concluded that continuous time, FCNF+K+M+W and 

FCNF+K+M+W+D formulations have the best computational performance. 

Additionally, we noted that continuous time formulation provides strong linear 

relaxation bounds. Therefore, for certain instances, the use of these bounds may 

reduce considerably the optimality gap obtained for FCNF+K+M+W and 

FCNF+K+M+W+D formulations. Our tests indicated a reduction of 65% for those 

instances that did not reach optimality. 

However, even improving optimality gap, our tests indicated that conventional 

MILP formulations are not enough to prove optimality for some real-life instances 

due to their computational complexity. We proposed then a relax-and-fix and fix-

and-optimize heuristic approach in order to improve solution and reduce 

computational time. Test indicated that the heuristic approach reached or improved 

the objective function value in most instances tested when compared to 

FCNF+K+M+W formulation and reduces the total computational time in 24%. The 

heuristic approach was also valuable to get better solutions and reduce 

computational time of the robust approach we propose. It is important to highlight 

that depending on the way of selecting variables to fix and relax during the heuristic 

execution, the solution could be different. Our tests indicated that the use of index 
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ports i and vessels v provided better solutions than the use of index time t, utilized 

by Uggen (2013) and Rodrigues et al. (2016). 

Nevertheless, identifying a deterministic formulation (or heuristic approach) for 

MIR problem is not enough to solve a practical MIR problem. Due to a large 

number of unforeseen occurrences that influence ship-scheduling decision, we 

proposed a robust optimization approach that considers uncertainty in time spent 

by vessels at ports and quantifies the probability of infeasibility for several 

solutions. Each solution optimized for a certain level of robustness. Our tests 

indicated that the use of such robust optimization approach to support ship-

scheduling decisions contributes considerably to improve quality of the decision. It 

means that using the robust optimization approach, the decision maker can measure 

the risk of infeasibility and the impact in transportation costs for several solutions 

with different robust levels. Therefore, one may decide within a range of options, 

which solution represent the best trade-off between conservativeness and increasing 

in transportation costs. In other words, the proposed robust approach helps the 

decision maker to identify its willingness to take risks and measures the 

transportation costs of its decision. Such analysis represents one of the main 

contributions of this thesis to operational research and practice. 

Summarizing, the main contributions of this thesis were: supports the decision 

maker to assign an efficient number of vessels for a certain MIR problem that avoids 

inefficiency caused by an oversized fleet; quantifies the risks of failing service level 

(infeasible solutions) and the impacts of level of conservativeness admitted in 

transportation costs; and provides an optimization decision support tool that helps 

to make ship-scheduling decisions, based on the risk of failing level of service.  

Despite the results we obtained, there are still much space for development in the 

study of MIR problems, especially if considering uncertainty. As future work, we 

propose the application of valid inequalities in the continuous time formulation; and 

a better use of the linear lower bounds of the continuous time formulation. 

Regarding MIR problems under uncertainty, we recommend studying alternatives 

to reduce the optimality gaps obtained during the robust approach. Another 

opportunity of future research is the inclusion of new uncertain parameters in the 

model, such as production and consumption rates and vessel speed, for example. 
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Appendix 1 

 

 

The RO-FCNF formulation starts with the original FCNF formulation proposed by 

Agra et al. (2013). We add some valid inequalities also proposed by Agra et al. 

(2013) to strengthen formulation and improve computational performance. Finally, 

we reformulate the original FNCF in order to obtain the RO-FCNF formulation, 

considering uncertainty in the time spent by the vessels at ports. 

Here we describe the mathematical formulation of the RO-FCNF model. In order 

to better reference with the text, we will use the same equation numbers of the text.  

Sets: 

N  set of all ports indexed by i and j 

T  set of time periods indexed by t 

V  set of vessels indexed by v 

NP  set of loading ports indexed by i and j 

ND  set of discharge ports indexed by i and j 

𝐾𝑖𝑣  Is the set of coefficients 𝑂𝐻𝑖𝑣 that are subject to parameter 

uncertainty. 

Parameters: 

CT
ijv  sailing cost of vessel v between ports i and j 

CW
v  waiting cost of vessel v for each time period 

CP
iv  port cost of port i for vessel v 

o(v)  position of vessel i in the beginning of planning horizon 

d(v)  artificial end node for each vessel 

Tijv  sailing time of vessel v between ports i and j 

Bit  number of berths available in port i during time period 
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Qv  maximum amount of product to be (un)loaded at one time period of 

ship v 

L0
v  inventory on board of vessel v in the beginning of the planning 

horizon 

Kv  vessel capacity 

Dit  demand rate in the discharge port i for each time period t 

Pit  production rate in the load port i for each time period t 

SMXit  Upper bound of inventory level in port i for each time period t 

SMNit  Lower bound of inventory level in port i for each time period t 

S0
i  Inventory level at port i in the beginning of the planning horizon 

TIME  The last time period of the planning horizon T, 

𝐻𝐼𝑅𝐸𝑣  The hire fee paid in a daily basis to vessels owner, 

𝑂𝐻𝑖𝑣  Mean time spent by vessel v at port i, 

𝑂𝐻𝐷𝑖𝑣  Maximum deviation observed for the time spent by vessel v at port 

i, 

𝛤𝑖𝑣  Represents the maximum number of coefficients parameters of 

constraints (i,v) that can deviate from their nominal value. It adjusts the robustness 

of the decision. The parameter 𝛤𝑖𝑣 ∈ [0, |𝐾𝑖𝑣|]. Hence, the parameter 𝛤𝑖𝑣 protects 

against deviations in up to ⌊𝛤𝑖𝑣⌋ of these coefficients. In other words, we stipulate 

that nature will be restricted in its behavior, in that only a subset of the coefficients 

will change in order to adversely affect the solution. 

Variables: 

oivt  where oivt  {0,1} 

equal to 1 if vessel v is operating (loading/unloading) in port i during time period t 

and 0 otherwise, 

oA
ivt  where oA

ivt  {0,1} 

indicates whether ship v starts to operate at port i in period t 
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oB
ivt  where oB

ivt  {0,1} 

indicates whether ship v continue to operate at port i in period t 

xijvt  where xijvt  {0,1} 

equal to 1 if vessel v left port i to port j during time period t and 0 otherwise, 

wivt  where wivt  {0,1} 

equal to 1 if vessel v is waiting outside berth in port i during time period t and 0 

otherwise, 

fX
ijvt  that indicates the load on board ship v when traveling from port i to 

port j, leaving port i in period t, 

fOA
ivt  that indicates the load on board ship v when starting to operate at 

port i in period t and has not operated in period t-1, 

fOB
ivt  that indicates the load on board ship v before continuing to operate 

at port i in period t after having operated in time period t-1, 

fW
ivt  that indicates the load on board ship v while waiting during time 

period t at port i. 

qivt  where qivt  R 

quantity (un)load from/to vessel v in port i during time period t, 

sit  where sit  R 

inventory level at port i during time period t. 

𝑛ℎ𝑣
𝑁𝑇  Binary variable that indicates whether a vessel stayed idle during the 

entire planning horizon or not. 

Additional auxiliary variables 

𝜋𝑖𝑣  Robustness variable (dual problem), 

𝜌𝑖𝑗𝑣𝑡  Auxiliary robustness variable (dual problem). 

Routing constraints 

∑ ∑ 𝑥𝑂𝑣𝑗𝑣𝑡 = 1, ∀𝑣 ∈ 𝑉,𝑡∈𝑇𝑗∈𝑁∪{𝐷𝐸𝑣}      (25) 
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∑ ∑ 𝑥𝑖𝐷𝐸𝑣𝑣𝑡 = 1, ∀𝑣 ∈ 𝑉,𝑡∈𝑇𝑖∈𝑁∪{𝑂𝑣}      (26) 

Constraints (25) and (26) guarantee that every ship leaves from its artificial origin 

port and finishes the voyage at its artificial destination port. 

Sailing, waiting and operating time constraints 

∑ 𝑥𝑗𝑖𝑣,𝑡−𝑇𝑗𝑖𝑣  +  𝑤𝑖𝑣,𝑡−1 = 𝑤𝑖𝑣𝑡 + 𝑜𝑖𝑣𝑡 
𝐴 , ∀𝑣 ∈  𝑉,   𝑖 ∈  𝑁,   𝑡 ∈  𝑇,𝑗∈𝑁∪{𝑜(𝑣)}  

          (42) 

𝑜𝑖𝑣𝑡−1
𝐴 + 𝑜𝑖𝑣𝑡−1

𝐵 = 𝑜𝑖𝑣𝑡
𝐵 + ∑ 𝑥𝑖𝑗𝑣𝑡𝑗∈𝑁∪{𝑑(𝑣)} , ∀𝑣 ∈  𝑉,   𝑖 ∈  𝑁,   𝑡 ∈  𝑇,  (43) 

𝑜𝑖𝑣𝑡
𝐴 , 𝑜𝑖𝑣𝑡

𝐵  ∈ {0,1}, ∀𝑣 ∈  𝑉,   𝑖 ∈  𝑁,   𝑡 ∈  𝑇,     (44) 

𝑜𝑖𝑣𝑡
𝐴 + 𝑜𝑖𝑣𝑡

𝐵 = 𝑜𝑖𝑣𝑡,   ∀𝑣 ∈  𝑉,   𝑖 ∈  𝑁,   𝑡 ∈  𝑇,    (45) 

∑ 𝑜𝑖𝑣𝑡  ≤  𝐵𝑖𝑡 , ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇,   𝑣∈𝑉       (30) 

Constraints (42) indicate the ship arrival at one port and (43) show when the ship 

sailing from one port. Constraints (44) indicates the variables oA
ivt and oB

ivt are 

binary. Constraints (45) provide the link between the old and the new operating 

variables. Constrains (30) give berth restrictions at each node and consequently 

waiting time. 

Loading constraints 

∑ 𝑓𝑗𝑖𝑣,𝑡−𝑇𝑗𝑖𝑣
𝑋 + 𝑓𝑖𝑣,𝑡−1

𝑊 = 𝑓𝑖𝑣𝑡
𝑊 + 𝑓𝑖𝑣𝑡

𝑂𝐴 𝑗∈𝑁∪{𝑜(𝑣)} ,∀𝑣 ∈  𝑉,   𝑖 ∈  𝑁,   𝑡 ∈  𝑇 (46) 

𝑓𝑖𝑣,𝑡−1
𝑂𝐴 + 𝑓𝑖𝑣,𝑡−1

𝑂𝐵 + 𝑞𝑖𝑣,𝑡−1 = 𝑓𝑖𝑣𝑡
𝑂𝐵 + ∑ 𝑓𝑖𝑗𝑣𝑡

𝑋 ,𝑗∈𝑁∪{𝑑(𝑣)}     

     ∀𝑣 ∈  𝑉,   𝑖 ∈  𝑁𝑃 ∪ {𝑜(𝑣)},   𝑡 ∈  𝑇, (47) 

𝑓𝑖𝑣,𝑡−1
𝑂𝐴 + 𝑓𝑖𝑣,𝑡−1

𝑂𝐵 − 𝑞𝑖𝑣,𝑡−1 = 𝑓𝑖𝑣𝑡
𝑂𝐵 + ∑ 𝑓𝑖𝑗𝑣𝑡

𝑋 ,𝑗∈𝑁∪{𝑑(𝑣)}     

    ∀𝑣 ∈  𝑉,   𝑖 ∈  𝑁𝐷 ∪ {𝑜(𝑣)},   𝑡 ∈  𝑇, (48) 

𝑓𝑜(𝑣)𝑗𝑣𝑡
𝑋 = 𝐿𝑣

0𝑥𝑜(𝑣)𝑗𝑣𝑡 ,         ∀𝑣 ∈  𝑉,   𝑗 ∈  𝑁 ∪ {𝑑(𝑣)},   𝑡 ∈  𝑇  (49) 

The flow conservation constraints (46) – (49) ensure the load on board balance 

along every arc of the structure.  

0 ≤  𝑓𝑖𝑗𝑣𝑡
𝑋  ≤  𝐾𝑣𝑥𝑖𝑗𝑣𝑡 ,   ∀𝑣 ∈  𝑉, 𝑖 ∈ 𝑁 ∪ {𝑜(𝑣)}, 𝑗 ∈  𝑁 ∪ {𝑑(𝑣)},   𝑡 ∈  𝑇 

          (50) 
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0 ≤  𝑓𝑖𝑣𝑡
𝑂𝐴  ≤  𝐾𝑣𝑜𝑖𝑣𝑡

𝐴 ,    ∀𝑣 ∈  𝑉, 𝑖 ∈ 𝑁,   𝑡 ∈  𝑇,    (51) 

0 ≤  𝑓𝑖𝑣𝑡
𝑂𝐵  ≤  𝐾𝑣𝑜𝑖𝑣𝑡

𝐵 , ∀𝑣 ∈  𝑉, 𝑖 ∈ 𝑁,   𝑡 ∈  𝑇,    (52) 

0 ≤  𝑞𝑖𝑣𝑡  ≤  𝑄𝑣𝑜𝑖𝑣𝑡, ∀𝑣 ∈  𝑉, 𝑖 ∈ 𝑁,   𝑡 ∈  𝑇,    (53) 

0 ≤  𝑓𝑖𝑣𝑡
𝑊  ≤  𝐾𝑣𝑤𝑖𝑣𝑡, ∀𝑣 ∈  𝑉, 𝑖 ∈ 𝑁,   𝑡 ∈  𝑇.    (54) 

The variables upper bounds and non-negativity constraints are expressed in (50) – 

(54). The quantity to be (un)loaded (qivt) must be less than the maximum amount of 

product to be (un)loaded of ship v (constraints 49). 

Inventory control constraints 

𝑠𝑖,𝑡−1 + ∑ 𝑞𝑖𝑣𝑡𝑣∈𝑉 = 𝐷𝑖𝑡 + 𝑠𝑖𝑡 ,   ∀𝑖 ∈ 𝑁𝐷, 𝑡 ∈ 𝑇,      (35) 

𝑠𝑖,𝑡−1 + 𝑃𝑖𝑡 = ∑ 𝑞𝑖𝑣𝑡𝑣∈𝑉 + 𝑠𝑖𝑡 , ∀𝑖 ∈ 𝑁𝑃, 𝑡 ∈ 𝑇,     (36) 

𝑆𝑀𝑁𝑖𝑡  ≤  𝑠𝑖𝑡  ≤  𝑆𝑀𝑋𝑖𝑡 ,   ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇,      (37) 

𝑠𝑖0 = 𝑆𝑖
0 ,   ∀𝑖 ∈ 𝑁,         (38) 

𝑥𝑖𝑗𝑣𝑡 ∈ {0,1}, ∀𝑣 ∈ 𝑉, 𝑖 ∈ 𝑁 ∪ {𝑜(𝑣)}, 𝑗 ∈ 𝑁 ∪ {𝑑(𝑣)}, 𝑡 ∈ 𝑇,   (39) 

𝑜𝑖𝑣𝑡 , 𝑤𝑖𝑣𝑡  ∈ {0,1},   ∀𝑣 ∈ 𝑉, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇,      (40) 

 𝑠𝑖𝑡, 𝑞𝑖𝑣𝑡  ∈ ℝ   ∀𝑣 ∈ 𝑉, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇.       (41) 

The inventory level at each port is controlled during every time unit of the planning 

horizon at load and discharge ports (constraints 35 and 36). Constraints (37) give 

the operational range within inventory levels must be and constraints (38) give 

initial inventory at each port. All binary variables are stated in constraints (39) and 

(40) and constraints (41) gives the continuous variables. 

Identifying the utilized vessels  

𝑛ℎ𝑣
𝑁𝑇 = ∑ ∑ ∑ 𝑥𝑖𝑗𝑣𝑡𝑡∈𝑇 ,    ∀𝑣 ∈ 𝑉𝑗=𝐷𝐸𝑣𝑖=𝑂𝑣                (70) 

Constraints (70) ensure that if a ship goes directly from the artificial origin node to 

the artificial destination node, then it is not utilized for that planning horizon. 

Robust linear constraints 

∑ 𝑂𝐻𝑖𝑣𝑥𝑖𝑗𝑣𝑡 + 𝜋𝑖𝑣Γ𝑖𝑣 + ∑ 𝜌𝑖𝑗𝑣𝑡𝑡∈𝑇,𝑗∈𝑁 − ∑ 𝑜𝑖𝑣𝑡 ≤ 0,𝑡∈𝑇 ∀𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉,𝑡∈𝑇,𝑗∈𝑁  (81) 
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𝜋𝑖𝑣 +  𝜌𝑖𝑗𝑣𝑡  ≥  𝑂𝐻𝐷𝑖𝑣𝑥𝑖𝑗𝑣𝑡 ,                    (82) 

𝜌𝑖𝑗𝑣𝑡 ≥ 0,           ∀𝑖, 𝑗, 𝑣, 𝑡             (83) 

𝜋𝑖𝑣 ≥ 0,           ∀𝑖, 𝑣                                      (84) 

Constraints (81) – (84) are the set robust linear constraints developed from 

Bertsimas and Sim (2004) approach. 

Objective function: 

𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝐶𝑖𝑗𝑣
𝑇 𝑥𝑖𝑗𝑣𝑡 + 𝑡∈𝑇𝑗∈𝑁∪{𝐷𝐸𝑣}𝑖∈𝑁∪{𝑂𝑣}𝑣∈𝑉 ∑ ∑ ∑ 𝐶𝑖𝑣

𝑃𝑥𝑖𝑗𝑣𝑡 +𝑡∈𝑇𝑖∈𝑁𝑣∈𝑉

∑ ∑ ∑ 𝐶𝑣
𝑊𝑤𝑖𝑣𝑡 𝑡∈𝑇  + ∑ (1 − 𝑛ℎ𝑣

𝑁𝑇)𝐻𝐼𝑅𝐸𝑣𝑇𝐼𝑀𝐸𝑣∈𝑉𝑖∈𝑁𝑣∈𝑉        (69) 

The minimization function (69) contains transportation costs, operation costs, 

waiting costs and hiring costs. The hiring costs was included in the original FCNF 

objective function in order to consider the cost of a new vessel in the fleet as the 

level of robustness increases. 

Valid inequalities 

To further strengthen the FCNF formulation, we have added some valid inequalities 

also proposed in Agra et al. (2013). The demonstration of how to get to these valid 

inequalities is explained in Agra et al. (2013). 
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