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Abstract 

Oliveira, Julia Pithan; Sotelino, Elisa Dominguez (Advisor); Cardoso, Daniel 

Carlos Taissum (Co-advisor). Design Equations for Local Buckling of 

Castellated Beams Subjected to Pure Bending. Rio de Janeiro, 2017. 114p. 

Dissertação de Mestrado – Departamento de Engenharia Civil e Ambiental, 

Pontifícia Universidade Católica do Rio de Janeiro. 

          The motivation for this work is to develop a simple yet sufficiently accurate 

equation that can be used in the design of castellated beams subjected to pure 

bending, considering the contribution of the web-flange coupling effect in the local 

buckling. To accomplish this, an energy method – Rayleigh quotient - is adopted to 

determine the approximate critical stress equation. In this method, the strain energy 

and the potential work are calculated for an assumed approximate and kinematically 

admissible continuous deflected shape. Thus, the accuracy of the result is dependent 

on the quality of the assumed buckled shape. These shape functions were chosen 

based on the results obtained from numerical models created using ABAQUS 

software and verified with GBTUL, considering full interaction between web and 

flange. The developed closed-form expressions were based on classical plate 

stability approximations, validated with parametric studies performed using 

ABAQUS and GBTUL. The results indicate that the proposed equation can 

effectively calculate the critical stress of castellated beams due to local instability. 

The validated expression and its associated limits are intended to be general within 

the typical limits of practical applications. 

 

Keywords 

Castellated beams; Local buckling; Structural stability; Holes; Computational 

Modelling. 
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Resumo 

Oliveira, Julia Pithan; Sotelino, Elisa Dominguez; Cardoso, Daniel Carlos 

Taissum. Equações de projeto para flambagem local de vigas casteladas 

sujeitas à flexão pura. Rio de Janeiro, 2017. 114p. Dissertação de Mestrado 

– Departamento de Engenharia Civil e Ambiental, Pontifícia Universidade 

Católica do Rio de Janeiro. 

          A motivação para este trabalho é desenvolver equações simples, porém 

suficientemente precisas, que possam ser usadas para projetos de vigas casteladas 

submetidas à flexão pura, considerando a contribuição do conjunto mesa-alma na 

flambagem local do elemento. Métodos energéticos - Quociente Rayleigh - são 

adotados para determinar a equação da tensão crítica aproximada. Neste método, a 

energia de deformação e o trabalho externo são calculados assumindo uma forma 

de deflexão aproximada, cinemática admissível e contínua. Assim, a precisão do 

resultado depende da qualidade da forma de deflexão adotada. Estas funções de 

forma foram escolhidas com base nos resultados obtidos a partir de modelos 

numéricos criados usando o software ABAQUS e verificados com o software 

GBTUL, considerando para analise a interação completa entre a alma e a mesa. As 

expressões desenvolvidas foram baseadas em aproximações clássicas de 

estabilidade de placas, validadas com estudos paramétricos realizados com os 

softwares ABAQUS e GBTUL. Os resultados indicaram que a equação proposta 

pode efetivamente calcular a tensão crítica relativa a instabilidade local de vigas 

casteladas. A expressão validada e os limites associados são destinados a ser gerais 

dentro dos limites típicos das aplicações práticas. 

 

Palavras-chave 

Vigas casteladas; flambagem local; estabilidade estrutural; furos; modelagem 

computacional. 
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1 

Introduction 

1.1. Motivation 

The primary use for castellated beams is in spanning long distances utilizing 

a lighter weight section, since they are originated by the expansion of I-profile. 

There are potentially many constructions that can be realized by using these 

elements, as: parking garages, industrial and warehouse facilities, office buildings, 

schools, and hospitals. 

Space and height restrictions are frequently imposed to architectural 

projects, due to technical, economical and aesthetical reasons, as well as regional 

regulations, that can require restrictions to the total height of the building. 

The necessity of settling an always growing number of electrical and 

hydraulics pipes increases the complexity of incorporating facilities design to the 

available space. In commercial structures, HVAC (heating, ventilation and air 

conditioning) systems require larger shafts pipe diameters, that can reach 75% of 

the required structural height [1]. 

In bridge engineering, besides making it possible to reach larger spans, web 

openings are commonly used to ensure access for bridge maintenance and 

inspection. In these cases, the web opening height can represent 60% of the total 

height of the beam. In box girders, the web opening width can be three times greater 

than the opening height. 

There are several solutions that can be used in order to overcome these 

obstacles, among which are stub-girders, beams with variable inertia, trusses, 

beams with web openings, among others. 

Modern technology used by today’s steel mills allow welded profiles to be 

easily created from laminated elements, making use of its web and flange 

thicknesses. Castellated beams lie in this category. Its good bearing capacity, along 
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with its characteristics that allows the passing of service lines through the openings, 

make them an interesting solution for the construction market. Figure 1.1 shows the 

process of fabrication of a castellated beam. Figure 1.2 and Figure 1.3 show 

examples of the use of castellated beams.  

 

 

Figure 1.1 – Castellation process [2].  

 

Figure 1.2 – Tunnel structure using castellated profiles [3]. 
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Figure 1.3 – Bridge superstructure with castellated beams [3]. 

 

Because castellated beams are expanded web members, they are often 

characterized as being slander structures. The employment of this kind of structures 

has grown significantly due to the increasing need to promote cost savings by 

reducing material usage. The main characteristic of this type of structure is that its 

cross-section has a large moment of inertia relative to its area. Thus, in terms of 

strength, they can reach larger spans with relatively little material consumption. 

However, this kind of structural element is much more prone to suffer from 

instability. 

The main benefits of adopting castellated beams are as follows: 

• Web expansion, promoting improvement of bending capacity and 

stiffness, due to the higher moment of inertia. 

• Optimization of structure weight, associated with material cost 

reduction. 

• Compatibility with different mechanical, electrical, and HVAC 

systems; the openings in the beams may be utilized for the 

installation of conduit, HVAC and sprinkler piping, and any other 

utility system. 

The size and position of the hole on the web may weaken some parts of the 

member and lead to instability issues. Stress concentration occurs near the hole, 

which favors the occurrence of local buckling. In order to obtain the ultimate 

strength of such an element, it is necessary to consider its linear elastic buckling 

properties. This research focuses on local instability. 
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The critical load is an important parameter for obtaining the design load. As 

the slenderness of a structural element increases, its collapse mechanism may 

undergo significant qualitative changes. As the element becomes slender, it loses 

its stability through buckling and may collapse due to the presence of large lateral 

deflections and their associated second order effects. 

Thus, when a plate element is subjected to direct compression, bending, 

shearing, or a combination of these stresses in its plane, theoretical critical loads 

calculation indicates if the plate may buckle locally before the element as a whole 

becomes unstable, or before the material yield stress is reached. 

The advent of computers has enabled the use of numerical methods to solve 

a wide variety of problems, such as those related to structural analysis. With these 

powerful tools, experiments can be calibrated with numerical simulation, allowing 

for greater levels of reliability. They enable the analyzes of different scenarios 

because of the facility in which parameters can be changed. Consequently, using 

numerical simulation one can attain cheap and trustworthy results. 

 

1.2.Objective and scope of work 

This research investigated the effect of local buckling on the behavior of 

castellated beams subjected to pure bending. This was achieved with the aid of a 

software that implements the finite element method as well as other computational 

tools. The main goal was to obtain a simple design equation for the critical load, 

taking into account the coupling effect between web and flange in the element’s 

local buckling. The equation for the critical load was developed using an energy 

method. Since the beams considered herein were slender, only buckling in elastic 

range was considered.   

Due to the wide variety of perforation sizes and configurations for different 

geometries of castellated beams, it is a cumbersome task to provide a practical 

design procedure to assess the local stability of these sections.  Under pure bending, 

the region below the neutral axis (bottom tee) is subjected to tension, and has no 

out-of-plane deflections. Accordingly, the study considered a simplification, in 
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which the castellated beam buckling is approximated by that of a Tee section 

subjected to a combined bending and compression. 

A comparison was made between the critical stress obtained using a finite 

element model of a castellated beam using the software ABAQUS [4], with the 

critical stress obtained using a Tee section beam model, as described above, using 

the software GBTUL [5]. Once it was confirmed that the simplification with the 

Tee-section provided good results, a closed-form expression based on classical 

plate stability approximations was developed. The expression was then validated 

with parametric studies carried out using the software package ABAQUS. 

The validated expression is intended to be general and its associated limits 

are such that they meet the limits common in engineering practice. This expression 

can be considered as a step towards the development of more comprehensive design 

guidelines for castellated beams. 

 

1.3. Dissertation Structure 

The dissertation is organized in six chapters as follows. Chapter 1 presents 

the motivation for the research  as well as the main objectives of the present work. 

Chapter 2 provides some of the fundamental concepts as well as literature review 

of related works. Chapter 3 introduces the computational tools adopted in this work, 

namely ABAQUS and GBTUL. It also presents the comparison between the 

preliminary studies of the tee section simplification carried out with GBTUL and 

the analyses using the ABAQUS software. Chapter 4 discusses the methodology 

adopted for predicting the critical stress for castellated beams. Chapter 5 presents 

the validation of the developed equation through a comparison of the results 

obtained with ABAQUS, GBTUL and the proposed equation. Finally, Chapter 6 

gives the main conclusions drawn from the present work and provides suggestions 

for future research work. 
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2 

Literature Review 

2.1. Castellated beams 

The employment of castellated beams in steel construction occurred due to 

two demands of the construction sector: to promote web openings to pass the 

building’s service lines and to provide alternatives for construction solutions. In 

other words, the main goal of castellated beams is to create beams with expanded 

web, which can overcome larger spans keeping the same weight and still can 

accommodate service pipes, decreasing significantly the height necessary to settle 

the facilities infrastructure, as can be seen in Figure 2.1. 

 

Figure 2.1 – Comparison of total depth with castellated and conventional 

solutions[6]. 

 

According to Knowles[7] the castellation process began with an engineering 

problem of a monorail crane and the solution to the problem is attributed to 

Geoffrey Murray Boyd. The crane opening restricted the maximum flange width of 

the beam. The rolled beams chosen respected the flange width limitation, but were 

not stiff enough for the desired span. Therefore, Murray Boyd first thought of 

welding one beam above other in order to increase the height and consequently the 

stiffness. He decided then to cut, reassemble and weld the web. To demonstrate the 
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viability of his idea he used a reduced model made with cardboard. This is how the 

Boyd beam (Castellated beam) was created. 

The castellation process started by manually expanding the web. As labor 

force became more expensive, the castellation process became economically 

disadvantageous, only becoming popular again with the advent of automated 

manufacture, which made the price of castellated beams competitive again. 

The beam was first used in 1910. Later on, in the early 1930’s, it was 

employed as a roof beam, in Czech Republic. In 1939, the process of castellation 

was patented. According to Knowles[7], early attempts to devise methods calculate 

the load carrying capacity and deflection of castellated beams became available in 

1942 (elastic analysis method) and in 1970 (plasticity analysis method). 

 

2.1.1. Definition 

Castellated beams are produced by making a cut along the web in a zigzag 

pattern and posteriorly reassembling the two parts leaving a gap between them. The 

final product consists of a beam with an expanded web, containing a series of web 

openings with hexagonal shape. Figure 2.2  illustrates the aforementioned 

assembling process. The two small pieces that remain at both ends of the new beam 

are waste. 

There are other types of patterns available for the web cut, intending to 

provide the same benefits. However, the final products are slightly different, and 

other design provisions are necessary for them. Figure 2.3 illustrates some other 

available patterns. 

Braga and Sotelino [8] investigated the stability of steel beams with web 

openings. Numerical studies were performed using finite element models 

implemented in the commercial software package ABAQUS. Three types of holes, 

e.g. circular, rectangular and hexagonal, were analyzed. A comparison of the results 

showed that the castellated beams had higher critical moments. 
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Figure 2.2 – Manufacturing of castellated beam. 

 

Figure 2.3 – Other examples of available web patterns – [9] 

 

2.1.2. Design considerations 

AISC Design Guide 31 [6] specification recommends that, when designing 

castellated beams, the following limit states should be analyzed: 

• Compactness and local buckling 

• Overall beam flexural strength 

• Vierendeel bending of tees 

• Web post buckling 

• Axial tension/compression 

• Horizontal and vertical shear 

• Lateral-torsional buckling 

These limit states are related to a general use and to load combination. In 

this work only instability problems caused by pure bending is considered. Thus, the 
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number of possible failure types is significantly reduced, remaining only those 

related to local buckling. 

2.1.3.Litzka-Schnittführung 

Various choices have to be made when dimensioning castellated beams. A 

common type of beam, known as Litzka-Schnittführung (Figure 2.4), is 

characterized by the following three basic assumptions: 

• The height ratio H/Hh is set at 1.5. In other words, the total beam 

depth H is one and a half times greater than the hole depth Hh. 

• The pitch is assumed to be equal to the depth H of the castellated 

beam. 

• The length of the hexagonal side is half the hole depth: L = 	
� . 

According to Amayreh [10], if the welded length is too short, then 

web weld will fail in horizontal shear, and if it is too long it will 

produce long tees, which may fail in Vierendeel bending. Thus, a 

reasonable balance between these two failure modes is L = 	
��� . 

• the angle α is set at 63.5° (to be precise, tan α = 2). 

 

 

Figure 2.4 – Litzka-Schnittführung. 
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2.2. Instability: General Concepts  

The first investigations on the instability of structural members were 

conducted by the Swiss mathematician Leonard Euler, who published the famous 

critical load equation for columns in 1744. Since then, the continuous development 

of the industry and technology have led to lighter and stronger structures using 

slender elements. These elements are geometrically characterized by having high 

slenderness ratio, favoring the occurrence of instability. Thus, in order to safely 

adopt them, the analytical and numerical methods need to be improved accordingly. 

Structural stability theories study the conditions under which a system in a 

given state of equilibrium tends to become unstable. In the words of German 

mathematician Johann Dirichlet Apud [11], “the equilibrium of a mechanical 

system is stable if, in displacing the points of the system from their equilibrium 

positions by an infinitesimal amount and giving each one a small velocity, the 

displacements of different points of the system remain, throughout the course of the 

motion, contained within small limits”. 

Stability concepts can be understood with the classical analogy of the ball 

over a curved surface. There are three possible states of equilibrium: stable, neutral 

and unstable, as illustrated in Figure 2.5. 

 

Figure 2.5 – Three states of equilibrium. 

 

Considering Dirichlet’s [11] definition, it can be observed that the ball on 

the left side of Figure 2.5 (concave surface) tends to return to its equilibrium 

position if subjected to an impulse, whereas the ball on center (convex surface) in 

initial equilibrium, has the tendency to develop large displacements, no matter the 
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magnitude of applied impulse. Finally, the ball on the right side (flat surface) 

illustrates an intermediate case, called neutral state of equilibrium. 

As in the ball analogy, structural stability problems are work-energy 

problems. Therefore, the system is at rest when its potential energy derivative is 

equal to zero, i.e., a region zero slope. Stable systems are those in which the 

potential energy is a relative minimum – case of the ball on the left – whilst unstable 

systems are characterized by a relative maximum. A system where the potential 

energy derivative is not null corresponds to an unbalanced system. 

Structural instability is usually associated with members carrying 

compressive stresses (e.g. axially loaded columns, beams, plates and cylindrical 

shells) and consists of a sudden loss of original shape to another configuration in 

which equilibrium exists. The term buckling is usually adopted to describe this 

change from a straight to a deflected configuration in a structural member whereas 

bifurcation buckling is associated with the bifurcation of equilibrium, i.e., the 

condition for which the equilibrium state changes from stable to unstable.  An 

illustrative example for an idealized perfect system comprised of two inextensible 

straight bars laterally braced by a spring at mid-length is shown in Figure 2.6. 

 

Figure 2.6 – System with two bars and a spring: (a) original straight configuration 

(b) buckled configuration. 
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Initially, the bars are subject to pure compression, consequently exhibiting 

only axial deformations and an increase in P produces greater axial strains, but no 

lateral deflections. As P reaches a critical value Pcr, called critical load or 

bifurcation load, the system may remain in an unstable straight configuration or 

change to a bent (buckled) configuration in which lateral deflections grow quickly.  

The post-buckling path can be stable, in which the load-carrying capacity of 

the structure still grows, although large deflections are required, or unstable, 

characterized by a decrease in resistance with lateral deflections. Figure 2.7 shows 

these two possibilities. A plate simply supported at the four edges and subject to in-

plane compression illustrates the case of a system with stable post-buckling path. 

Ziemian [12] states that, “as the plate buckles, the buckling deformations give rise 

to tensile membrane stress normal to the direction of loading which increase the 

stiffness of the plate and give it the capacity to resist additional load”. 

 

 

Figure 2.7 – Bifurcation buckling: (a) stable post-buckling path (b) unstable post-

buckling path. 

 

Considering that perfectly straight members do not exist in real structures, 

initial geometric imperfections must be considered when assessing actual member 

capacity. Figure 2.8 shows a two bars-spring system with an initial out-of-

straightness. 
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Figure 2.8 – Two bars and spring system with initial imperfection. 

 

The presence of imperfections leads to second-order effects and, therefore, 

lateral deflections can be observed since the beginning of loading. This 

phenomenon softens the abrupt change in shape, but reduces member capacity. The 

dashed lines in Figure 2.9 illustrate the effect of imperfections on the idealized 

behavior (solid lines). Although ultimate and critical loads are different for a certain 

structural member, it is still important to know the bifurcation load for actual 

behavior prediction. 

 

Figure 2.9 – Effects of imperfections on an idealized system: (a) stable post-

buckling path; (b) unstable post-buckling path. 

The previously developed study can be extended to bars and plates with 

some flexibility. As slenderness increases, its collapse mechanism undergoes 
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significant qualitative changes. Under a compressive load, a column that is 

sufficiently slender will fail due to out of plane deflection rather than crushing of 

the material. 

To understand the conditions leading to instability of a certain structure, it 

is important to know the constitutive relationships of the constituent material. In the 

case of steel members, modulus of elasticity, yielding stress, strain hardening 

branch and Poisson’s ratio are the most important properties to be taken into 

account. Geometry also plays an important role and, along with the mechanical 

properties, defines the stiffness of the system. 

 

2.3. Approximate methods for assessing critical load 

The critical load of a member subject to compression can be obtained by 

solving the governing differential equation derived for the balance of internal forces 

for a deflected configuration. However, this methodology can be applied only in a 

few cases, such as for pinned-pinned column in which boundary conditions lead to 

a simple closed-form equation. In more complex problems, obtaining the exact 

analytical solution for bifurcation load requires significant effort and, sometimes, it 

is not even possible.  

Hence, approximate methods may be adopted in order to find practical and 

sufficiently accurate solutions. These methods usually consist in approximating the 

exact deflected shape by a well-known continuous and kinematically admissible 

function (or series of functions). Among the approximate methods for assessing 

critical load of structures, one may cite Rayleigh Quotient and Rayleigh-Ritz, which 

are energy-based approaches based on the concept of total potential energy of the 

system. In the next sections, the principle of stationary energy and the Rayleigh 

Quotient method are presented in details. 

2.3.1.  Principle of stationary energy 

Considering a mass particle in equilibrium subject to a set of forces, a virtual 

displacement (δr) is assumed to occur, as shown in Figure 2.10. Therefore, for each 

force acting on the body, a virtual work is determined as the product of the force 

component in the direction of the virtual displacement and the virtual displacement 
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itself. If the body is in equilibrium, the sum of the components of the force are equal 

to zero in any direction, and consequently the virtual work equals to zero as well. 

In other words: 

�� = � ���
�

��� �� = 0 
(1)  

 

where ��� is the component of force i parallel to direction r. �� is the virtual 

displacement and �� is the virtual work caused by the virtual displacement. 

 

Figure 2.10 – Virtual displacement of mass particle under a set of forces. 

Therefore, the principle of virtual displacement can be stated as Alexander 

Chajes[11] described on his book Principles of Structural Stability Theory: “A 

particle of mass is in equilibrium if the total virtual work done by all the forces 

acting on the particle is equal to zero for any arbitrary virtual displacement”. 

The concept can be generalized for a system with two or more mass 

particles, linked by massless springs, as shown in Figure 2.11. In this case, the 

virtual work is separated into two different parts for which balance must be fulfilled: 

internal forces (spring forces) and external loads. 

 

Figure 2.11 – System with more than one mass particle under a set of forces. 
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By applying the mentioned concepts to the system above, one can observe 

that the internal virtual work is equal to the change in strain energy of the system 

in magnitude, but with opposite sign. Hence, the total potential energy of the system 

is referred to as � + �, where U is the strain energy of the system and V is the 

potential energy of the external loads. Therefore, the following condition should be 

satisfied. 

��� + �� = 0 (2)  

 

This principle can be generalized as follows Chajes [11] : “An elastic 

structure is in equilibrium if no change occurs in the total potential energy of the 

system when its displacement is changed by a small arbitrary amount”. For a 

continuous system with infinite degrees of freedom (DOF), there are infinite virtual 

displacements to be analyzed and hence the only way to guarantee that the system 

is actually in equilibrium is to apply Variational calculus. However, when the 

system has finite degrees of freedom, the number of verifications to be done is also 

finite, and as the number of DOF’s decreases, the amount of handwork calculations 

decreases as well. For a single degree of freedom system subject to a virtual 

displacement δx, the following can be written: 

��� + ���� �� = 0 (3)  

Once �� is taken as an arbitrary value, the equation above reduces to: 

��� + ���� = 0 (4)  

As can be observed, the necessary condition for equilibrium is obtained 

when the derivative of the total potential energy is equal to zero. This represents a 

point on a null slope region of the function, which may correspond to a minimum, 

maximum or neutral state of equilibrium, as shown in Figure 2.5. The second 

derivative indicates if the equilibrium is stable or not. 
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2.3.2.  Deflection shape and Rayleigh quotient 

The approximate solution by the Rayleigh quotient passes through the 

assumption of an approximated buckled shape for the element. The admissible 

deflected functions w(x) must be continuous, with continuous slopes w’(x), and 

satisfy all the given kinematic boundary conditions. 

Consequently, the procedure begins with the choice of a representative 

function for the buckling shape that fulfills geometric boundary conditions. 

Trigonometric and polynomial functions are generally adopted, once they are easy 

to differentiate and have been widely applied in literature to describe many buckling 

modes.  

The simple application of the principle of stationary energy leads to the 

approximate solution. Rayleigh quotient (Eq.5) uses energy approach to determine 

the exact conditions of equilibrium and represents an upper-bound approximation 

of critical stress. The chosen function would be exact if it satisfied the boundary 

conditions and the equilibrium equations. 

The Rayleigh quotient is represent as: 

��� = �� (5)  

Where U is a positive-definite quadratic strain energy expression, 

independent of the loading parameter and W is a positive-definite quadratic 

expression defining the work produce by unit load. 

The following example is given to illustrate the method. Considering a 

column fixed at the base and free at the top and subjected to a compression load P, 

the buckling mode takes the form shown in Figure 2.12. 
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Figure 2.12 – Buckling mode of a fixed-free column 

 

Appling Rayleigh quotient with the consideration of a quadratic function 

( ��� = !��) for approximate deflection shape leads to an approximate critical 

load 22% greater than the prediction obtained solving the differential equation for 

the problem. Although the deflected shape function adopted fulfills the boundary 

conditions of zero displacement and zero slope at x=0, and is also similar to the 

exact shape, it does not represent well enough the actual behavior.  

This is due to the fact that the system with infinity degrees of freedom was 

reduced to a system with only one degree of freedom (δ). Reliability can be 

improved by increasing the number of DOF’s, which can be achieved by using 

higher-order functions. If a cubic equation is considered, the error decreases 

substantially to less than 1%. Whence, attention must be paid on the precision of 

the solution, once the degree of the equation adopted can substantially affect the 

quality of the result. However, Rayleigh quotient is applied only for systems with 

one degree of freedom.  
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2.4. Theory and stability of plates  

2.4.1.Plate buckling theory 

A plate is a structural element for which one dimension – the thickness – is 

much smaller than the other two dimensions. It can be subdivided into two different 

categories: thin and thick. Thin plates are elements where the effects of shear on the 

deformed shape of the element can be neglected, once they are insignificant when 

compared to the bending effects. Therefore, a linear strain distribution through 

thickness is a basic assumption to solve the problem. For thick plates, shear 

deformation becomes significant and the hypothesis previously mentioned does not 

apply.  The theory developed for thin plates is also called classical plate theory 

(Kirchoff) and it is the one adopted in this work.  

Stability theory applied to plate buckling was studied in 1891, when Bryan 

[13] presented an analysis for a rectangular plate simply supported on all edges and 

subjected to a uniformly distributed compression in-plane force parallel to the long 

edges. Bryan was not only the first to treat the stability problem of plates, but the 

importance of his classic research lies also in the fact that he was the first to apply 

an energy method to obtain a solution for the plate buckling problem.  

Timoshenko [7] shows that the critical stress in a flat plate subjected to in-

plane compression is given in a general form, Eq. 16, regardless the load 

distribution and boundary conditions. Figure 2.13 exemplifies the buckling mode 

for a plate under compression. In Eq. 6, " and # are the width and thickness of the 

plate, respectively, while $ and % are Poisson’s ratio and modulus of elasticity of 

the material. This general expression can be easily demonstrated using energy 

methods, by applying the equality of strain energy and external loads potential [14].  

&�� = � '�%12�1 − $���" #+ �� 
(6)  
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Figure 2.13 – Buckling mode [12]. 

 

The parameter � in the Eq. 6 is the buckling coefficient that depends on the 

boundary conditions, loading distribution and also on the number of half-waves 

formed along length. As shown in Figure 2.14 for a plate with different boundary 

conditions, there is a critical half-wave length for which k reduces to a minimum, 

the critical buckling coefficient kcr. Figure 2.15 shows transverse deflections and 

the values of �cr for different boundary conditions, for a rectangular plate subject to 

uniform compression.  

 

Figure 2.14- Plate buckling coefficient, k, for different boundary conditions, 

m=number of buckled half-waves along the length of the plate [12]. 
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Figure 2.15 – Values of critical buckling coefficient kcr for different boundary 

conditions [12]. 

 

For load cases different from pure compression, there are other values for 

k. For more specific conditions, such as those that involve shear, one can consult 

[12]. 

 

2.4.2.Energy equations for plate buckling 

Energy methods are very useful to investigate the stability. The potential 

energy expression for an elastic plate can be used to obtain expressions that 

represent its instability behavior. 

If the plate is subjected to an out-of-plane displacement function w(x,y), its 

strain energy takes a common form and is represented by the sum of the internal 

energies as given by Eq. 7: 

� = ℎ ∙ . 12 ∙ /&00 ∙ 100 + &22 ∙ 122 + 302 ∙ 4025���  
(7)  
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Where &00, &22 89� &02 represents the stresses on the plate due to the in-

plane forces :00, :22; :02 (:00 = ℎ ∙ &<=0,00, :22 = ℎ ∙ &<=0,22 89� :00 = ℎ ∙&<=0,02�. 100, 122 ; 102 represent the finite in-plane strains of the plate. 

Considering now only bending energy, the strain energy accumulated in an 

element is obtained by calculating the work done by the moment on the element´s 

the in-plane rotation during bending [14]. The approximate curvature can be 

represented as –d²w/dx² and the strain energy can be expressed as:  

� = >2 . ?@��A��� B� + @��A� � B� + 2C ��A��� D ���  
(8)  

The potential energy of an uniformly distributed load due to the transverse 

displacement can be expressed as follows:  

� = E E F ∙ A �� �   (9)  

Where W is the potential of the externally applied load and q is the unit load 

applied. 

2.4.3.Plate assembly buckling (local buckling) 

The steel structural sections employed in practice are comprised of plate 

elements arranged in a variety of configurations. The local buckling behavior of 

structural members of this kind is governed by interaction between the plate 

components, assuming that rigid plate connections remain rigid after buckling.  

Local instability is a phenomenon very common in these structures, due to 

the fact that these elements have relatively thin walls with respect to cross-section 

sizes. Local buckling involves out-of-plane deformations of the component plates 

with the junctions remaining essentially straight, thus exhibiting a loss of cross-

sectional shape.  

The derivation of the exact solution for the local buckling of plate assemblies 

is extremely cumbersome due to the complexity involved in considering the 

interaction between connected plates. For practical purposes, this interaction is not 

taken into account in design standards and guidelines, often leading usually to very 

conservative estimates of the critical stress. 
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Although many different approaches exist, these can be classified in three 

different groups [15] : i) discrete plates with edges simply supported at junctions, 

neglecting the rotational restraint provided by contiguous elements; ii) discrete 

plates with rotational springs at junctions; iii) full-section approach, considering the 

section as a whole, with compatibility of rotation between adjacent walls. In the 

next paragraphs, a brief literature review concerning analytical studies on local 

buckling of plate assemblies within each approach is presented. 

2.4.3.1.Discrete plate analysis assuming simplified support edge conditions 

In this kind of analysis, each plate of an assembly is considered as an 

independent element, without any rotational restraint provided by adjacent walls. 

Therefore, a simply supported condition is assumed, in which plate elements 

intersect each other. Finally, the critical stresses for each constituent plate can be 

obtained from Eq. 6, using critical buckling coefficients presented in Figure 2.15. 

For instance, in a T-section subject to uniform compression, each half of the 

flange is assumed as a long plate under in-plane compression with one of the 

longitudinal edges restrained and the other free. The web is also considered as a 

long plate with similar edge conditions. Figure 2.16 illustrates this example. This 

approach leads to the usual local buckling classification in flange or web buckling, 

although their motions are not independent. 

Most standards, such as the AISC [16] and the ABNT specifications [17] , 

use this method of analysis to design steel members. Although this results in 

practical and simple equations, it is found to be excessively conservative and may 

be improved for more accurate results. 
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Figure 2.16 – Representation of the method: Discrete plate analysis assuming 

simplified support edge conditions 

 

2.4.3.2. Discrete plate analysis assuming rotational restraint between adjacent 

plates 

In this method, each plate element comprising cross section is still analyzed 

individually, but rotational springs are assumed along wall junctions, simulating the 

restraint provided by adjacent walls. However, this method does not guarantee 

rotation compatibility between adjacent plates. Considering again the case of a T-

section, each half flange is considered as a plate with one longitudinal edge free and 

the other elastically restrained by the web, as shown in Figure 2.17. 

 

Figure 2.17 – Representation of the method: Discrete plate analysis assuming 

rotational restraint between adjacent plates  
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This approach was first proposed by Bleich [18], who introduced formulae to 

determine the coefficient of restraint and obtained a transcendental equation as a 

solution for the problem. Bleich emphasizes that, even in case of thin and narrow 

flanges within the conventional range in steel construction, the restraining effect of 

the flange is significant. 

Bleich’s analysis considers proportionality between the edge moment My 

and the angle of rotation θ. It was stated that the factor of proportionality depends 

on the dimensions of the restraining structure and also on the compressive stresses 

acting on the supporting structural elements. Finally, Bleich showed that the plate 

buckling reduces to Eq. 16, with buckling coefficient as a function of the coefficient 

of restraint. 

In the limit case when constituent plates buckle simultaneously (same 

critical stress), there is no restraining effect and each element behaves as a plate 

having simply supported unloaded edges. The exact solution of this problem is 

feasible by considering the stability of entire plate assembly. 

Timoshenko and Gere [14] obtained Kcr values for a member having Tee 

cross section and subject to uniform compression after solving transcendental 

equations for the web. The rigidity of the flange was assumed constant regardless 

the load value and was represented by a rotational spring, due to the fact that the 

upper edge cannot be assumed to rotate freely during buckling, neither can be 

considered rigidly. So, the side y=0 was considered elastically built in while y=b 

was assumed free (Figure 2.18).  

Gerard and Becker [19] presented a rather comprehensive review relating to 

buckling and failure of plate elements. They provided abacus for plates with 

rotational restraint. Figure 2.19 is a summary chart, for various limiting conditions 

of edge and rotational restraint, depicting the variation of Kcr as a function of plates 

length (a/b). 
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Figure 2.18 – Tee section [14] 

 

 

Figure 2.19 – Compressive-buckling coefficients for flat rectangular plates for 

various amounts of edge rotational restraint[19]. 

 

2.4.3.3. Full section analysis 

This method consists in analyzing the section as a whole, hence taking into 

account the full interaction between flange and web, as presented in Figure 2.20. 

The main difference between this approach and the previously described is the 

ensured compatibility of rotation between adjacent walls. 
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Figure 2.20 – Representation of full section analysis 

 

In 1939, Stowell and Lundquist [20] used Timoshenko energy method to 

obtain curves for the critical buckling coefficient of several plate assemblies and 

accounting for inelastic behavior. The deflected shapes presented in Eqs. 10 and 11 

were assumed in order to obtain kcr for each cross section analyzed.  

A = G4! ∙  " I1 −  "J + K ∙ sin I' " JO ∙ sin I9'�P J (10) 

A = QR ∙  " − >3.889 WI "JX − 4.963 ∙ I "JZ + 9.852 ∙ I "J\ − 9.778 ∙ I "J�^_ ∙ sin I9'�P J (11) 

 

Eq. 10 was applied to plates restrained along both edges, as the web of a 

channel or as the sides of the rectangular tube. Eq. 11 applies for plates restrained 

along only one edge, as one flange of the channel profile or the half-flange of the I-

section. In both equations A, B, C and D represent the arbitrary deflection 

amplitudes, y is vertical direction coordinate, x is the coordinate on longitudinal 

direction, b is the width of the member, n is number of half-waves in length L.  

For the channel, Z and I profiles the arbitrary deflection amplitudes (A, B, 

C and D) can be related through rotation compatibility condition (the corner angles 

are maintained during buckling) and that the moments at each corner were in 

equilibrium. The other variables were adjusted to obtain the minimum critical 

stress.  

Nonetheless, the authors did not derive explicit equations and the critical 

buckling coefficients are presented in charts. Figure 2.21 give the computed value 
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of kab coefficient plotted by different values of 
cdce . When the webs are narrow in 

comparison with the flanges, the instability occurs first in the flange. As the web 

width increases, a point is reached where the webs became the weaker part of the 

cross section, governing the behavior.   

 

Figure 2.21 – Minimum value of K for centrally loaded columns of I-section [20]  

 

In order to complement  the search presented by Stowell and Lundquist, 

Kroll[21] presented a similar study for rectangular tubes, I-, Z-, and U-sections. 

Kroll used the principle of moment distribution (Cross method) to obtain charts for 

the critical local buckling coefficients. In this method, described in details by 

Lundquist [22] a fictitious unit moment per unit of length are applied at plate 

intersections and distributed among the plates according to their relative stiffness. 

According to Kroll [16], this method provided more accurate results than the energy 

approach. Japanese Handbook of Structural Stability (CRCJ, 1971) [23] include this 

methodology.   
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Cardoso et al. [24] developed a comprehensive study of typical pultruded 

fiber reinforced polymer sections. The Rayleigh energy method was used to 

determine local buckling critical loads and approximate deflected-shape functions 

were chosen taking into account the compatibility of rotation between plate 

elements. Results were compared with numerical analyses with Finite Strip Method 

[25] and good agreement was achieved. Although the material studied is 

orthotropic, the authors show that the method also provides excellent results for 

isotropic material. A similar approach is used in the present work. 

Dawe and Kulak [26] developed a computational procedure to study the 

local buckling of I-sections.a similar study. Based on an energetic formulation for 

plates, the method allows determining critical stresses considering the interaction 

between web and flange, residual stresses and inelastic material behavior. The 

results were compared with computational and experimental analyzes, with good 

agreement being achieved.  

Finite Strip Method, Generalized Beam Theory and Finite Element Method 

are some of the existing numerical methods available that allow full section 

analyzes. There are several programs that perform finite element analysis, including 

full element interaction, such as: Robot Structural Analysis Professional, ABAQUS 

[4] (FEM), Ansys [27] (FEM), CUFSM [28] (finite stripes), GBTUL [5] (GBT), 

etc.  

GBTUL (GBT) and ABAQUS (FEM), described in chapter 3, were used to 

implement this work. 

  

2.4.4. Local buckling of plates with holes and castellated beams 

Moen and Schafer [29] conducted a study where finite element analysis was 

employed to investigate the influence of hole size and spacing on the buckling 

behavior of thin walled plates. Based on the results, the authors were able to propose 

simple equations to determine the critical stress, fcr, depending upon the range of 

hole geometry compared with the plate geometry, either in pure in-plane 

compression or bending.  
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In the aforementioned work, the authors also observed two possible modes: 

i) local buckling of the unstiffened strip above the hole (Figure 2.22a); or ii) plate 

buckling of the region far from the hole (Figure 2.22b). Considering larger holes 

the critical buckling occurs on the full section of the plate. When hole width is small 

relative to plate width, buckling is concentrated at the strip up the hole. 

 

Figure 2.22 – Plate buckling- Moen and Schafer [29] 

 

El Sawy and Nazmy [30] conducted similar studies on the stability of plates 

with holes, where FEM was used to examine the elastic buckling coefficient of 

simply supported rectangular perforated plates uniaxially compressed along its 

longitudinal direction. On their study, the authors measured the influence of the 

hole position, geometry and size on the element behavior, as well as the aspect ratio. 

They concluded about the best practices on positioning circular and rectangular 

with curved corners holes, and verified  the coefficient k of a rectangular plate with 

an integer aspect ratio (where the element can be divided into a number of square 

panels) can be taken, conservatively, as the same coefficient of a perforated square 

plate with the same dimension of the panel, as exemplified in Figure 2.23. 

Kang and Leissa [31], Komur and Sonmez [32] and Maiorana [33] 

developed the elastic buckling of rectangular plates field of study, under any in-
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plane stress field (bending and compression). The effect of bending moment on the 

stability of the plate was studied and it was informed some practical indications on 

the best position of the circular hole and the best position and orientation of 

rectangular holes in steel plates. 

 

Figure 2.23 – Buckling coefficient k when the center of the circular hole lies on the 

plate majos axis and at cross line of maximum amplitude; El Sawy e Nazmy [30]. 

 

As castellated beams have particular modes of failure, different of those 

founded in solid-web members or members with web openings, additional 

verifications have to be done. On a pure bending state, the tee compression buckling 

and the web buckling between holes must be verified. More general load cases 

require even more verifications. Studies on these topics were carried out by Hosain 

et. al [34], where the deflection of the beam was analyzed with use of the FEM, by 

modelling a 2D typical element of the beam, as indicated below (Figure 2.24). 

 

Figure 2.24 – Half beam idealization- Hosain, Cheng and Neis [34] 
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Yuan et al. [35] studied the deflection of castellated beams subjected to 

uniformly transverse loading, making use of the principle of minimum potential 

energy. They proposed an equation for the beam deflection making based on an 

analytical model. The results were validated with FEM, showing good agreement.  

Many other studies have been developed on the subject, assessing the 

behavior of castellated beams under several conditions of load and support. 

Parametric studies allowed to investigate a great number of geometries, 

encompassing a significant number of practical applications. Using analytical, 

experimental and numerical methods, extensive research has been carried out on 

this castellated beams, involving:  

• Shear effect of web openings on the dynamic characteristics 

(Chen[36] and Gu[37]).  

• Lateral-torsional buckling analysis (Kerdal and Nethercot[38], 

Mohebkhah[39]).  

• Axially loaded buckling analysis (El-Sawy[40]; Yuan[41]).  

• Design of castellated and cellular beams (Knowles[7], 

Mohebkhah[42]).  

• Distortional buckling analysis of castellated beams (Zirakian[43], 

Ellobody[44]). 

• Elasto-plastic bending analysis (Sherbourne et al. [45], Gandomi et 

al. [46], Soltani et al [47], Erdal et al. [48], Wang et al. [49] ). 

 

2.5. Finite Element Method (FEM) 

Finite element analysis is a method for numerical solution of field problems, 

which are determined by a spatial distribution of one or more dependent variables. 

Mathematically, a field problem is described by differential equations or by an 

integral expression; FEM formulations can be based on both. In structural 

mechanics, the displacement-based finite element method is based on integral 

equations and the dependent variables are displacements and rotations. 

FEM’s formulation is a process of idealization and discretization, producing 

a discrete model for analysis. Through a breakdown of the domain into elements, a 
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complex structure can become a simple structure. The basic concept in the physical 

interpretation is the disassemble (partition) of a complex mechanical system into 

simpler one. 

The structure is divided into many smaller parts. The elements are connected 

by nodes and have independent formulations. Numerically, in displacement-based 

FEM the problem is represented by a system of algebraic equations, created from 

functions that simulate the shape of element deflection, called shape functions. The 

shape function is approximated locally over each element by an interpolation 

formula.  

The number of degrees of freedom per node in an element determines the 

accuracy of the method’s response. These degrees of freedom are represented by 

the number of independent displacements/rotations that the nodes can experience. 

As the number of DOF increases, the approximations tends to be closer to the 

correct results. However, the higher the number of DOF the more computationally 

expensive the calculations become.  

Therefore, a convergence is necessary to optimize mesh partition. This study 

consists of finding the mesh size that expresses the desired results with enough 

precision and also with the least computational effort possible. 

 

2.5.1.FEM model 

To develop a reliable FE model, it is necessary first to represent the real 

problem by a representative physical model.  This idealization of the structure must 

faithfully represent the geometry and the physical characteristics of the materials. 

In the pre-processing, all the characteristics of the structure are defined, such 

as geometry, properties of the constituent material, imperfections, type of analysis 

to be executed and generation of the finite element mesh. Then, boundary 

conditions, loadings and prescribed displacements, if exists, are applied.  

Once all the previous steps are complete, the analysis is carried out. The 

next phase is the post-processing. In this stage, all the results generated can be 

visualized, interpreted and analyzed.  
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It is important to point out that due to the complexity of the structural 

problems, adequate modeling is essential. Considerations such as the type and 

quantity of the elements employed as well as the choice of adequate type of analysis 

are fundamental to obtain reliable solutions. 

In the present work, shell elements were adopted and elastic buckling 

analysis was employed to obtain displacement vectors, deformed configuration of 

the elastic buckling mode, as well as the elastic critical loads. The critical stresses 

were obtained based on the eigenvalues and eigenvectors analysis.  

 

2.5.2. Types of elements 

When talking about linear (bar) elements, the concept of finite element is of 

simple comprehension. The only variable existing for the finite discretization is the 

length of the element. Therefore, for more complex geometries, where elements 

such as plates and shells are employed, other considerations are necessary.  

One must pay attention on the shape of the elements as well as how they are 

connected to each other. There are several types of two-dimensional elements, but 

here only two of them will be emphasized. They are the linear strain triangle and 

the eight-node quadrilateral element. 

The isoparametric formulation enables the simulation of problems with 

generic geometries. It is based in a coordinate transformation from the Cartesian 

(x-y) to the Natural (ξ-η) coordinate system. In the Natural coordinate system the 

element assumes a simple shape, i.e., generic quadrilateral elements become square 

in shape for example. The same transformation is applied to the element’s 

coordinates and the elements displacements. The resulting isoparametric element 

has always a simple shape, centered at the origin of isoparametric coordinates, and 

with equal internal angles (90º for quadrilaterals and 60º for triangles). Figure 2.25 

illustrates this transformation. 
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Figure 2.25 – Transformation of arbitrary system of coordinates into parametric 

space. 

Numerical errors gradually increase with element distortion. High aspect 

ratio (the ratio between the largest length and the shortest length) should be avoided 

and the angles of the corners should be as similar to each other as possible.  

Among the plane elements, the four-node quadrilateral are frequently used. 

However, these elements are tend to be very rigid when attempting to represent 

bending problems. This is due to the fact that in these cases, the moment is resisted 

by a false shear. Therefore, there is greater resistance to deformation. This effect 

decreases as the mesh is refined. Eight-node quadrilateral elements do not have this 

problem and that is why they are employed in this work.  

Triangular shaped element’s are very efficient in mesh refinement and are 

often used in areas with more complex geometries, such as areas with holes, as 

shown in Figure 2.26. In the present work, linear strain triangular elements (with 

six nodes) were used in the neighborhood surrounding the areas where holes are 

present. 
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Figure 2.26 – Example of mesh with triangular elements. 

 

2.5.3. Constraints 

A constraint imposes a relation between degrees of freedom. Through this 

artifice, it is possible to prescribe the value of a DOF or a relation between DOF’s.  

Constraint at multiple points simulates a rigid connection and allows rigid 

body movement between the selected DOF’s. The most common methods for 

applying these constraints are the Master-slave method, Lagrange multipliers, and 

Penalty function method. 

In the present work, constraints were used to help simulate pure bending 

boundary conditions and guaranteeing the plane sections remained plane after 

loading. This is discussed in more detail in Chapter 3. 

 

2.5.4. Numerical integration 

In the implementation of the FEM, the stiffness matrix is obtained using 

numerical integration. Typically, Gauss quadrature is used because with minimal 

number of sample points it achieves a desired level of accuracy.  

A numerical integration with an number of sampling points smaller than that 

needed to integrate exactly the stiffness matrix of the element is termed as "Reduced 

integration". This type of integration is very useful since it uses a smaller number 

of Gaussian points, resulting in computational economy.  

Moreover, this integration disregards the higher order polynomial terms, 

causing less resistance to deformation. In other words, reduced integration tends to 
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make the element more flexible, since some deformation modes offer less resistance 

by having a smaller number of sampling points. In this way, a more flexible and 

efficient element is obtained, since displacement-based FEM often produces stiffer 

responses.  

 

2.5.5. FEM Convergence requirements 

Moen[29] performed a mesh convergence study for plates with holes, and 

concluded that the aspect ratio (a/b) of quadrilateral with eight nodes, should be 

between 0.5 and 2. The relation was based on ABAQUS recommendations, where 

the angles between isoparametric lines should be not less than 45º or greater than 

135° (Figure 2.27), in order to guarantee the accuracy of the numerical integration 

of the stiffness matrix. These values prevent a high aspect ratio, avoiding large 

distortions in the element, which could harm the obtained results. 

 

Figure 2.27- Aspect ratio (a/b) 

The accuracy of analysis is influenced by decisions taken while 

implementing the finite element model. Some requirements are necessary to instill 

confidence in FEM results[50], as:  

• Completeness:  

Conditions between discrete and mathematical model. The elements must 

have enough approximation power to capture the analytical solution in the limit of 

a mesh refinement process. 

• Compatibility:  

The shape functions should provide displacement continuity between 

elements. Physically these ensure that no material gaps appear as the elements 

deform.  

• Stability  
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Numerical simulation methods 

Numerical Calculus is a collection of numerical methods. It consists of a 

powerful tool to assist in obtaining numerical solutions, generally approximated, of 

several problems. The development and application of these methods are linked to 

computational use. 

Numerical modeling is a useful tool for the design and assessment of 

structures. Commercial finite element software’s can be used to capture the realistic 

behavior of the structure. However, to accomplish this, care must be taken to 

precisely represent the problem being solved, so that it produces reliable results.  

This chapter describes the preliminary studies carried out using the GBTUL 

software, that performs elastic buckling (bifurcation) and vibration analyses of 

prismatic thin-walled members. This software can only analyze full-section 

members. In this work, it was used to analyze the simplifying hypothesis, where the 

castellated structure was represented as an upper tee section. 

This chapter also describes the finite element models developed in this 

research. Three-dimensional models based on thin shell finite element formulations 

were used to simulate the response of a castellated beam subjected to pure bending. 

Python programming language was used in order to expedite the process of 

performing multiple simulations and parametric studies.  

The results obtained in the preliminary studies were used towards the 

development and validation of the proposed design equation, which is presented in 

Chapter 4. 
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3.1. GBTUL 

The GBTUL software was developed at the Department of Civil 

Engineering and Architecture of the Technical University of Lisbon. The program 

is a numerical implementation of the Generalized Beam Theory (GBT) formulation 

to perform elastic buckling and vibration analysis of prismatic thin walled 

members. Bebiano[51] provides a brief overview of the Generalized Beam Theory 

formulation and of GBTUL’s graphic user interface.  

GBTUL incorporates local deformation and discretizes a deformed member 

configuration into a linear combination of cross-section deformation modes with 

longitudinally varying amplitudes. Therefore, it provides an advantageous 

representation of the deflection shape, as a combination of structurally meaningful 

cross-section deformation modes, as a result of its stability analysis.  

In addition, to provide information and easy visualization of the member 

deformation, the program contains a tool that turns possible to select the 

deformation modes to include in analysis. It also gives the decomposition and 

identification of the buckling mode (local, distortional, global). Figure 3.1 

illustrates how the GBTUL program represents the upper tee buckling modes.  

 

Figure 3.1 –. GBTUL cross-section deformation modes considered for T-section 

members [5]. 
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The features of the code include analysis of several isotropic or orthotropic 

materials, and exhibiting various common support conditions (simple supports, 

fixed supports or free ends).  

In this study, this tool was very useful. It made it possible to estimate the 

approximation of the upper tee deflection shape and its respective critical load. 

In the buckling analysis, the user is able to specify any combination of axial 

forces and bending moments at two main directions. As the castellated beam is 

subjected to pure bending, the case was restrained in the analysis of an upper Tee 

section submitted to a combination of bending and compression. Figure 3.2 

represents the boundary conditions applied in the software, idealizing a simple 

supported beam subjected to flexural compression. 

 

Figure 3.2 – Boundary conditions applied on GBTUL [5]. 

 

GBTUL presents the results performed graphically as buckling curve plots, 

which provide the variation of the buckling load parameter with the member length 

L, as shown in Figure 3.3. As can be seen in Figure 3.3, it is also informed the modal 

contribution for each member length. The value of approximately 80% for torsional 

mode (mode 4) and 20% for flexural mode (mode 5) was observed. This percentage 

varies according to different values of flange-to-web thickness ratio.  

It also provides a three-dimensional visualization of the deflected. Figure 

3.4 shows the deflected shape of an upper tee section.  
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Figure 3.3- Signature curve for T-section members obtained with GBTUL-modes 

participations for governing local buckling mode [5]. 

 

Figure 3.4 – Deflection shape of upper Tee [5]. 

3.2. ABAQUS FEM 

This section presents the finite element model developed in this study to 

investigate the instability of castellated beams using ABAQUS software. The study 

considered was limited to an elastic buckling analysis of the structure. To expedite 

the numerous simulations that had to be performed, a pre-processor was developed 

using the Python programming language. The simulations were used to help 

formulate the design equation for the critical load of castellated beams subjected to 

pure bending as it will be seen in Chapter 4. 

Finite element eigen buckling analysis is a valuable tool for studying the 

elastic buckling properties. The accuracy of the analysis is influenced by decisions 

made while developing the finite element model, including the choice of element 

type, mesh refinement and boundary conditions.   
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Aiming at validating the finite element models used to capture the local 

buckling behavior of a castellated beam, two models were developed. The first 

model considered a beam with a single opening, whereas the second model 

considered a full castellated beam. Comparison of the results showed that the 

critical load remained approximately the same for the two cases.  

 

3.2.1. ABAQUS Scripting Interface – Python 

The ABAQUS Scripting Interface is an extension of the object-oriented 

language popularly known as Python. This tool has the advantage of automating 

repetitive processes, allowing the replication of common parts to other models. 

Therefore, less computational effort is required in the creation of new models. In 

other words, the scripting interface allows for the creation and modification of parts 

such as dimensions, materials, loads, meshes, among other components of the 

models through the parametrization of these variables. 

The ABAQUS Scripting Interface has many features. However, unlike 

ABAQUS Input, Script does not allow customization of elements that are not 

available in the ABAQUS CAE library, such as the S9R5 element.  

Using this tool enables parametric studies to be carried out, since the 

creation of specific functions allows the replication of several models. Instead of 

using fixed numbers (i.e., beam dimensions), this tool allows modification shape 

and size by only changing a small number of constants at the beginning of the Script 

file. In the present work, it was possible to study a wide range of profiles, through 

the parameterization of a single model.  

 

3.2.2.Type of elements 

To perform elastic buckling analysis of thin plates in ABAQUS 6.10-1 [4] 

the STRI65 and S8R5 elements were used. The first letter of the element number 

indicates the type of the element. "S" indicates that the element is a shell element, 

and the last number indicates the number of degrees of freedom. 
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The second letter denotes the type of integration. "R" indicates the use of 

reduced integration in the analysis, using a reduced number of Gauss integration 

points to improve computational efficiency and to avoid shear locking. 

Thus, STRI65 is a 6-node triangular thin shell element with five degrees of 

freedom per node. S8R5 is an 8-node doubly curved thin shell, reduced integration, 

using five degrees of freedom per node. The five degrees of freedom per node 

correspond to three translational and two rotational displacements. In these 

elements the drilling degree of freedom is not considered in the ABAQUS shell 

element formulation.  

The chosen elements are based on cubic shape functions for the interpolation 

of element displacements, allowing for the definition of initial curves in the 

geometry, even though this was not necessary in the present work.  

The triangular element was used around the hole. The element Q8 was used 

for the rest of the mesh. Both elements exhibit cubic functions to interpolate 

deformations between nodes.  

 

3.2.3.Boundary conditions and load application 

The problem being modeled is that of a simply supported castellated beam 

subjected to pure bending. As mentioned in the previous section the beam itself was 

modeled using shell elements. Figure 3.5 and Figure 3.6 illustrate the application 

of the boundary conditions in the model.  

To simulate the simply support boundary condition, a simple support was 

placed at the half height of the web in one end, by restricting the displacement in 

the y-axis. At the other end, a pin support was placed, also at the half height of the 

web, by restricting the displacement in the y and z-axes. Simple supports restricting 

the displacement in the x-axis were also placed at the nodes in the middle of the 

upper and lower flanges (Figure 3.5) to ensure that only in plane buckling would 

occur. 
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Figure 3.5 – ABAQUS model – lateral restraint of single hole beam. 

 

Figure 3.6 – ABAQUS model – lateral restraint of the 5 hole beam. 

 

Pure bending is simulated by applying bending moments at nodes in the half 

height of the web at both ends. A master-slave method was used to guarantee that 

the distribution of the moment along the cross-section. The adopted method 

imposed rotation compatibility between web nodes, thus assuring that plane 

sections remained plane after deformation. Figure 3.7 and Figure 3.8 illustrate this 

approach. 
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Figure 3.7- Boundary conditions – single hole beam. 

 

Figure 3.8 – Boundary conditions – 5 hole beam. 

 

3.2.4.Castellated dimensions 

For all the developed finite element models the plate dimensions were varied 

according to typical project range. The modulus of elasticity adopted was E = 

200GPa and the Poisson coefficient was taken as 0.3. 
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The nomenclature used in this work for plate and hole dimensions is 

summarized in Figure 3.9.  

 

Figure 3.9 – Nomenclature and dimensions 

 

The computational analysis considered only Litzka-Schnittführung 

castellated beam, which is a common type of castellated beam, described in Chapter 

2.  

3.2.5.Finite element Mesh  

Capturing the buckling behavior of the hole region is the main objective of 

this study. Thus, great attention was devoted when discretizing this area.  

Regions away from the areas of high stress concentration  had a smaller 

mesh density, i.e., adopted larger elements that had an aspect ratio of 8:1. Figure 

3.10 and Figure 3.11 show the layout of a typical mesh configuration.  

For the convergence study, the aspect ratio of a S8R5 was varied between 

0.5 and 2, as mentioned in Chapter 2. The relation was based on ABAQUS 

recommendations, which also recommends that the angles between isoparametric 

lines should be not less than 45º or greater than 135°, in order to guarantee the 

accuracy of the numerical integration of the stiffness matrix.  
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Figure 3.10 – Mesh and aspect ratio 

 

 

Figure 3.11 – Mesh detail at hole zones. 

 

3.2.6. Program output 

The critical stress and failure mode based on the local buckling mode were 

obtained by performing an elastic buckling analysis in ABAQUS.   Figure 3.12 and 

Figure 3.13 illustrate the buckling behavior of the two castellated beam models 
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described in this section. Results comparisons and analyses are provided in Chapter 

5. Also, as it will be seen in Chapter 4, the buckling shape obtained from ABAQUS 

confirms the accuracy of the displacement functions assumed to develop the 

proposed design equation. 

 

Figure 3.12 – Buckling shape - single hole beam. 

 

Figure 3.13 – Buckling shape - 5 holes beam. 
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Prediction Equation for fgh 

In this chapter, the local buckling analysis of castellated beams subject to 

pure bending is studied.  

As discussed previously, openings in the webs of girders and other large 

plate structures are often used, affecting the stress distribution throughout the 

member and its failure mode. Considering a section cut within a hole region as 

illustrated in Figure 4.1, two separate T-sections (Tees) are obtained, each subject 

to compressive or tensile stresses. Throughout this work, the compression Tee will 

be called top Tee, whereas the tension Tee will be designated as bottom Tee.  

It can also be seen in Figure 4.1 that the stress distribution across depth 

varies linearly with distance from fiber to neutral axis, under the assumption that 

section remains plane during bending. In the case of a castellated beam with top 

Tee laterally braced, local buckling mode is dominant and described as a 

combination of Tee ‘torsion’ about its shear center and transverse flexure of walls. 

Very little motions of bottom Tee are observed and will be neglected in this study. 

As mentioned in Chapter 2, different approaches may be used to determine 

critical stress for a plate assembly subject to compressive stresses. In this work, the 

full-section approach is adopted to derive explicit equations for the critical stress of 

castellated beams subject to pure bending. To accomplish this task, an energy 

method is adopted, in which the strain energy and the work produced by external 

loads are calculated for an assumed approximate and kinematically admissible 

deflected shape.  

Thus, the accuracy of the result is dependent on the quality of the assumed 

buckled shape, which was chosen based on the typical shapes observed from 

numerical analyzes using GBT (Generalized Beam Theory) and FEM software – 

both described in Chapter 3. The developed closed-form expressions were based on 

classical plate theory assumptions. 
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Figure 4.1 – Tee-section simplification 

 

4.1. Coordinate system and notation 

The geometric notation used in the forthcoming derivations are defined in 

Figure 4.2. Where L is the length of the hexagon size; Hj is the hole height; bl is 

the web length of top tee; tl is the thickness of the web; bn is the compression 

flange length; to is the thickness of the flange. The parameters α and β are 

proportionality variables and determine the height and the length of the hole, 

respectively.  

The global axis was fixed in the centroid of castellated beam. The local axes 

was determined as the x-axis is parallel to longitudinal direction (beam axis), and 

the y- and z- axes refer to the directions to parallel and perpendicular to plate width, 

respectively. Figure 4.3 represents these local axes.  

Before continuing, the following non-dimensional geometric parameters are 

introduced, as referred Figure 2.4: 

ppq = r    (12)  

  s = Ppq (13)  

Considering that the flange thickness is much smaller than the other 

dimensions, the following relationship can be written:  

p = 2"t + pq (14)  

Substituting Eq.12 into 14 and manipulating, the following equations 

can be obtained, in terms of Tee web width, bw:  
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p = 2"t ∙ r�r − 1� (15)  

pq = 2 ∙ "t�r − 1� (16)  

Then, substituting Eq. 16 into 13, L can also be written in terms of bw:  
 

P = s ∙ pq = s ∙ 2 ∙ "t�r − 1� (17)  

 

 

Figure 4.2 – Geometry of a typical castellated beam 

 

Figure 4.3 – Local Reference System  
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4.2. General criteria for local instability 

As described in Chapter 2, critical stresses may be written in the following 

general form: 

&�� = �uv�=u ∙ '� ∙ >t#t ∙ "t\ (18) 

>t = % ∙ #t12�1 − C�� (19) 

 

The parameter >t is the longitudinal bending stiffness of the web defined 

as Eq. 19 and klocal is the buckling coefficient to be determined. klocal term is a 

function of material properties, flange-to-web width ratio (η = xyxz), flange-to-web 

thickness ratio (ξ = cy|z), α and β (as determined previously). In commercially 

available castellated beams, ξ ranges from 1.0 to 1.8, whereas η ranges from 0.3 to 

4.  

Depending on the flange-to-web width ratio η, buckling is governed by 

either flange or web properties. Thus, the problem may be separated into two ranges 

of η values: for 0.3 ≤ η ≤ 1.2, the critical mode is governed by the local buckling of 

the web, whilst for 1.2 < η ≤ 4 buckling is dominated by flange. However, it is 

emphasized that, for general applications of castellated beams, η typically ranges 

from 1.2 to 4, i.e. governed by flange buckling. Figure 4.4 presents the different 

buckling shape obtained by two different ranges.  

 

Figure 4.4 – Buckling shape (a) Web buckling (b) Flange buckling 
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4.3. Energy formulation 

For the energy formulation, it is assumed buckling within elastic range, 

therefore not dependent on yielding of the material. The total strain energy is 

defined as sum of the strain energies of web (Eq. 20� and flange �Eq. 21�, 

determined for deflection functions wl�x, y� and wna�x, y� described in the next 

item, as follows:  

Ul = Dl2 ∙ E E �@∂�wl∂x� + ∂�wl∂y� B − 2�1 − v� �@∂�wl∂x� B @∂�wl∂y� B − @∂�wl∂x ∂yB�� dy�xz
�

�
� dx (20)  

Una = Dna2 ∙ E E �@∂�wna∂x� + ∂�wna∂y� B − 2�1 − v� �@∂�wna∂x� B @∂�wna∂y� B − @∂�wna∂x ∂yB�� dy�xy��xy�
�

� dx (21)  

U = Ul + Una (22)  

The work produced by external loads is determined considering a linear 

stress distribution due to pure bending. It is important to mention that the 

compressive stress is assumed constant through flange thickness. 

Tl = tl2 ∙ E E σ� ∙ �∂wl∂x ��xz
�

�
� dydx (23) 

Tna = tn2 ∙ E E σ ∙ �∂wna∂x ��xy��xy�
�

� dydx (24) 

T = Tl + Tna (25) 

The stress distribution is defined in terms of the local coordinate y is given in 

Eq. 26. It considers that the castellated beam is subjected to pure bending and tee 

section is subjected to bending with compression: 

σ� = σ − σh2 ∙ y 

(26)  

By assuming appropriate distributions for w�x, y� it is possible to find a 

equation that minimizes inner potential energy, making it equal to the external work 

(Rayleigh: U=T).  
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4.4. Local buckling critical stress 

4.4.1. Assumed buckling shape 

The accuracy of the result is dependent on the quality of the assumed 

buckled shape, in the sense that the results must be established for the deformed 

configuration of the structure. Thereupon, an unknown distribution w�x, y� should 

represent the approximate solution of the out-of-plane deflection of a given profile. 

These approximation is represented by a combination of functions varying along x 

and y-axes. Regarding, the x-axis represents the longitudinal length, the y-axis is 

the transversal one and z-axis represents the out of plane axis.  

The deflection field was defined considering the mode given by GBTUL 

(Figure 4.5). A separated deflection field was used for the web and for the 

compression flange, without neglecting the interaction of them on the stiffness of 

the group.  

 

 

Figure 4.5 – GBTUL – deflection 

shape

  

Figure 4.6 – Transverse buckling

For the compression flange, a sinusoidal function was adopted for the 

deflection shape along the longitudinal axis, combined with a transverse straight 

linear (local y-axis); in which θ represents the element rotation compared with the 

undeformed state (Figure 4.6). 

Ao���,  � = � ∙ sin I'�P J ∙   (27) 
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 In order to obtain an accurate approximation for the web displacement, with 

a good physical representation of the structural behavior, the tee-web was idealized 

as a frame element, where the stiffness of the flange is represented by a rotational 

spring, as shown in Figure 4.7.  

 

Figure 4.7 – Frame element. 

When the relative thickness between web and flange is equal to one, the 

derivative of the ww(y) function at y = 0 must be θ. However, as the relative 

thickness increases, this flange acts as a rotational restraint as shown in Figure 4.8.  

 

Figure 4.8 – Frame interaction. 

This representation allowed a good evaluation of the interaction between 

web and flange. Then, the web displacement can be obtained by solving the 

differential equation and applying the appropriate boundary conditions, as 

described in next paragraphs.  

Therefore, a sinusoidal function was adopted for the deflection shape along 

the longitudinal axis and for transverse axis was considered a y-function. 

Considering an outstand web depicted in Figure 4.9, which has length L and height "t. The longitudinal supported edge At���0� is elastically restrained, by means of 
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rotational spring with stiffness �<, and the edge At���"t� is completely free. 

Seeking to obtain the desired deflection, a fictional concentrated load is applied at 

the free extremity and the deflection field for the web can be interpolated by a cubic 

function as:  

At��� � = R� \ + R� � + R\ + RZ (28)  

 

Figure 4.9 – Rotational Spring stiffness 

 The constants can be defined by applying the boundary conditions and the 

representative equation of the web deflection field varying with the local y-axis is 

as follows:  

At��� � = −�6%�t�� ∙  \ + � ∙ "t2%�t�� ∙  � + � ∙ "t�� ∙   (29) 

The rotational stiffness km is approximately determined using the flange 

properties. Considering that the torsional moment is equal to zero on extremities 

and has its maximum value on the mid-length section, the effective length of the 

element (L) is taken as half of the ‘twisted’ span, according to Saint Venant’s 

theory. Besides, the rotational stiffness of the flange is proportional to twice the 

torsional moment, considering a double contribution along the length L, as Figure 

4.10 shows. Thus, the angle and rotational stiffness of the beam is determined 

through relations such as: 

� = �< ∙ � (30)  

�< = �#/� = 4��P  (31)  
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 In which G is transverse modulus of elasticity given according to Eq. 32 

and J is the Saint Venant’s constant of torsion, given in Eq. 33:  

� = %2�1 + C� (32)  

� = "o ∙ #o\3  (33)  

 Therefore, the web buckling shape w�x, y� can be described as:  

At����,  � = � ∙ sin I'�P J @ − \6%�t�� + "t ∙  �2%�t�� + "t ∙  �� B (34)  

Substituting the approximations of the deflection field on energy equations 

and applying Rayleigh Quotient method, a closed-form equation for critical stress 

can be obtained.  

 

Figure 4.10: Tee section representation 

 

4.4.2. Behavior governed by web (web buckling) 

For the range of η between 0.3 and 1.2, it can be observed from preliminary 

studies that the buckling behavior of Tee section is governed by web properties. In 

this case, the deflection shapes adopted are the ones described in Eq. 34. 

Figure 4.11 exemplifies the critical behavior governed by the web, whereas 

the length L of the hexagon is determined as indicated. The local buckling mode 

involves out-of-plane deformation of the component plates, and it has a half-
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wavelength of the same order of magnitude as the widths of the plate element. This 

behavior can be observed in Figure 4.11, where the half-wavelength is 

approximately the plate web dimension.  

 

Figure 4.11 – WLB ABAQUS output 

 

Substituting the assumed deflection shape on the energy equations, 

considering the stationary state (U=T), the critical stress can be obtained. After 

algebraic operations and assuming ν = 0.3, the following expression can be 

obtained: 

σab = π� ∙ Dlbl�tl ∙
�
��0.3η�ξ  + 2.04ηξ\ + 1.06 + 0.24η�ξ  ∙ β��α − 1�� + �α − 1��4β� ∙ �0.46η�ξ  + 2.12ηξ\ + 2.51 + 0.63η\ξ\

0.63η\ξ + 0.46η�ξ  + 2.12ηξ\ + 2.50 − @I1 − 1αJ ∙ �0.38η�ξ  + 1.67ηξ\ + 1.88�B £
¤¥ (35) 

 

The steps of algebraic manipulations used to reduce the equation obtained 

are presented in Appendix B. 

As expected, the expression has the same form as the classical plate buckling 

equation. It can be seen that critical stress depends on ξ, η, α and β, defined 

previously. 

Assuming Litzka-Schnittführung considerations, the value of α and β are 

determined as 1.5 and 0.5, respectively. Substituting these values in Eq. 35, the 

expression of the critical stress reduces to: 
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&�� = '� ∙ >t"t�#t ∙ @0.65 ∙ ¦�§  + 2.57 ∙ ¦§\ + 1.69 + 0.16 ∙ ¦\§\0.63 ∙ ¦\§ + 0.33 ∙ ¦�§  + 1.56 ∙ ¦§\ + 1.87 B (36)  

4.4.3. Behavior governed by the flange (flange buckling) 

When Tee buckling is governed by flange properties, the transverse flexure 

of web is not observed and buckling shape is mainly characterized by torsion about 

shear center (flange-web junction), as shown in Figure 4.12. For simplicity, the 

form of deflection for both the web and flange can be represented by a linear 

function varying along transverse axis (local y-axis) and by a sinusoidal function 

along longitudinal axis (local x-axis).  

Another important issue that needs to be addressed is the Tee length to be 

adopted. In Figure 4.13, a typical buckling mode obtained using FEM-model is 

presented. It can be seen that the buckling length, L, is greater than that obtained 

for ‘web buckling’ conditions.  

 

Figure 4.12 – GBTUL transverse deflection 

 

Figure 4.13 – FLB ABAQUS output 
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Using energy formulation considering the deflected shapes and buckling 

length previously described, the critical stress is expressed as follows:  

&�� = '� ∙ >t"t�#t ∙ ��r − 1��s� �1 + 0.25 ∙ ¦\§\� + 1.7 ∙ �1 + ¦§\�
¦\§ − 3 �r − 1�r + 4 � 

 

(37)  

For Litzka-Schnittführung considerations, the value of α and β are 

determined as 1.5 and 1.0, respectively, the expression is reduced to:  

&�� = '� ∙ >t"t�#t ∙ @1.95 + 0.06 ∙ ¦\§\ + 1.7 ∙ ¦§\¦\§ + 3 B 

 

(38)  
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4.5.Dimensional limits of α and β 

The influence of the hole size and spacing between holes is still a topic of 

research and is beyond the scope of the present work. This item presents some 

analysis about these influences. 

Moen and Schafer [52] showed that the presence of openings in a plate lead 

to specific buckling modes that may increase or decrease the critical load, 

depending upon the size and spacing of the openings. When the openings are close 

and relatively small, the local buckling of one hole have great influence on the 

behavior of the adjacent hole. As the spacing gets higher, the critical load tends to 

become constant. They attribute the increase in the critical load to the fact that the 

openings act like a damper on plate buckling. The results obtained with the equation 

proposed in the present work are shown in Figure 4.14. The figure shows the value 

of the critical load as a function of the parameter β, that determines the hexagon 

length and the hole spacing (L=β∙Hj), confirming the behavior described 

previously. 

 

Figure 4.14 – Analysis of ¨©ª with parameter β ranging from 0 to 1 

 

Dinis et al. [53] reported the results of an investigation on the local and 

global buckling behavior of T-section and cruciform thin-walled steel members. 

They found that the critical stress decreases monotonically with the beam length 
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and it corresponds to single half-wave buckling mode. However, their critical 

buckling curves are not always associated with single half-wave (n=1) buckling 

mode. To large lengths, the L curves (σabx L� exhibit local minima and are 

sometimes associated with multiple half-wave buckling modes.  

The results obtained with the proposed equation are shown in Figure 4.15 

that relates the critical stress and the length of the hole (L). As can be seen from the 

figure, the critical load decreases with the beam length (associated with single half-

wave n=1), and for large lengths the deflection shape assumed multiples half-

waves.  

It should be emphasized that the expression form that represents the 

deflection shape for the formulation of the proposed equation was associated with 

single half-wave (n=1). Thus, the range of parameter β is defined between 0 and 1.  

 

Figure 4.15 – Analysis of ¨©ª with parameter β ranging from 0 to 2. 

 

Figure 4.16 shows the obtained critical stresses as a function of the 

parameter α = 		
. It can be observed that, as the height of the opening increases 

and parameter α rises proportionally, and so does the critical stress. 

This behavior can be explained by the argument that the presence of the 

holes “dampens” the instability of the beam, providing an increase in critical stress. 
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When compared to I-profile of the same height, this I-profile tends to be more 

unstable than the same profile with a hole in the web. 

The proposed equation is valid for the following limits of α and β: 1.4≤α≤2 

e 0≤β≤1. Note that the described values are in the practical design range and for the 

Litzka-Schnittführung beam. 

 

 

Figure 4.16 – Analysis of ¨©ª with parameter α 
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4.6. Summary of results obtained 

As discussed in previous sections, the critical stress can be written in a 

general form, in which a ‘basic stress’ depending on the web parameters and 

material properties is multiplied by the local buckling coefficient k. In Table 1, 

proposed equations for kab are summarized. 

  

Table 1 – Equations for critical local buckling coefficients, kcr, for both critical 

behaviors buckling 

 

In order to facilitate the calculations, the results can also be presented in a 

tabular format, if desired, for design application. Table 2 presents k values for 

certain ξ and η of a Litzka-Schnittführung beam. 
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Table 2 – Values of kab coefficient 

The local buckling coefficient are introduced graphically bellow, covering 

the entire design range. 
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Figure 4.17 – Local buckling coefficient ξ=1. 
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Figure 4.18 – Local buckling coefficient ξ=1.5. 
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Figure 4.19 – Local buckling coefficient ξ=1.8. 
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5 

Analysis of results 

This chapter presents the results obtained from the local buckling analysis 

of castellated beams. It provides a comparison of results obtained from ABAQUS, 

GBTUL and the proposed equation.  

As mentioned previously, the present study focused on the buckling 

behavior of castellated beam subjected to pure bending. For this type of solicitation, 

the region below the hole hardly ever suffers out of plane deflections, since it is in 

tension. For this reason, the structure can be represented by an upper tee section. 

Firstly, a validation of this simplification was carried out by comparing the results 

obtained from the complete model developed in ABAQUS and the simplified model 

in GBTUL.  

Once the simplifying assumption was validated, a parametric study was 

performed, varying η (ratio between flange width and web height) and ξ (ratio 

between flange thickness and web thickness), through the whole range of each 

variable. Thereby, it was possible to validate the equation for all the existing 

commercial profiles. Both ABAQUS and GBTUL models were analyzed. The 

results are presented graphically, with a clear distinction between two possible 

types of buckling, i.e., the one governed by the web and the one governed by the 

flange. The change in buckling type occurs when η equals to 1.2.  

In addition, the results were also compared against design code equations, 

namely the AISC[16] specification and with analytical solutions provide by 

Timoshenko [14].  

Unfortunately, the searched database did not return any work reporting 

experimental results for comparison.  

The results indicate that the proposed equation can effectively calculate the 

critical stress of castellated beams due to local instability. The validated expression 
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and its associated limits are intended to be general within the limits typical of 

practical applications. 

5.1. Validation as a Tee section 

GBTUL was used to investigate the elastic buckling behavior of the 

simplification of the upper Tee section. The results were compared with those 

obtained for the complete finite element model using ABAQUS. 

Figure 5.1 and Figure 5.2 show the comparison of critical stresses obtained 

by GBTUL, using the simplification of tee section, in comparison with the results 

obtained for the complete model in ABAQUS.The results are shown for profiles 

within the commercial range, for which ξ can vary from 1.0 to 1.8 and η can vary 

from 0.1 to 4. The two figures depict the critical stress for different ranges of η and 

therefore different buckling modes.  Figure 5.1 is associated with web buckling (η 

< 1.2) and Figure 5.2 is associated with flange buckling (η > 1.2). 

 

Figure 5.1 – Web buckling – ABAQUS and GBTUL results.  
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Figure 5.2 – Flange buckling – ABAQUS and GBTUL results. 

 

All the results obtained using ABAQUS and GBTUL software are presented 

in Appendix A (ABAQUS element-based elastic buckling results and GBTUL 

output).  

As can be seen from these two figures the results converge and the 

maximum difference obtained is less than 15%. Therefore, it was concluded that 

the hypothesis of the Tee section is validand and the buckling behavior of a 

castellated beam under pure bending can be locally analyzed as a Tee section under 

bending and compression.  

To further illustrate the accuracy of the results, normalized graphs are 

provided, showing the ratio between the GBTUL result over the ABAQUS result. 

Figure 5.3 through 5.8 illustrate these findings for selected values of ξ. 
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Figure 5.3 – Web buckling – normalized results – ξ=1.0 

 

Figure 5.4 – Web buckling – normalized results – ξ=1.5 

 

Figure 5.5 – Web buckling – normalized results – ξ=1.8 
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Figure 5.6 – Flange buckling – normalized results - ξ=1.0 

 

Figure 5.7 – Flange buckling – normalized results – ξ=1.5 

 

Figure 5.8 – Flange buckling – normalized results – ξ=1.8 
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5.2. Proposed equation validation 

In order to validate the proposed equation, both ABAQUS and GBTUL 

results are considered. To perform this comparison, several models were created in 

both softwares, contemplating the whole design range.  

A comparison was first done between the proposed equation and GBTUL 

output, seeking to validate the approximation adopted. Then, the equation was 

further compared with the results form ABAQUS analysis.  

The results obtained for these comparisons, as well as the normalized 

results, are presented in  Figures 5.9 through 5.24. 

• Results validation – web buckling governing range:   

 

Figure 5.9 – Web buckling – proposed equation x GBTUL 

 

Figure 5.10 – Web buckling normalized results– Proposed equation x GBTUL – 

ξ=1.0 
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Figure 5.11 – Web buckling normalized results – Proposed equation x GBTUL – 

ξ=1.5 

  

Figure 5.12 – Web buckling normalized results – Proposed equation x GBTUL – 

ξ=1.8 
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Figure 5.13 – Web buckling – proposed equation x ABAQUS 

 

 

 

 

Figure 5.14 – Web buckling normalized results – Proposed equation x ABAQUS 

– ξ=1.0 
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Figure 5.15 – Web buckling normalized results – Proposed equation x ABAQUS 

– ξ=1.5 

 

 

 

 

Figure 5.16 – Web buckling normalized results – Proposed equation x ABAQUS 

– ξ=1.8 
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• Results validation – flange buckling governing range:   

 

Figure 5.17 – Flange buckling – proposed equation x GBTUL 

 

 

Figure 5.18 – Flange buckling normalized results – Proposed equation x GBTUL 

– ξ=1.0 
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Figure 5.19 – Flange buckling – normalized results – proposed equation x 

GBTUL – ξ=1.5 

 

 

 

 

Figure 5.20 – Flange buckling – normalized results – proposed equation x 

GBTUL – ξ=1.8 
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Figure 5.21 – Flange buckling – Proposed equation x ABAQUS 

 

 

 

 

Figure 5.22 – Flange buckling normalized results – Proposed equation x 

ABAQUS – ξ=1.0 
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Figure 5.23 – Flange buckling normalized results – Proposed equation x 

ABAQUS – ξ=1.5 

 

 

Figure 5.24 – Flange buckling – normalized results – proposed equation x 

ABAQUS – ξ=1.8 

 

The results show that the proposed equation produces accurate results. The 

maximum error observed is less than 20%. This loss of accuracy occurs when η 

range between 1.0 and 1.2. At this range, a transitional area between web and flange 

buckling occurs, neither of the proposed equations are able to represent the behavior 

precisely. For the other ranges of η, the maximum error observed was less than 4%. 
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5.3.Standards recommendations and analytical solution 

The AISC design guide 31 [6] is the most recent normative device for 

castellated and cellular beam. The available axial strength of the top and bottom 

tees can be calculated by Tee section simplification, thereby reducing the number 

of calculations. For simplicity, it is acceptable and slightly conservative to treat the 

assumed uniform compression throughout the top tee section (Figure 5.25). In this 

case, the problem is analyzed as a tee section strut subjected flexural torsional 

buckling (Eq. 39 and Eq. 40). More information can be found in chapter E of the 

AISC specification[16].   

 

Figure 5.25 – Terminology used in AISC Design Guide 31 [6]. 

  

«� = ¬'�%Rt�P��� + ��® 1!¯ ∙ °�± � (39)  

°�± � = ��� +  �� + �0 + �2!¯  (40)  

In which:  

G =shear modulus of elasticity of steel = 11,200 ksi (77 200 MPa) 

J = torsional constant, in.4 (mm4) 

Cw = warping constant, in.6 (mm6) 

Lcz =  effective length of member for buckling about the longitudinal axis, in. (mm) 

xo, yo =  coordinates of the shear center with respect to the centroid, in. (mm) 

Ix, Iy =  moment of inertia about the principal axes, in.4 (mm4) 
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For the analyzed case the warping constant is zero.  

Timoshenko and Gere [14] developed an analytical solution for this case, 

considering each flange as a uniformly compressed plate supported along three 

sides and completely free along the fourth side, as shown in Figure 5.26. This 

investigation shows that the critical stress is obtained according to Eq. 41, where b 

is the plate length, t is the plate thickness and L is the element length.  

 

Figure 5.26 – Timoshenko analysis  

 

&�� = @0.456 + "�P�B ∙ '�6 ∙ �1 − C� ∙ �#�"�  (41)  

For beams subjected to general loading, the American guide analyzes the 

structure similarly to a Vierendeel truss, where the moments caused by shear forces 

on the Tee zones should be checked. 

The charts provided in Figures 5.27 through 5.29 show the 

recommendations of AISC (Flexural-torsional curve) plotted with the results 

obtained from the proposed equation, ABAQUS and Timoshenko results, for 

different values of ξ.  
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Figure 5.27 – Comparison of results – ξ=1.0 
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Figure 5.28 – Comparison of results – ξ=1.5 
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Figure 5.29 – Comparison of results – ξ=1.8 

 

As it can be seen from Figure 5.27 and Figure 5.28, the design code 

recommendations are conservative for local buckling of the web. Therefore, as can 

be seen from Figure 5.29 the design code recommendations are non-conservative 

for 0.5<η<1.2, which is not commonly adopted for castellated beams. These 

differences may be explained by the fact that actual web buckling modes involve 

transverse bending of the web (Fig. 5.30 a) and not a simple twisting rotation about 

the shear center (Fig. 5.30 b). 

 

Figure 5.30 – GBTUL (a) Web local buckling (b) Flange local buckling
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Conclusions and further investigations 

6.1. Conclusions 

In this research empirical equations were developed to predict the elastic 

buckling stress of castellated beams based on classical plate stability equations. The 

equations were validated against the results obtained by a finite element model in 

ABAQUS, a simplified Tee-section model in GBTUL, standards equations, and 

analytical solutions. The main conclusions from this work are as follows: 

• The local buckling is influenced by plate dimensions, which determine if 

buckling is governed by the flange or by the web. Therefore, two equations were 

developed for each type of local buckling. 

• There is a critical region (η between 1 and 1.5) for which there is a transition 

between the two types of local buckling. In this region the results obtained by 

the proposed equations were not as accurate as for the other ranges. However, 

the error incurred by the proposed equations is below 20%. 

• The simplification of the Tee section as a frame, where the stiffness of the flange 

is represented by a rotational spring, proved to be good idealization of actual 

local buckling behavior of a castellated beam. The rotational stiffness was 

determined by geometric properties provided by the compression flange, 

obtaining a good physical representation of the structural behavior and 

consequently produced accurate results. The initial attempt without this 

consideration did not provide good results for different values of ξ. 

• The validated results of the proposed equations indicate that it can be effectively 

used to calculate the critical stress of castellated beams due to local instability. 

• The proposed expressions and their associated limits are applicable within the 

limits typical of practical applications. 

• The design code recommendations were found to be conservative for local 

buckling of the web and non-conservative for 0.5<η<1.2, in which the critical 

behavior is influenced by web flexure.  
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• The proposed equations are useful because their parameters have physical 

meaning that can be easily interpreted.  

 

6.2. Future research works 

Suggestions for future research in this area are:  

• To study the critical load of castellated beams subjected to different loading 

situations, i.e., considering for example a combination of bending and shear 

loads. 

• To study the effect of welding on castellated beam´s behavior. 

• To investigate experimentally the failure modes of castellated beams.  

• To propose resistance equations for castellated beams. 

• To study the behavior of castellated beams under the effect of temperatures. 

• To perform nonlinear finite element studies to identify the influence of 

residual stresses and plastic strains on castellated beams failure 

mechanisms.  

• To propose resistance equations and perform reliability analyses to obtain 

the partial factors for design. 

• To improve the accuracy of the equation by considering additional degrees 

of freedom along with the Rayleigh-Ritz method. 
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Appendix A  

ABAQUS elastic buckling results and GBTUL output 

This appendix contains the castellated beams dimensions with their 

respective critical loads, obtained through the finite element model (ABAQUS [4]) 

and the results provide by Generalized Beam Theory formulation (GBTUL [5]).  

Geometric parameters ABAQUS GBTUL 

ξ η α β 
Mcr 

(Nmm) 

σcr 

(Mpa) 
σcr (Mpa) 

1 

1,2 1,5 0,5 1,69E+07 27,17 28,35 

1 1,5 0,5 1,64E+07 29,46 29,53 

0,9 1,5 0,5 1,57E+07 29,97 29,85 

0,8 1,5 0,5 1,48E+07 30,13 29,98 

0,7 1,5 0,5 1,39E+07 30,31 29,94 

0,6 1,5 0,5 1,29E+07 30,29 29,71 

0,5 1,5 0,5 1,18E+07 30,01 29,28 

0,4 1,5 0,5 1,07E+07 29,67 28,64 

0,3 1,5 0,5 9,61E+06 29,31 27,78 

1,5 

1,2 1,5 0,5 2,89E+07 35,33 38,22 

1 1,5 0,5 2,68E+07 37,22 38,84 

0,9 1,5 0,5 2,50E+07 37,26 38,68 

0,8 1,5 0,5 2,31E+07 37,14 38,4 

0,7 1,5 0,5 2,11E+07 36,83 37,97 

0,6 1,5 0,5 1,91E+07 36,46 37,37 

0,5 1,5 0,5 1,70E+07 35,80 36,52 

0,4 1,5 0,5 1,49E+07 34,98 35,37 

0,3 1,5 0,5 1,26E+07 33,43 33,78 

1,8 

1,2 1,5 0,5 3,67E+07 39,23 42,67 

1 1,5 0,5 3,32E+07 40,59 42,41 

0,9 1,5 0,5 3,08E+07 40,57 42,18 

0,8 1,5 0,5 2,83E+07 40,41 41,86 

0,7 1,5 0,5 2,57E+07 40,06 41,42 

0,6 1,5 0,5 2,32E+07 39,81 40,82 

0,5 1,5 0,5 2,05E+07 39,13 40,01 

0,4 1,5 0,5 1,77E+07 38,05 38,87 

0,3 1,5 0,5 1,50E+07 36,92 37,25 

Table 3 – Results obtained for critical buckling governed by the web 
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Table 4 – Results obtained for critical buckling governed by the flange 
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Appendix B  

Steps of deflection field for the web 

The deflection field for the web can be interpolated by a cubic function as: 

wl²x�y� = C�y\ + C�y� + C\y + CZ (42)  

The constants can be defined by applying the boundary conditions: 

wl²x�0� = 0 (43)  CZ = 0 (44)  

M�0� = kµ ∙ θ (45)  M�0� = kµ ∙ w·�0� = kµ ∙ C\ (i) 

M�0� = P ∙ bl (ii) 

From (i) to (ii):    C\ = ¹∙xzº»  (46)  

 

EIw···�bl� = −P (47)  

EI ∙ 6C� = −P (48)  

C� = −P6EI (49)  

 

M�bl� = 0 (50)  w··�bl� = 0 (51)  6C� ∙ bl + 2C� = 0 (52)  

C� = P ∙ bl2EI  (53)  
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Therefore, the representative equation of the web deflection field varying 

with the local y-axis is as follows:  

wl²x�y� = −P6EIl²x ∙ y\ + P ∙ bl2EIl²x ∙ y� + P ∙ blk½ ∙ y (54)  
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Appendix C  

Step by step of algebraic manipulations of fgh equations 

C.1 - Behavior governed by web (WLB): 

Expressing critical stress in general form: 

 

By algebraic manipulations:  

Substituting § = |y|z  and η = xyxz: 

Through algebraic manipulations and replacing  ¿y¿z = I |y|zJ\
:  
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Adopting H = ��dÀ�À���  and L = β ∙ ��d�À���: 

 

C.2 - Behavior governed by flange (FLB): 

Expressing critical stress in general form: 

 

Through algebraic manipulations and replacing  ¿y¿z = I |y|zJ\
:  

 

Adopting H = ��dÀ�À���  and L = β ∙ ��d�À��� and applying some manipulations:  

 

Finally, considering ξ = |y|z and η = xyxz: 
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