8 REFERÊNCIAS BIBLIOGRÁFICAS

- Boylestad, Robert; Nashelesky, Louis. **Dispositivos Eletrônicos e Teoria de Circuitos**. 5ta. Ed. Rio de Janeiro: Prentice-Hall do Brasil, 1994.
- Chudzynski, S; Czyzewski, A.; Ernst, K.; Karasinski, G. 2002, **Multiwavelength** Lidar for Measurements of Atmospheric Aerosol, Optics and Lasers in Engineering, Vol. 37, pág 91-99.
- Friedlander, S. K. Smoke, Dust and Haze. New York: John Wiley & sons, 1977.
- Guillot, P. 1983. Optical Methods of Remote Sensing of Atmospheric Pollution. Spectrochimica Acta, Vol.38B, No. 11/12, pág 1457-1464.
- Hidy, George M. Aerosols: **An Industrial and Environmental Science**. Orlando, Florida: Academic Press, 1984.
- Hinds, William C.; Wiley, John & Lois. Aerosol Technology Properties Behavior and Measurements of Airbornes Particles. New York: New York, 1969.
- INMETRO. Guia para Expressão da Incerteza de Medição. Brasília: SENAI/DN, 2000.
- INMETRO. Quadro Geral de Unidades de Medida. 2.ed. Brasília, SENAI/DN, 2000.
- INMETRO. **Sistema Internacional de Unidades**. 6.ed. Brasília, SENAI/DN, 2000.
- INMETRO. Vocabulário Internacional de Termos Fundamentais e Gerais de Metrologia. 2.ed. Brasília, SENAI/DN, 2000.
- Intrator, Edmond & Mello, Hilton A. **Dispositivos Semicondutores**. 5ta. Ed. Rio de Janeiro: Livros Técnicos e científicos S. A., 1983.
- McMurry, Peter H. 1999. **A Review of Atmospheric Aerosol Measurements**. Atmospheric Environment, Vol. 34, páginas 1959-1999.

- Morawska, Lidia; Thomas, Stephen; Jamriska, Milan; Johnson, Graham 1999. **The Modality of Particle Size Distributions of Environmental Aerosols.** Atmospheric Environment, Vol. 33, pág 4401-4411.
- National Institute of Standars and Technology NIST. LED Photometric Standards. Disponível em: <http://physics.nist.gov/Divisions/Div844/facilities/photo/Projects/led_p hotometry.htm>. Acesso em novembro do 2002.

- Direção geral do meio ambiente. **Qualidade do Ar**. Disponível em http://193.136.121.102/iqar/qual1.html. Acesso em janeiro do 2003.
- Ferrer, J. Fernandez. Atlas de Física. España: Ibero Americana. 1968.
- Kerker, Milton. The Scattering of Light and Other Electromagnetic Radiation. New York: London, 1969.
- Levine, David M.; Berenson, Mark L.; Stephan, David. Estatística: Teoria e Aplicações. Rio de Janeiro: LTC, 1998.
- Malm, William C.; Derek E.Day, 2001, "Estimates of Aerosol Species Scattering Characteristics as a Function of Relative Humidity", Atmospheric Enviroment, Vol. 35, pág 2845-2860.
- Millman, Jacob; Halkias, christos C. Eletrônica: **Dispositivos e Circuitos**. 2 Ed. São Paulo: McGraw Hill, 1981.
- National Institute of Standars and Technology NIST. Photodetector Measurements. Disponível em: <http://physics.nist.gov/Divisions/Div844/facilities/phdet/phdet.html>. Acesso em novembro do 2002.
- National Instruments. **User Manual of LabVIEW**. USA, Texas. National Instruments Corporation, 2000.
- National Instruments. User Manual. AT-MIO/AI E-Series. USA, Texas. National Instruments Corporation, 1996.
- Peñaloza M., Marcos A. 1999, An Alternative Method of Studying the Optical Properties of Highly Non-absorbing Spherical Monodisperse Aerosol using a Cell Transmissometer, Elsevier Science, Vol. 31, Nro 10, pág 1231-1250.

- Portal do Meio Ambiente. **Gestão Ambiental**. Disponível em http://www.pr.gov.br/sema/a_qualidar.shtml#Indicadores >. Acesso em janeiro 2003.
- Revista Antena Eletrônica Popular. **Dispositivos e Componentes Eletrônicos**. Disponível em <http://www.eccel.com.br/index1.htm>. Acesso em abril 2002.
- Rezende, Sergio M. A Física dos Materiais e Dispositivos Eletrônicos. Pernambuco: UFPE, 1996.
- Slater, John F.; Dibb, Jack E.; Keim, Barry D.; TalbotLight, Robert W. 2002, Light Extinction by Fine Atmospheric Particles in the White Mountains Region of New Hampshire and its Relationship to Air Mass Transport, The Science of the Total Environment, Vol 287, pág 221-239.
- Universidad de Navarra. Optoelectrónica. Disponível em:

<http://www.tecnun.com/asignaturas/fisica-1/teoria/9/>. Acesso em abril 2002.

- Universidade de São Paulo, Programa Educ@r. **Óptica.** Disponível em http://educar.sc.usp.br/otica/indice.htm#indice. Acesso em abril 2002.
- Universidade de São Paulo. **Dispersão da Luz**. Disponível em: http://www.cdcc.sc.usp.br/ondulatoria/disper.html. Acesso em abril 2002.

10 ANEXOS

10.1. Características das partículas atmosféricas.

		(1	mμ)	Particle Dia	meter, microns (μ)		()n	nm.) (le	
	0.0	001 0.	001 0	.01 0	0.1	1 2 3 4 5 6 8		00 1,0	2 3 4 56 8	000
Equivalent Sizes		1	 10 1 Ångström Units, Å 	 00 1,0)000 (L	5,000 1,2 10,000 2,500 Theoretical Mesh Jsed very infrequer	250 00 70 200 625 1 1 1 35 220 17 10 70 200 10 70 2	*** 65 35 20 I Tyler Sc Tyler Sc 100 48 28 I+*0 60 40 20 100 20 I+*0 60 40 20 100 30 100 50 30 100	10 6 3 reen Mesh 14 8 4 2 12 6 3 3 3 0 12 6 3 3 3 0 12 6 3 3 3 3 0 12 6 3	× ;
Electromagnetic Waves			Rays	- Ultraviol	et Visible	 Near Infrared → diation 	Far In	nfrared	-Microwaves (Ra	dar, e
Technical Definitions	Gas Dispersoids	Solid: Liquid:		Fume Mist		м м ,	-D	ust		-
common Atmospheric	Soil:	Atterberg or Internation adopted by Internat. S	onal Std. Classification Soc. Soil Sci. Since 1934	System	Clay ———	► Silt -	→ Fine Sa	nd Coarse S	and >+< Grave	el —
Dispersoids				Smog	Comalia	He Clouds	and Fog	Mist +Drizzlei<	►	1
Typical Particles and		0t C05 H ₂ F ₇ Ct	Gas Molecules C_H, Molecules C_H,	Tobacco Metall Carbon Bla Carbon Bla Calloidgl	Corrected and the second seco	de Fumes — Coa de Fume → I ← Coa Concentrator Min tact → I ← ic Mist → F ments → F nsecticide Dusts →	Fly Ash Dust ement Dust st Pulverized Coal	Beach Sand		
Gas Dispersoids		Molecular diame from viscosity da	ters calculated ta at 0°C. 	Silica Aitken Nuclei Atmor Atmor Sea S Combustion Nuclei	Spray (Alkali F Spheric Dust alt Nuclei	→ Ground Taic Oried Milk ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Plant Spores Pollens Pollens Prour Nozzle Drops dults): 7.5µ ±0.3µ →+ Human	- Hydraulic Nozzle - - Hair⊣	Props — →	
Methods for Particle Size Analysis			به المستقلم المستقلم المستقلم المستقلم الم المستقلم المستقلم الم	Ultramicrosoc Electron I Ultracentrifuge Ray Diffraction + Adsorpti Nuclei Counter	Impinge ope Terrifuge Centrifuge Turbid Light Scatt	Arrs Helectrical	troformed Sieves ope	Sieving Sieving Visible to Machine Tools (N	⁺ Furnishes average diameter but no s distribution. ++ Size distribution n obtained by speci- calibration. Eye	e partie lize may be al
Types of Gas Cleaning Equipment		n Synetti o k		Ultras (very limited indu High Efficier Thermal P (used only fi	onics strial application) 	Centrif Liquid Scubbers th Collectors d Beds Comm	ugal Separators inon Air Filters Impingeme Mechanical Sep	Settling Char	nbers	
	In Air	Reynolds Number	10 ⁻¹² , 10 ⁻¹¹ , 1	0 ⁻¹⁰ , 10 ⁻⁹ , 10	0 ⁻⁸ , 10 ⁻⁷ , 10 ⁻⁶	10-5 10-4 10-3	10 ⁻² 10 ⁻¹ 10 ⁰	10 ¹ 10 ²	10 ³ 10 ⁴	
Terminal Gravitational Settling*	at 25°C. 1 atm.	Settling Velocity, cm/sec.	2 3 5 10	2 3 5 10-4	2 3 5 10 ⁻³ 2 3 5 10 ⁻³	10^{-2} 10^{-1} 235 10^{-1} 235	10 [°] ₂₃₅ 10 ¹ ₂₃	5 10 ² 2 3 5	, 10 ³ 15 2	2.5
[for spheres, sp. gr. 2.0]	In Water at 25°C.	Reynolds Number Settling Velocity, cm/sec.	$10^{-15}_{3}10^{-14}_{3}10^{-13}_{3}$ $10^{-10}_{23}510^{-9}_{23}5$	$10^{-12}_{3}10^{-11}_{3}10^{-10}_{3}$ $10^{-8}_{235}10^{-7}_{235}$	$10^{-9}_{3} 10^{-8}_{3} 10^{-7}_{3}$ $10^{-6}_{235} 10^{-5}_{235}$	$10^{-6}_{3}10^{-5}_{3}10^{-4}_{3}$ $10^{-4}_{23}10^{-3}_{3}$	$10^{-3}_{3} 10^{-2}_{3} 10^{-1}_{3}$ $10^{-2}_{23} 5 10^{-1}_{3}$	$10^{\circ}_{3} 10^{1}_{3} 10^{1}_{1} 10^{1}_{1}$		10
Particle Diffusion Coefficient,* cm²/sec.	In Air at 25°C. 1 atm. In Water at	$1 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 10^{-5}$	10^{-2} 10^{-3}	10 ⁻⁴ 32 10 ⁻⁵ 32 10 ⁻⁷ 10 ⁻⁷	⁵ 10 ⁻⁶ 5 3 2 10 ⁻⁶ 65 4 3 10 ⁻⁸	10 ⁻⁷ 2 10 ⁻⁷ 10 ⁻⁹	10 ⁻⁸ 2 654 3 10 ⁻¹⁰	10 ⁻⁹ 2 10 ⁻⁹ 5 4 3 10 ⁻¹¹	10 ⁻¹⁰ 2 10 ⁻¹⁰ 10 ⁻¹²	21
*Stokes-Cunningham lactor included in values given for air but not included for weter	0.00	2 3 4 56 8 01 0.0 (Im	2 3 4 5 6 8 01 0.0 μ)		2 3 4 5 6 8		2 3 4 56 8 0 10	2 3 4 56 8 00 1,0 (1m	2 3 4 5 6 8 00 10, m.) (lc	000)

Figura 49- Características das partículas atmosféricas. (Hidy, "Aerosol Technology Properties Behavior and Measurements of Airbornes Particles").

11 APÊNDICE

11.1.

Descrição do Programa de Aquisição no Software LabVIEW.

11.1.1. Painel Frontal

O painel frontal é a janela de interação entre o usuário e o programa de aquisição. Consta de controles e indicadores:

Controles:

- Canais: Este controle é para configuração dos canais de aquisição.
 Cada canal está especificamente ligado à saída de um fotodetector especifico. A ativação dos canais para adquirir os dados será de acordo aos nossos requerimentos. Temos assim:
 - Canal 0: Par E-D 2 (0) Canal 1: Par E-D 2 (1) Canal 2: Par E-D 2 (2) Canal 3: Par E-D 2 (3) Canal 4: Par E-D 4 (4) Canal 5: Par E-D 4 (5) Canal 6: Par E-D 4 (6) Canal 7: Par E-D 4 (7).
- Taxa de Amostragem por canal (Scan rate): A taxa máxima de aquisição (100000/s) deverá ser divida pelo numero de pares E-D ativos. A taxa de amostragem pode ser considerada como a velocidade com a qual serão adquiridos os dados.
- Número de amostras: Quantidade de amostras a adquirir.
- Device: Configuração da placa de aquisição, (1)
- Salvar dados: controle que permite salvar os dados adquiridos até um determinado instante. A execução do programa é finalizada clicando neste ícone.

 Pre trigger scans: Número de vezes que são adquiridos dados e são armazenados no buffer do computador antes que o sinal trigger seja recebido pelo computador.

Indicadores:

- Tela gráfica (Waveform Graph): Mostra graficamente os dados que estão sendo registrados nesse instante.
- Array de dados: Mostra digitalmente os dados que estão sendo registrados nesse instante. Mostra os dados de cada canal separadamente.
- Número de medidas: Indica o número de vezes que foram feitas as medições.

11.1.2. Diagrama de blocos

O software LabVIEW apresenta programas de aquisição prontas para ser utilizadas, mas a taxas de amostragem destes programas estão configurados para adquirir 1000dados por segundo, mesmo que a placa de aquisição tenha capacidade para mais. Então tivemos a necessidade de fazer um programa de aquisição especifico que nos permitiu adquirir dados com uma taxa de amostragem de 100000 dados por segundo.

Este programa consta de duas etapas importantes: adquirindo dados e salvando dados:

ADQUIRINDO OS DADOS.

Esta etapa consta de cinco VIs (programas próprios do LabVIEW):

- AI CONFIG: configuração das entradas analógicas (sinais gerados pelos fotodetectores).
- AI START: da inicio as entradas analógicas (sinais gerados pelos fotodetectores).
- Al READ: faz a leitura das entradas analógicas (sinais gerados pelos fotodetectores).
- AI CLEAR: libera a memória do buffer uma vez que foi terminada a aquisição.

Todos estes VIs estão dentro de uma estrutura *while* para poder adquirir dados de forma contínua. Desta forma o programa só sairá da estrutura *while* quando se pressione o botão "Salvar Dados".

Dentro desta estrutura *while* encontra-se também um contador que indica o número de vezes que foram feitas medições de forma continua (a função é localizada em *function/numeric/increment*, a partir do menu principal do software).

SALVANDO OS DADOS

Esta etapa consta de duas estruturas *For Loop* (localizadas em *function/structures/for loop*) dentro das quais se tem uma função "index array" (localizada em *function/array/index array*) que permite organizar os dados. Para armazenar os dados em uma base de dados, no formato TXT utilizou-se a função string (localizada em *Function/File IO/write to spreadsheet*).

O For Loop externo serve para separar os dados segundo o numero de medições. Com o For Loop interno consegue-se ordenar os dados segundo o canal (Par E-D).

11.1.3. Instruções para a operação do programa de aquisição

- Selecionar os canais dos Pares E-D e ativá-los colocando o número correspondente a cada canal.
- 2) O device da placa de aquisição está configurada para o valor 1.
- O scan rate (taxa de amostragem) deverá ser igual a 100000 divido pelo numero de canais ativos.
- 4) Selecionar o número de amostras.
- 5) Executar o Programa.
- Para armazenar os dados adquiridos pressionar o botão "Salvar Dados".
- 7) Parar o programa

11.2. Cálculo da incerteza do tempo de Resposta e da constante de tempo dos Pares E-D

Apresenta-se o roteiro de cálculo que se utilizou para o cálculo das incertezas (tipo A e tipo B) do tempo de resposta e da constante de tempo.

11.2.1. Incerteza tipo A

Para o cálculo da incerteza tipo A do tempo de resposta e da constante de tempo considerou-se os seguintes fatores:

- o \overline{X}_i : Estimativa da média
- o s(x_i):Desvio padrão obtido dos dados experimentais
- o $s(x_i)/\sqrt{n}$: Desvio padrão da média
- n: Número de medições, n = 5.

11.2.2. Incerteza tipo B

Para o cálculo das incertezas tipo B do tempo de resposta consideraramse os seguintes fatores:

- ΔR_t: Incerteza devido à resolução do osciloscópio (na base de tempo):
 - o $\Delta R_t = 0.1 \mu s/2/\sqrt{3} = 0.03 \mu s$ (distribuição retangular)
 - $ΔR_t = 0,2\mu s/2/\sqrt{3} = 0,06\mu s$ (distribuição retangular)
 - $ΔR_t = 10 µs/2/√3 = 3 µs$ (distribuição retangular)
- ΔR_V: Incerteza devido à resolução do osciloscópio (voltagem)
 - $\circ \Delta R_V = 0.031 V/2/\sqrt{3} = 0.009 V$ (distribuição retangular)
- \circ $\Delta t_{Vmáx}$: Incerteza associada à leitura de voltagem do sinal máximo (V_{máx}).
- o $\Delta t_{63,2\%V:}$ Incerteza associada à leitura de voltagem do 63,2% do sinal máximo (V_{63,2%}).
- E_{osc} : Erro do instrumento de medição, Osciloscópio, na base de tempo: (± 0,01% da leitura ± 0,2%fundo da escala ± 40ps)/2/√3 (distribuição retangular).

11.2.3. Incerteza padronizada combinada

Tempo de resposta:

Para o cálculo da Incerteza padronizada combinada do tempo de resposta utilizou-se a seguinte propagação de erros:

$$u_{B_{(Tempoderesposta)}} = \sqrt{\left(\frac{s}{\sqrt{n}}\right)^2 + \left(\Delta R_t\right)^2 + \left(E_{osc}\right)^2 + \left(\Delta t_{Vmáx}\right)^2}$$

onde:

 $(\Delta t_{V_{máx}})^2$ é a incerteza associada devido ao erro na leitura na escala de voltagem do sinal máximo. Calculou-se da seguinte forma:

$$\left(\Delta t_{Vmáx}\right)^2 = \left(\frac{\partial t}{\partial V_{máximo}} \cdot \Delta V_{máximo}\right)^2$$

Onde o valor da aproximação da derivada $\frac{\partial t}{\partial V_{máximo}}$ foi calculada das medições

feitas para cada Par E-D. O valor de $\Delta V_{maximo} = \Delta R_V = 0,009V$.

Constante de Tempo:

Para o cálculo da Incerteza padronizada combinada da constante de tempo utilizou-se a seguinte propagação de erros:

$$u_{B_{(Tempoderesposid)}} = \sqrt{\left(\frac{s}{\sqrt{n}}\right)^2 + \left(\Delta R_t\right)^2 + \left(E_{osc}\right)^2 + \left(\Delta t_{63,2\%V}\right)^2}$$

Onde:

 $(\Delta t_{63,2\% V})^2$ é a incerteza associada devido ao erro na leitura na escala de de voltagem do 63,2% do sinal máximo. Calculou-se da seguinte forma:

O valor da constante de tempo é o valor correspondente ao tempo que demora o sinal de saída até chegar ao 63,2% do sinal máximo, então:

$$V_{63,2\%} = 0,632 x V_{maximo}$$

A incerteza associada ao cálculo do 63,2% do sinal máxima é a derivada em relação a V_{máximo} e foi calculada da seguinte forma:

$$\left(\Delta V_{63,2\%}\right)^2 = \left(\frac{\partial V_{63,2\%}}{\partial V_{maximo}} \Delta V_{maximo}\right)^2 = 0,632x0,009V = 0,006V$$

Então, a incerteza associada à leitura de voltagem do 63,2% do sinal máximo foi determinada por:

$$\left(\Delta t_{63,2\%V}\right)^2 = \left(\frac{\partial t_{63,2\%}}{\partial V_{63,2\%}} \Delta V_{63,2\%}\right)^2$$

O coeficiente de sensibilidade $\frac{\partial t_{_{63,2\%}}}{\partial V_{_{63,2\%}}}$ foi calculado pela aproximação da

:

derivada das medições feitas para cada Par E-D.

11.2.4. Incerteza Expandida

Para o cálculo da incerteza expandida utilizou-se o coeficiente de abrangência k_p = 2 para um nível de confiança do 95%

$$U = 2 x u$$

Os cálculos e resultados apresentam-se na tabela 21

Tabela 21- Cálculo das incertezas do tempo de resposta e constante de tempo dos Pares E-D.

	Tempo de Resposta na elevação do sinal								
Pares E-D	$\frac{\text{Média}}{x_i}$	s(xi)	$\frac{s(x_i)}{\sqrt{n}}$	Resolução	∆Rt	E _{osc}	$\left(\Delta t_{_{Vmáx}} ight)$	U	
Par E-D 1	11,2	0,070	0,031	0,1	0,029	0,006	0,007	0,1	
Par E-D 2	11,3	1,368	0,612	0,1	0,029	0,006	0,073	1,2	
Par E-D 3	30,2	3,344	1,496	0,2	0,058	0,012	0,069	3,0	
Par E-D 4	15,6	0,235	0,105	0,2	0,058	0,012	0,069	0,3	

	Tempo de resposta na queda do sinal								
Pares E-D	$\frac{\text{Média}}{x_i}$	s(xi)	$\frac{s(x_i)}{\sqrt{n}}$	Resolução	∆Rt	E _{osc}	$\left(\Delta t_{_{Vmáx}} ight)$	U	
Par E-D 1	729	8,556	3,826	10	2,887	0,310	0,009	10	
Par E-D 2	16,7	1,368	0,612	0,2	0,058	0,012	0,083	1,2	
Par E-D 3	28,1	0,623	0,279	0,2	0,058	0,012	0,028	0,6	
Par E-D 4	15,6	0,235	0,105	0,2	0,058	0,012	0,028	0,2	

	Constante de tempo na elevaçao do sinal								
Pares E-D	$\frac{\text{Média}}{x_i}$	s(xi)	$\frac{s(x_i)}{\sqrt{n}}$	Resolução	∆Rt	E _{osc}	$\left(\Delta t_{63,2\%V}\right)$	U	
Par E-D 1	7,3	0,089	0,040	0,1	0,029	0,006	0,035	0,1	
Par E-D 2	3,5	0,353	0,158	0,1	0,029	0,006	0,024	0,3	
Par E-D 3	7,7	0,870	0,389	0,2	0,058	0,012	0,059	0,8	
Par E-D 4	4,9	0,169	0,076	0,2	0,058	0,012	0,023	0,2	

	Constante de Tempo na queda do sinal								
Pares E-D	$\frac{\text{Média}}{x_i}$	s(xi)	$\frac{s(x_i)}{\sqrt{n}}$	Resolução	∆Rt	Eosc	$\left(\Delta t_{63,2\%V}\right)$	U	
Par E-D 1	461	3,633	1,625	10	2,887	0,302	0,913	7	
Par E-D 2	4,2	0,353	0,158	0,2	0,058	0,012	0,005	0,3	
Par E-D 3	7,8	0,339	0,152	0,2	0,058	0,012	0,080	0,4	
Par E-D 4	4,9	0,169	0,076	0,2	0,058	0,012	0,033	0,2	

11.3. Avaliação da potência de saída do LED em relação à distância, Tensão e Intensidade de corrente fornecida.

Utilizou-se o Optical Power Meter e um Fotodetector Newport, para medir a potência de saída do nosso LED. As medições foram feitas para avaliar a variação da potência em relação à distância, à tensão fornecida de 2-2,5V e a intensidade de corrente fornecida de 20 a 40mA. Também a estabilidade do LED em relação à temperatura de 20, 25 e 30 °C.

Figura 50- Avaliação do LED.

Tabela 22- Variação da potência do LED (μW) em relação a tensão de alimentação e intensidade de corrente fornecida, e à temperatura.

Temperatura 20,2±03°C

Tensão de Alimentação 2	2
-------------------------	---

Distância	I	Intensidade de corrente (mA)							
Cm	20	25	30	35	40				
0	5,86	6,83	7,72	8,33	8,73				
1	3,91	4,66	5,09	5,56	5,88				
2	2,14	2,70	3,04	3,22	3,41				
3	1,18	1,45	1,55	1,67	1,84				
4	0,83	1,04	1,15	1,24	1,32				
5	0,53	0,64	0,76	0,72	0,84				
6	0,36	0,44	0,50	0,54	0,58				
7	0,38	0,37	0,42	0,45	0,47				

Tensão de Alimentação 2,5V

Distância	Intensidade de corrente (mA)						
cm	20	25	30	35	40		
0	5,85	6,76	7,74	8,33	8,71		
1	3,83	4,57	5,12	5,58	5,77		
2	2,20	2,67	3,05	3,25	3,42		
3	1,19	1,31	1,52	1,67	1,86		
4	0,84	1,02	1,15	1,26	1,32		
5	0,56	0,67	0,72	0,77	0,82		
6	0,37	0,44	0,50	0,54	0,59		
7	0,32	0,37	0,42	0,45	0,47		

Temperatura 25,8±03°C

Tensão de Alimentação 2V								
Distância	-	Intensidade de corrente (mA)						
Cm	20	25	30	35	40			
0	5,49	6,50	7,31	7,94	8,49			
1	3,37	4,26	4,83	5,17	5,41			
2	2,14	2,72	2,80	3,20	3,36			
3	1,26	1,50	1,61	1,72	1,85			
4	0,81	0,98	1,10	1,13	1,22			
5	0,51	0,63	0,70	0,76	0,82			
6	0,38	0,45	0,50	0,54	0,55			
7	0,32	0,36	0,40	0,44	0,45			

Tensão	de	Alimen	tacão	2 5
renouo	uc	/	iuçuo	2,0

Distância	In	Intensidade de corrente (mA)						
cm	20	25	30	35	40			
0	5,49	6,50	7,31	7,94	8,49			
1	3,37	4,26	4,83	5,17	5,41			
2	2,14	2,72	2,80	3,20	3,36			
3	1,30	1,51	1,67	1,81	0,19			
4	0,82	1,01	1,10	1,17	1,23			
5	0,54	0,63	0,69	0,75	0,82			
6	0,37	0,46	0,49	0,54	0,55			
7	0,30	0,34	0,39	0,42	0,45			

Temperatura 29,8±03°C

	Tens	ão d	e Ali	imer	Itaçã	o 2\
--	------	------	-------	------	-------	------

Distância	Intensidade de corrente (mA)						
Cm	20	25	30	35	40		
0	5,30	6,22	7,14	7,64	7,93		
1	3,04	3,70	4,14	4,55	4,82		
2	1,81	2,14	2,51	2,63	2,85		
3	1,04	1,34	1,52	1,62	1,72		
4	0,70	0,84	0,94	1,04	1,12		
5	0,50	0,62	0,71	0,74	0,84		
6	0,31	0,42	0,43	0,52	0,54		
7	0,10	0,14	0,21	0,23	0,25		

Tensão de Alimentação 2,5V

Distância	Intensidade de corrente (mA)						
cm	20	25	30	35	40		
0	5,29	6,22	7,20	7,70	8,10		
1	3,11	3,69	4,20	4,50	4,80		
2	1,83	2,14	2,40	2,60	2,90		
3	1,20	1,35	1,50	1,60	1,70		
4	0,72	0,84	1,00	1,00	1,10		
5	0,52	0,63	0,70	0,70	0,80		
6	0,32	0,44	0,40	0,50	0,50		
7	0,12	0,15	0,20	0,20	0,20		

Figura 51- Variação da potência em relação à distância.

Na figura 51 pode-se observar a variação da potência em função da distância e da intensidade de corrente fornecida ao LED.